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EXECUTIVE SUMMARY 

Several studies have focused on collecting the information of worn out, broken and 

repaired surfaces of components in manufacturing and remanufacturing processes (Papaioannou, 

Karabassi et al. 2002; Zhu, Guo et al. 2005; Jin and Yang 2009; Haapala, Zhao et al. 2013; Rickli, 

Dasgupta et al. 2014; Chen, Wang et al. 2014). This research aims to solve the problem of path 

planning, data capturing and point cloud datasets using an automated laser line scanning system; 

however, there has been little research integrating the three frame; robot, laser scanner and 

component surface. The goal of this work is to link the automated laser line scanning system with 

the component surface and establish the fundamental kinematic models required for advanced 

automated scan path planning. The study of these linkages provides the knowledge of the 

transformation of geometric Cartesian coordinates in a given measurement system. This 

knowledge is necessary for advanced planning of a scan path for a component. With this model, it 

is possible to determine, the position and orientation of a robot arm, laser scanner, laser beam, and 

component with respect to the robot base during its movement along a trajectory to collect points 

on the component surface. The goal of this trajectory path is intended to act as an input for 

optimization routines, which converge to the scan path, which acquires the best point cloud data, 

for quality monitoring in manufacturing and core condition assessment in remanufacturing.  

To solve this problem, our approach is by doing the following: (i) Solving the forward 

kinematics of a six degree of freedom robot, laser scanner and laser beam (ii) Deriving the equation 

for a component surface, and (iii) Modifying the inverse kinematics for the robot-scanner system 

to move along a point on the component surface. The inverse kinematics equations determine the 

orientation of the robot joint angles relative to the component surface.  
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  System equations are validated using Matlab, simulation model Workspace LT, and on 

FANUC S-430 IW robot and MetraSCAN-R system using Teach Pendant programming. The 

scanning of a spherical surface experiment is performed to validate the scanning movement along 

the trajectory path, and the joint angles are recorded during the scanning motion. The contribution 

and intellectual merit of this research is the continuous geometric transformation from the robot, 

the scanner, and the beam to a point on the component surface.   

With this model, it is possible to determine the position and orientation of a robot arm, 

laser scanner, laser beam, and component with respect to the robot base during its movement along 

a trajectory to collect points on the component surface. The obtained position and orientation of 

the robot-laser scanning system is critical to future work to develop the work-window for the 

FANUC S-430 IW robot and MetraSCAN-R scanning system. 



1 

 

1.  INTRODUCTION 

The geometric coordinate changes between the elements of automated laser scanning 

system when an automated laser line scanning system (e.g. for component inspection in 

manufacturing and remanufacturing processes) scans along a path of a component surface are yet 

to be fully determined and modeled. In today’s manufacturing world, the increase in complex 

specifications and zero defects as well as the focus on high quality for components has gained 

much attention, which has created a need for and willingness, to enhance inspection systems. In 

inspection systems, methods such as coordinate measuring machines make physical contact with 

each point on a surface and, thus, can be slow in acquiring component surface data (Lee and Park 

2000). Laser line scanners, on the other hand, can obtain large amounts of data with a high 

resolution of digitization and inspection (Xi and Shu 1999; Kuş 2009) in a shorter period of time, 

as compared to contact type methods (Lee and Park, 2000; Son et al. 2002; Yin et al. 2014). The 

need for development of automated laser scanning system models is to avoid the trial and error 

caused by manual scanning (Son et al. 2002; Borangiu, Dogar et al. 2009;), increase the 

information content from as-manufactured components for the digital thread, and improve the 

effectiveness of scanned data.  

An Automated Laser Line Scanning System (ALLS) is composed of four basic 

components: (i) a six degree of freedom robot arm (Pieper 1968, Denavit and Hartenberg 1955, 

Vincze et al. 1994, Shen and Zhu 2012, Larsson and Kjellander 2006) or a modified coordinate 

measuring machine (Yau and Menq, 1995); (ii) a laser line scanner or a scanning probe; (iii) a 

component surface, sometimes placed on a turntable (Reinhart and Tekouo, 2009) or a rotary table 

(Shen and Zhu, 2012, Larsson and Kjellander, 2006) or fixed at a point; and (iv) a control system 

with algorithms for scan path planning based on scan parameters (Lee and Park 2000; Bračun et 
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al. 2006). In an ALLS system a scan path is planned for each surface of a part (Larsson and 

Kjellander 2008); consequently, the points are collected along that path. These collected points are 

recorded as measured points in point cloud data, which are further analyzed to compare geometry 

and develop CAD models (Pauly et al. 2004; Triebel et al. 2004). Each measured point on a 

component surface corresponds to a certain position and orientation of system elements (Yau and 

Menq 1995). Jin and Yang (2009) developed an algorithm using a CAD model for a laser 

remanufacturing robot system, in which the end-effector position and orientation control the 

movement of the scanner for shape measurement to reconstruct the surface. As a result, both Yau 

and Menq (1995) and Jin and Yang (2009) provided the motivation for this research to understand 

the geometric transformation of coordinates in the robot scanning system in relation to the 

component surface in manufacturing processes (Rickli.et.al. 2014). 

  There has been considerable research on automated scanning systems on motion control 

during data capturing, path planning strategies, and point cloud datasets of the dimensional data of 

component surface (Larsson and Kjellander 2006; Larsson and Kjellander 2008; Pauly et al. 2004). 

However, to the best of our knowledge, none have yet fully solved the complete kinematic 

relationship between the robot base and the laser scanner (Shen and Zhu 2012) without an external 

device (Yin et al. 2014) and addressing the relationship between a tool and component surface 

(Kim et al. 2015). Although the non-contact type of inspection system acquires ‘as-is’ component 

surface data by employing various efficient scanning methods and analyzing point cloud data, the 

kinematic relationship between the robot, scanner, and fixed component surface, as shown in 

Figure 1, without an external measuring device is to be fully determined. 
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Figure 1: Pictorial representation of this thesis statement 

The objective of this thesis is to integrate three co-ordinate frames; the robot, scanner, and 

component while scanning a trajectory path (scan path). This integration as shown in Figure 1, 

mathematically links the ALLS system with the component surface in order to establish the 

fundamental kinematic models required for automated laser line scanning of a component surface. 

The analysis of these mechanical linkages provides insight into the transformation of geometric 

Cartesian coordinates in a given measurement system. This knowledge is necessary for advanced 

planning of a scan path on a component. With this model, it is possible to determine the position 

and orientation of the robot arm, laser scanner, laser beam, and component with respect to the 

robot base during its movement along a trajectory to collect scanned points on the surface of a 

component. To achieve this research objective, the proposed approach is to solve the forward 

kinematics between the robot, laser scanner and component, use inverse kinematics, and move the 

system to the component coordinate points (Arachchige et al. 2014; Odeyinka and Djuric 2016).  

Using this set of equations will enable the determination of the position and orientation angles for 

each robot joint. 
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The remainder of this thesis is organized in the following manner: chapter 2 explains the 

literature review, chapter 3 describes the elements of an ALLS system, chapter 4 explores the 

modelling approach of the ALLS system, chapter 5 states the validation results of the model, 

chapter 6 mentions about the scanning experiment to obtain trajectory scan path, and the last 

chapter 7 describes conclusions drawn from the generated model as well as the future scope of this 

work.  
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2.  LITERATURE REVIEW 

A scan path is a continuous geometric description of the movement of a scanner controlled 

by robot (Larsson and Kjellander 2006). This research focuses on the geometric transformation in 

the system with respect to the component surface. It provides an opportunity to enhance scan path 

planning by calculating the positions of the robot arm, scanner, and beam while scanning along a 

defined trajectory on a component and observing that point coordinates are changing continuously 

along that trajectory path. Previous research has been done on developing algorithms to determine 

robot pose relative to component surface (Jin and Yang 2009), the kinematic relationship between 

the tool and component surface using three degree of freedom prixmatic machine (Kim et al. 2015) 

and the relation between a six degree of freedom robot and laser scanner with and without an 

external tracking device (Vincze et al., 1994; Larsson and Kjellander 2006; Larsson and Kjellander 

2008; Shen and Zhu 2012;Yin et al. 2014).  

The scan path consists of a series of the predetermined line segments during the scanning 

of component surfaces (Son et.al. 2002). A laser line scanner acquires 3D coordinates of the 

component surfaces through image processing and the laser triangulation.  When the image is 

captured, the system automatically finds the optical focus and maintains a stand-off distance. The 

length of the laser stripe and the stand-off distance is the distance of the laser beam focused on the 

component surface, and it is assumed constant in this research (Son, Park et.al 2002). The scanning 

process is critical to an inspection system because it can be time consuming due to no active control 

on scanning coverage, resulting in excessive or under scanning of surfaces (Kriegel, Bodenmüller 

et al. 2011; Xi and Shu 1999). An ALLS system controlled by a six degree of freedom robot 

(Larsson and Kjellander 2006) captures the component surfaces without manual intervention in 

the form of point cloud datasets while scanning along a pre-programmed path with pre-determined 
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scan parameters. These scan parameters are selected based on the component surface and 

inspection objectives. An ALLS system research has focused on problems of data capturing 

(Larsson and Kjellander 2006), scan path planning strategies (Larsson and Kjellander 2008), and 

analysis of point cloud datasets (Pauly et al. 2004; Lu and Milios 1997; Beringia et al. 2009) but 

focus on the scan points on the component surface corresponds to the position and orientation of 

the robot-scanning system is less explored. Hence, it has turned the attention of researchers to 

determine the kinematic relationship between the robot frame and the laser frame.  

2.1 Data capturing problem  

An automatic scanning system captures the “as- is” data of the part surface, and the 

scanning result is a point cloud, which is in a triangular mesh or point form (Surmann, Nüchter et 

al. 2003; Stamos and Leordean 2003). The quality of this ‘as-is’ point cloud data depends on the 

maximum number of points collected while scanning the path. Component surface data is captured 

by planning a scan path along a component surface. In Larsson & Kjellander (2006) ALLS system, 

a laser scanner is mounted on a robot in combination with a turntable, and it is moved along a scan 

path. Consequently, it becomes important to know the relation between the robot poses in relation 

to the component surface. The robot poses are defined as the robot-scanner moves to view the 

object from different positions while the scanner scans the component surface. The component 

surface is rotated using a turntable (Larsson and Kjellander 2006), and a robot moves the scanner 

to view the surface from different angles using camera. Hence, during data capturing it is necessary 

to know the rotation angle of the turntable with respect to the robot position in order to move the 

robot.  



