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CHAPTER 1 – INTRODUCTION 

1.1 Statement of the Problem 
 

Biomaterials research has identified the importance of materials that mimic the composition and 

morphology of the tissue that they are to replace.  In particular, a biomimetic approach to bone tissue 

surrogates for fracture fixation and defect repair may overcome issues related to conventional 

biomaterials, such as stress shielding, cytotoxicity and immune response, as well as bioactivity defined as 

resorption and osteoinductivity.  Hydroxyapatite (HAp), a calcium phosphate apatite, has a similar 

chemical composition as bone and positive biocompatibility.  More closely mimicking bone tissue 

morphology is a hydroxyapatite and collagen (HAp/C) composite having both the inorganic mineral and 

organic biopolymer phases.  HAp/C composites have shown promise as a surrogate bone biomaterial.  

Previous HAp/C composites exhibit morphological similarities to that of bone with the exception of 

collagen fiber alignment.  Investigators have shown that longitudinal alignment of collagen fibers is 

preferential to tensile stress in vivo.  The mechanical strength of current HAp/C composites with random 

collagen fiber alignment is at or below the strength of cortical bone, precluding the HAp/C composites 

from load bearing applications in orthopaedics.  Load bearing application of HAp/C composites will 

require increased mechanical strength similar to that of cortical bone.  Our hypothesis is that the 

mechanical strength of the HAp/C composite is dependent on the preferential alignment of bulk collagen 

fibers and not of the mineral phase.  Therefore, there is a need to characterize the morphology of a HAp/C 

composite with preferential collagen alignment and correlate to the quantified mechanical and structural 

properties. 

1.2 Background and significance 
 

Bone tissue has a complex structural hierarchy of organic and inorganic phases.  Bone consists of a 

nanocrystalline plate-like HAp deposited within the collagen fiber matrix and in alignment with the axis 

of the collagen fibrils [1-5].  Microscopically, mature bone is organized in concentric lamellae called 

osteons.  These osteons, in turn, have an ordered arrangement of collagen fibers that are preferentially 

aligned to the stresses applied to the bone [6].  From a biomimetic point of view, a bone surrogate 
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material should possess comparable mineral chemical composition, fibrillar morphology, and mechanical 

properties equivalent to those of bone tissue. 

Current research shows that HAp materials are the most promising for a bone surrogate material.  

Chemically, the composition of HAp is similar to the mineral phase of bone.  Bone mineralization is a 

complex process coordinated between the fibrillogenesis of collagen molecules and calcium phosphate 

apatitic crystals, the constituent building blocks of bone.  However, much of the knowledge has been 

elucidated from work on isolated solutions modeling simplified environments of specific mineralization 

conditions.  Particularly, the solution environment has a significant effect on the mineralization outcome 

when calcium phosphate is precipitated in the absence or presence of collagen. 

  It is well known that calcium phosphate precipitation, absent collagen, undergoes phase transitions 

during mineralization, which may involve an amorphous calcium phosphate (ACP) or octacalcium 

phosphate (OCP) phase [7-23].  Both of which are dependent on thermodynamic and kinetic factors.  The 

mineralization pH level has a significant effect on thermodynamic factors affecting the initiating 

precursor phases, temporal phase transitions, surface-solution interactions due to the Debye length at the 

mineralization front, and crystal growth accelerants [8, 11, 24-26].  The effect collagen has on 

mineralization is controversial.  Some studies suggest it promotes HAp [27] or ACP [13] nucleation, 

others suggest that it inhibits HAp nucleation [28], while still others claim it has no effect on HAp 

nucleation [29-32].  The neutral influence of collagen may correctly characterize its affect since 

environmental and temporal factors (pH, ion concentration, and duration) more specifically affect calcium 

phosphate mineralization in the presence of collagen [9-11, 28, 33-35].  Ion concentration (speciation), 

pH, and reaction duration may all affect the resultant calcium phosphate phase [9, 10, 34-37].  The latter 

two may also affect the mineral content and mineral crystallinity, respectively.   

HAp biomaterials may be produced by one of several techniques where the synthesis process can 

modify the composition, morphology, and material properties.  In-vivo and in-vitro studies show that the 

synthesized HAp ceramic or composite is biocompatible with the host bone tissue, but resorption and 

bone ingrowth may be hindered by the solubility of the surrogate HAp biomaterial [38].  Solubility is 
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retarded in HAp ceramics with high crystallinity and large grain boundaries.  A nanocrystalline HAp 

structure may be achieved by continuous precipitation followed by low temperature cold isostatic 

compression of the HAp powder or coprecipitation in a collagen matrix [2-5, 38].  These processes form 

uniform HAp crystals about 20-50 nm in size.  While in-vitro and in-vivo evaluation shows that low 

crystallinity nano-HAp ceramics and nano-HAp/collagen (HAp/C) composites are more soluble in the 

acidic osteoclastic environment during bone resorption and are actively resorbed with ingrowth of new 

bony tissue when implanted [2, 38], X-ray diffraction (XRD) analysis shows that the latter crystalline 

HAp structure is comparable to that of bone [2, 3, 38]. 

Often, the relevance of synthetic composites to bone is typically characterized with a visual 

comparison of peak intensity and breadth to an arbitrary bone x-ray diffraction pattern or with a side-by-

side list of peak locations and known calcium phosphate peaks from powder diffraction files (PDF).  A 

physicochemical comparison of the thermodynamic and kinetic factors affecting calcium phosphate 

mineralization with bone is needed to illustrate the optimization pathways for a synthetic HAp/C 

composite.    

Bone fibrillar morphology observes a preferred alignment which makes bone inherently anisotropic.  

