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CHAPTER 1 Effects of NaCl on defensive responses of Daphnia pulex to Chaoborus 

Introduction 

Ecotoxicology of environmental stressors, especially anthropogenic pollutants, has 

experienced significant growth since the 1960s (Relyea and Hoverman, 2006). Its first scientific 

definition was proposed by Truhaut (1977), considering it as a branch of toxicology. 

Ecotoxicology addresses effects of toxicants on ecosystem components in an integrated ecological 

context (Truhaut, 1977). Thus, instead of simply investigating the direct toxicity of pollutants on 

single species, emphasis is also placed on understanding the indirect effects of stressors on species 

as mediated by their biotic interactions such as predation and competition (Relyea and Hoverman, 

2006). Two types of indirect effects, density-based and trait-based indirect effects (Abrams, 1995), 

may underlie the ecological impacts of pollutants. While both types of indirect effects can occur 

simultaneously, historically, ecology has emphasized density-based effects of endogenous and 

exogenous perturbations in natural communities (Peacor and Werner, 2004; Preisser et al., 2005). 

More recent work in ecology and ecotoxicology has highlighted the importance of trait-based 

effects in which non-lethal impacts of environmental stressors alter species interactions by 

modifying behavioral, physiological, demographic or morphological traits (Weis et al., 2001; 

Peacor and Werner, 2004). The trait-based effects of multiple environmental stressors (such as the 

presence of toxins and antagonistic interactions) are an area of ongoing research. In this study, I 

examined trait-based effects of salinity stress on Daphnia pulex in response to lethal and non-lethal 

presence of its predator, Chaoborus.  

 Of the wide range of environmental factors that may cause negative impacts on freshwater 

ecosystems, salinity stress resulting from road salt intrusion is of more recent concern (Kaushal et 

al. 2005; Mullaney et al., 2009). Road salt is mainly composed of NaCl and often contains MgCl2, 
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KCl, and CuCl2. Chloride may be transported to road-adjacent freshwater systems by rainfall and 

melted snow and ice, and may thereby directly impact somatic growth, reproduction, and other 

physiological traits of freshwater organisms (Camargo, 2003; Soucek and Kennedy, 2005). In a 

study of road salt toxicity in 43 highway-adjacent wetlands in Michigan, Benbow and Merritt 

(2004) found summer chloride levels between 18 to 2700 mg/l, with 25% of the levels more than 

334 mg/l, a level that may not cause significant damage to macroinvertebrates (Blasius and Merritt, 

2002) but can seriously harm freshwater zooplankton (Sarma et al., 2006) in lentic freshwater 

systems.  

Compared to lotic freshwater systems such as streams, impacts from road salt pollution are 

considered to be greater in lentic ecosystems which may have little or no inflows and outflows 

(Moore et al., 1999). Chloride from road salt has a greater retention time in standing than moving 

waters (Rosenberry et al., 1999), causing stronger and longer negative impacts on organisms in 

them (Van Meter et al., 2011; Gallagher et al., 2011). Among lentic systems, wetlands and ponds 

are common roadside features and of general conservation concern due to their potentially high 

levels of freshwater vertebrate and invertebrate biodiversity (Denny, 1994; De Meester et al. 2005; 

Gopal, 2009). Daphnia are often the dominant primary consumers in temperate zone systems and 

are recognized as keystone species in freshwater communities (Martin-Creuzburg et al., 2005; 

Sarnelle, 2005; Persson et al., 2007). Daphnia pulex, a well-studied model organism (Garda et al., 

2009; Lampert, 2006), plays an important role in the biological structure and functioning of many 

small freshwater systems (Steiner, 2004). In wetlands and small lakes in temperate and boreal 

regions, Daphnia generally face predation pressure from 3rd and 4th instars of Chaoborus larvae 

(Moore, 1986; Pastorok, 1980). In fishless ponds in Michigan, Chaoborus americanus is the 

dominant taxon among the four most common Chaoborus species (Garcia and Mittelbach, 2008; 
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Von Ende, 1979). Chaoborus americanus species selectively feeds on small (< 1mm) crustacean 

zooplankton (Von Ende and Dempsey, 1981; Cooper, 2011) including D. pulex, especially when 

it is more available (Spitze, 1985).  

Daphnia have developed behavioral defensive mechanisms against Chaoborus, ambush 

predators that normally stay still and strike when prey are in close proximity. Daphnia may swim 

fast to escape from Chaoborus strikes (Swift, 1992). D. pulex can display other responses that 

assist with defense against Chaoborus. Morphologically, Daphnia pulex may develop an 

additional neckteeth structure on the dorsal margin in juvenile instars in presence of Chaoborus 

kairomone, a predator cues that may be detected by preys (Krueger and Dodson, 1981; Parejko 

and Dodson, 1991). This structure is believed to contribute to successful escapes of D. pulex by 

reducing the abilities of Chaoborus, which are gape-limited predators, to handle and ingest the 

prey (Tollrian, 1995a; Spitze, 1992; Havel and Dodson, 1984). In addition, D. pulex exhibits 

plasticity in life history traits in response to Chaoborus. Black (1993) found that D. pulex 

experienced a slower maturation rate with larger maturation sizes and gave birth to larger but fewer 

neonates in response to Chaoborus kairomone. It was suggested by Black (1993) that larger 

maturation and neonate sizes assisted with defense to the gape-limited predators. As trade-offs, 

longer time was required for maturation, and fewer neonates were produced.  

How the defense behaviors and morphological and life history responses are affected by a 

variety of environmental factors has been extensively studied. Natural factors such as light 

intensity (Dodson et al., 1997), food availability (Van Gool and Ringelberg, 1995), and water 

temperature (Ziarek et al., 2011) have been shown to influence the swimming behavior and depth 

distribution of Daphnia. Not only natural but anthropogenic factors such as nanoparticles (Lovern 

et al., 2007) and insecticides (Dodson and Hanazato, 1995) can also affect defensive swimming 



4 

 

behaviors of Daphnia. Neckteeth of D. pulex was negatively impacted by a pesticide endosulfan 

(Barry, 2000). Coors et al., (2008) found additive effects of parasites, pesticides and Chaoborus 

kairomone on the sizes and ages at maturity of Daphnia magna. Inorganic substances such as metal 

ions (Hunter and Pyle, 2004) and oxygen concentration (Hanazato and Dodson, 1995) were shown 

to affect the responses of D. pulex to Chaoborus kairomone. 

However, very limited studies have addressed the effects of salinity stress on Daphnia-

Chaoborus interactions and induced responses of Daphnia. Moreover, studies to date have largely 

failed to consider the role of intraspecific trait variation in the responses of prey to the combined 

presence of predators and environmental stressors. Prior work has revealed significant Daphnia 

clonal variation in salinity tolerance (Grzesiuk and Mikulski, 2006; Teschner, 1995), including D. 

pulex from habitats with naturally incurred salinity differences (Weider and Hebert, 1987; Weider 

1993; Latta et al., 2012). In the light of local adaptation, under the selection pressure of high 

salinity, Daphnia clones with higher salt tolerance may outcompete the ones with lower tolerance 

and eventually dominate the population (Teschner, 1995; Liao et al., 2015; Kawecki and Ebert, 

2004). This adaptation may have significance in contributing to the resilience and stability of the 

population in face of salinity stress (Liao et al., 2015; Gonzalez et al., 2013). Providing the 

important ecological functions of Daphnia in their food webs, the significance of the adaptation 

may extend to community levels (Fussmann et al., 2007). Unfortunately, how genetic variation 

and local adaptation of Daphnia to salinity stress mediate its interactions with predators largely 

remains unexplored (but see Bezirci et al., 2012).  

In natural ponds in southern Michigan, ionic concentrations, as measured by conductivity, 

vary greatly in the absence of anthropogenic salt inputs (Steiner, unpublished data). In my study, 

adaptation of D. pulex clones to the ionic concentrations in their habitats was tested. I hypothesized 
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that past exposure to higher conductivity would select for tolerance to higher ionic concentrations 

which in turn would translate into greater salinity tolerance. Of the tested clones, I chose two that 

showed strongly contrasting salinity tolerances for the following study. To investigate if salinity 

tolerance can mediate the escape behavior of D. pulex in face of lethal predation of Chaoborus, I 

tested escape efficiencies of the two clones. I hypothesized that the stronger salt-tolerant clone 

would display higher escape efficiencies than the less tolerant clone after receiving different levels 

of salt stress. Responses of D. pulex to Chaoborus kairomone, effects of salinity stress on the 

responses, and mediation of salinity tolerance in salinity effects were then investigated. I 

hypothesized that both clones would exhibit phenotypic plasticity and respond to predator cues by 

developing neckteeth and shifting their life histories towards larger maturation sizes at older ages 

along with reproducing fewer but larger offspring. I further hypothesized that salinity stress would 

negatively impact all the responses while the clone with stronger salinity tolerance would display 

stronger neckteeth development and life history shifts across increasing levels of salinity stress 

when compared to the less tolerant clone.  