7 

 

2.2 Scan path planning strategies 

The focus of previous work regarding scan path planning has included different scan path 

planning strategies, an algorithm to generate a scan path using the CAD model (Jin and Yang 

2009), laser line scanner parameters that affect the scan path (ElMaraghy and Yang 2003), and a 

path or view planning method to orient the measuring system relative to the object in each 

individual scan (Larsson and Kjellander 2008). Different scan path planning strategies intending 

to improve the quality of scan data are done by: (i)  interpreting geometrical data measured directly 

from surface of existing objects, (ii) breaking broken regions into layers of worn out parts (Wu 

and Hu 2012), (iii) direct slicing to obtain path data on curved surface (Xi and Shu 1999; Bračun 

et al. 2006; Mehdi-Souzani, Thiébaut et al. 2006; Fernández, Rico et al. 2008; Jin and Yang 2009; 

Larsson and Kjellander 2008), and on existing objects with predefined scan patterns (ElMaraghy 

and Yang 2003). To implement different scan path planning methodologies with an ALLS system, 

we need to first understand the transformation in geometric coordinates during scanning given a 

component surface.  

2.3 Analysis of point cloud datasets  

Point cloud datasets are obtained from a scanned component surface (Derigent, Chapotot 

et al. 2007; Durupt, Remy et al. 2008). Due to cumbersome scanning procedures, problems of 

inconsistencies, uncertainty, and variations are observed in point cloud data. There are different 

methods to solve the uncertainty and variation in a point cloud by analyzing these datasets in 

various forms to extract high level information about scanned objects and to create renditions 

meaningful to a user by modifying the shape or appearance of point cloud data (Pauly et al. 2004). 

A study by Lu and Milios (1997) attempted to solve the problem of inconsistency in point cloud 

datasets by collecting and estimating two scans from two different robot poses. While scanning is 
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done, the two scans are aligned and matched (Borangiu et al. 2009). An alternative approach 

addressed in this thesis is to focus on understanding the fundamental changes in the kinematic 

structure of an automated laser scanning system based on its relative position and orientation while 

moving on the trajectory of a component surface. The quality of the point cloud depends on the 

closeness to measured points along a scan path. This collection of closely measured points on a 

scan path has gathered importance in manufacturing, reverse engineering and remanufacturing due 

to growing interest in advanced inspection systems, the model based enterprise and the product or 

manufacturing digital thread (Rickli.et.al. 2014). This shifts the focus from analyzing point cloud 

segments (Triebel et al. 2004) to studying the occurrence of the geometric transformation of point 

coordinates while scanning surfaces or moving along a trajectory. 

2.4 Paradigm shift 

There has been little focus on the geometric movement of the ALLS system transformation 

of the coordinates from one aspect of the system to another. This provides an opportunity to 

enhance the scan path calculations of various positions of a robot arm, scanner, and beam while 

scanning along a defined trajectory on a component and making the observation that point 

coordinates are changing continuously along that trajectory.  Although a few researchers (Shen 

and Zhu 2012;Yin et al. 2014) have worked to determine the kinematic relation of fixed frames 

and moving frames like a robot and laser line scanner (Yin et al. 2014), as well as the  relation 

between tool and the component systems with respect to a three degree of freedom machine (Kim 

et al. 2015), there has been little research focused on the integration of all three elements (robot, 

scanner, and component surface) to determine the geometric coordinate changes along a trajectory 

path of a component surface. This gap leads to a paradigm shift on the approach of solving the 

problem of obtaining better point cloud data by integrating the ALLS system and component 
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surface coordinate systems. The determination of such a relation provokes the need to understand 

the geometric transformation of coordinates during the scanning movement of the ALLS system. 

Thus, it is critical to determine the changing kinematic structure during the movement of the entire 

ALLS system while moving across a trajectory for a given component to fully understand the 

kinematic mechanism occurring during point cloud measurements (Buchsbaum and Freudenstein 

1970). 

The system’s mechanical linkages move along a fixed trajectory on the surface of a 

component, which changes the position and orientation of coordinates of the three elements of 

system. This movement is fixed at the robot base, while other joints up to the laser beam move as 

one mechanical linkage along a trajectory. As a result, the orientation transformation matrix of the 

end effector, laser scanner, and laser beam joints can be obtained. The coordinates of the points on 

the trajectory of a component are calculated by solving the geometrical equations of the shape of 

the component surface, assuming the component is fixed with respect to the robot’s base. However, 

to move all the  mechanical linkages to this fixed point on the component, the joint angles of robot 

(θ1-, θ6) , laser line scanner (θls), and laser beam (θbeam) must be determined by using inverse 

kinematic equations for six degree FANUC S430 IW robot (Odeyinka and Djuric 2016). Thus, we 

can understand the geometrical transformation from one coordinate system transform to another 

coordinate while moving the system along a scan path. This helps to determine the position 

coordinates for the end effector, laser scanner, and beam to move on a trajectory point on the 

surface of the component.  

2.2 Related kinematic models 

Several researchers (Vincze, Prenninger et al. 1994; Leigh-Lancaster, Shirinzadeh et al. 

1997; Feng, Liu et al. 2001; Santolaria, Guillomía et al. 2009; Wang, Mastrogiacomo et al. 2011; 
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Paoli and Razionale 2012; Norman, Schönberg et al. 2013) have targeted the kinematic relation 

between a robot and a laser line scanner using an external laser tracking system. The kinematic 

relation between the robot and laser scanner without an external tracker using a linear rail type of  

a moving linkage to support a stationary laser scanner (Yin et al. 2014) and the relation between 

three degree of freedom machine, tool, and component system with respect to an arbitrary 

component surface (Kim et al. 2015) are extended in this work by determining the kinematic 

relationship for a six degree of freedom robot, scanner, and spherical component surface during 

the scanning motion. The position and orientation coordinates for each element of the system 

determine the position and orientation of the robot end effector Oe (xe, ye, ze) and laser scanner Os 

(xs, ys, zs) while the robot is in arbitrary motion, as shown in Figure 2. The geometric transform 

relationship between the robot end effector frame and the laser scanner without an external tracker 

is called the hand-eye calibration of a laser probe and robot (Dornaika and Horaud 1998; Yin et 

al. 2014). 

 

Figure 2: Integrated 3D scanning system (Yin, Ren et al. 2014) 

As shown in Figure 2, a fixed scanner and sensor are mounted on a moving scanning frame 

as a rail frame. The end effector (EF) of robot has coordinates Oe (xe, ye, ze), scanning frame (SF) 
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Os (xs, ys, zs), and linear frame (LF) has coordinates Ol (xl, yl, zl) with respect to the robot base 

coordinates Os (xb, yb, zb). The shape and position information of local features within the range of 

the rail frame are obtained by multiplying 4x4 homogenous matrices as described in Yin et al. 

(2014), Eq. 1 derives the relationship between the coordinate, Pb, in the robot base frame and Pl  

in the laser sensor frame.  

�� = ��� ∗ ��� ∗ ��� ∗ �� Eq. (1) 

Where ��� , ��� and ��� are 4x4 homogenous coordinate transform matrices. ��� is the 

transform relationship between the laser sensor and the rail scanning frame, ��� is transformation 

between the rail scanning frame and robot end effector frame, ��� denotes transform relationship 

between the robot end effector and the robot base. The model in Figure 3 (Yin et al. 2014) 

formulates the relationship between the spheres centers measured for different robot poses with 

the laser sensor frame changes. These models provide insight into formulating the relationship 

between different coordinate frames of each element of this ALLS system. 

 
Figure 3: Relationship between the scanning frame and robot frame (Yin et al. 2014)  

A similar approach establishes the kinematic relationships between the tool coordinate 

system with the component with respect to three-axis prismatic machines (Kim et al. 2015). In 
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their work as shown in Figure 4, the tool frame (xt, yt, zt) is perpendicular to the arbitrary 

component surface (xa, ya, za). The steps to plan the trajectory are as follows: derive the surface 

tangent vectors of the curved surface in the component local coordinate system, determine the 

forward kinematics from the local coordinate and the tool coordinate, and calculate the joint 

parameters using inverse kinematics. While this application is not targeted for laser line scanners, 

it contributes towards developing the approach for the orientation of the laser scanner 

perpendicular to the component in order to determine the kinematic relationship between a laser 

line scanner and component coordinates with respect to the robot base (xb, yb, zb). 

 
Figure 4: Kinematics of robot-base, tool, and surface for a wire embedding process (Kim et al. s 

2015). 
 

This research fills the research gap to undertake the study of geometric coordinates in 

automated laser scanning system elements relative to component surface. The summary of 

literature review is presented in the Table 1, which provides the gap of this research and helps to 

understand this thesis contribution. The distinguishing elements of the ALLS system in our 

research are the six degree of freedom robot, laser scanner, and stationary component instead of a 

three degree of freedom robot and tool (Kim et al. 2015), or a rail scanning frame to support the 

stationary laser scanner, laser sensor, and component mounted on a turntable (Yin et al. 2014). 
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Borangiu et al. 2009  X X   

Xi and Shu 1999 X X X   

Son, Park et.al. 2002 X  X   

Triebel et al. 2004  X X   

Larsson and Kjellander 
2006 

X X    X   

Bračun et al. 2006 X     

Larsson and Kjellander 
2008 

  X X    

Jin and Yang 2009   X X    

Shen and Zhu 2012  X X    

Yin et al. 2014   X X   

Kim et al. 2015   X    X  

Arachchige et al. 2014  X    

Odeyinka and Djuric 
2016 

 X    

This Thesis   X  X   X 

 

Table 1:  Summary of literature review: explaining gap analysis and my work 
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3.  ELEMENTS OF ALLS SYSTEM 

The ALLS system is an inspection scanning system consists of laser line scanner attached 

as tool frame to the six degree of freedom FANUC S-430 IW robot. During scanning motion, as 

this inspection system is moved, the changes in geometry of the system changes. The kinematics 

of the laser line scanner and the FANUC S-430 IW robot are explained in detail in this chapter.   

3.1 Laser Line scanner- MetraSCAN-R scanner  

Laser line scanner measurement operates by the controlled deflection and steering of laser 

beams, followed by a distance measurement at every pointing direction. A 3D laser scanner 

consists of a laser, ranging unit, and control data unit. The laser unit is a deflecting or rotating unit 

that produces the laser beam or pulse that is needed for measurement. The ranging unit is a signal 

processing unit in which distances and angles are determined. To develop an ALLS system the 

triangulation of 3D laser scanners must be known. A laser stripe projects onto the component 

surface, and the reflected beam is detected by cameras. Through this method, the three dimensional 

coordinates are acquired. The laser line is a function of the view angle limit, the location vector of 

the source, the stand-off distance, and a vector perpendicular to the laser source (Son et al. 2002). 

The laser projector and sensor are modeled as the coordinate systems of the laser projector, the 

lens, the sensor, and the component surface (Bračun et al. 2006). A scanning system automatically 

finds an optical focus and maintains a certain distance, called a stand-off distance, between the end 

of the laser probe and the beam focused on the component; refer to Figure 5 (Bračun et al. 2006). 