The transverse elastic modulus (6-13 GPa) of bone is less than the longitudinal elastic modulus (16-23 

GPa) [1].  A number of theories exist for collagen alignment.  One theory supports the finding that 

collagen aligns in response to stress applied to the bone [6].  While bones experience complex combined 

loading under physiological conditions, their natural occurring curvature predisposes them to undergo 

eccentric bending even under simple compression.  Thus, a bone can simultaneously experience tensile 

and compressive stresses in certain areas.  Martin et al. (1996) [39] showed that the equine third 

metacarpus exhibited preferential collagen orientation that varies throughout the cross section.  Using 

polarized light microscopy, which suggests collagen alignment parallel to the cross section of the osteon 

would appear bright and collagen aligned perpendicular to the cross section would appear dark, they 

showed collagen fibers aligned with the longitudinal axis of the bone in areas exposed to tension and 
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perpendicular to this axis in areas of compression.  In effect, the longitudinal orientation of collagen is 

suspected to act as a tensile reinforcement allowing the bone to withstand physiologic bending loads. 

The current state of HAp/C composite synthesis suggests that while the bioactivity of the composite 

is ideal for bone graft implantation, the mechanical properties are not sufficient to sustain long-term load 

bearing applications.  The mechanical response to collagen fiber alignment in HAp/C composites is not 

fully understood.  Despite the evidence supporting the influence of collagen fiber alignment on the tensile 

and flexural strength of bone, research to date has not addressed the influence of fiber alignment in 

coprecipitated HAp/C composite scaffolds.  In order to study the influence of collagen alignment on the 

strength of a HAp/C composite, a method to achieve the preferential alignment must be developed.  

1.3 Specific Aims 
 

A promising extrusion method has been developed by this lab and the resulting Hap/C composite has 

shown improvement in flexural strength [40]. Our research plan is to quantify the mechanical 

improvements and relate to the fiber alignment.  First, a physicochemical characterization of the material 

needs to be investigated to determine synthesis parameters to produce a HAp/C composite with bone-like 

composition, apatitic mineral crystal phase, and crystallinity.  Next, synthesis of a composite with 

preferred collagen alignment must be fabricated and confirmed.  Lastly, correlate the fiber alignment 

morphology contributions to the improvements in mechanical properties.  The Specific Aims for this 

project are to: 

1) Characterize the physicochemical properties of a synthetic HAp/C composite with bone-like 

composition, apatitic mineral crystal phase, and crystallinity. 

Hypothesis 1A: The composition of the mineral and organic constituents is sensitive to the pH level 

of the reaction environment, with an inverse relationship between pH level and 

mineral content.  Mineral content will decrease as the pH increases.  

Hypothesis 1B: HAp mineralization is characterized by a precursor crystalline phase, which is 

transient and dependent on the reaction (aging) duration.  Durations beyond 8 hours 

will yield a HAp calcium phosphate mineral phase.  
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Hypothesis 1C: The degree of mineral crystallinity will increase with increased aging. 

2) Quantify the collagen alignment morphology in a HAp/C composite induced by a novel extrusion 

process.   

Hypothesis 2A: Increased hydrodynamic shear flow will increase the orientation of collagen fibers. 

Hypothesis 2B: Collagen fiber orientation will be aligned in the direction of the extrudate flow.  

3) Determine the extent to which collagen alignment increases the material properties of a HAp/C 

composite.   

Hypothesis 3A: Preferential orientation of collagen fibers in the HAp/C composite will be associated 

with increased tensile material properties. 
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CHAPTER 2 – STRUCTURE AND MORPHOLOGY OF BONE 
 
2.1 Structure of the Long Bones 
 

Bone has a hierarchical structure which affects the mechanical function at each level dependent on the 

length scale.  Understanding the structural relationship between the components within and interactions 

between levels is essential to the mechanical properties observed at the gross level.  The hierarchical 

levels of bone, from largest to smallest length scale are (Figure 1): 

“Level 1: Macrostructure: Whole bone, cancellous and cortical bone 

Level 2: Microstructure (from 10 to 500 µm): Haversian systems, osteons, single 

trabeculae 

Level 3: Sub-microstructure (1–10 µm): lamellae 

Level 4: Nanostructure (from a few hundred nanometers to 1 µm): Fibrillar 

collagen and embedded mineral 

Level 5: Sub-nanostructure (below a few hundred nanometers): Molecular 

structure of constituent elements, such as mineral, collagen, and non-

collagenous organic proteins.” [41] 

For ease of discussion, we will start with the sub-nanostructural level because the 

nomenclature presented will be discussed throughout the other structural levels and will give us a 

point of reference for how the constituents at this level serve as the building blocks for the next 

higher structural level. 

2.1.1 Sub-nanostructure 

The main constituents of bone are mineral, collagen (type-1 collagen), and non-collagenous 

organic proteins.  The mineral phase is a biological apatite crystal that is plate-shaped with 

dimensions on the order of 45-50 nm long, 20-25 nm wide, and 2-3 nm thick [41, 42].  Collagen 

molecules, with a high percentage of glycine and significant amounts of proline and 

hydroxyproline, form the triple helix structure of tropocollagen filaments.  These units are 280 
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nm in length and 1.5 nm in diameter.  The tropocollagen filaments are arranged in a revised 

quarter-stagger array forming collagen fibrils tens of nanometers in diameter. Non-collagenous 

organic proteins, including phosphoproteins, such as osteopontin, sialoprotein, osteonectin, and 

osteocalcin, may function to regulate the size, orientation, and spatial location of the HAp mineral 

deposits. 

 
 

Figure 1:  Hierarchical structure of bone.  Reprinted from Medical Engineering & Physics, 20, Rho, J-Y., Kuhn-Spearing, L., 
Zioupos, P. “Mechanical Properties and the Hierarchical Structure of Bone”, 92–102.  Copyright (1998), with permission from 
Elsevier. 
 
2.1.2 Nanostructure 

Collagen fibers are the most prominent structures at this scale.  Formed by progressive self-

organization of the collagen fibrils, diameters are from hundreds of nanometers to micrometers. 

2.1.3. Sub-microstructure 

Bone lamellae form the concentric rings of osteons and are 3–7 mm thick.  The generally accepted 

lamellar structure of the osteon is a parallel arrangement of the collagen fibers within a lamella and with a 

change in the orientation of fibers between one lamella to the next.  Osteonal lamellae encompass a 

central canal. 