Methods 

Target animals 

I examined salinity tolerance of four Daphnia pulex clones: two (P12 and P14) isolated 

from ponds at the Kellogg Biological Station (KBS), Experimental Pond Facility (Hickory 

Corners, MI), one (OL2) isolated from a natural pond in the Barry State Game Area (Barry County, 

MI) and one (GR9) isolated from a natural pond in the E. S. George Reserve (Pinkney, MI). 

Cultures were established using a single female randomly isolated from pond samples and 

maintained as isogenic lines under controlled environmental conditions for numerous generations. 

These ponds were known to contain Chaoborus populations and prior pilot experiments showed 
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that all four clones exhibit morphological defenses (neckteeth formation) when exposed to 

Chaoborus kairomone. The source ponds also represented a range of natural conductivities based 

on prior field surveys (P14: 350.5S/cm; P12: 348.3S/cm; GR9: 65.2S/cm; OL2: 43.8S/cm; 

Steiner, unpublished data). 

Chaoborus spp., were sampled from natural ponds in KBS Lux Arbor Reserve, Delton, 

Michigan in summer and fall 2014. Chaoborus americanus is the dominant Chaoborus species in 

ponds in the region (Garcia and Mittelbach, 2008; Personal Observation and Asgari, pers. Comm.) 

Only the 3rd or 4th instar larvae of this genus were used because only they have sufficient gape 

sizes to feed on juvenile D. pulex (Moore, 1986; Swift, 1992). Some of the animals were 

maintained in the lab under constant temperature (20 °C) and photoperiod (12h light: 12h dark). 

They were fed with D. pulex juveniles to match the experimental conditions, while the rest were 

used to extract Chaoborus kairomone. The extraction method was modified from Hebert and 

Grewe (1985). Twenty-five grams (about 6250 individuals) of Chaoborus were boiled in 1.5 L 

distilled water for 10 minutes. The liquid was then filtered using a 30-

filtration using Whattman GF/B (1.0 µm pore size), Whattman GF/F (0.7 µm pore size), and 

Callman (0.2 µm pore size) glass fiber filters in sequence. Extracted kairomone solution was stored 

in -80 °C freezer. This kairomone solution was effective in inducing neckteeth responses of D. 

pulex 9 months after extraction. 

Salinity tolerance experiment 

To determine salinity tolerance of the four candidate clones, maternal effects were first 

removed by culturing the animals in common garden conditions for three generations (Tollrian, 

1995b). Less than 24 hour old neonates from the third generation were isolated from their stock 

cultures and transferred to beakers containing 200mL of medium; replicate beakers contained 15 
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neonates of a given clone. The experimental medium consisted of aged tap water at one of four 

salinity concentrations (0, 1, 2, 3 g/l NaCl). The average chloride level in Detroit tap water was 

0.011 g/L, a negligible level compared to the experimental salinity levels (2014 Water Quality 

Report, Detroit Water and Sewage Department). These salt concentrations are comparable to the 

range observed in natural roadside waterbodies in Michigan (Benbow and Merritt 2004; see also 

Chapter 2). Clones GR9, P12, P14, and OL2 had 8, 4, 6, and 5 replicates per salinity level, 

respectively. They were all fed with Ankistrodesmus falcatus at a non-limiting concentration 

(100,000 cells/ml). Food and culture media were refreshed daily. After 96 hours, the numbers of 

surviving juveniles in each replicate were counted, and survivorship was calculated by dividing 

the number of surviving individuals by the total number at the beginning. The two clones with the 

highest and lowest survivorship (clones P14 and GR9) were used for subsequent experiments 

examining behavioral, morphological and life history responses.  

Behavior experiment 

Escape behavior of clones P14 and GR9 was assessed for clones that were given short-term 

exposure to four salinity levels (0, 0.7, 1.4, and 2.0 g/l NaCl). Chaoborus cultures were acclimated 

in the lab for at least one month before the initiation of experiments. Individuals were starved for 

2 days (Swift and Fedorenko, 1975) before being employed in the behavior experiment. To remove 

maternal effects, D. pulex clones were cultured under common garden conditions (as described 

above). Neonates from the third generation were employed in the experiment. Before the start of 

each experiment, less than 24 hour old D. pulex neonates were isolated from their stock cultures 

and cultured for 2 days in medium whose salinities matched the experimental target 

concentrations. After this acclimation period, D. pulex individuals were transferred into beakers 

with 100 ml of 0 g/L NaCl, aged tap water occupied by 20 starved Chaoborus (modified from 
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Swift and Fedorenko, 1975). Escape behavior was determined in multiple, non-concurrent trials. 

For each clone and salinity exposure level combination, 5 replicate trials were used, and freshly 

starved Chaoborus were used in each replicate. For each replicate trial, 20 Daphnia were added 

into a beaker one by one after the previous one was ingested. The total numbers of strikes, escapes, 

and ingestions occurring in each trial were recorded where a strike was defined as a predatory 

movement of Chaoborus directly towards the Daphnia individual, and an ingestion was a 

successful attack with the whole body of the Daphnia being ingested by the predator (Havel and 

Dodson, 1984). Escapes were the number of strikes which did not result in ingestion. The escape 

efficiency of Daphnia was calculated by dividing the number of escapes by the number of strikes, 

and it reflects the ability of Daphnia to escape from predation as a defense behavior (Swift and 

Fedorenko, 1975). 

Morphological and Life history experiment 

D. pulex life history and morphological responses were assessed in a 4 x 2 x 2 factorial 

design: 4 salinity levels (0, 0.25, 0.5, 1 g/l NaCl) crossed with presence/absence of Chaoborus 

kairomone crossed with clone identity (P14 versus GR9). Salinity levels were chosen based on 

pilot experiments in which 1g/l NaCl was found to be close to the limit where eggs of both clones 

were able to develop into neonates (personal observation). Maternal effects were removed using 

similar methods to those described above. However, after F2 generation mothers gave birth to their 

first broods, they were transferred to beakers containing media that matched salinity concentrations 

used in the experiment. This ensured that the target animals experienced experimental conditions 

from the egg stage. At the start of the experiment, less than 3 hour old neonates were isolated from 

their stock cultures and transferred into individual beakers (one Daphnia per beaker) containing 

100 ml of aged tap water of appropriate salinity and algal food at 10,000 cells/ml. Each treatment 
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combination received 6 replicates, though one or two replicates from some treatments were lost 

due to experimental error. Food and media were refreshed daily. At their 2nd instar stage, the target 

animals were checked for neckteeth development using a dissecting microscope and returned to 

their source beaker. A neckteeth scoring system was used, modified from Tollrian (1993). In terms 

of the base for the teeth, a morphologically “normal” neck = 0%, a small bump on the neck = 15%, 

a medium bump = 30%, and a “pedestal” = 50%. The teeth (up to five) were scored by their size 

and number, where a large tooth scored 10% and a small tooth scored 5%. The neckteeth score is 

sum of the scores of the base and teeth. The animals were monitored every 3 hours from the start 

of the experiment until maturation to obtain maturation times in hours. Maturation of Daphnia was 

defined as when their egg chambers were filled with eggs. At maturation, images of individuals 

were captured using a Photometrics CoolSNAP EZ digital camera mounted on a Nikon SMZ 1000 

dissecting scope, and maturation sizes were measured using NIS-Elements Documentation 

software. Size was measured as the linear distance between top of the head and base of the spine. 

When the first brood of neonates from the target animals were produced, clutch sizes were 

recorded, and neonate body sizes were measured in the same manner. The birth events of the first 

broods were monitored every 12 hours so that the neonates were photographed at their 1st instar, a 

stage when the size of Daphnia stays the same as when they were born. The experiment continued 

until the third brood of neonates was produced in each replicate. The numbers of neonates in each 

brood and corresponding ages of the mothers at birth were recorded and used to calculate intrinsic 

population growth rates (r) using the Euler equation: 1 = ∑e-rxlxmx, where x is the age in days, mx 

represents the age-specific brood size, and lx is age-specific survivorship. To solve the equation 

for r, I used uniroot function in R Version 3.2.3 with defining a value range provided by an 
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estimated r value using log (net reproduction rate/generation time). Three broods is sufficient to 

calculate r as later broods add little incremental precision (Riessen and Sprules, 1990). 