The incident beam and reflected beam should not interfere with the part itself. The laser scanner 

should be kept at a collision free distance from the component surface.  
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 The certain parameters of the laser scanner required for scanning a point on a surface are 

defined as follows:  

� View Angle: The angle between the incident laser beam and the surface normal of a point 

being measured should be less than the rotation angles. This is the orientation of the scanner 

relative to the component surface. This is kept perpendicular relative to the component 

surface. 

 

 
Figure 5: Laser line scanner parameters (Bračun, Jezeršek et al. 2006) 

 

� Field of View: The measured point on the part surface should be within the length of the 

laser stripe.  

� Depth of View: The measured point should be within a specific range of distance from the 

laser source.  

 

 

 



16 

 

3.2 FANUC S-430 IW Robot 

 
Figure 6: FANUC S430 IW robot with MetraSCAN-R 3D laser scanner attached to its end-

effector 

The FANUC S-430 IW robot arm, as shown in Figure 6, has six joints (J1, J2, J3, J4, J5, and 

J6) whose kinematic relation is defined by the Denavit–Hartenberg parameters as follows: link 

length di,, link offset ai, joint angle θi, and twist angle αi, where i=1,2,3,4,5,6 (Denavit, 1955). The 

MetraSCAN-R 3D laser line scanner has two intersecting laser beams. The intersection of these 

two laser beams defines the reference point of the laser beam coordinate frame for the presented 

kinematic models. The scanner is mounted on the FANUC S-430 IW, as shown in Figure 6. The 

tool center point of the laser scanner is defined in the tool frame to create a Z-offset that is the 

distance from the end of robot arm to the scanner top joint portion; see Figure 7.  

 

Figure 7: Offset of the Creaform MetraSCAN-R laser line scanner (MetraSCAN AutoCAD file) 
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3.3 The Set-Up Construction 

 The setup considered in this thesis consists of a six degree of freedom FANUC S-430 IW 

robot; its end-effector is a Creaform MetraSCAN-R 3D laser line scanner and the component 

surface, as shown in Figure 8. The robot end effector laser line scanner works as a kinematic 

mechanism to move towards the component location. The MetraSCAN-R is screwed to an 

interface adaptor on the robot in order to attach it to the robot. The laptop central processing unit 

controls the MetraSCAN-R scanner to acquire a scan image from the Vx elements software. The 

C-track camera is connected to the controller and the controller is connected to the laptop, as shown 

in below Figure 8 to complete the system setup. 

 
Figure 8: System components of ALLS system (MetraSCAN training script) 

The C-track is calibrated initially so that the camera can view the defined scanning volume 

range, and different positions of the scanner. This mechanism is for registering for points located 

on the component by locating the scanner in the scan space. It is mandatory to perform basic 

training to calibrate the c-track camera, there are different scan volumes 3.08m3 and 7m3 depending 

upon the requirement, whereas for my experiment I calibrated the c-track for 3.08m3 using Vx 

Elements software.   
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4. MODELING OF ALLS SYSTEM 

The kinematics modeling is accomplished by following the below steps:  

i. Solve the forward kinematics equations for the six degree of freedom robot, the laser 

scanner, and the laser beam. This validates the position of the model of the entire 

measurement system. 

ii. Define the component surface by calculating the equation of the surface and point 

coordinates on its surface. 

iii. Calculate the joint angles for the robot, scanner, and beam using inverse kinematic 

equations and move the robot to the point on the component’s surface to get a trajectory 

path for scanning. 

4.1 Forward Kinematics, Step (i): 

Mechanical linkages of the system are validated by solving forward kinematics by defining 

the position coordinates of the robot end effector, scanner, and beam. The validation position for 

the FANUC LR 200 IC robot is obtained by Arachchige et.al (2014), but it is extended in this 

research by solving the forward kinematic equations to obtain the validated position for the 

FANUC S-430 IW robot, laser scanner, and laser beam. The kinematic structure of the FANUC 

S-430 IW, MetraSCAN-R scanner, and beam are shown in Figure 9. The relationship between the 

two links of the joints can be described using Denavit and Hartenberg (1955) parameters 

represented as follows: link lengths (d1-d6 ) (Kashani et.al. 2010), link offset (a1-a6), joint angles 

(θ1-θ6), and twist angle (α1-α6) for the robot. The scanner is added as the tool frame, where als is 

the width of laser scanner, abeam is the width of the beam from its cross-section, dls is the length of 

the scanner, dbeam is the length of the laser stripe and stand-off distance, αls is the twist angle of the 

laser scanner, αbeam is the twist angle of the laser beam, θls is the joint angle of the laser scanner, 
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and θbeam is the joint angle of the laser beam, Table 2. It is assumed that dbeam, is constant. While 

dbeam is considered constant in this work, the scanner allows for a minimum and maximum stand-

off distance; thus, subsequent kinematic models must account for a variable Z-offset within the 

allowable range. Individual homogenous transformation matrices i-1Pi for the ith joint of robot are 

expressed as Eq. (2) of Arachchige et al. (2014), where i=1, 2, 3, 4, 5, 6 joints of robot. The 

resultant matrix, 0P6, is obtained by multiplying all homogenous transformation matrices; ����

 is 

expressed by Eq. (3), which is the position and orientation of the robot arm.  

� =���
 cos �� − cos �� sin �� sin �� sin �� �� cos ��sin �� cos �� cos �� − sin �� cos �� �� sin ��0 sin �� cos �� ��0 0 0 1  Eq.(2) 

��� = �
� ∗  ��
 ∗  ��� ∗ ��� ∗ ��� ∗  ��� Eq.(3) 

JOINT id   iθ  ia  iα  
1 740 0 305 -90 
2 0 -90 1075 180 
3 0 180 -250 90 
4 -1275 0 0 -90 
5 0 0 0 90 
6 -240 180 0 180 
7 dls=393.6 0 als=0 0 
8 dbeam=400 0 abeam=0 0 

Table 2: D-H parameters for FANUC S430 IW, MetraSCAN-R scanner, and beam (Arachchige 
et al. 2014) 

0P6 is the validated pose matrix of the robot arm relative to the robot base, as expressed in 

Eq. (4), using the Matlab. The program for the validation of robot model is described in Appendix 

A.  The orientation of the end-effector, relative to the robot base frame, is defined with the three 

vectors normal, n, represented by matrix (nx, ny, nz); sliding, s, represented by matrix (sx, sy, sz); and 

approach, a, represented by matrix (ax, ay, az). 
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Figure 9: Kinematic model structure of measurement of point cloud system-FANUCS430 IW, 

Metra Scan 3D scanner and beam, addition to the Arachchige et al. (2014) model. 
 

The last column (px, py, pz), represents the location and position coordinates of the validated 

robot arm. As per Figure 9, the end position coordinate of a validated model can be stated in 

kinematics as x6=n, y6=s and z6=a; that is, the x-coordinate is normal, the y-coordinate is sliding, 

and the z-coordinate approaches the vector for the end position of the model. This is similar for 

the scanner and beam kinematics attached to the robot (Arachchige et al. 2014). 

�� � =   !" #" �" $"!% #% �% $%!& #& �& $&0 0 0 1 ' Eq.(4) 

To calculate the Denavit and Hartenberg (1955) parameters as per Figure 9 for the laser 

scanner (dls, als , θls, αls) and beam (dbeam, abeam θbeam, αbeam ), the actual measurements of the 

MetraSCAN-R are determined. These measurements on MetraSCAN-R are the link length, dls, is 
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the length of the tool and scanner equal to 393.6mm and the dbeam is the total length of the light 

beam and the stand-off distance is 400mm. Based on the kinematics Figure 9, the Z-axis of the 

scanner is parallel to the Z6 axis of joint 6. The dls is the distance between the two X-axes, joint 6 

(X6) and scanner (Xls) and dbeam is the distance between the scanner Xls and Xbeam. The joint and 

twist angles for the validation position of the scanner and beam (θls, θbeam, αls, αbeam) are equal to 

zero because these are not rotated along the Z-axis or X-axis. The offset length parameter als is the 

width of the scanner, according to kinematic structure, and the distance between the two Z-axes, 

Z6 and Zls, is zero; als is zero. The beam center point Z-axis is also parallel to the Z axis of the 

scanner, so the abeam is also equal to zero. The individual homogenous matrix for the laser scanner, 

Pls, is represented by Eq. (5). Then, by multiplying Eqs. (4) and (5), Eq. (6) is obtained, and the 

resultant matrix Pscanner is the validated position and the orientation of the laser scanner. 

  ���   =  (cos ��� − cos ��� sin ��� #)!���#)!��� ���*+#���sin ��� cos ��� cos ��� −#)!���*+#��� ���#)!���0 #)!��� *+#��� ���0 0 0 1 , Eq.(5) 

 ��-.//�0 =  6
0P ∗ ���    Eq.(6) 

Similarly, the individual homogenous matrix for a laser beam is expressed as Eq. (7); by 

multiplying Eqs. (6) and (7), the resultant matrix Plaserb, Eq. (8) is obtained for the validated 

position and orientation of the laser beam. Hence, the position coordinates of the validated model 

are in the last column of the first three rows of the matrix Plaserb (Xlaserb Ylaserb Zlaserb). 

���.1 =  (cos ���.1 − cos ���.1 sin ���.1 #)!���.1#)!���.1 ���.1*+#���.1sin ���.1 cos ���.1 cos ���.1 −#)!���.1*+#���.1 ���.1#)!���.10 #)!���.1 *+#���.1 ���.10 0 0 1 , Eq.(7) 

��.��0�  =  ���.1 ∗ ��-.//�0 Eq.(8) 
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4.2 Component surface, Step (ii):  

The assumption of our model to transform the relationship from the laser scanner frame to 

the component surface frame states that the component is a sphere. The approach can be applied 

to other component surfaces by replacing this surface representation. More complex surfaces may 

require integration with CAD model data. The spherical coordinate system is used for specifying 

the position of the point on the surface (Fu et.al. 1987), which involves the following translations 

or rotations: translation of the radius, r, in the Z-axis direction; rotation, α, about the Z-axis; and 

rotation, β, about the x-axis. The Matlab program for deriving the equation of component surface 

is described in Appendix B. 

4.3 Inverse Kinematics, Step (iii):   

Inverse kinematics is the approach for general serial manipulators to compute joint 

displacements for a given pose of the end effector (Manocha & Canny, 1994). This inverse 

kinematics solution is required to calculate the joint angles (θ1 to θ6) for six degree of freedom 

FANUC S-430 IW (Odeyinka. 2015; Odeyinka and Djuric 2016). In this research these inverse 

kinematic equations are modified slightly to validate the FANUC S-430 IW robot along with the 

laser scanner end-effector. The modelling of the scanner and the beam has been done by adding 

two frames as an offset; as a result, Eq. (9) is implemented in the inverse kinematics solutions to 

determine the joint angles of the robot (θ1 to θ6). To solve this approach the first step is to find the 

first three joints and then the last three joints (Pieper 1968). In the calculation of the first three 

joint angles the first step is to locate the intersection of the last three joints axes and calculate the 

position of this intersection point, from the desired position vector p and pose R of the end effector. 