8 

 

2.1.4 Microstructure 

The concentric arrangement of mineralized collagen fiber lamellae around a central canal form 

osteons or Haversian system.  The osteon looks like a cylinder about 200–250 mm in diameter running 

roughly parallel [43] to the long axis of the bone.  Between concentric lamellae are mineralized zones 

called cement lines.  While current consensus suggests the absence of collagen in osteonal cement lines, 

the extent of cement line mineralization and the nature of the ground substance within the cement line are 

unclear [44].  Analytical techniques show that cement lines contain significantly less calcium and 

phosphorus, but significantly more sulfur, than surrounding bone matrix.  Additionally, the Ca/P ratio of 

cement lines was significantly greater than that of lamellar bone, suggesting that the mineral in cement 

lines may not be in the form of mature HAp. 

2.1.5 Macrostructure 

The gross macrostructure of mature long bones is composed of three sections and two types of bone 

(Figure 2).  The sections of the long bones are the epiphysis, metaphysis, and diaphysis.  The epiphysis is 

located at the ends of the long bones between the articular cartilage surfaces and the metaphysis.  This 

section is comprised of cancellous (or trabecular) bone and is encased by a thin layer of cortical (or 

compact) bone.  The metaphysis is the transition region between the epiphysis and diaphysis where the 

cortical bone thins relative to the diaphysis.   The diaphysis is the shaft of the long bone, between the 

metaphyses, and is comprised of thick cortical bone surrounding the medullary canal (or marrow cavity). 

Differentiation between cortical and cancellous bone is visually evident.  Cortical bone is denser than 

the cancellous bone residing in the ends of the long bones.  Cancellous bone exhibits a complex network 

of lattice-like trabeculae (Figure 3a).  The trabecular structure allows greater load deflection than the 

compact structure of cortical bone, which also provides localized energy absorption at the ends of the 

long bones during dynamic loading.  While the strength of cortical bone is derived from its compact 

structure, cancellous bone strength is imparted by the alignment of the trabecular network along lines of 

internal stress (Figure 3b). 
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Figure 2:  Gross features of the long bones displaying types of bone (cortical and cancellous) and regions. 
 

 
    A     B 

Figure 3:  Cancellous bone structure showing network of trabeculae.   Trabeculae in the femoral head and neck (A), and 
schematic of trabeculae alignment along lines of principal stress (B).  
 
2.2 Collagen Morphology 
 
2.2.1 Collagen Structure and Theories of Orientation  
 

Collagen fiber morphology spans several length scales down to the polypeptide chains making up the 

triple helix tropocollagen filaments.  Three left handed helical polypeptide collagen molecules (2 α-1 

chains and 1 α-2 chain) wrap around each other producing a triple helix tropocollagen filament (Figure 
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4).  Tropocollagen filaments readily form fibrous crystals in aqueous salt solutions and self-organize into 

collagen fibrils in the extracellular environment.  Type-I collagen fibrils consist of a repetitive 

tropocollagen structure known as the “revised quarter stagger” model, whereby the filaments are lined 

head to tail in rows that are offset by 64 nm from the adjacent filament. The staggered substructure of the 

collagen fibrils has regularly spaced gaps within the array (Figure 5).  This arrangement also allows for 

cross-linking between the carboxyl terminus of one filament to the amino terminus of the adjacent 

filament (segments 1 and 5, respectively, in Figure 5).  Taken together with the other interfilament 

hydroxypyridinium bridging cross-links, a stable crystal lattice is the result [42].   The gaps, or hole 

zones, serve as nucleation sites for the apatite crystals.  The hole zones are approximately 40 nm in length 

and 5 nm wide limiting the growth of the crystals to their observed dimensions. 

 

 
Figure 4:  Schematic representation of the triple helix tropocollagen molecule.  A) Three left-handed polypeptide chains, B) the 
assembled right-handed triple helix, and C) end view showing internal packing of glycine (G) residues. Reprinted from Oxford 
University Press, Mann, S. “Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry”, R.G. Compton, 
S.G. Davies, J. Evans (eds.).  Copyright (2001), with permission from Oxford University Press, New York. 
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Figure 5:  Revised quarter-stagger model of collagen fibrils.  Reprinted from Oxford University Press, Mann, S. 
“Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry”, R.G. Compton, S.G. Davies, J. Evans (eds.).  
Copyright (2001), with permission from Oxford University Press, New York. 
 
2.2.1.1 Parallel Collagen Fiber Orientation 

The parallel collagen fiber orientation theory is an early theory that gained acceptance to describe 

osteonal collagen orientation.  This theory is based largely on the work of Ascenzi and Bonucci (1964, 

1967, 1968, 1972) [45-48].  Collagen is theorized to have a predominantly parallel arrangement within the 

same lamellae with a preferred alignment within the lamellae.  The collagen fibers may change up to 90º 

between adjacent lamellae.  The result is the definition of three types of osteons, which contain different 

lamellar sub-structures [6].  The orientation types are: type-T (transverse), type-A (alternating), and type-

L (longitudinal) (Figure 6). Type-T osteons contain lamellae with fibers that are aligned parallel to the 

transverse plane of the osteon cross-section.  While parallel to the transverse plane, these fibers further 

align in the circumferential direction within each lamella.  Type-A osteons contain an alternating fiber 

alignment between lamellae producing transverse and longitudinal direction and causing the light and 

dark birefringent pattern.  Lastly, type-L osteons contain collagen fibers which align parallel to the osteon 

axis.  The fibers in these osteons are extinct in polarized light and the osteon appears dark.   
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Figure 6: Schematic drawings of collagen fiber orientation patterns within lamellae of the osteon and accompanying polarized 
light micrograph, A) type-T collagen fiber orientation; B) type-A collagen fiber orientation; and C) type-L collagen fiber 
orientation.  Reprinted from Anatomical Record, 161 (3), Ascenzi, A. and Bonucci, E.  “The Compressive Properties of Single 
Osteons”, 377-391.  Copyright (1968), with permission from John Wiley and Sons [47]. 