Statistical analysis 

General Linear Model (GLM) with binomial errors and a logit link was used to analyze the 

effects of clone identity, salinity (as a continuous predictor) and their interactions on survivorship 

in the first salinity tolerance experiment. Results were highly overdispersed, thus, I present results 

using quasibinomial errors. Non-significant interactions and model selection was performed based 

on AIC using the step function in R (with forward and backwards model selection). In cases of 

unbalanced data, I used type III sums of squares. Data from the behavior experiments were 

analyzed using GLM with Gaussian errors and an identity link, testing for effects of clone identity, 

salinity (as a continuous covariate) and their interaction. For the life history and morphology 

experiment, the effects of clone identity, salinity, kairomone and their interactions were analyzed 

for all response variables. Responses to salinity were highly non-linear and sometimes 

idiosyncratic for some measures. Thus, I treated salinity as a fixed effect (rather than a continuous 

predictor) in these analyses. For neckteeth scores, maturation sizes, and neonate sizes, GLM with 

Gaussian errors was used. For count data (maturation time and first brood sizes), GLM with 

Poisson errors and a log link was employed. For effects on intrinsic growth rate, GLM with 

Gaussian errors and Kruskal-Wallis test were both used. Assumptions of normality and 

homogeneity of variances for GLM with Gaussian errors were tested by Kolmogorov–Smirnov 

(K-S) and Levene’s tests, respectively. Pairwise comparisons were performed using Tukey’s HSD 

in SYSTAT 13 and R (using the ghlt function in the multcomp package). GLM and Kruskal-Wallis 

was performed using R Version 3.2.3. Kolmogorov–Smirnov and Levene’s were performed using 

SYSTAT 13.  
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Results 

Salinity tolerance experiment 

Survivorship was dependent on both salinity level and clone identity as indicated by a significant 

interaction (Fig. 1; F3, 88 = 3.22, p = 0.027, GLM with quasibinomial errors). P14 tended to have 

the highest survivorship across salinity concentrations (Fig. 1). For subsequent experiments I chose 

P14 and GR9 which had strongly contrasting survivorships at the 2g/l NaCl concentration, (p = 

0.003, two-sample t-test) and 3g/L NaCl concentration (p = 0.041, two-sample t-test).

 

 

 

 

Figure 1: Relative survivorships of juveniles of the two D. pulex clones GR9 and P14 under 

exposure to different salinity levels for 96 hours. Shown are fits from the GLM analysis. 
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Behavior experiment 

Escape efficiencies generally declined for both clones P14 and GR9 as salinity increased 

(Fig. 2); significant effects of salinity (F1, 38 = 85.02, p < 0.001, GLM with Gaussian errors) and 

clone identity (F1, 38 = 30.85, p < 0.001, GLM with Gaussian errors) on escape efficiency was 

detected, P14 appeared to exhibit more efficient escape behavior than GR9 across salinity levels. 

No interaction was found between the two factors (F1, 38 = 2.86, p = 0.099, GLM with Gaussian 

errors), indicating that the slopes of the relationship between escape efficiency and salinity did not 

differ between clones. Despite this, escape efficiency of P14 was significantly greater than GR9 at 

the highest salinity level (Fig. 2; p < 0.001, ANOVA) but did not differ at the lowest salinity level 

(Fig. 2; p = 0.11, ANOVA). Normality and homogeneity of variances of the data were analyzed 

using K-S Test and Levene’s Test, respectively, and the assumptions were met. 

 

Life History and Morphology Experiment 

Figure 2: Escape efficiencies of the 3rd instar D. pulex juveniles from Chaoborus predation 

after exposure to different salinity levels for 72 hours. Shown are linear regression fits for 

both clones.  
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Morphological and Life history experiment 

Neckteeth development was induced only when Chaoborus kairomone was present (Fig. 

3). There was a significant three-way interaction between clone identity, salinity and kairomone 

(F3, 79 = 1231, p < 0.001, GLM with Gaussian errors). However, due to zero values in the absence 

of kairomone, errors were not normally distributed (p < 0.001, K-S Test) and variances were not 

homogeneous (p < 0.001, Levene’s Test). Thus, p-values must be interpreted with caution. 

Analysis of data from the kairomone-present treatments showed a significant 2-way interaction 

between salinity and clone identity (F3, 39 = 13.3, p < 0.001, GLM with Gaussian errors). This 

interaction was driven by a significant difference in the neckteeth scores of the two clones under 

0.25 g/l NaCl (p < 0.001, Tukey’s HSD); no differences between clones were detected for the other 

salinity levels (p > 0.05, 

Tukey’s HSD). Data met 

did not meet 

homogeneity of 

variances regardless of 

data transformation (p < 

0.001, Levene’s test). 

Thus, p-values from the 

GLM should be viewed 

with caution. 

 

 

Figure 3: Neckteeth scores of the two D. pulex clones under the 

treatments of different combinations of salinities and Chaoborus 

kairomone conditions (K+: kairomone present, K-: kairomone 

absent).  
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Both salinity (Fig. 4; χ2(3, N = 90) = 14.85, p = 0.002, GLM with Poisson errors) and 

kairomone (Fig. 4; χ2(1, N = 90) = 9.89, p = 0.0017, GLM with Poisson errors) affected maturation 

time. There was no effect of clone identity (p = 0.38, GLM with Poisson errors). No interactions 

among the three treatments were detected (p > 0.05, GLM with Poisson errors). Presence of 

kairomone delayed maturation when averaging across all clone and salinity combinations (Fig. 4; 

p < 0.01, Tukey’s HSD). When analyzing the effects of salinity averaged across the other 

treatments, 1 g/l NaCl had the highest maturation times when compared to all other salinity levels 

(Fig. 4; all p < 0.05, Tukey’s HSD).  

 

 

Figure 4: Maturation time of the two D. pulex clones under the treatments of different 

combinations of salinities and Chaoborus kairomone conditions. (K+: kairomone present, K-: 

kairomone absent) 
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Kairomone and clone identity interactively affected maturation size (Fig. 5; F3, 73 = 5.21, p 

= 0.025, GLM with Gaussian errors); neither factor interacted with salinity (p > 0.05, GLM with 

Gaussian errors). Pairwise comparisons indicated that this interaction was solely driven by 

increases in maturation size of clone P14 in the presence of kairomone (p = 0.005, Tukey’s HSD); 

GR9 showed no response to kairomone (p > 0.05, Tukey’s HSD). Salinity also affected maturation 

size (Fig. 5; F3, 73 = 33.27, p < 0.001, GLM with Gaussian errors). Pairwise comparisons revealed 

significant differences among all salinity levels (p < 0.01, Tukey’s Test) with the exception of the 

comparison between the 0 and 0.5 g/l NaCl levels (p = 0.988, Tukey’s Test). As shown in Fig. 5, 

0.25 g/l NaCl produced the largest mean maturation size while 1 g/l NaCl reduced mean maturation 

size the most.  

 

 
Figure 5: Maturation sizes of the two D. pulex clones under the treatments of different 

combinations of salinities and Chaoborus kairomone conditions. (K+: kairomone present, K-: 

kairomone absent) 
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There was a significant 3-way interactive effect of clone identity, kairomone and salinity 

on neonate size (Fig. 6; F3, 66 = 3.52, p = 0.02, GLM with Gaussian errors). Pairwise comparisons 

indicated that the kairomone treatment did not have any effects on neonate size within every 

combination of salinity and clone identity (p > 0.05, Tukey’s HSD). In the presence of kairomone, 

GR9 produced significantly smaller neonate sizes under 1 g/l NaCl when compared to 0 g/l NaCl 

(p = 0.009, Tukey’s HSD) and 0.25 g/l NaCl (p = 0.001, Tukey’s HSD). In the absence of 

kairomone, GR9 displayed significant smaller neonate sizes under 1 g/l NaCl when compared to 

0.25 g/l NaCl (p = 0.004, Tukey’s HSD) and 0.5 g/l NaCl (p = 0.002, Tukey’s HSD). In the absence 

of kairomone, P14 had significantly larger neonate sizes under 0 g/l NaCl compared to 0.5 g/l 

NaCl (p = 0.025, Tukey’s HSD) and 1 g/l NaCl (p = 0.011, Tukey’s Test). No significant difference 

(p > 0.05, Tukey’s HSD) was present in the neonate sizes in P14 under different salinity levels in 

the presence of 

kairomone. Significant 

interclonal differences (p 

= 0.006, Tukey’s HSD) 

were only found under 0.5 

g/l NaCl without 

kairomone treatment in 

which GR9 neonate size 

was larger than P14.  

 

 

Figure 6: Neonate sizes (body length) of the two D. pulex clones under 

the treatments of different combinations of salinities and Chaoborus 

kairomone conditions. (K+: kairomone present, K-: kairomone absent) 
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For the first brood sizes (Fig. 7), no significant interactions among the three factors was 

found (all p > 0.05, GLM with Poisson errors). Significant main effects of salinity (χ2(3, N = 83) 

= 17.36, p < 0.001, GLM with Poisson errors,) and kairomone (χ2(1, N = 83) = 18.87, p < 0.001, 

GLM with Poisson errors,) were detected. No effect of clone identity was present (p > 0.05, GLM 

with Poisson errors). Presence of kairomone significantly induced more neonates in the first broods 

across the other treatments (Fig. 7; p < 0.001, Tukey’s HSD). When analyzing the effects of salinity 

averaged across the other treatments, 1 g/l NaCl had the smallest brood size when compared to 

0.25 and 0.5 g/l NaCl (Fig. 7; both p < 0.05, Tukey’s HSD).  