In Figure 10, the vector p is projected onto the x0-y0 plane at joint 1 of FANUC S430 IW, the link 
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length d6b is obtained by adding link length of robot d6, link length of scanner dls, and link length 

of laser beam dbeam, with reference to the kinematics shown in Figure 9.  

��� 	� 	 �� 2 ��� 2 ���.1 Eq. (9) 

 

 
Figure 10: Position vector p for spherical wrist robots (Odeyinka, 2015). 

 

From Eq. (9) and Figure 10, the position vector for FANUC S430 IW is calculated as: 

$ � $� � �� ∙ � � 4$5, $6 , $789 Eq. (10) 

The position vector for FANUC S430 IW is calculated when the MetraSCAN-R and the 

beam are added as tools to the robot, then d6 becomes d6b as per the Eq.(9) and it is inserted in 

Eq.(10) and Eq.(11) is obtained: 

$ � $� � ��� ∙ � � 4$5, $6 , $789 Eq. (11) 
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Hence, according to Eqn. (11) each coordinate of p (px, py, pz) is calculated from Eq. (10) is 

mentioned in Eq. (12) as:  

$" � $5� � �:#4���8 	 ∙ �5 

$% � $6� � �:#4���8 	 ∙ �6 

$& � $7� � �:#4���8 	 ∙ �7 

Eq. (12) 

Whereas, Px6, Py6, and Pz6 in Eq. (12) are the position vector of 0P6 the values of last column 

of matrix and ax, ay, and az are the approach vector of P6, the values of third column of matrix 

obtained from Eq. (4). 

4.3.1 Joint 1 solution:  

The joint 1 solution for FANUC S-430IW is obtained by projecting the position vector p 

onto x0-y0. The position vector p, points from the origin of the shoulder coordinate system to the 

point where the last three joints axis are intersecting. The last three joint axes intersect at point D. 

This point is the Wrist Center Point (WCP) as shown in Figure 11. Motion of the final three joints 

about these axes will not change the position of D. Position of the wrist center is a function of only 

the first three joint angles (Odeyinka and Djuric 2016).  The ARM, ELBOW and WRIST 

definitions for FANUC robot family are discussed (Odeyinka and Djuric 2016):  

I. Left Arm (LA): when positive θ2 moves the wrist in negative direction while θ3 is not active 

II. Right Arm (RA):  when positive θ2 moves wrist positive z0 direction while θ3 is not active. 

III. Above Arm or Elbow above wrist: when the position of the wrist to the RA/LA with respect    

   to the shoulder coordinate system has negative/positive coordinate value along the y2 axis. 

IV. Below Arm (BA) or Elbow Below wrist: When the position of the wrist to the RA/LA with 

respect to the shoulder coordinate system has positive/negative coordinate value along the 

y2 axis. 
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V. Wrist Down (WD): when the s unit vector of the hand coordinate system and the y5 unit 

vector of the coordinate system (xs, ys, zs ) have a positive dot product, i.e. 	# ∙ %5	 < 0		 
VI. Wrist Up (WU):  when the s unit vector of the hand coordinate system and the y5 unit vector 

of the coordinate system (xs, ys, zs ) have a negative dot product, i.e. 	# ∙ %5	 < 0 

VII. The ARM and ELBOW configurations are calculated from equations Eqn. (13) to Eqn. 

(16) as shown in Figure 11.  

=� �	 >1 0 0? Eq. (13) 

@AB � #)C!	4�	 ∙ =08 Eq. (14) 

DEFGH � @AB. #)C!	4	��� ∗ cos �� 2 �� sin ��8 Eq. (15) 

�
 � Jtan�
4 $6 , 4@AB ∗ $5	88 ∗ 180/OP 2 180 Eq. (16) 

 

 

 

 

 

 

Figure 11: Projection of vector p onto x0- y0 for Joint 1(Odeyinka and Djuric 2016) 

4.3.2 Joint 2 solution:  

The joint 2 angle θ2   has two configurations ELBOW ABOVE and ELBOW BELOW. 

Similar to joint 1, the position vector p is projected onto the x1-y1 plane as shown in below Figure 

12 to determine joint θ2 solution. In Figure 11, the robot - scanner system is moved for desired 
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angle of Joint 2. The geometric representation shows θ1 and θ2 in Figure 12 and in triangle BCD, 

length BD is calculated using Pythagoras theorem, as shown in Eq. (17) and from triangle ABD, 

the β angle is calculated, using the trigonometry, sine and cosine β values expressed in Eq. (18), 

(20). In triangle AED, r, length of AE is calculated using Eq. (19) 

FQ � R��� 2 ��� Eq. (17) 

sin S � TU1 � *+#� S Eq. (18) 

V � 	U$"� 2 $%�	 T �1 Eq. (19) 

cos S � 4�2� 2 A� � �3� � �4�8/	42 ∗ A ∗ �28	 Eq. (20) 

 
Figure 12: Projection of vector P onto x1 – y1 for Joint 2 (Odeyinka and Djuric 2016) 

 

Here, Eq. (18) is always positive and AE is the distance r, +a1 is for LEFT ARM and – a1 

is for RIGHT ARM in Eq. (14). The distance R is calculated from Eq. (21)  

A � R4U$"� 2 $%� � �
�8 2 4$& � �:#4	�
8� Eq. (21) 
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From Triangle AED of Figure 12, the distance DE is given by Eq. (22) and sine, cosine 

values of ∅ is given by Eq. (23) and (24).  To calculate θ2 is the inverse tan ratio, using trigonometry 

is obtained by Eq. (27) by calculating the sine, cosine values of θ2 is given by Eq. (25) and (26) 

QD � $7 � �
 Eq. (22) 

sin ∅ = ( $7 − �:#(�
))A  
Eq. (23) 

cos ∅ =  −VA  . @AB  Eq. (24) 

sin �� = sin ∅ ∗ cos S + @AB. DEFGH. cos ∅. sin S Eq. (25) 

cos �� = cos ∅ ∗ cos S + @AB. DEFGH.  sin ∅. sin S Eq. (26) 

�� =  tan�
 sin ��cos �� 
Eq. (27) 

Further the ELBOW configuration is defined as the position of the wrist with respect to the 

shoulder coordinate system, which has negative or positive coordinate value along the y2-axis, and 

this is the Above Arm or Elbow Above wrist. The position of the wrist to the RIGHT/LEFT Arm 

with respect to the shoulder coordinate system has a positive or negative coordinate value along 

y2 axis. The decision equation is defined by 2P4   in Eq. (28) and the ARM indicator from Eq. (14). 

The sign of the decision equation for the ELBOW indicator Eq. (28) is based on the sign of y-

component of the position vector of 3P2 , 
4P3, and ARM indicator. There are different values for 

joint 3 as shown in Table 3. 

��� =  ��� . ���  

%�� = ��(1, 2) 

DEFGH = @AB ∗ #)C!( %�� ) 

 

Eq. (28) 
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4.3.2 Joint 3 solution:  

Consider projection of position vector p onto plane x2-y2 solution.  

 
Figure 13: Projection of vector P onto x2 – y2 for Joint 3 (Odeyinka and Djuric 2016) 

 

From the geometry of Figure 13, it is given that @F � �� F[ � �� and [Q � ��	 
therefore Eq. (29) is obtained, 

�� � 360 � 4∅ � S8 Eq. (29) 

From triangle BCD applying trigonometry, sine and cosine values of ∅ by Eq. (30) & 

(31) are obtained as: 

cos ∅ � �2� 2 �3� 2 �4� � 4@Q8�
2 ∗ �2 ∗ √�3� 2 �4�  Eq. (30) 

sin ∅ � U1 �	cos ∅�  Eq. (31) 

From Triangle BCD, sine and cosine values of S from Eq. (32) & (33) are as: 

cos S � �:#4�38
√�3� 2 �4� 

Eq. (32) 

sin S � �:#4�48
√�3� 2 �4� 

Eq. (33) 

The sine and cosine values of �� are given by Eq. (34) & (35) by inserting Eq. (30) – (33) 
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sin �3 �	 cos ∅∗	 sin S �	sin ∅ cos S Eq. (34) 

cos �3 � cos ∅	∗ cos S 2	 	sin ∅. sin S Eq. (35) 

�3 � 	 tan�
 sin �3cos �3 
Eq. (36) 

 

Arm Configuration ( )yP4
2

 
3θ  ARM ELBOW ARM 

ELBOW 

LEFT and ABOVE 0≥  βα−  -1 +1 -1 

LEFT and BELOW 0≤  βα−  -1 -1 +1 

RIGHT and ABOVE 0≤  βα−  +1 +1 +1 

RIGHT and ABOVE 0≥  βα−  +1 -1 -1 

Table 3: Different possible arm configurations for joint three (Odeyinka and Djuric 2016)  

 

4.3.4 Joint 4 Solution:  

To determine the joint angle θ4 solution, we have to find H, which is the transformation 

matrix obtained, Eq. (37), is by multiplication of first three matrices with respect to the base frame  

^ �   � =  � ∗  �� � ∗
� �  � 
  ��  

Eq. (37) ^ = _`� a� =� b�0 0 0 1 c  
Hence, each matrix X3 Y3, Z3 and F3 can be defined as: 

  `� =  ^(1, 1)^(2,1)^(3,1)'  a� =  ^(1, 2)^(2,2)^(3,2)'  =� =  ^(1, 3)^(2,3)^(3,3)'  b� =  ^(1, 4)^(2,4)^(3,4)'  Eq. (38) 

The joint angle θ4 is set such that a rotation about joint five will align the coordinate system 

of joint six with approach vector a. Project (X4, Y4, Z4) the coordinate frame on the x3- y3 plane as 

shown in Figure 14.  
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Figure 14: Rotation about joint five (Odeyinka and Djuric 2016) 

 

In Figure 14, angle θ4 is geometrically represented, in the positive joint direction. The 

detailed calculation for joint four, an angular displacement of Z3 by rotating along approach vector 

Z4 resultant matrix is obtained, Eq. (40).  The transpose the matrix for approach vector, a is given 

by Eq. (39) as:  

� � d�5�6�7e Eq. (39) 

=� �  =� ∗ � Eq. (40) 

We have Z4, X3 from Eqn. (38) - (40), that are used to calculate the sine and cosine values 

of θ4 expressed in Eq. (41) and (42) and value of θ4 is calculated as inverse tan ratio, using 

trigonometry and is expressed as Eq. (43) 

sin �� =  −(=� ∙  `�) Eq. (41) 

cos �� =  −(=� ∙  a�) Eq. (42) 