2.2.1.2 Twisted and Orthogonal Plywood Model of Collagen Fiber Orientation 

Giraud-Guille (1988) [49] described the lamellar collagen fiber alignment as a twisted or orthogonal 

plywood model.  The twisted plywood model suggested that parallel collagen fibers would rotate by a 

constant angle between lamellar planes, similar to a helical structure (Figure 7).  Similarly, the orthogonal 

plywood model consists of collagen fibers which are parallel in a given plane, but unlike the twisted 

Figure 7: Twisted plywood model of collagen fiber orientation patterns within lamellae of the osteon.  Springer and Calcified 
Tissue International, 42 (3), 1988, 174, “Twisted Plywood Architecture of Collagen Fibrils in Human Compact Bone Osteons”, 
Giraud-Guille, MM. Figure 9, copyright 1988 Springer-Verlag New York Inc; with kind permission from Springer Science and 
Business Media. 

A B C 
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plywood model the fibers do not rotate by a continuous angle between lamellae.  In this model, the fibers 

align such that they are out of phase by 90º with each other.  The orthogonal plywood model is a close 

approximation of the type-L and type-T osteons from the parallel collagen orientation model while the 

twisted plywood model explains the type-A osteons. 

2.2.1.3 Random Orientation Packing Density of Collagen Fibers 

The previous models define the collagen alignment assuming parallel fibers.  However, Marotti and 

Muglia (1988) [50] suggested that collagen fibers were not parallel to each other, but rather were 

randomly aligned.  Their model proposed alternating densely and loosely packed lamella (Figure 8).  The 

alternating extinct and bright lamellae observed in polarized light microscopy were postulated to be due 

to the different collagen fiber densities and not the result of changes in fiber orientation.  The bright 

osteonal rings were attributed to the loose packed lamellae while the extinct rings were attributed to the 

dense packed lamellae.  At the time, the packing density lamellar model was thought to correspond better 

with how bone was formed.  It was assumed that the alternating collagen alignment would require that the 

osteoblasts in order to produce the rotated collagen alignments.  This model then suggests that the 

osteoblasts lay down a random matrix of collagen fibers, where the collagen fiber density would change. 

 

 
Figure 8: Random orientation packing density model of interlamellar collagen.   
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2.2.2 Quantification of Collagen Fiber Alignment 

Collagen is a birefringent material that exhibits an optical order when examined with polarized light.  

Images acquired via polarized light microscopy (PLM) can then be analyzed to obtain both qualitative 

[50-53] and quantitative [39, 54-57] measures of the fiber orientation within a collagenous material.  To 

understand the technique of quantifying collagen orientation, the concept of birefringence must be 

presented, followed by discussion of techniques used to quantifying fiber orientations. 

A birefringent crystal has an optical axis that coincides with the axis of symmetry, parallel to the c-

axis, and is considered to be an anisotropic crystal.   Birefringence can be conceptualized by considering 

that a light ray entering an optically anisotropic (or birefringent) crystal is doubly refracted into two 

orthogonal linear rays, an ordinary (o) and extraordinary (e) ray, where each ray has a separate index of 

refraction and the ordinary ray vibrates perpendicular to the optical axis while the extraordinary ray 

vibrates parallel to the optical axis.  When the light emerges in this case, one of the rays is retarded with 

respect to the other by an amount equivalent to the difference between the two indices of refraction 

multiplied by the thickness of the material.  This retardation of the light is the magnitude of birefringence 

(or path difference) and causes the two rays to be out of phase when they recombine upon exiting the 

crystal.  If the light entering the birefringent crystal is polarized (vibrating in a single plane) by a 

polarizing filter (polarizer), the out of phase ordinary and extraordinary rays will recombine having a 

vibration angle between 0º and 90º from that of the polarized light entering the crystal.  This concept is 

illustrated in Figure 9.  In cases where the ordinary and extraordinary rays are out of phase by an integer 

multiple (n, where n = 1, 2, 3 …) of the wavelength (λ), the resultant light emerging will be parallel to the 

polarizing direction (Figure 9A).  If the rays are out of phase by an odd multiple of n/2λ (where n = 1, 3, 5 

...), then the resultant light emerging will be perpendicular to the polarizing direction (Figure 9B).  Lastly, 

in cases other than the preceding two, the resultant light emerging will be at an angle other than 0º and 90º 

from the polarizing direction (Figure 9C). 
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Figure 9: Birefringent double refraction in crystals: three cases of ordinary and extraordinary ray path differences and the 
resultant light ray recombination (o = ordinary ray; e = extraordinary ray).  Black arrows show the vibration direction of the 
recombined resultant light ray.   

 
Further, if a second polarizing filter (analyzer) oriented 90º to the first is placed after the light emerges 

from the crystal, then only components of the recombined light ray parallel to this filter will pass through 

the analyzer.  In the first case (Figure 9A); the emerging light ray will be extinct because it is 

perpendicular to the analyzer.  In the second case (Figure 9B); all of the emerging light ray will pass 

through the analyzer because it is parallel.  In the last case (Figure 9C), only the component of the 

emerging light ray parallel to the analyzer will pass through. 

Birefringent double refraction will only occur when the light entering the crystal does not propagate 

parallel to optical axis.  Polarized light entering a crystal and propagating in the direction of the c-axis 

will not be doubly refracted and will only have an ordinary ray vibrating in the direction of the polarized 

light.  When viewed with crossed polars (polarizer and analyzer 90º to each other) this crystal will appear 

extinct even when rotated through 360º in the plane of the polarizer and analyzer (Figure 10A).   A crystal 

with a component of its optical axis perpendicular to the propagating light will doubly refract the light 

into an ordinary ray perpendicular to the optical axis and an extraordinary ray parallel to the optical axis.  

When viewed with crossed polars this crystal will appear extinct when the optical axis is orientated 

parallel to the polarizing direction of either the polarizer or analyzer (Figure 10B).  The same crystal will 

become brighter when rotated in the plane of the polarizing direction of the polarizer and analyzer, 
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reaching a maximum brightness at angles of 45º, 135º, 225º, and 315º to the direction of the polarizer 

(Figure 10C). 