 

 

Figure 7: First brood sizes of the two D. pulex clones under the treatments of different 

combinations of salinities and Chaoborus kairomone conditions. (K+: kairomone present, K-: 

kairomone absent) 
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When analyzing intrinsic population growth rate, r (Fig. 8), P14 exhibited higher growth 

rates compared to GR9 regardless of kairomone presence/absence or salinity level; a significant 

main effect of clone was detected (F3, 68 = 9.12, p = 0.003, GLM with Gaussian errors,) but no 

clone x treatment interactions (p > 0.05, GLM with Gaussian errors). Salinity and kairomone 

interactively affected population growth rate (Fig. 8; F3, 68 = 13.83, p < 0.001, GLM with Gaussian 

errors). Kairomone only induced a significant increase in r under 0 g/l NaCl across both clones (p 

< 0.001, Tukey’s HSD). 1 g/l NaCl induced the lowest r among all salinity levels across both 

clones regardless of kairomone presence/absence (p < 0.001, Tukey’s HSD). Population growth 

rate under 0 g/l NaCl across the two clones was significantly smaller than 0.25 and 0.5 g/l NaCl in 

the absence of kairomone (p < 0.001, Tukey’s HSD). The assumption of normality was not met (p 

= 0.001, K-S Test) regardless of data transformations. Thus, p-values must be viewed with caution. 

As a supplement to the GLM analysis, I performed non-parametric one-way ANOVAs using the 

Kruskal-Wallis (K-W) Test testing for effects of clone identity, kairomone and salinity separately. 

Significant main effects of 

kairomone (χ2(1, N = 84) = 8.89, p = 

0.003, K-W Test), salinity (χ2(3, N = 

84) = 44.2, p < 0.001, K-W Test), 

and clone (χ2(1, N = 84) = 5.71, p = 

0.017, K-W Test) were found on the 

ranks of r.  

 

 
Figure 8: Intrinsic population growth rate (r) of the two D. pulex clones 

under the treatments of different combinations of salinities and Chaoborus 

kairomone conditions. (K+: kairomone present, K-: kairomone absent) 
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Discussion 

Physiological responses play significant roles in population and community dynamics 

when organisms experience external stressors. Stress can lead to reduced somatic growth, 

reproduction, and/or survival, potentially altering population abundances and persistence. Given 

that Daphnia and Chaoborus are common species in freshwater ponds, it is important to reveal the 

mechanisms of how stressors can impact the interspecific interactions. Missing from many prior 

studies of ecotoxicology is explicit consideration of the effects of intraspecific variation on 

population and community responses to environmental perturbations. Heritable phenotypic 

variation is a potential correlate of the adaptive capacity of a species and thus its ability to persist 

under environmental changes. As human activities and environmental impacts continue to increase 

in scale and magnitude, it has become urgent to assess the degree to which intraspecific variation 

and adaptive evolution can mitigate biotic responses to anthropogenic stressors. Prior work has 

revealed inter-clonal differences in the salinity tolerance of D. pulex that were associated with 

salinity levels in their source habitats (Weider and Hebert, 1987; Latta et al., 2012), an indicator 

of past selection pressure and adaptive evolution. The four clones I used originated from ponds 

with different conductivities (P14: 350.5S/cm; P12: 348.3S/cm; GR9: 65.2S/cm; OL2: 

43.8S/cm; Steiner, unpublished data) and thus potentially different levels of osmotic stress. 

Survivorship of the four clones generally fit my prediction that prior exposure and adaptation to 

higher conductivities would confer stronger capabilities to tolerate NaCl stress. Clone P14 was 

isolated from a pond with the highest conductivity of the four and exhibited the highest tolerance 

to elevated salinity. In contrast, clones GR9 and OL2 (both obtained from low conductivity ponds) 

exhibited low survivorship across the two highest salinity treatments relative to the other clones.  
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With greater salinity tolerance, P14 predictably displayed higher escaping efficiency from 

Chaoborus compared to GR9 under all salinity levels. Increasing salinity was also found to be 

detrimental to the escape abilities of both clones. NaCl is known to cause physiological stress in 

freshwater organisms through osmosis which drives organisms to allocate more energy to prevent 

water loss from their bodies to the surrounding environment. This energy allocation can negatively 

impact somatic growth (Bezirci et al., 2012) and size-related swimming velocities (Baillieul et al., 

1998). The adverse effects of salinity on escape behavior that I observed could be due to such 

weakened responses and swimming rates as well as reduced body sizes from the 2 day exposure 

period (personal observation) which may have made the daphniids more vulnerable (Spitze, 1985). 

Some results deviated from general predictions. I predicted that greater salinity tolerance of clone 

P14 would give rise to a greater capacity to escape predation with increasing salinity 

concentrations when compared to clone GR9. In contrast, a non-significant interactive effect of 

clone identity and salinity indicated that both clones exhibited similarly reduced escape abilities 

with increasing salinity. However, P14 did exhibit significantly higher escape efficiencies at the 

highest salinity level and a weaker, statistically insignificant difference with GR9 at the lowest 

salinity level, consistent with my predictions. Although there was no significant difference 

between the clones in 0 g/l NaCl treatment, there was still a trend for higher escape efficiency of 

P14 in this treatment, suggesting a stronger background capability of P14 to escape from 

Chaoborus predation. One possible explanation is that GR9 tended to produce smaller and slower-

swimming juveniles compared to P14 (personal observations). Differences between the clones 

may reflect prior evolutionary responses to differences in predation pressure in their source 

environments or a correlated response to some other unknown selective pressure. Clonal 
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differences in responses to Chaoborus have been previously demonstrated for D. pulex (Boeing et 

al., 2005; Krueger and Dodson, 1981; Repka et al., 1995).  

One limitation of the behavioral experiment was that predation and escape behaviors were 

tested under 0 g/l NaCl conditions. Even though this was different from the conditions in which 

some Daphnia juveniles were treated, it avoided introducing potential effects of salinity on the 

ability of Chaoborus to attack their preys. Moreover, each replicate round took one hour to 90 

minutes, a short amount of time relative to the two day salt exposure period.  

In addition to behavioral responses, Daphnia are known to exhibit phenotypic plasticity in 

response to predators; a suite of morphological and life history responses to predators are well 

documented. Neckteeth is a common defensive structure against gape-limited predators like 

Chaoborus (Swift and Fedorenko, 1975; Havel and Dodson, 1984). This structure is usually 

inducible and only develops with the stimulation of predator cues as an energy saving strategy 

(Black, 1993; Lüning, 1992). This pattern was clearly shown in my experiment with neckteeth 

induction occurring only in the kairomone-present treatments. I predicted that P14 would show 

stronger neckteeth development with increasing salinity when compared to GR9 because of 

mediation of salinity tolerance. This was not supported by my results. The only significant 

difference in neckteeth development between the two clones was at 0.25 g/l NaCl with P14 

displaying higher scores compared to GR9; responses did not differ at the other salinity levels. The 

reason for this differential response is unclear. The 0.25 g/l treatment produced the highest fitness 

levels (as measured by r) for both clones (see below), suggesting that GR9 may trade-off neckteeth 

production for greater growth and reproduction when salinity conditions are favorable.  

Effects of kairomone were variable among life history responses. I predicted that 

kairomone would induce delayed maturation and larger size at maturation in both clones and that 
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P14 would show stronger and more sustained responses with increasing salinity. I found limited 

support for this. Presence of kairomone delayed maturation, but effects were equal for both clones 

regardless of salinity level. This resulted in larger maturation sizes, as predicted, but only for clone 

P14, supporting the view that this clone is more responsive to Chaoborus presence. Increasing 

salinity increased maturation times and reduced maturation sizes at the highest concentrations, 

regardless of clone identity. This supports the prediction that this stressor impairs life history 

responses and potentially increases susceptibility to predators. Larger maturation size has been 

cited as a defense mechanism of D. pulex against Chaoborus in previous studies (Lüning, 1992; 

Spitze, 1992; Tollrian, 1995b); a strategy that requires more time for somatic growth and delayed 

reproductive maturity. It is also possible that neckteeth development might have also delayed 

maturation due to a trade-off between energy allocations to somatic growth versus reproduction.  