�� = ftan�
 sin ��  cos ��   g ∗  180°$)  Eq. (43) 

3 5,x x

6x

3 5,y z ,C D

4θ
4x

4z

4θ

Xbeam

Xls



31 

 

There are following four solution cases of joint angle θ4, if the degenerate case occurs, any 

convenient value may be used for   as long as the orientation of the wrist (UP/DOWN) is satisfied 

(Lee and Ziegler, 1984) 

�� � iftan�
 sin ��  cos ��   g ∗  180°$) j − 90° 

Eq. (44) 

 

�� = �� + O 

�� = 90 − iftan�
 sin ��  cos ��   g ∗  180°$) j 

�� = �� − 180° 

The WRIST and Orientation of robot is defined by Eq. (46) - (47), Eq. (45) is assumed  

=� =  −� 

a� =   =�  
l = −a�   

Eq. (45) 

Hence,  

WRIST = sign( S ∙ Z�) Eq. (46) 

Orientation= Ω = l ∙  =� Eq. (47) 

4.3.5   Joint 5 solution: 

To determine the joint five angle solution, the coordinate system of joint six aligns with 

the approach vector. As shown in Figure 15, the coordinate frame is projected on the plane x4-y4. 
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 Figure 15: Rotation about joint five for joint 4 (Odeyinka and Djuric 2016)   
 

In Figure 15, the θ5 angle is geometrically represented using positive joint direction. The 

joint 5 angle, θ5 was calculated by multiplying four homogenous matrices for joint 1,2,3,4 

represented as 1P0, 2P1, 
3P2, 4P3, which gives the resultant matrix, q1 shown in Eq. (48).  The 

elements of the matrix are stated in Table 4. Each column of the resultant matrix is represented as 

n-normal, s-sliding, and a-approach. From these X4, Y4, and a are calculated as shown in Table 4. 

			t
 � �	�	� ∗ 	 � ∗		�� � ∗
� �		�	
  Eq. (48) 

Table 4: Elements or column of Resultant Matrix q1 

 The sine and cosine values of θ5 are calculated from Eq. (49) and (50). The dot product 

of approach vector and X4 gives Eq. (49) and the dot product of approach vector and Y4 gives Eq. 

(49). 

sin �� �	�4� ∙ 	`�8 Eq. (49) 

cos �� �	�4� ∙ 	a�8 Eq. (50) 

 

Normal – n for  q1 matrix  Sliding – s for  q1 matrix Approach – a for  q1 matrix !5 � t
41,18 #5 � t
41,28 �5 � t
41,38 !6 � t
42,18 #6 � t
42,28 �6 � t
42,38 !7 � t
43,18 #7 � t
43,28 �7 � t
43,38 ! � 	!5 !6 !7 # � 	 #5 #6 #7 � � 	�5 �6 �7 `� � uV�!#$+#v4!8 a� � uV�!#$+#v4#8 � � uV�!#$+#v4�8 
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For the joint 5 solution θ5, is obtained from Eq. (51) by inverse tan ratio of Eq. (49) and 

 (50). If joint angle 5 obtained is θ5 = 0, then robot manipulator is said to be at singularity and 

cannot be moved unless and until the θ5 is changed. The flip/no-flip configuration can be identified 

by the sign of θ5. When θ5 is positive, it is in the flip configuration and when θ5 is negative, it is in 

the no-flip configuration.  All these configurations of joint 5 solutions as mentioned in Eq. (51) 

�� � 180° �	ftan�
 sin ��
		cos	 ��			g ∗ 	

180°
$)  

Eq. (51) 
�� � ��� 

�� � �� 2 270° 
�� � �� � 270° 

4.3.6 Joint 6 solution: 

To determine the joint six angle θ6 is set to align the given orientation vector (sliding vector 

or y6) and normal vector. In Figure 16, joint angle θ6 is geometrically represented, by using positive 

joint direction, and the hand coordinate frame (n, s, a) is projected on the plane x5 -y5.    

 
Figure 16: Rotation about joint five for joint six (Odeyinka & Djuric, 2016) 

 The five homogenous matrices for joint 1, 2, 3, 4, 5 represented as 1P0, 2P1, 
3P2, 4P3, 5P4  

are multiplied and the q2 resultant matrix is obtained by Eq. (52). The columns of matrix q2 are 
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shown in Table 5. Using trigonometry principle, the sine and cosine values of θ6 are calculated by 

Eq. (53) and (54).  The joint six of robot angle θ6 is obtained by Eq. (55) and (56)  

t� � � � � ∗ � � � ∗  � ∗  �� � ∗
� �  � 
  Eq. (52) 

 

Normal – n for  q2 matrix Sliding – s for  q2 matrix !5 = t�(1,1) #5 = t�(1,2) !6 = t�(2,1) #6 = t�(2,2) !7 = t�(3,1) #7 = t�(3,2) ! =  !5 !6 !7 # =  #5 #6 #7 `� = uV�!#$+#v(!) a� = uV�!#$+#v(#) 
Table 5: Elements of Resultant Matrix q2 sin �� =  ! . a�   Eq. (53) 

 cos �� =  # . −a� Eq. (54) 

�� = ftan�
 sin ��  cos ��   g ∗  180$)  
Eq. (55) 

�� =  �� + O Eq. (56) 

 If degenerate case occurs according to Lee et.al, (1983), then (θ4+θ6) equals the total angle 

required to align the sliding vector (s) and the normal vector (n). If the flip toggle is on (i.e. 

FLIP=1), then Eq. (44), (51) and (56) exist. These inverse kinematics equations from Eq. (9) to 

(56) are validated and joint angles of robot obtained from Eq. (16), (27), (36), (44), (51) and (56) 

using Matlab. The Matlab program is described in Appendix C. 
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5.  VALIDATION RESULTS FOR THE ALLS SYSTEM  

5.1 Validation of Forward Kinematics for ALLS System 

5.1.1 Fanuc robot S 430IW  

The robot kinematics model is validated by calculation of position and orientation of 

selected points in 3D space and comparison of the same points using the robot teach pendent 

(Arachchige et al., 2014). As described in the Modelling chapter 4, the resultant matrix, Eq. (4) is 

obtained as a position and orientation matrix ���. A position of ��� (1820, 0, 2065) mm indicates 

that the robot model is at the home position and is verified by using a physical robot (1820, 0, 

1325) mm. The d1 is subtracted in the physical robot, for modelling purposes d1 =740 (Arachchige 

et al. (2014). The orientation of the arm, relative to the robot base frame, is determined by three 

vectors: normal-n [0 0 1], sliding-s [0 -1 0] and approach-a [-1 0 0]. The validated value of X6 

=1820, referred to in Figure 15, is critical in inverse kinematics equations to determine the joint 

angles to move the robot along a trajectory in relation to the component surface. 

This ��� transformation matrix is validated as shown in Eq. (57), and this is the result of the 

validated position of the FANUC robot S-430 IW, in millimeter, plotted in Figure 17 

��� =  (0 0 1 18200 −1 0 01 0 0 20650 0 0 1 , Eq. (57) 
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Figure 17: Validation of FANUC Robot S-430 IW model 

 

5.1.2 Validation of the point cloud measurement system  

The result of Eq. (6) is obtained as the resultant transformation matrix Pscanner expressed in 

Eq. (58). The position coordinates resulting from the model are (2213.6, 0, 2065)mm, which 

indicates that the robot end effector (i.e. laser line scanner) model is in its home position and 

orientation relative to the robot base frame, by three vectors: normal-n [0 0 1], sliding-s [0 -1 0] 

and approach-a [1 0 0], thus validating the system model. It is observed in the position coordinates 

that the x-coordinate increases and the z-coordinate remains constant in Eqs. (57-59). This is 

because the X-axis for each joint tool is parallel, and the distance between the X-axis increases 

along the Z-axis for each joint and the attached scanner. Since the scanner is attached to the robot 

and the robot and scanner must move together as one mechanical linkage, the coordinate along the 

Z-axis, Xls = 2213.6 mm, is critical to inverse kinematic equations. To calculate joint angles, the 

distance from X6 to Xls, (Figure 9) is dls added to d6 in the inverse kinematic equations. Thus, joint 

angles are required to move the robot-scanner mechanical linkage along a trajectory. 

��-.//�0  =  (0 0 1 2213.60 −1 0 01 0 0 20650 0 0 1 , Eq. (58) 
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  ��.��0� =  (0 0 1 26130 −1 0 01 0 0 20650 0 0 1 ,          
Eq. (59) 

Plaserb is the resultant homogenous transformation matrix, Eq. (59), representing the 

validation position of all the elements, the FANUC S-430 IW robot, the MetraSCAN-R laser 

scanner, and the laser beam. The position coordinate of the model is Plaserb (2613, 0, 2065)mm, 

which indicates that it is at its home position and orientation relative to the robot base frame by 

three vectors: normal-n [0 0 1], sliding-s [0 -1 0] and approach-a [1 0 0]. The position and 

orientation of the MetraSCAN-R laser scanner and laser beam using FANUC S-430 IW is 

validated as shown in Figures 18 and 19, which is an extension to the existing research in 

Arachchige et al. (2014) for FANUC LR Mate 200IC robot. Further, the beam length is also 

considered as a part of the entire model. The coordinate along the Z-axis is Xbeam =2613 mm is also 

critical in calculating joint angles, where the distance from Xls to Xbeam, Figure 9, is dbeam and is 

added to the d6 and dls value in the inverse kinematic equations to move the elements of system on  

the trajectory path of  the component surface.  

 
Figure 18: Validation result of the laser scanner and robot model 
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Figure 19: Validation result of the measurement point cloud system 

 

5.2 Spherical component Surface 

     Pwp is a point obtained on the spherical surface, with radius r, expressed in homogenous 

transformation matrix, describing the position and orientation of this point, given by Eq. (60). Here 

the rotation angles α and β ranges from 0 to 180 degrees, for each of these rotation angle each 

corresponding point is obtained, by inserting in the below equation in Matlab, series of this points 

indicates a Spherical surface. The matrix and the component are plotted using the coordinates at a 

point P on the component as shown in Figure 20. This plotted surface acts as the trajectory path 

for the mechanical linkages of the system model.   