 
Figure 10: Effects of optical axis orientation when viewed under crossed polars.  Optical axis orientation perpendicular to the 
plane of the crossed polars causes extinction (A).  Optical axis orientation parallel to the plane of the crossed polars and parallel 
to the vibration direction of either the polarizer or analyzer causes extinction (B).  Optical axis orientation parallel to the plane of 
the crossed polars and rotated an angle from the vibration direction of polarizer causes increasing light intensity.  A maximum 
intensity occurs at angles of 45º, 135º, 225º, and 315º to the vibration direction of the polarizer (C).  (o = ordinary ray; e = 
extraordinary ray). 
 

These concepts hold for collagen molecules, which have been considered a crystal [42] or liquid 

crystal [50, 51].  PLM has been employed as a technique to quantify the orientation of collagen [39, 54, 

56, 57].   Collagen fibrils oriented perpendicular to the polarizing plane (microscope stage) are extinct 

while those parallel to the plane may be extinct or bright [39, 46, 50, 53, 54, 57].  Collagen fibrils parallel 

to the vibration direction of the polarizer or analyzer will be extinct and those at an angle to either will 

have varying degrees of intensity.  This has been a limitation of using linearly polarized light when 

quantifying transverse sections of osteonal collagen.  Circularly polarized light has been employed to 

reduce this in plane extinction artifact of linearly polarized light [39, 53, 56, 57].  Alternatively, 

microdisection and confocal microscopy techniques have allowed the unrolling of osteon lamellae for 

greater dimensionality in the measurement of collagen orientation [53, 58, 59].  However, these 

measurements still provide an indirect measurement of the collagen orientation. 

Mathematical quantification of collagen fibers may be obtained using stereological image processing 

techniques such as mean intercept length (MIL) [60, 61], line fraction deviation (LFD) [62], and discrete 

Fourier transform (DFT) [63-66].  MIL and LFD have been frequently used in the stereological study of 
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trabecular bone [67-70].  Sander and Barocas (2008) [71], compared the MIL, LFD, and DFT techniques 

on simulated fiber orientations.  Of the three stereological techniques, they concluded that the DFT 

method was the most accurate at predicting the principle direction of fiber orientation and the anisotropy 

or degree of alignment.  They also showed that the DFT method successfully quantified collagen 

orientation directly from grayscale SEM images of collagen fibrils, whereas the MIL and LFD techniques 

typically conducted on binary images.  While MIL and LFD could both be thresholded or formulated to 

handle grayscale images, this would introduce significant error, sacrifice accuracy, and increase 

computation time.   

Briefly, the DFT technique performs a Fourier transform on the grayscale pixel intensities of an 

image and produces a centered power spectrum image [72].  There is a radial alignment of the spectral 

intensities in the power spectrum image, whose angular orientation correlates to the oriented objects in the 

original image.  In this manner, grayscale images of collagen fibers can be mathematically quantified [63-

66, 71].   

In this study, the DFT technique will be applied to PLM images to quantify collagen orientation.  

This is a new application of the DFT technique and will provide a direct measure of collagen orientation 

in PLM images as compared to previous PLM quantification methods.  This technique is being employed 

because it was expected that the collagen fibers of the synthetic HAp/C composites produced in this study 

would be more porous than in cortical bone and would not possess the morphological features of osteons 

as observed in PLM studies of cortical bone.  Therefore, it was necessary to utilize a direct quantification 

method with greater sensitivity than previous PLM methods.  

2.3 Mineral Morphology  
 
2.3.1 Composition and Orientation 
 

The mineral apatite in bone is a carbonated phosphate apatite resembling HAp.  While the chemical 

composition resembles that of HAp (Ca10(PO4)6(OH)2), the hydroxyl group may be absent along with 

inclusions of small but significant amounts of impurities such as HPO4, Na, Mg, citrate, CO3, K, [73].  

Consequently, a more appropriate chemical composition for bone apatite would be 
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(Ca,X)10(PO4,CO3,Y)6(OH,Z)2 with X substituting cations and Y and Z substituting anions – indices 10, 6, 

and 2 changing according to stoichiometry [38].  Going forward, bone apatite will be referred to as HAp 

for ease of discussion.  

HAp crystals are plate-like having length and width dimensions an order of magnitude greater than 

thickness – 45-50 nm long, 20-25 nm wide, and 2-3 nm thick [41, 42].  This dimensional aspect ratio 

plays a significant role in the load borne by the crystals in situ (discussed in the next chapter).  The long 

axis of the crystal (c-axis) is aligned with the long axis of the collagen molecules and the width of the 

crystal (a-axis) is aligned perpendicular to the plane of the revised quarter-stagger repeated pattern along 

a groove formed among adjacent tropocollagen filaments (Figure 11).  This produces a plane in which the 

HAp crystals are offset from one and other by the length of the crystal and another plane where the 

crystals aligned next to each other in a row.   The alignment of crystal rows produces the banding seen in 

collagen fibrils. 

HAp crystals are restrained in the hole-zones between tropocollagen filaments, which have 

dimensions slightly less than the crystals themselves.  Dimensions of the hole-zones are 40 nm in length 

and 5 nm in width.  Given that the crystal width is 20 nm and the diameter of tropocollagen filaments are 

1-1.5 nm, the crystals overlap in the direction of the groove.  Therefore, the HAp crystals may contain 

collagen molecule inclusions as imperfections as the crystal forms.  In addition, bonding of the HAp 

crystals and collagen are thought to be a function of the non-collagenous proteins.  While this is not 

known for certain, it is known that some non-collagenous proteins bind to collagen, possibly at particular 
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    A      B 
Figure 11:  HAp crystal morphology.  A) Crystallographic axes and orientation with respect to the collagen molecule axis, and B) 
packing within the collagen hole zones and grooves. 
A Reprinted from Oxford University Press, Mann, S. “Biomineralization: Principles and Concepts in Bioinorganic Materials 

Chemistry”, R.G. Compton, S.G. Davies, J. Evans (eds.).  Copyright (2001), with permission from Oxford University Press, 
New York. 