With larger size at maturity, Daphnia are able to produce more or larger neonates. Prior 

studies have shown that larger neonate size contributes to survival from Chaoborus predation, and 

as a trade-off, fewer neonates are produced (Krueger and Dodson, 1981; Havel and Dodson, 1984; 

Riessen and Sprules, 1990; Spitze, 1991). Thus, I predicted that presence of kairomone would 

induce production of fewer but larger offspring, with P14 maintaining this response to a greater 

degree across salinity levels when compared to GR9. In terms of the reproductive output in the 

first brood, unexpected results were found. Chaoborus kairomone increased clutch sizes for both 

clones but had no effect on body sizes of the neonates. These results could be explained by a bet 

hedging strategy (Reznick and Bryga, 1987). Predation risk was spread across a larger number of 

offspring to improve survivorship of individual neonates. Increases in offspring number in the 

presence of kairomone resulted in significant increases in r. In natural populations, faster 

population growth rates could serve as an anti-predator strategy by allowing populations to 
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compensate for elevated mortality (Smith and Fretwell, 1974; Brockelman, 1975). As predicted, 

increasing salinity stress reduced offspring size and number. However, contrary to my predictions, 

clone identity and salinity tolerance did not mediate this effect. 

An interesting finding was that neonate size and brood size did not strongly covary within 

salinity treatments as predicted (cor = 0.24, p = 0.98, Pearson product-moment correlation 

coefficient test). A well-known and fundamental life history trade-off is the negative relationship 

between offspring size and number (Guisande and Gliwicz, 1992; Charnov and Ernest, 2006; Roff, 

1992). A possible explanation is that algal resources were supplied at non-limiting concentrations 

which weakened expression of the trade-off. Unfortunately, only a few studies have incorporated 

this factor into their life history experiments (e.g., Tollrian, 1995b), and most other studies have 

employed relatively high food levels (Black, 1993; Boeing et al., 2005; Lüning, 1992). This might 

be the reason why a significant number of contradictory results can be found in the literature as 

trade-offs may not emerge under unrealistically high resource levels. Another interesting finding 

was that performance of both clones was highest in the 0.25 g/l NaCl treatment. Across all clone 

identity and kairomone treatment combinations, Daphnia reached reproductive maturity the 

fastest, obtained their largest maturation sizes, and produced the most offspring at this salinity 

level. This resulted in the largest intrinsic population growth rates (r) among salinity treatments, 

an important index of overall fitness. It is possible that this salinity level better matched solute 

concentrations in the interstitial fluids of D. pulex, reducing osmotic pressure and the amount of 

energy required to maintain their osmotic balance. Prior studies have also found different non-zero 

optimal salinity levels for Daphnia clones (Weider and Hebert, 1987; Latta et al., 2012; Bezirci et 

al., 2012). 
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How my results translate into realized fitness in natural systems (in the face of both salinity 

stress and active Chaoborus predation) is unknown. Chaoborus americanus has been shown to 

possess high salinity tolerance and is capable of surviving most salt concentrations in impacted 

Michigan wetlands (Benbow and Merritt, 2004). The experimental salinities used in my behavior 

and life history experiments were lower than the ones (3 to 10 per mL) found in Chaoborus habitats 

in temperate zones (Topping, 1971; Hammer, 1986). Thus, my results have implications for natural 

systems. My behavior experiment suggests that as salinity continues to increase to sub-lethal levels 

in freshwater systems receiving road salt, D. pulex will become more vulnerable to Chaoborus 

predation. Significant community structural changes can be predicted as a result of density-

mediated indirect effects. D. pulex populations are expected to decline in more salt-polluted ponds 

because of higher predation rates from Chaoborus. Declines in D. pulex abundance may result in 

eventual declines in Chaoborus populations because of low food levels or shifts in predation to 

non-Daphnia prey. In addition, competitors of Daphnia may experience advantages from the 

decline of D. pulex, further altering community dynamics and structure. These effects are 

potentially mitigated by D. pulex’s morphological and life history responses to the presence of 

predators, though the magnitude of the effect is unknown. Furthermore, my results indicate that 

intraspecific variation can potentially mediate these responses (see also Chapter 2). If ponds are 

naturally high in conductivity before road salt intrusion, “pre-adapted” D. pulex phenotypes may 

exist in these systems, reducing impacts and enhancing ecosystem stability. At a landscape scale, 

dispersal of pre-adapted clones from high conductivity ponds into road salt-impacted systems 

could rescue those extinction-prone populations and contribute to ecosystem recovery and 

resilience. Rapid adaptive responses of populations to increasing salinity stress is also possible if 

rates of environmental change do not greatly exceed rates of evolutionary change.  
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CHAPTER 2 Field survey of road adjacent ponds  

Introduction 

Extensive field research has been done to monitor the chloride levels of freshwater systems 

and uncover the environmental factors that are responsible for their variation (Environment 

Canada and Health Canada, 2001; Mullaney et al., 2009). Road salt is considered to be a major 

cause of increasing chloride levels in roadside systems (Williams et al., 2000; Kaushal et al., 2005). 

Mullaney et al. (2009) found that major road densities explained a large portion of the variation in 

the chloride concentrations in 83 surface water monitoring stations in Northern United States. 

Increasing chloride loads and yields in forested, agricultural, and urban basins were estimated, 

suggesting that land use also plays an important role in road salt pollution. Provided that 

urbanization is generally associated with higher road densities, it is not surprising that more road 

salt is brought into water bodies in urban basins.  

Evolutionary adaptation of organisms to environmental factors in their natural habitats is 

well documented in freshwater systems (Bagarinao, 1992; Crozier and Hutchings, 2014; Latta et 

al., 2012; Miyakawa et al., 2010). For example, Daphnia from ponds and lakes with high salinities 

have been shown to exhibit higher salinity tolerances (Latta et al., 2012; Weider and Hebert, 1987; 

Weider, 1993). Adaptive responses of organisms to environmental change is important because 

they have the potential to buffer populations and communities. Evolutionary ecotoxicology has 

widely considered the adaptation of organisms to stressors and how it may contribute to the 

stability and resilience of ecosystems in the face of environmental pressures (Bickham and 

Smolen, 1994; Bourret et al., 2008; Jansen et al., 2011; Meyer and Di Giulio, 2003; Hoffmann and 

Willi, 2008). In Chapter One, I provided evidence of heritable phenotypic variation in salinity 

tolerance among D. pulex clones that was related to the ionic concentrations (conductivities) in 
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their source habitats. However, chloride concentrations in their source ponds when they were 

sampled were unknown. Thus, salinity tolerance cannot be directly associated with exposure of 

the clones to NaCl. Moreover, the systems they were sampled from were far from salted roads, 

thus received very limited, if not no road salt input. Therefore, testing salinity tolerance of D. pulex 

clones from habitats with different NaCl concentrations and levels of road salt pollution would 

provide stronger insight into the capacity for Daphnia populations to adapt to this anthropogenic 

stressor.  

At the community level, effects of salinity on aquatic community structure have been 

mainly studied in controlled microcosms or mesocosms (Searle et al., 2015; Rogell et al., 2009; 

Thompson and Shurin, 2012). While some salt-tolerant species such as Calanoid copepods and 

benthic cladocera might benefit from relatively high salinities because of the decline of their 

competitors (Jensen et al., 2010; Horváth et al., 2014), elevated salinity is generally negatively 

associated with zooplankton densities (Searle et al., 2015; Sarma et al., 2006), species richness, 

and diversity (Jensen et al., 2010; Horváth et al., 2014). However, more studies on this topic in 

natural systems are required to achieve a better understanding of this issue in real-world settings. 

Of particular concern is determining how salinity stress impacts populations of keystone species 

such as Daphnia pulex. Suppression or loss of such species may have effects that cascade through 

food webs, altering the structure, functioning and stability of these ecosystems.  

In the previous chapter, I demonstrated significant negative effects of salinity on Daphnia-

Chaoborus interactions and D. pulex life history and fitness at short time scales, I also documented 

significant clonal variation in response to salinity stress. Whether my results can be extrapolated 

to more natural settings requires further investigation. Here I present results of a field survey of 

planktonic communities in roadside ponds in southeast Michigan. Ponds varied in their proximity 
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to roads and salinity levels. Primary objectives of this survey were: 1) determining the relationship 

between pond salinity levels and proximity to major roads; 2) elucidating the effects of salinity on 

the relative abundance of D. pulex (the dominant Daphnia species in these systems), and 3) 

assessing D. pulex intraspecific variation in salinity tolerance among ponds that differed in salinity 

concentration. I predicted that increasing pond salinity would be related to closer proximity to 

major roads, decreasing relative abundance of D. pulex, and increasing salinity tolerance among 

D. pulex clones.  

Methods 

A field survey was conducted of 21 ponds located in southeast Michigan (Figures 9 and 

10). The ponds were chosen to represent a range of distances from major highways or roads and 

thus different levels of potential exposure to road salt pollution. Ponds were sampled once in mid-

April, 2015 when road salt intrusion to the ponds by spring run-offs possibly peaked and when 

many aquatic organisms started to grow and reproduce. Temperature, pH, conductivity, and NaCl 

concentration were measured at mid-depth at a single sampling location near the center of each 

pond using a Hydrolab MS5 and Horiba Laqua Twin B-721 Salt Meter. The Salt Meter measures 

sodium ions and calculates these values into NaCl levels. Road salt applied in Michigan is 

composed of NaCl (Road Salt 2014-2015 Winter Season Pricing Report, Department of Attorney 

General, State of Michigan, January 2015). Thus, the measured NaCl levels should largely 

represent road salt input to the ponds. Maximum depths of the ponds were categorized into three 

levels with 1 representing < 1 m, 2: 1 – 2 m, and 3: > 2 m. 500 mL of pond water from open areas 
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close to the middle of each pond was collected using 2-L pitchers and stored on ice, in the dark. 