�xy = 	 d1 0 0 V ∗ *+#� ∗ #)!S0 1 0 V ∗ #)!� ∗ #)!S0 0 1 V ∗ *#S e  Eq. (60) 
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 Hence, the position coordinates of point Pwp (Pxwp, Pywp, Pzwp) of the spherical component is given 

by Eq. (61) as,  

�z{| 	� 	r	 ∗ cos	α ∗ sin	β, 

��{| 	� 	r	 ∗ sin	α ∗ 	sin	β 

��{| 	� 	r ∗ cos	β 

Eq.(61) 

 
Figure 20: Validation result shows plotted equation of spherical component surface  

5.3 ALLS System relative to component 

   When all the joint angles, except when joint 5 angle θ5 is -90 degrees, are zero, the Fanuc 

robot S-430 IW is said to be in the normal relative position to the component surface, as shown in 

Figure 21. MetraSCAN-R scanner and its beam are added as a tool frames on the FANUC S-430 

IW robot. This position of the robot is normal to the component surface required for scanning, 

determines the view angle of scanner. In this position the MetraSCAN-R is controlled by 

programming the robot and is done by Teach Pendent. The model is created using Workspace LT 

simulation software to demonstrate the movement of this system. Figure 22 depicts the approach 

of the measurement system model. 
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Figure 21: Inverse Kinematics validation at θ1, θ2, θ3, θ4, θ6 =0; θ5 = -90 

 

 

 
Figure 22: System movement position on the point of trajectory of component surface extension 
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6.  SCAN PATH EXPERIMENT & RESULTS  

 The forward and inverse kinematic equations are validated using FANUC S430 IW robot 

and MetraSCAN-R system. As shown in Figure 17-19, where the resultant matrix was compared 

with the teach pendant actual robot position, similarly, the ALLS system moving to the component 

surface is validated along a particular trajectory path.  The component surface is the spherical 

scanner calibration plate the FANUC S-430 IW robot is moved to the point on the surface; 

consequently the robot position is recorded. For this recorded position, the joint angles θ1, θ2, θ3, 

θ4, θ5, θ6 are calculated to reach that measured point on the component surface.  Each measured 

point gives a certain position of the ALLS system and the joint angle values, which establish the 

relation between the ALLS and the spherical component, and series of measured points gives a 

trajectory path. To perform the experiment for scanning a trajectory path, following steps are 

described: calibrating the robot, incorporating the safety limit on robot, setting a tool frame on 

FANUC S430 IW, calibrating the C-track, MetraSCAN-R scanner, and movement of ALLS 

system along a trajectory path. 

6.1 Calibration of FANUC S-430 IW robot 

            The calibration of FANUC S-430 IW robot is usually required if the robot batteries needs 

to be replaced or robot loses the power.  The calibration steps are shown in the FANUC calibration 

manual (FANUC America corporation Quick reference document). Using this manual we 

performed the calibration using the Teach Pendent for FANUC S-430 IW described in Figures 23, 

24, 25, and 26. 
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Figure 23: Master-calibration step on Teach Pendent of FANUC S-430 IW robot 

On the Teach Pendent after following these steps: Press Menu�select system�Press F1 

� select Master/ Cal, the Master/Cal option screen appears, as shown in Figure 23. If the 

Master/cal is not seen on the Teach Pendent, then Press F1�Variables�$Master_ENB�set to 

“1” if it is “0” and press ENTER on Teach Pendent. Go to Master/cal � select the Single Axis 

Master-� check the column [ST] whether it is “0” ,� if “0” change it to “2” for each robot axis 

by moving the up/down key through (MSTR_POS) column� Press Enter.  

 

Figure 24: Single Axis Master on Teach Pendent of FANUC S-430 IW robot 
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Figure 25: Calibrate on Teach Pendent of FANUC S-430 IW robot 
 

In Master/Cal option move the cursor to 6 Calibrate position� press Enter� Press F4 it 

says Robot is calibrated as shown in Figure 25. Once it is done press F5. The next step mentioned 

in the FANUC America quick reference document is to perform single axis mastering that is for S 

series of robot, using the joint co-ordinate system, jog the unmastered axis of robot (J1-J6) to align 

it with a zero degree witness mark, as shown in Figure 26. 

 

Figure 26: Jogging the unmastered Axis of all Joints J1 to J6 axis of FANUC S-430 IW robot 
using Teach Pendent 
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6.2 Safety limit on FANUC S430 IW robot 

Before the scanning experiment was performed, it was necessary to activate the safety 

limits to protect the laser line scanner from collision with the component placed for scanning. 

Safety limits were added for FANUC S-430 IW to protect the MetraSCAN-R to avoid collision 

with component surface. The limits were set using the Teach Pendent of robot, by following steps: 

Menus� System�Press F1 -� select Axis Limits� Enter� change the limit angle for J2 = 17deg 

in the positive y-direction and J3= -19 degree in negative Z-axis direction. One can select limits 

based on the requirement of the application or usage. 

Joint 3 (J3) is set to limit to prevent the downwards movement in negative Z-axis direction 

below that set limit. Thus, a safe distance is kept between the MetraSCAN-R scanner and the 

component. The following message is displayed as shown in Figure 27 if the J3 is moved in Z-axis 

negative direction. Similarly, joint 2 (J2) is set as a limit angle to prevent the robot move further 

in the positive y-direction to avoid collision. The following message “Stroke Limit (G:1 A:2 Hex)” 

is displayed if a robot is jogged further than the set limit as shown in Figure 27. 

 
Figure 27: Setting safety limit on FANUC S-430 IW robot 
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6.3 Setting the Tool Frame on FANUC S-430 IW  

The next task was to attach the laser scanner and beam, by assigning the tool frames for 

scanner and the laser beam. Tool frames 2 and 3 are used for attaching the 3D laser scanner on the 

robot. The z-coordinate for tool frame 1 and 2 are changed to values dls and dls plus dbeam. Using 

the Teach Pendent, this tool frame can be set initially before mounting the laser scanner 

MetraSCAN-R on the FANUC S-430 IW robot. On the Teach Pendent, Menus � Set-up� press 

F1 (type)�select Frames� move cursor to frame 2 � press detail� edit the z coordinate with 

the respective value -� press Enter� press Prev �move cursor to frame 3 and repeat the same 

procedure, as shown in Figure 28 

 
Figure 28: Setting the tool frame on the FANUC S-430 IW robot 

After setting the tool frame, the MetraSCAN-R 3D scanner is mounted on the FANUC S-

430 IW robot as shown in the Figure 6. As described in the procedure the laser line scanner, 

MetraSCAN-R is attached as a tool to the FANUC S430 IW robot and assigned to tool frame 2 

and the length of laser beam is assigned to tool frame 3 as shown in Figure 28. The camera and 

scanner are calibrated initially, using the steps in the laser scanner user manual. The scanner 

parameters focus, resolution, view angle, and depth of view are optimized as per the instructions 
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for the scanner. The scanner is calibrated using the calibration plate having spherical geometric 

shape, as shown in Figure 29. The automatic scanner movement while scanning a surface is 

controlled by FANUC S430 IW using a small robot Teach Pendent program; see Appendix D.  

 
Figure 29: Scanner calibration is controlled using FANUC S430 IW robot and determined 

scanner position and orientation 

6.4 Movement of the System Model along a Scanning Trajectory Path 

In order to move the ALLS system, from its validated position to the fixed point on the 

trajectory of the component, the joint angles of robot θ1-θ6 are calculated using the inverse 

kinematic equations for the FANUC S-430 IW described in Table 2 (Odeyinka 2015). From the 

experiment and mathematical model it has been found that θls and θbeam are equal to θ5 as shown in 

Figure 30. The trajectory path was obtained using the experiment performed for scanning a 

spherical surface is shown in Figure 30. 

The FANUC S430 IW robot movement was programmed with the Teach Pendent controls 

for the scanner position and orientation in relation to the spherical surface. The scanner was moved 

automatically to scan along the spherical surface. Thus, a trajectory path was generated by 

connecting all the measured points shown in Figure 30. In that scan path, at a measured point, the 



47 

 

joint angles are shown representing the position (x, y, z) and orientation (Raw-Pitch-Yaw angle) of 

the system with respect to the component surface. These joint angles indicate the position and 

orientation of the system in order for the robot to reach the component surface. In this measurement 

system, tool frames are set for combining the MetraSCAN-R 3D laser line scanner and its laser 

beam on a FANUC S430 IW robot. Validation results obtained in Figure 18 and 19 provide the 

relation between the FANUC S430 IW and MetraSCAN-R scanner. The result shown in Figure 20 

provides the coordinates of the component surface. The calculation of joint angles shown in Figure 

21 shows that this measurement system should be normal relative to the component surface point. 

When the system is moved from point 2 to point 4 a trajectory path is scanned. Consequently, the 

joint angles and actual coordinates of the system are obtained as shown in Figure 30. ALLS system 

moves from the validation position to the new position as described in the Figure 31. Thus, the 

non-contact inspection system, (FANUC S430 IW with MetraSCAN-R) acquires ‘as-is’ 

component spherical surface data, plans the trajectory path using the robot program, and obtains 

the kinematic relationship between the robot, scanner, and fixed component surface without an 

external measuring device. The objective to integrate three co-ordinate frames (the FANUC S430 

IW robot, scanner, and component) while scanning a trajectory path (scan path) is achieved.  
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Figure 30: Scanning of Spherical surface: the position of point co-ordinates on the spherical 

surface and joint angles of FANUC S-430 IW robot and scanner to reach the surface. 
 

 
Figure 31: FANUC S430 IW Robot and MetraSCAN-R system two poses (pink dots) while 

scanning a trajectory points on component surface 
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7.  CONCLUSIONS AND FUTURE WORK  

The goal of this approach was to validate and determine the joint angles of the entire 

mechanical linkage of the ALLS system to reach the point on surface of component, as shown in 

Figure 30 and 31; thus, establishes a method to generate a trajectory path for laser scanning 

inspection.  The measured points on the trajectory path corresponds to the position of the ALLS 

system. Each position of ALLS system represents the values of the joint angles of the FANUC 

S430 IW and corresponds to the measured scan point on the spherical component. The results 

obtained in this research provide the position and orientation coordinates of the entire measurement 

system along a trajectory of points on the component.  

This research adds to the existing knowledge regarding the advancement of automated laser 

scanning systems. It contributes towards determining the kinematic relationship between the 

elements of the system and the component surface. The movement of the system as one mechanical 

linkage is called as robot pose, with obtained joint angles solutions, to reach that particular point 

on the component surface. This study, to the best of our knowledge, is the first to integrate all three 

transformations of the coordinates; from robot to laser scanner frame, laser scanner frame to laser 

beam frame, and laser beam to component frame. The transformation of co-ordinates from the 

laser beam to the component introduced in this research will play a vital role as input into future 

work for scan path planning and point cloud measurement prediction.  

The obtained trajectory path can be the input into methods to optimize the scan path. An 

assumption limiting this approach is that the component surface here is sphere or circle. A change 

in the shape of the component would change the equation of the component surface and the point 

coordinates located on component. Future work would focus on any geometric shape equations for 

a component, and would make this mechanical linkage be able to move along the component of 
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any geometric shape. The obtained different position and orientation of the robot-laser scanning 

system can be input for future work to develop the work-window for the FANUC S430 IW robot 

and MetraSCAN-R scanning system.  