B Reprinted from Medical Engineering & Physics, 20, Rho, J-Y., Kuhn-Spearing, L., Zioupos, P. “Mechanical Properties and the 
Hierarchical Structure of Bone”, 92–102.  Copyright (1998), with permission from Elsevier. 

 
sites in the hole-zones [42].  The non-collagenous proteins have abundant anionic groups that would 

strongly interact with the Ca2+ ions of the HAp crystals.  

2.3.2 Crystal Structure and Phase Determination 
 

A number of techniques may be employed to aid in the determination of a crystal’s structure and 

phase.  Energy dispersive x-ray spectroscopy (EDS) can yield information regarding the elemental 

composition of a material and, by way of the atomic content, an estimate of the phase of a calcium 

phosphate crystallite.  Raman and infrared spectroscopy can identify materials based on their 

characteristic bonding “fingerprints.”  In this way, these two techniques could yield calcium phosphate 

phase distinctions since the different phases would have different bonding characteristics.  Crystallinity 

and phase composition analysis has been attempted with infrared spectroscopy [74, 75].  While these 

techniques offer valuable insight into the composition of a crystallite, x-ray diffraction (XRD) provides 

physically relevant information of a crystallite’s structure and phase. 
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Briefly, XRD is a measure of the x-ray intensity reflected from the physical planes within a 

crystallite.  As incident x-rays are directed onto a powdered crystallite sample over a range of angles, 

characteristic peak intensities are observed.  These peaks are known as diffraction lines and their angular 

location is associated with the interplanar spacings of the crystallite, known as d spacing.   The d-spacing 

is a measure of the interplanar spacing of successive crystal planes.  An illustrative representation would 

be to assume that one of the crystal’s exterior surfaces represents a crystal plane, say the [1 0 0] plane, as 

you pass through the depth of the crystal perpendicular to this plane, each successive [1 0 0] plane will be 

spaced d nanometers apart.  The relationship between diffraction line location (θ) and interplanar d-

spacing is observed in Bragg’s Equation: 

   λ = 2dsinθ       (1), 

where λ is the wavelength of the x-ray source (CuKα in this study), θ is the incident angle between the x-

ray source and sample, and d is the d spacing.  The diffraction line position and intensity are fundamental 

to identifying the crystallite and subsequently its phase, since the diffraction intensities are ultimately 

related to both the structure and composition of the crystal phase [76]. 

In addition to diffraction line position and intensity, crystallographic measures are affected by 

diffraction line broadening.  Diffraction line broadening inversely correlates with the crystal size and 

lattice perfection where it is used as a measure of crystallinity [77].  Diffraction line breadth is determined 

from the full width of a diffraction peak at half its maximum intensity – full width at half maximum 

(FWHM).  Measurement of crystallite size can be quantified after correcting for instrumental broadening 

(b) using a Gaussian broadening correction in the form [78]: 

β 2 = B 2 – b 2       (2) 

where β is the corrected line broadening and B is the experimental line broadening.  Using the corrected 

line broadening, one can determine crystallite size from the Scherrer equation [78]: 

   L = Kλ / β cosθ       (3) 
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where L is the mean crystallite dimension and K is a constant that is approximately equal to unity 

(K=0.89 from Bragg’s simplified derivation) and related to the crystallite shape [79].   

Measures of a crystallite’s lattice constants are ultimately determined from its diffraction line 

positions.  Using the relationship between the d spacing and the Miller indices for a hexagonal crystal 

system, the unit cell lattice constants a and c are related to the diffraction lines with the corresponding 

(hk0) and (00l) indices, respectively: 

   dhkl
2 = (4/3a2) (h2 + k2 + hk) + (l2/c2)    (4) 

It is evident from equation (4) that the unit cell lattice dimension a is dependent on [hk0] crystal planes 

and the c dimension is dependent on [00l] crystal planes for a hexagonal crystal system (different 

relationships exist for the other crystal systems). 
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CHAPTER 3 – BIOMECHANICAL PROPERTIES OF BONE 
 

Bone is a dynamically adaptive living tissue whose strength is dependent on properties at the 

structural and constituent levels because of its inherent hierarchy.  Generally, structural strength is 

dependent on geometric and material properties [80].  But, one cannot ignore that in composites the 

material properties of the whole or sub-structures are dependent on the interactions, organization and 

material properties of the constituents.  Cortical bone strength has been studied at two structural levels 

(i.e. whole bone and osteon) and at the constituent level. 

3.1 Mechanical Properties of Whole Bone and Osteons 
   

Material properties at the whole bone structural level are derived from small uniform specimens.  

These specimens may be considered for the whole bone because the length scale spans that of the osteons.  

Modulus and ultimate (failure) stress of cortical bone are directionally dependent (Table 1).  It should be 

noted that materials whose properties are dependent on direction of applied loading are said to be 

anisotropic and will be discussed further in Section 3.5.  The modulus and ultimate stress of whole bone 

is greater in compression than tension in both longitudinal and transverse directions.  The ultimate stress 

anisotropy is more pronounced in tension than in compression based on the values reported by Reilly et al 

(1974) [81] and Reilly and Burstein (1975) [82], but others have reported longitudinal compressive 

stresses exceeding that in tension [83].  The latter is the generally accepted norm. 

Table 1: Modulus and Strength of Whole Human Cortical Bone (Femur) 
 Tension  Compression 
 Longitudinal Transverse  Longitudinal Transverse 
Elastic Modulus (GPa) 17.9 ±0.9 10.1 ±2.4  18.2 ±0.9 11.7 ±1.0 
      
Ultimate Stress (MPa) 135 ±16 53 ±11  105 ±17 131 ±21 
    193a  

From Reilly et. al. (1974) [27]; Reilly and Burstein (1975) [82] 
a From Hayes and Gerhart (1985) [83]  
  
On a smaller length scale, the material properties of osteon and lamellar structures have also been 

evaluated.  Most notably is the work of Ascenzi and Bonucci [45-48].   They reported the moduli and 

ultimate stresses derived from tensile and compressive tests conducted on single osteons (Table 2).  The 
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osteon moduli and ultimate stresses closely follow those values reported for the gross structure, above.  