Upon arrival to the lab, 20 to 50 ml of water from the sample was filtered onto a Whatman GF/F 

(0.7 µm pore size) glass microfiber filter to measure total chlorophyll a as a correlate of total algal 

biomass. A second sample was first filtered through a 30 µm mesh before being filtered onto a 

GF/F filter in order to measure chlorophyll a in the edible size range for cladocera. Chlorophyll a 

concentration was quantified following ethanol extraction using narrow-band fluorometry and a 

Turner Trilogy Fluorometer (sensu Welschmeyer, 1994). A sub-sample of water was frozen at -20 

oC and later analyzed for total phosphorus (TP) content, as a measure of pond productivity, using 

Figure 9: Locations of the sites 1 to 14 in the spring pond survey and salinity category of each 

pond  
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the ammonium molybdate method following persulfate digestion (Wetzel and Likens, 2000). Total 

phosphorus analyses were performed on a Shimadzu UV-1800 UV spectrophotometer with 885 

Figure 10: Locations of the sites 15 to 21 in the spring pond survey and salinity category of each 

pond  
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nm light exposure. In addition to water samples, two 40 L zooplankton samples were taken from 

the littoral and open water zones of each pond using 2-L pitchers. One sample was filtered through 

an 80-m sieve and preserved immediately in acid Lugol’s solution for later enumeration of 

zooplankton composition. The second sample was filtered through a 150-m sieve and the 

collected zooplankton were stored in a small amount of pond water in a cooler. The second sample 

was later used to isolate Daphnia pulex individuals and establish cultures for the salinity tolerance 

assays.  

Preserved zooplankton were identified to genus or sub-family level for cladocera and 

species level for Daphnia and counted using a dissecting scope. This taxonomic resolution was 

adequate as I was only interested in quantifying D. pulex abundance and its abundance relative to 

total cladoceran abundance. Live D. pulex were obtained from four ponds (P4, P6, P8, and 

P12).While D. pulex was found in the preserved sample from pond P1, no individuals were found 

in the live sample from this pond. Isogenic cultures were established by haphazardly choosing a 

single female from each pond sample to initiate each culture line (care was taken to avoid females 

carrying ephippia). Cultures were maintained at 20 °C with a 12 h light: 12 h dark light cycle. 

Once culture lines were established, 48 individuals from each monoclonal culture were 

preserved in 95% ethanol and genetically fingerprinted using four microsatellite loci: Dp3, Dp27, 

Dp496, and Dp502 (Colbourne et al. 2004). Individuals from the ethanol-preserved samples were 

rinsed with ultrapure water to remove debris and then incubated in sterile Tris-EDTA (TE) buffer 

for 2 hours at room temperature. DNA extraction was then performed in 250 l of a solution 

containing 10% Chelex (Sigma-Aldrich) and 0.1 g/l proteinase K. Samples were autoclaved for 

15 minutes at 120 oC, centrifuged and the supernatant then stored in a -80oC freezer. PCR 

amplification of microsatellite loci was performed using multiplexed reactions with forward 
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primers of each marker labelled with a fluorescent dye: 6-FAM, VIC, NED and PET (Life 

Technologies, Grand Island, NY). Reactions were performed in 25-l volumes containing 4L of 

extracted DNA, 2.5 l of GoTaq Flexi Buffer (Promega, Madison, WI USA), 0.33 l of 25 mM 

deoxyribonucleotide triphosphates, 0.5 l of 25 mM MgCl2, 1.0 l each of 10 mM forward and 

reverse primers of Dp3, Dp27, Dp496, 0.25 l each of 10mM forward and reverse primer of 

Dp502, 1 unit of Taq DNA polymerase and 6.17 l ultrapure water. PCR conditions were as 

follows: 95 oC for 2 min, 39 cycles of 95 oC for 30 s, 56oC for 20 s, and 72oC for 30 s, with a final 

extension at 72 oC for 7 min. DNA fragment analysis was performed at the University of Illinois, 

Roy J. Carver Biotechnology Center (Urbana, IL USA). Fragment lengths were determined using 

Peak Scanner Software (Life Technologies, Grand Island, NY USA). Clones were identified as 

multi-locus genotypes based on unique combinations of alleles for the four loci.  

To determine salinity tolerance of the four clones, maternal effects were first removed by 

culturing the animals in high food, low density common garden conditions for two generations 

(Tollrian, 1995b). Less than 24 hour old neonates from the third generation were isolated from 

their stock cultures and transferred to beakers containing 100mL of medium; replicate beakers 

contained seven neonates of a given clone. The experimental medium consisted of aged tap water 

at one of four salinity concentrations (0, 1, 2, 3 g/l NaCl). Clones P12 and P8 had four replicates 

while P4 and P6 had five replicates per salinity level, all fed with Ankistrodesmus falcatus at a 

non-limiting concentration (100,000 cells/ml). Food and culture media were refreshed daily. After 

48 hours, the numbers of surviving juveniles in each replicate were counted, and survivorship was 

calculated by dividing the number of surviving individuals by the initial total number.  
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Statistical analysis 

Pond surface areas and distances from the closest location of each pond to the nearest major 

road were measured using the polygon function and ruler function in Google Earth 7.1.5, 

respectively. D. pulex relative abundance for each pond sample was calculated by dividing the 

density of D. pulex by the total density of cladocera. I chose to calculate this value relative to total 

cladocera only as these taxa are known to have similar feeding ecologies and thus potentially 

compete for shared resources. D. pulex relative abundance appeared to vary with pond depth 

category, with category 3 ponds having no D. pulex (see Results). To remove this potential depth 

effect, I first ran an ANOVA on D. pulex relative abundances including depth category as a fixed 

effect. Residuals from the ANOVA were then used as the dependent variable in a partial least 

squared regression analysis (PLSR) which tested the effects of environmental factors. Predictors 

in the model included temperature, pH, conductivity, salinity, chlorophyll a (total and < 30 µm), 

total phosphorus, and pond surface area. Spearman rank correlation was employed to analyze the 

relationship between salinities and distances to major roads of the surveyed ponds. Survivorship 

was analyzed testing for the effects of clone identity and salinity (as a categorical variable) using 

GLM with binomial errors and a logit link. The data were highly overdispersed, thus I present 

GLM results using quasibinomial errors. Tests were based on type III sums of squares due to 

unequal replication among treatments. Post hoc pairwise comparisons were performed using 

Tukey’s HSD. All tests were performed in R (version 3.2.3) with the exception of PLSR which 

was performed in SYSTAT Version 13.  

 



33 

 

Results 

 

 

 

Pond GPS 

Coordinates 

Surface 

area 
(m2) 

Depth 

Cat. 

D 

(m) 

Salinity 

(g/l 
NaCl) 

 

pH 

Cond. 

(ms/cm) 

Temp. 