The potential impact of this research thesis is its contribution to enhance the development 

of optimization methods for laser line scan paths in order to collect best point clouds. ALLS 

systems that can rapidly collect best point cloud datasets could become a viable inspection method 

in production systems and transform inspection, quality monitoring, and core condition assessment 

processes. Manufacturing quality monitoring systems would be provided with data and 

information that significantly exceeds manual inspection or traditional Coordinate Measurement 

Machines (CMMS). Remanufacturing condition assessment systems would benefit from an 

advanced system that can accurately and quickly determine the condition of an end-of-use 

component and develop as-is CAD models for remanufacturing planning of components. 

The work of this thesis has been accepted to the 2016 North American Manufacturing 

Research Conference and submitted to the 2016 Proceedings for NAMRI or SME Journal of 

Manufacturing Systems. 
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APPENDIX A 

MATLAB PROGRAM FOR FORWARD KINEMATICS 

clc 
clear all 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Forward Kinematics_FANUC_S430IW  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% D-H Parameters 
a1 = 305;   % link offset of first arm 
a2 = 1075;  % link offset of second arm 
a3 = -250;  % link offset of third arm 
a4 = 0;    % link offset of fourth arm 
a5 = 0;    % link offset of fifth arm 
a6 = 0;    % link offset of sixth arm 
als =0;    % width of scanner  
abeam= 0;   % beam center point 
aw= 2438;   % width of workpiece from beam centerpoint 
  
d1 = 740;  % link length of first arm 
d2 = 0;   % link length of second arm 
d3 = 0;   % link length of third arm 
d4 = -1275; % link length of fourth arm 
d5 = 0;   % link length of fifth arm 
d6 =-240;  % link length of sixth arm 
dls=393.6; % length of tool and handle till laser scanner starting point 
dbeam=400; % length of laser scanner and beam  
dw= 1280;  % workpiece 
d6b=d6+dls+dbeam % for inverse kinematics - d6b is considered as per the geometry change as 
scanner and beam are added  
  
X=[0 0 a1  a1   a1   a1-d4  a1-d4-d6] 
Z=[0 d1 d1 d1+a2 d1+a2-a3 d1+a2-a3 d1+a2-a3] 
Y=[0 0 0 0 0 0 0] 
Tool = plot3(X,Y,Z,'b','LineWidth',4) 
  
axis([-1.5*(a1+a2) 2.25*(a1+a2) -3000 3000 -200 3*(a1+a2)]) 
grid on 
hold('all') 
  
ALPHA_1 = (-90*pi)/180 
ALPHA_2 = (180*pi)/180 
ALPHA_3 = (90*pi)/180 
ALPHA_4 = (-90*pi)/180 
ALPHA_5 = (90*pi)/180 
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ALPHA_6 = (180*pi)/180 
ALPHA_ls = (0*pi)/180 
ALPHA_beam = (0*pi)/180 
ALPHA_wp= (0*pi)/180 
  
theta1_0 = 0 
theta2_0 = -90 
theta3_0 = 180 
theta4_0 = 0 
theta5_0 = 0 
theta6_0 = 180 
thetals_0 = 0 
thetabeam_0 = 0  
thetawp_0 = 0 
  
%to be input using the Teach Pendent% 
theta1_Pendent = 0 
theta2_Pendent = 0 
theta3_Pendent = 0 
theta4_Pendent = 0 
theta5_Pendent = 0 
theta6_Pendent = 0 
thetals_Pendent = 0 
thetabeam_Pendent= 0 
thetawp_Pendent = 0 
  
% conversion of joint angles to radians 
theta1 = (theta1_Pendent+theta1_0)*pi/180 
theta2 = (theta2_Pendent+theta2_0)*pi/180 
theta3 = (theta3_Pendent+theta3_0)*pi/180 
theta4 = (theta4_Pendent+theta4_0)*pi/180 
theta5 = (theta5_Pendent+theta5_0)*pi/180 
theta6 = (theta6_Pendent+theta6_0)*pi/180 
thetals = (thetals_Pendent+thetals_0)*pi/180 
thetabeam =(thetabeam_Pendent+thetabeam_0)*pi/180 
thetawp = (thetawp_0+thetawp_0)*pi/180 
       
% homogenous matrices of robot six joints represented by 
%P1-P6 
P1 = [cos(theta1), -cos(ALPHA_1)*sin(theta1), sin(ALPHA_1)*sin(theta1), a1*cos(theta1); 
sin(theta1), cos(ALPHA_1)*cos(theta1), -sin(ALPHA_1)*cos(theta1), a1*sin(theta1); 0, 
sin(ALPHA_1), cos(ALPHA_1), d1; 0, 0, 0, 1 ] 
P2 = [cos(theta2), -cos(ALPHA_2)*sin(theta2), sin(ALPHA_2)*sin(theta2), a2*cos(theta2); 
sin(theta2), cos(ALPHA_2)*cos(theta2), -sin(ALPHA_2)*cos(theta2), a2*sin(theta2); 0, 
sin(ALPHA_2), cos(ALPHA_2), d2; 0, 0, 0, 1 ]; 
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P3 = [cos(theta3), -cos(ALPHA_3)*sin(theta3), sin(ALPHA_3)*sin(theta3), a3*cos(theta3); 
sin(theta3), cos(ALPHA_3)*cos(theta3), -sin(ALPHA_3)*cos(theta3), a3*sin(theta3); 0, 
sin(ALPHA_3), cos(ALPHA_3), d3; 0, 0, 0, 1 ]; 
P4 = [cos(theta4), -cos(ALPHA_4)*sin(theta4), sin(ALPHA_4)*sin(theta4), a4*cos(theta4); 
sin(theta4), cos(ALPHA_4)*cos(theta4), -sin(ALPHA_4)*cos(theta4), a4*sin(theta4); 0, 
sin(ALPHA_4), cos(ALPHA_4), d4; 0, 0, 0, 1 ]; 
P5 = [cos(theta5), -cos(ALPHA_5)*sin(theta5), sin(ALPHA_5)*sin(theta5), a5*cos(theta5); 
sin(theta5), cos(ALPHA_5)*cos(theta5), -sin(ALPHA_5)*cos(theta5), a5*sin(theta5); 0, 
sin(ALPHA_5), cos(ALPHA_5), d5; 0, 0, 0, 1 ]; 
P6 = [cos(theta6), -cos(ALPHA_6)*sin(theta6), sin(ALPHA_6)*sin(theta6), a6*cos(theta6); 
sin(theta6), cos(ALPHA_6)*cos(theta6), -sin(ALPHA_6)*cos(theta6), a6*sin(theta6); 0, 
sin(ALPHA_6), cos(ALPHA_6), d6; 0, 0, 0, 1 ]; 
 %% Multiplication of six homogenous matrices  
  P1_6 = P1*P2*P3*P4*P5*P6 
  
  %%% Plot validated robot joints 1-6%%    
HOME = plot3(P1_6(1,4), P1_6(2,4), P1_6(3,4), 'r*'); 
   
%%% Laser scanner attached as tool or end effector 
Pls= [cos(thetals), -cos(ALPHA_ls)*sin(thetals), sin(ALPHA_ls)*sin(thetals), als*cos(thetals); 
sin(thetals), cos(ALPHA_ls)*cos(thetals), -sin(ALPHA_ls)*cos(thetals), als*sin(thetals); 0, 
sin(ALPHA_ls), cos(ALPHA_ls), dls; 0, 0, 0, 1 ]; 
Pscanner= P1_6 *Pls 
  
%% Plot laser scanner %% 
Xls=[a1-d4-d6 a1-d4-d6+dls] 
Zls=[d1+a2-a3 d1+a2-a3] 
Yls =[0 0] 
Scanner = plot3(Xls,Yls,Zls,'g','LineWidth',4) 
FIRST = plot3(Pscanner(1,4), Pscanner(2,4), Pscanner(3,4), 'g*') 
   
%%Laser beam%% 
Pbeam= [cos(thetabeam), -cos(ALPHA_beam)*sin(thetabeam), 
sin(ALPHA_beam)*sin(thetabeam), abeam*cos(thetabeam); sin(thetabeam), 
cos(ALPHA_beam)*cos(thetabeam), -sin(ALPHA_beam)*cos(thetabeam), 
abeam*sin(thetabeam); 0, sin(ALPHA_beam), cos(ALPHA_beam), dbeam; 0, 0, 0, 1 ]; 
Plaserb=Pscanner*Pbeam 
  
%% Plot Laser beam %% 
Xb=[a1-d4-d6+dls a1-d4-d6+dls+dbeam]; 
Zb=[d1+a2-a3 d1+a2-a3]; 
Yb =[0 0]; 
beam = plot3(Xb,Yb,Zb,'m','LineWidth',4) 
  
SECOND = plot3(Plaserb(1,4), Plaserb(2,4), Plaserb(3,4), 'm*') 
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APPENDIX B 

 

MATLAB PROGRAM FOR COMPONENT SURFACE 

%% Plotting of component surface  

  

r=635.8; 
Px= r*cos(ALPHA_wp)*sin(thetawp); 
Py= r*sin(ALPHA_wp)*sin(thetawp); 
Pz= r*cos(thetawp); 
X=[1 0 0 Px] 
Z=[0 0 1 Pz] 
Y=[0 1 0 Py] 
Tool1 = plot3(X+2000,Y, Z, 'r*') 
  
 for i= 0:180 
  d = i *pi/180 
    for ALPHA_w = 0:d:180; 
    for beta_w = 0:d:180; 
              
       Pw =[cos(ALPHA_w)*cos(beta_w), -sin(ALPHA_w), cos(ALPHA_w)*sin(beta_w), r* 
cos(ALPHA_w)* sin(beta_w); sin(ALPHA_w)*cos(beta_w), cos(ALPHA_w), 
sin(ALPHA_w)*sin(beta_w), r*sin(ALPHA_w)*sin(beta_w); -sin(beta_w), 0, 
cos(beta_w),r*cos(beta_w); 0,0,0,1]; 
Envelope_1 = plot(Pw(1,4)+2000,Pw(3,4), 'b.') 
refreshdata(Tool1,'caller') 
drawnow 
pause(.1) 
    end 
  end 
 end 
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APPENDIX C  

 

MATLAB PROGRAM FOR INVERSE KINEMATICS 

%%Inverse kinematics 
%% Using Samuel inverse kinematics for Fanuc family of robot for our FANUC S430 IW robot 
%% 
  
  
px6=P1_6(1,4) 
py6=P1_6(2,4) 
pz6=P1_6(3,4) 
  
ax= P1_6(1,3) 
ay=P1_6(2,3) 
az=P1_6(3,3) 
a=[ ax, ay, az] 
px =px6 -abs(d6)*a(1,1) 
py=py6-abs(d6)*a(1,2) 
pz=pz6-abs(d6)*a(1,3) 
  
%T4= P1*P2*P3*P4 
%Px=T4(1,4) 
%Py=T4(2, 4) 
%Pz=T4(3,4) 
z0=[1 0 0] 
ARM=sign(dot(a,z0)) 
THETA1 = (atan2( Py,(ARM*Px)))*180/pi 
THETA1= THETA1+180 
  