The osteon types refer to those presented previously (Section 2.2.1).  Note that the ultimate stresses for 

the type-L osteons (longitudinally aligned collagen) closely approximates the ultimate tensile stresses for 

the whole bone and the type-T osteons (transversely aligned collagen) approximate the ultimate 

compressive stresses for the whole bone.  However, the osteon moduli are approximately half that of the 

whole bone, for the same osteon types.   The reason may have to do with cement line slippage between 

lamellae resulting in larger deformation and the lower reported elastic moduli.   

Table 2: Modulus and Strength of Osteonal Human Cortical Bone (Femur) 
 Tension  Compression 

Osteon 
Type 

Elastic Modulus 
(GPa) 

Ultimate Stress 
(MPa) 

 Elastic Modulus 
(GPa) 

Ultimate Stress 
(MPa) 

Type L 11.7 ±5.8 114 ±17  6.3 ±1.8 110 ±10 
Type A 5.5 ±2.6 94 ±15  7.4 ±1.6 134 ±9 
Type T - -  9.3 ±1.6 164 ±12 

From Ascenzi and Bonucci (1964, 1967, 1968) [45-47] 
 

Interlamella deformation along the cement lines may have significance given that nanoindentation 

tests showed that lamellar elastic moduli are greater than the macroscopic moduli.  Fan et al. (2001) [84] 

reported a longitudinal modulus of 24.7 GPa and transverse modulus of 17 GPa in individual lamella.  

Differences between these results and whole bone results may be explained by inclusion of cement lines 

in the macroscopic values and are more pronounced in individual osteons.  Cement lines lack the presence 

of collagen and the mineral phase may not be in a crystallized HAp form.  Perhaps, the unmineralized, 

low collagen content composition of the cement line results in greater plasticity and lower stiffness than 

the adjacent lamellae and acts to reduce the overall strength of the osteonal system compared to individual 

lamella [81, 85].  Differences between osteonal specimens and whole bone specimens may be the result of 

a more direct measurement of the single osteon cement line failure properties since it has been noted that 

“osteon pull-out” frequently occurs [86, 87].  Whereas, measurements at the whole bone level include 

multiple osteon systems with interspersed remnants of older osteons.  The nanoindentation results may 

also provide more relevant properties of the bone constituents themselves, namely the mineralized 

collagen composite. 
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3.2 Geometric Properties 
 

Geometric properties are relevant to bone strength because genetic variation among vertebrate species 

or regional variations within the cortices of the diaphysis may produce misleading interpretation of bone 

strength for development of orthopaedic interventions.  Geometric properties taken together with the 

material properties will provide insight to how a bone will respond when exposed to a given load.  As a 

hypothetical example, a transgenic rat femur may have different material and geometric properties versus 

control animals, yet the structural strength of the compared bones are equivalent [80].  In this particular 

model, a genetic defect retards the growth of the transgenic rat femur resulting in a smaller cross section 

and section modulus compared to controls.  Given only this information, it may be concluded that the 

control femurs are structurally stronger for whole bone torsion or bending test.  However, the material 

properties of the transgenic femurs are greater than the controls such that the structural strength of the 

transgenic femurs is equivalent to the controls.    Similarly, Lanyon et al. (1979) [88] postulated that 

regional variations in material organization of the diaphysis may result from the maintenance of uniform 

stresses throughout a bone’s cross-section.  They found that middiaphysis areas of the cortex in 

compression had a lower elastic modulus than areas in tension for mature ovine radii.  Riggs et al. (1993) 

[89] also reported elastic modulus differences between the tension and compression cortices of the equine 

radius at mid-diaphysis, despite the similarity in cortical thickness.  These material differences were 

attributed to significant compositional variations, including more oblique-to-transverse collagen fiber 

orientation, lower mineral content, and increased remodeling with secondary osteons in the compression 

cortex.  However, the composition is a byproduct of bone remodeling caused by non-uniform stress 

distributions throughout the cross-section of the diaphysis.   The non-uniform stresses, in turn, are caused 

by eccentric loading due to the geometric curvature of the bone.  Eccentric loading shifts the neutral axis 

and amplifies the compressive loading in the compressive cortex [90].  This example shows that the 

geometry of the bone can alter the stress distribution and subsequently the material properties through 

remodeling.  While the exact mechanisms by which bone adapts are not exactly known, it is known that 

the material properties are a function of the constituent materials making up bone, their organization, and 
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their content.  This study investigates the material properties of a synthetic bone surrogate based on these 

parameters, in particular organization.  The geometric property adaptation is beyond the scope of the 

study. 

3.3 Mechanical Properties of Collagen and HAp Crystals 
 

Material properties at the constituent level of bone hierarchy have also been reported.  Albeit type-I 

collagen, derived from the collagen of tendons, has been more widely reported than HAp crystals.  Landis 

et al (1995) [91] reported a modulus of 50 MPa, maximum strain of 0.35, and a maximum stress of 20 

MPa.  These values, except strain, are lower compared to other investigators who put the modulus at over 

1 GPa and the ultimate stress at 120 MPa [92, 93].  Gosline et al (2002) [93] reported a strain value of 

0.13.  It is not exactly clear why there is such a disparity between the reported values except that reported 

bone properties also have a high degree of variability reported over a large range.  Type-I collagen 

molecules in bone are present in a fibrous crystal form [42], the effect of which is not discussed in the 

literature.  HAp crystal ultimate stress and modulus are estimated to be 3 GPa and 100 GPa, respectively 

[94, 95].  Jager and Fratzl (2000) [96] suggest that the modulus is three orders of magnitude greater than 

that of type-I collagen.  This order of magnitude difference would suggest that type-I collagen elastic 

modulus is closer to 1 GPa stated above. 