(oC) 

Total 

Chl a 
(µg/l) 

<30 

Chl a 
(µg/l) 

TP 

(mg/l) 

D. 

pulex/Clad. 
(%) 

1 42°14'0.05"N 

83°41'29.52"W 

7200 2 120 0.4 7.21 0.98 10.63 9.64 8.08 0.089 50 

2 42°13'36.94"N 
83°41'32.35"W 

15865 3 63.2 0 7.01 0.13 10.98 8.98 5.89 0.063 NA 

3 42°13'19.55"N 

83°40'41.87"W 

4236 1 75.77 0.2 6.65 0.67 12.23 10.66 8.91 0.244 0 

4 42°11'43.46"N 

83°44'2.76"W 

1846 1 37 0 6.87 0.08 13.53 31.76 31.29 0.198 89.47 

5 42°16'1.97"N 
83°47'7.32"W 

3065 1 9.4 1.1 7.62 2.53 14.98 2.10 1.59 0.037 NA 

6 42°17'21.64"N 

83°48'58.59"W 

2872 2 14.5 0.6 7.69 1.43 15.23 2.31 0.80 0.02 84 

7 42°21'53.08"N 

83°33'10.19"W 

3789 2 67.59 0.3 6.93 0.86 17.6 6.82 4.84 0.045 0 

8 42°21'55.83"N 
83°33'28.11"W 

1603 1 19.32 0.3 7.4 0.90 11.79 1.17 1.01 0.045 91.67 

9 42°21'25.66"N 

83°34'4.70"W 

2106 3 18.8 0.1 7.9 0.69 12.34 9.37 3.96 0.033 0 

10 42°21'9.45"N 

83°34'4.91"W 

2857 3 10.98 0.1 7.81 0.55 13.97 13.14 12.69 0.087 0 

11 42°19'23.88"N 
83°42'25.24"W 

5763 2 15 0.4 7.71 1.07 14.8 4.74 4.04 0.034 NA 

12 42°19'36.88"N 

83°42'26.77"W 

3145 1 17 0.1 7.94 0.50 16.17 0.99 0.84 0.082 75.25 

13 42°19'55.86"N 

83°42'31.61"W 

3899 2 5 0.1 7.8 0.48 14.48 10.58 9.35 0.076 NA 

14 42°19'54.11"N 
83°42'32.15"W 

1337 1 6 0 7.68 0.44 16.66 20.28 16.21 0.069 NA 

15 42°36'38.76"N 

83°16'18.64"W 

13099 3 10.29 0.3 8.07 0.89 15.8 4.99 4.45 0.026 0 

16 42°38'26.41"N 

83°14'41.38"W 

11778 1 42 3.2 7.82 5.92 15.67 2.30 1.94 0.011 NA 

17 42°40'56.00"N 
83°14'37.09"W 

3093 2 38 2 7.61 3.90 17.78 7.70 6.53 0.03 NA 

18 42°40'53.18"N 

83°14'34.33"W 

1343 1 26 2.3 7.34 4.11 18.74 9.10 8.20 0.138 NA 

19 42°42'13.51"N 

83°18'34.60"W 

3102 1 32 0.8 7.67 2.02 23.66 3.58 2.61 0.057 NA 

20 42°42'16.46"N 
83°18'48.99"W 

770 1 15 2.3 7.44 4.17 22.08 4.14 3.89 0.051 0 

21 42°43'41.99"N 

83°19'33.07"W 

751 3 7.5 0.4 7.22 0.91 18.58 1.65 1.18 0.021 0 

Table 1: Physical, chemical, and biological characteristics of 21 ponds in a mid-April 2015 

field survey. D: distance to nearest major roads; Depth Cat.: Depth Category; Cond.: 

conductivity; Temp.: Temperature; Chl. a: Chlorophyll a; TP: total phosphorus; D. 

pulex/Clad.: percentage of D. pulex density to cladoceran density, NA: due to no cladocera. 

Depth Category: 1: < 1 m; 2: < 1-2 m; 3: > 2m.  
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Physical and chemical properties and D. pulex percent relative abundances are listed in 

Table 1. Salinities varied greatly among the ponds, ranging between 0 and 3.2 g/l NaCl (mean = 

0.71 g/l NaCl), as did D. pulex relative abundances. The majority of ponds had no D. pulex in their 

samples. Salinities appeared to vary with locality with high salinity ponds (> 1.5 g/l NaCl) only 

being found along the I75 corridor (Fig. 10). Spearman rank correlation did not reveal a significant 

relationship between distances to major roads and salinities of the surveyed ponds (Fig. 11; rho = 

0.11, p = 0.62). Microsatellite analysis identified three multi-locus genotypes (unique allele 

combinations) among the four D. pulex clones isolated from the survey ponds. Clones from ponds 

P4 and P8 had identical 

alleles and could not be 

differentiated based on 

the loci tested. 

However, this does not 

negate the possibility 

that these two clones 

differ at other loci. 

 

 

Clone identity and salinity interactively affected survivorship (Fig. 12; F9, 56 = 3.03, p = 

0.005, GLM with quasibinomial errors). When performing pairwise comparisons within salinity 

treatments, significant differences in survivorship among clones only emerged at the 3g/l NaCl 

Figure 11: Distances to the closest major roads and salinities of the surveyed ponds 
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salinity, with Daphnia from P6 and P8 both displaying higher survivorship than those from P12 

and P4 (p < 0.01, Tukey’s HSD). 

 

 

Daphnia pulex relative abundance appeared to be related to pond depths, with the deepest 

ponds in category 3 having no D. pulex (Fig. 13). However, depth effect on D. pulex relative 

abundance was not significant (p = 0.15, ANOVA). Partial least squares regression of residuals 

from the depth effect ANOVA of D. pulex relative abundances produced a first component axis 

that accounted for 35% of the variation in residuals. The second axis only explained an additional 

14% of the variation. Thus, I focused on axis 1. When examining axis loadings of the predictors, 

Figure 12: Survivorship of D. pulex from four ponds (P12, P4, P6, and P8) in Southeast 

Michigan after being exposed to different salinities for 48 hours 
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salinity, temperature and conductivity were most strongly and negatively related to axis 1 (Table 

2). Thus, residual variation in D. pulex relative abundances increased with decreasing salinity, 

temperature and conductivity (Fig. 14) after accounting for depth category effects.  

  

 

 

 

 

Discussion 

In contrast to predictions, salinities of the surveyed ponds did not show a significant 

correlation with the distances of the ponds from major roads. Four ponds along I-75 (pond #16, 

#17, #18, and #20) with salinities greater than 2.0 g/l NaCl were possibly storm water retention 

 

Predictors 

Salinity 

(g/l NaCl) pH 

Cond. 

(ms/cm) Temp. (°C) 

Total Chl. a 

( µg/l) 

< 30 µm Chl. a 

(µg/l) TP (mg/l) 

 

lg (surface area) (m2) 

Axis 

loadings 

 

-3.1 

 

0.708 

 

-3.056 

 

-2.561 

 

1.11 

 

0.955 

 

0.495 

 

1.62 

Figure 13: The average D. pulex relative 

abundance to Cladoceran in the ponds from 

each depth category 

Figure 14: Relationship between the 

component axis 1 and rescaled residual 

variation in D. pulex relative abundance after 

removing depth category effects 

Table 2: Axis loadings of each predictor in the component axis 1 explaining residual variation 

of D. pulex relative abundance after removing the effects of depth category in PLSR. Cond.: 

conductivity; Temp.: Temperature; Chl. a: Chlorophyll a; TP: total phosphorus. 
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ponds (personal observation) that directly collect runoff from roads and thus may be more 

susceptible to road salt intrusion. However, no significant correlation (rho = -0.02, p = 0.93, 

Spearman Rank Correlation) was found between pond salinity and distance to roads after removing 

these four ponds in the analysis. Important trends in the data were still evident; ponds greater than 

50m from their nearest major road had relatively lower levels of salinity. In contrast, ponds less 

than 50m showed a wide range of variation in salinity. This could be due to multiple reasons. Road 

salt usage might differ on different roads with freeways usually receiving more salt input than 

other road categories due to their heavier traffic usage. Road salt application may also vary on 

roads of the same hierarchy in different counties and cities, which might result in higher salinities 

in the ponds along I-75 in Oakland County, Michigan than those in the ponds along I-94 and M-

14 in Washtenaw County, Michigan. 

In addition, buffer zones between pollution sources and waterways play important roles in 

mitigating pollution pressure (Hoffmann and Willi, 2008). Infiltration capability differs in buffer 

zones with different vegetation composition (Polyakov et al., 2005). For example, Bharati et al. 

(2002) found that the infiltration rates of multi-species buffers in Midwestern regions were five 

times greater than buffers with cultivated fields and pasture. Infiltration rates have also been found 

to be highly dependent on soil properties, land management, and topography (Herron and Hairsine, 

1998). The buffer zones of the ponds I surveyed had a high diversity in terms of vegetation 

composition, land use, and topography (personal observation). These factors may have contributed 

to differences in salinities among the study sites. Slope of the buffer zone can also be used as a 

predictor for trapping efficiency of buffers (Jin and Romkens, 2001). Steeper slopes may assist 

road salt flow into waterbodies due to gravity. Therefore, distances to road salt pollution sources 

cannot be used as the only predictor of pond salinities. More comprehensive studies including 
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more factors described above have to be conducted to explain freshwater salinization from road 

salt pollution. 

In keeping with my general predictions, I found significant variation in salinity tolerance 

among the clones isolated from my study sites. More importantly, relative differences in salinity 

tolerance among the clones appeared to be associated with salinity levels in their source ponds. 