% Joint solution 2 
r= sqrt(PX^2+py^2)-(a1*ARM) 
R = sqrt(r^2+(pz- abs(d1))^2) 
cos_betha=((a2)^2+R^2-(a3)^2-(d4)^2)/(2*R*(a2)) 
sin_betha=sqrt(1-(cos_betha)^2)  
sin_fi=-pz-abs(d1)/R   
cos_fi=-(r/R)*ARM    
ELBOW = ARM*sign(-d4*cos(theta3_Pendent)+a3*sin(theta3_Pendent)) 
sin_THETA2 = (sin_fi*cos_betha+ARM*ELBOW*cos_fi*sin_betha) 
cos_THETA2 = (cos_fi*cos_betha-ARM*ELBOW*sin_fi*sin_betha) 
THETA2 =((atan2(sin_THETA2,cos_THETA2)*180)/pi) 
THETA2 = theta2_0 - (atan2(sin_THETA2,cos_THETA2)*180/pi) 
THETA2 = theta2_0 + (atan2(sin_THETA2,cos_THETA2)*180/pi) 
  
A4=P3*P4 
E= A4(2,4) 
ELBOW=ARM*sign (A4(2,4)) 
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% joint 3 
cos_fi=((a2)^2+(a3)^2+(d4)^2-(R)^2)/(2*(a2)*sqrt((a3)^2+(d4)^2)) 
sin_fi=ARM*ELBOW*sqrt(1-(cos_fi)^2) 
sin_betha=abs(d4)/sqrt((a3)^2+(d4)^2) 
cos_betha=abs(a3)/sqrt((a3)^2+(d4)^2) 
sin_THETA3= cos_fi*sin_betha-sin_fi*cos_betha 
cos_THETA3= cos_fi*cos_betha+sin_fi*sin_betha 
THETA3=((atan2(sin_THETA3,cos_THETA3)*180)/pi) 
THETA3_deg=THETA3-theta3_0  
THETA3_deg=THETA3+theta3_0 
  
% joint 4 solution 
H=P1*P2*P3 
X3=H(1:3,1) 
y3=H(1:3,2) 
Z3=H(1:3,3) 
F3=H(1:3,4) 
a=transpose(a) 
Z4=(cross(Z3,a)) 
sin_THETA4=-(dot(Z4,X3)) 
cos_THETA4=(dot(Z4,y3)) 
THETA4= ((atan2(sin_THETA4,cos_THETA4)*180)/pi) 
THETA4= THETA4+180 
THETA4= THETA4-90 
THETA4= 90-((atan2(sin_THETA4,cos_THETA4)*180)/pi) 
THETA4= THETA4-180 
% Derivation of Wrist configuration 
Z5=-a 
y5=Z4 
S=-y5 
WRIST= sign(dot(S,Z4)) 
  
 %% joint 5 solution 
q1= P1*P2*P3*P4 
nx=q1(1,1)   
ny=q1(2,1) 
nz=q1(3,1) 
n=[nx ny nz]  % vector representing in x4 direction 
X4=transpose(n) 
  
sx=q1(1,2) 
sy=q1(2,2) 
sz=q1(3,2) 
s=[sx sy sz]  % vector representing in y4 direction 
Y4= transpose(s) 
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ax=q1(1,3) 
ay=q1(2,3) 
az=q1(3,3) 
a=[ax,ay,az]  % vector representing in z4 direction 
a=transpose(a) 
  
sin_THETA5= dot(-a, X4) 
cos_THETA5= dot(-a,Y4) 
THETA5=((atan2(sin_THETA5,cos_THETA5)*180)/pi) 
THETA5=180- ((atan2(sin_THETA5,cos_THETA5)*180)/pi) % joint 5 solution 
THETA5=-THETA5 
THETA5=THETA5+270 
THETA5=THETA5-270 
  
 % Joint 6 solution  
q2= P1*P2*P3*P4*P5 
nx=q2(1,1)   
ny=q2(2,1) 
nz=q2(3,1) 
n=[nx ny nz]  % vector representing in x4 direction 
X5=transpose(n) 
  
sx=q2(1,2) 
sy=q2(2,2) 
sz=q2(3,2) 
s=[sx sy sz]  % vector representing in y4 direction 
Y5= transpose(s) 
  
sin_THETA6= dot(n,Y5) 
cos_THETA6= dot(s,-Y5) 
THETA6= ((atan2(sin_THETA6,cos_THETA6)*180)/pi)  % Joint 6 solution 
THETA6= THETA6 + pi   % when flip toggle is 1 or on  
% plotting of robot, scanner and beam again after calculating joint angles 
X=[0 0 a1    a1   a1-d4  a1-d4-d6b] 
Z=[0 d1 d1 d1+a2 d1+a2-a3 d1+a2-a3 d1+a2-a3] 
Y=[0 0 0 0 0 0 0] 
Tool = plot3(X,Y,Z,'b','LineWidth',4) 
  
axis([-1.5*(a1+a2) 2.25*(a1+a2) -3000 3000 -200 3*(a1+a2)]) 
grid on 
hold('all') 
  
P1 = [cos(THETA1), -cos(ALPHA_1)*sin(THETA1), sin(ALPHA_1)*sin(THETA1), 
a1*cos(THETA1); sin(THETA1), cos(ALPHA_1)*cos(THETA1), -
sin(ALPHA_1)*cos(THETA1), a1*sin(THETA1); 0, sin(ALPHA_1), cos(ALPHA_1), d1; 0, 0, 
0, 1 ] 
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P2 = [cos(THETA2), -cos(ALPHA_2)*sin(THETA2), sin(ALPHA_2)*sin(THETA2), 
a2*cos(THETA2); sin(THETA2), cos(ALPHA_2)*cos(THETA2), -
sin(ALPHA_2)*cos(THETA2), a2*sin(THETA2); 0, sin(ALPHA_2), cos(ALPHA_2), d2; 0, 0, 
0, 1 ] 
P3 = [cos(THETA3), -cos(ALPHA_3)*sin(THETA3), sin(ALPHA_3)*sin(THETA3), 
a3*cos(THETA3); sin(THETA3), cos(ALPHA_3)*cos(THETA3), -
sin(ALPHA_3)*cos(THETA3), a3*sin(THETA3); 0, sin(ALPHA_3), cos(ALPHA_3), d3; 0, 0, 
0, 1 ] 
P4 = [cos(THETA4), -cos(ALPHA_4)*sin(THETA4), sin(ALPHA_4)*sin(THETA4), 
a4*cos(THETA4); sin(THETA4), cos(ALPHA_4)*cos(THETA4), -
sin(ALPHA_4)*cos(THETA4), a4*sin(THETA4); 0, sin(ALPHA_4), cos(ALPHA_4), d4; 0, 0, 
0, 1 ] 
P5 = [cos(THETA5), -cos(ALPHA_5)*sin(THETA5), sin(ALPHA_5)*sin(THETA5), 
a5*cos(THETA5); sin(THETA5), cos(ALPHA_5)*cos(THETA5), -
sin(ALPHA_5)*cos(THETA5), a5*sin(THETA5); 0, sin(ALPHA_5), cos(ALPHA_5), d5; 0, 0, 
0, 1 ] 
P6 = [cos(THETA6), -cos(ALPHA_6)*sin(THETA6), sin(ALPHA_6)*sin(THETA6), 
a6*cos(THETA6); sin(THETA6), cos(ALPHA_6)*cos(THETA6), -
sin(ALPHA_6)*cos(THETA6), a6*sin(THETA6); 0, sin(ALPHA_6), cos(ALPHA_6), d6; 0, 0, 
0, 1 ] 
 %% Multiplication of six homogenous matrices  
  P1_6 = P1*P2*P3*P4*P5*P6 
  
  %%% Plot validated robot joints 1-6%%    
HOME = plot3(P1_6(1,4), P1_6(2,4), P1_6(3,4), 'r'); 
   
%%% Laser scanner attached as tool or end effector 
Pls= [cos(thetals), -cos(ALPHA_ls)*sin(thetals), sin(ALPHA_ls)*sin(thetals), als*cos(thetals); 
sin(thetals), cos(ALPHA_ls)*cos(thetals), -sin(ALPHA_ls)*cos(thetals), als*sin(thetals); 0, 
sin(ALPHA_ls), cos(ALPHA_ls), dls; 0, 0, 0, 1 ]; 
Pscanner= P1_6 *Pls 
  
%% Plot laser scanner %% 
Xls=[a1-d4-d6 a1-d4-d6+dls] 
Zls=[d1+a2-a3 d1+a2-a3] 
Yls =[0 0] 
Scanner = plot3(Xls,Yls,Zls,'g','LineWidth',4) 
FIRST = plot3(Pscanner(1,4), Pscanner(2,4), Pscanner(3,4), 'r') 
   
%%Laser beam%% 
Pbeam= [cos(thetabeam), -cos(ALPHA_beam)*sin(thetabeam), 
sin(ALPHA_beam)*sin(thetabeam), abeam*cos(thetabeam); sin(thetabeam), 
cos(ALPHA_beam)*cos(thetabeam), -sin(ALPHA_beam)*cos(thetabeam), 
abeam*sin(thetabeam); 0, sin(ALPHA_beam), cos(ALPHA_beam), dbeam; 0, 0, 0, 1 ]; 
Plaserb=Pscanner*Pbeam 
  



59 

 

%% Plot Laser beam %% 
Xb=[a1-d4-d6+dls a1-d4-d6+dls+dbeam]; 
Zb=[d1+a2-a3 d1+a2-a3]; 
Yb =[0 0]; 
beam = plot3(Xb,Yb,Zb,'m','LineWidth', 4) 
  
SECOND = plot3(Plaserb(1,4), Plaserb(2,4), Plaserb(3,4), 'm*') 
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APPENDIX D 

 

TEACH PENDENT PROGRAM TO SCAN A TRAJECTORY POINTS ON SPHERICAL 

SURFACE 
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This research work describes the geometric coordinate transformation in an automated 

laser line scanning system caused by movements required for scanning a component surface. The 

elements of an automated laser scanning system (robot, laser line scanner, and the component 

coordinate system) function as a mechanical linkage to obtain a trajectory on a component surface. 

This methodology solves the forward kinematics, derives the component surface, and uses inverse 

kinematic equations to characterize the movement of the entire automated scanning system on 

point trajectory. To reach a point on the component, joint angles of robot have been calculated. As 

a result, trajectory path is obtained. This obtained robot poses on point trajectory of the component 

surface can be used as an input for future work that aims to develop optimal scan paths to collect 

“best” point cloud datasets. This work contributes in laser scanning inspection of component 

surfaces in manufacturing, remanufacturing, and reverse engineering applications.  
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