Clones from the ponds with higher salinity levels (P6 and P8) displayed stronger salinity tolerance 

than the ones from the ponds with lower salinities (P12 and P4; Table 1 and Fig. 12). Assuming 

that the salinity concentrations I measured were representative of past spring levels, the capacities 

of clones from P6 and P8 to tolerate elevated salinity levels may be due to past selection pressure 

and evolutionary adaptation to road salt intrusion. This is consistent with prior studies that have 

that suggested that evolutionary responses by D. pulex are common when facing elevated salinity 

stress and ion cytotoxicity (Latta et al., 2012; Zhu, 2002). The capacity of species, especially 

keystone taxa, to adapt to anthropogenic stressors has important implications for predicting 

community responses to environmental change. High adaptive capacity could contribute to the 

stability and resilience of populations and communities facing persistent environmental change 

and novel stressors. There are important caveats to consider, however. First, D. pulex was found 

in only a minority of the surveyed ponds. More importantly, they were all found in ponds with 

relatively low NaCl concentrations (all less than 0.6 g/L). This suggests that D. pulex may have a 

limited ability to adapt to the direct negative effects of increasing salinity stress or increasing 

indirect effects via interactions with other abiotic stressors (e.g. increasing temperatures; see 

below) or biotic interactions (e.g. predation and competition). 

Daphnia pulex relative abundances appeared to be associated with pond depth, with the 

deepest category 3 ponds having no D. pulex. A likely explanation is the presence of planktivorous 
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fish. Deeper aquatic systems are generally associated with residency of fish (Kushlan, 1976; 

Snodgrass et al., 1996) and many planktivorous fish are known to selectively feed on large-bodied 

zooplankton such Daphnia pulex (Galbraith Jr., 1967; Macchiusi and Baker, 1991; Zaret and 

Kerfoot; 1975). Daphnia pulex relative abundance (once depth effects were removed) was 

negatively associated with increasing temperature, salinity and conductivity. This finding is 

consistent with prior studies of cladoceran community responses to environmental stressors. For 

example, Thompson and Shurin (2012) demonstrated a stronger negative association of Daphnia 

with increasing salinity compared to other cladoceran genera, suggesting that osmotic stress 

tolerance of D. pulex is lower than other pond taxa. 

Temperature increases in freshwater systems, especially small and shallow ponds, can also 

significantly alter community composition due to differences in thermal tolerances of different 

species (Hogg and Williams, 1996). Thompson and Shurin (2012) found that small-bodied 

cladoceran taxa (including Scapholeberis, Ceriodaphnia, Bosmina, Diaphanosoma, Polyphemus 

and Chydorus) benefited from higher temperatures while Daphnia abundances were negatively 

associated with increasing temperature. This supports my finding that Daphnia pulex relative 

abundances were lower in warmer ponds. Therefore, my field survey provides implications for 

how salinization and temperature increase can jointly alter freshwater community structure.  

There are important limitations to this study that are worth considering. First, the survey 

was only one snapshot of the characteristics of the ponds and communities in them. Even though 

the timing of sampling was selected at mid-April to capture possible maximum salt input through 

run-off and initial population growth of D. pulex populations, the survey may not be representative 

of conditions that the ponds and their communities experienced later in the growing season. It is 

possible that salinity levels fluctuate through time due to different input rates, retention, and release 
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of salt (Kelly et al., 2008; Kincaid and Findlay, 2009). Aquatic community structure is also known 

to change seasonally because of various factors such as temperature and species interactions 

(Hawkins and Sedell, 1981; Pires et al., 1999; Daufresne et al., 2004). Repeated sampling efforts 

over the growing season could reveal more detailed community fluctuations and their association 

with salinity stress. Second, many different kinds of pollutants such as gasoline and heavy metals 

can be jointly emitted into roadside freshwater systems through runoff (Bäckström et al., 2003; 

Mangani et al., 2005; Drapper et al., 2000). The effects of these pollutants may be confound with 

perceived road salt impacts and should be considered when interpreting my findings. Third, 

predation is widely considered to be a primary driver of zooplankton population dynamics and 

community structure (Hansson et al., 2007; Luecke et al., 1990; Gliwicz and Pijanowska; 1989). 

Predators of D. pulex may include both invertebrate and fish predators in pond systems. Although, 

I attempted to control for potential fish predation effects by removing the effects of pond depth, 

this does not negate the possibility that fish may have been present in some of the shallow systems. 

Furthermore, I did not sample invertebrate predator assemblages in the ponds. These unknown 

factors may have driven some of the unexplained variation in D. pulex relative abundance that was 

not accounted for by environmental factors in the PLSR analysis, which was substantial. Lastly, I 

assessed salinity tolerance of the D. pulex populations using one D. pulex clone from each 

population. It is possible that populations were composed of multiple genotypes during the 

sampling period. Thus, one individual may not be representative for all the possible genotypes and 

corresponding salinity tolerances. A more rigorous approach would be to assay numerous clones 

from each pond and from different times of the year. 

In conclusion, my field survey and laboratory experiments suggested that salinity tolerance 

of D. pulex is positively associated with salt exposure in their source ponds, indicating possible 
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evolutionary adaptation to elevated salinity stress. However, the limited range of pond salinities 

that D. pulex was found in, further suggest a limited capacity of this species to adapt to high levels 

of salt intrusion. D. pulex relative abundance was negatively associated with increasing salinity, 

conductivity, and temperature in their habitats, suggesting potential impacts on their population 

from global climate change and freshwater salinization. Salinity levels in the roadside ponds did 

not have any significant relationship with road adjacency, based on the parameters I investigated. 

Understanding freshwater salinization from road salt pollution may require examination of more 

factors including buffer zone properties. 
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ABSTRACT 

EVOLUTIONARY ECOTOXICOLOGY OF SALINITY TOLERANCE IN 

DAPHNIA PULEX: INTERACTIVE EFFECTS OF CLONAL VARIATION, SALINITY 

STRESS, AND PREDATION 

by 

XINWU LIU 

May 2016 

Advisor: Dr. Christopher F. Steiner 

Major: Biological Sciences 

Degree: Master of Science 

Evolutionary ecotoxicology addresses effects of toxic chemicals in an ecological context 

and considers the potential evolutionary responses of organisms following exposure to toxins. 

Despite decades of research, the effects of salinity stress in freshwater systems, partly from road 

salt pollution, on a keystone species, Daphnia pulex, in its interaction with predators have received 

very limited attention. In this study, I quantified D. pulex clonal variation in response to salinity 

stress and the lethal and non-lethal effects of Chaoborus (a dominant planktivore in fishless 

ponds). Behavioral, morphological, and life history responses of two D. pulex clones, known to 

differ in salinity tolerance, were quantified in the presence/absence of Chaoborus chemical cues 

(kairomone) under different salinity levels. I predicted that kairomone would induce both clones 

to develop neckteeth structure, mature later at larger sizes, and give birth to fewer but larger 

neonates. Also, I predicted that the clone with stronger salinity tolerance would show stronger 

responses for these traits as well as higher escape efficiency from Chaoborus predation. I found 

some support for my predictions. Elevated salinity generally weakened some responses of both 
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clones. However, clonal variation in salinity tolerance did not significantly mediate the effects of 

salinity on the responses. Additionally, I found that both clones reproduced more but smaller 

neonates, in contrast to my predictions. In an April field survey of 21 roadside ponds in Southeast 

Michigan, USA, D. pulex relative abundance was found to be negatively associated with increasing 

salinity, suggesting that community structure and Daphnia persistence may be impacted by 

freshwater salinization. Laboratory assays of clones collected from a subset of the surveyed ponds, 

provided evidence of local adaptation of D. pulex to pond salinity levels. Clones collected from 

ponds with higher salinities exhibited stronger salinity tolerance. Overall, my study revealed the 

negative impacts of salinity stress on D. pulex populations and its responses to Chaoborus. My 

work also suggests that intraspecific variation and the evolution of salinity tolerance may mediate 

some of the impacts of salinity stress on Daphnia populations. Keywords: Daphnia pulex, 

Chaoborus, zooplankton, predator-prey interactions, non-lethal predator effects, escape behavior, 

life history, clonal variation, phenotypic plasticity, salinity stress, and road salt 

 

 

 

 

 

 

 



57 

 

AUTOBIOGRAPHICAL STATEMENT 

My strong interest in and connection with nature have been established since my childhood 

in countryside China. Additionally, a bike packing trip to Tibet triggered my interest in outdoors. 

A perfect way to integrate my passion in nature and outdoor work is ecological study. This drove 

me to pursue a graduate degree in Aquatic Ecology at Wayne State University. I have enjoyed 

every moment in my graduate study in this field despite some frustrations from the hard work. 

Now, with a Master’s degree, I am more prepared to pursue my passion. Protecting our beautiful 

nature using my knowledge and skills is the next challenge that I will focus on.  


	Wayne State University
	1-1-2016
	Evolutionary Ecotoxicology Of Salinity Tolerance In Daphnia Pulex: Interactive Effects Of Clonal Variation, Salinity Stress, And Predation
	Xinwu Liu
	Recommended Citation


	tmp.1462910129.pdf.pmK4k