Parameters such as strength, stiffness, or fracture toughness might be ascribed solely to either the 

HAP crystal or collagen constituents.  Review of the literature suggests that strength and stiffness are due 

to HAp while the fracture toughness is due to collagen [94-97].  The high elastic modulus of HAp crystals 

imparts stiffness to composite.  Strength, which is a measure of a material’s failure stress, seems more 

likely to be due to collagen rather than the mineral phase, as the literature suggests.  Consider that type-I 

collagen has a reported ultimate stress of 120 MPa [93], which is in the range of the ultimate tensile stress 

of whole bone and type-L osteons with longitudinal collagen fibers.  This suggests that the failure of bone 

is due to collagen failure and not the HAp crystals with an estimated ultimate strength of 3 GPa.  Collagen 

alignment relative to the load direction would therefore significantly affect the strength.    Collagen is also 

believed to play a role in the toughness of bone.  It is postulated that a toughening mechanism is fiber 
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bridging [98-101] whereby the fibers span across the crack opening.  In general, toughness is a measure 

of the work or energy required to fracture a material [6].  Collagen can deform to a greater extent than 

HAp and remain intact behind the crack tip, thereby absorbing and dissipating the crack energy [6, 94, 

95].  The reported fracture toughness of cortical bone is K=2.2-6.3 MPa⋅√m [6].  Again collagen 

alignment is presumed to affect the toughness, but the extent to which it does has not been directly 

quantified [98].  The assignment of these parametric roles for HAp and collagen understates the complex 

interaction and organization of the constituents.   

3.4 Influence of Collagen and HAp on Bone Strength 
 

Bone strength resides in the organization and interaction of the constituent materials – HAp crystals 

and collagen fibers.  HAp and collagen form a composite material whose mechanical properties are 

considerably different from those of the individual constituents [102].   The resultant composite is able to 

withstand a variety of tensile and compressive forces where collagen and HAp by themselves could not.  

However, just the presence of HAp and collagen in composite form is not sufficient to generate the 

mechanical properties of normal bone.  Landis (1995) [102] sought to identify the effect that the structural 

interaction of HAp and collagen had on the strength of calcified tissues by comparing normal tissue to 

brittle or weak tissue.  Two aspects of HAp crystal formation in the abnormal tissues were found to be 

unusual, their crystallographic structure and spatial relationship with collagen.  In the abnormal tissue, the 

crystals did not appear as plate, but rather as thick blocks or narrow spear shaped structures.  Individual 

crystal sizes exceeded as much as three- to ten-fold the normal tissue crystal dimensions.  The abnormal 

crystals were more noticeably larger in their length than in any other dimension resulting in observed 

spear-like abnormalities.  The spatial arrangement of HAp crystals in normal calcified tissue exhibit 

parallel arrays of flat crystal bands or sheets following the pattern of the collagen hole-zones and grooves.  

On the other hand, abnormal tissue does associate with collagen, but doesn’t follow the same obvious 

pattern of the collagen fibril hole-zones and grooves.  Abnormal tissue also shows evidence of 

inconsistent alignment of the HAP crystal with respect to the collagen fibril axis.  Another notable 

difference in the weakened abnormal tissue is the disorganized arrangement of collagen fibrils.  Many 
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individual fibers are kinked or twisted and the periodicity of the revised quarter-stagger, responsible for 

the hole-zones and grooves, is out of phase in adjacent fibrils.  The mechanism for the weakness or 

brittleness of the abnormal tissues is believed to arise from disruptions in the orderly arrangement of 

collagen fibrils.  Landis (1995) [102] postulated that the structural deficiency is a consequence of 

defective assembly of the collagen network where the abnormal fibril period fails to produce the regular 

overlapping hole zones or parallel grooves that communicate across the entire fibril.  The irregular holes 

and grooves subsequently affect the crystal growth, either arresting the growth of crystal bands across the 

groove or not restraining crystal growth to the desired size in the abnormal hole-zone.  The model 

proposed by Landis (1995) [102] is shown in Figure 12.  It is evident from this model that the orderly 

arrangement and mineralization of collagen fibrils impart strength to bone. 

 
Figure 12: Normal (top) and abnormal (bottom) collagen fiber arrangement with progression of crystal growth within the hole-
zone groves along parallel faces of tropocollagen filaments.  Normally staggered collagen allows plate-like HAp crystals to form 
in the hole-zones, which continue to grow into the region of overlapping filaments.  Abnormal collagen organization does not 
result in the staggered pattern and HAp crystal growth is retarded to form spike-like crystals that do not grow to produce crystal 
bands, as in normal organization and growth.  Reprinted from Bone, 16(5), Landis, W.J., “The Strength of a Calcified Tissue 
Depends in Part on the Molecular Structure and Organization of its Constituent Mineral Crystals in the Their Organic Matrix”, 
533-544.  Copyright (1995), with permission from Elsevier. 
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Mechanical tests and detailed analysis of the collagen-HAp interactions from a study conducted by 

Kikuchi et al. (2001, 2004) [2, 103] supports those qualitative findings above.  These researchers 

evaluated the effects of pH and temperature on the bending strength and self-organization mechanism of 

collagen and HAp.  Ideal conditions promoting strength and self-organization were pH=9 and 40ºC.  They 

postulate that the HAp crystal structure automatically determines its orientation relative to collagen.  

Briefly, the mechanism is a result of weakened carboxyl bonds on the collagen caused by the interaction 

of Ca2+ ions on the surface of HAp nanocrystals.  These Ca2+ sites on the HAp crystal surface are oriented 

perpendicular to the c-axis.  When they interact with a carboxyl group on the collagen they cause the 

carboxyl group to conform perpendicularly to the long axis of the fiber.  Another interesting note was that 

the content of collagen decreased with lower pH levels and temperature.  While the study illustrates the 

importance of the interaction between collagen and HAp, the changes in collagen content leaves open for 

discussion the role that collagen plays with respect to the strength of the composite.    

Two physical models also detail the importance of organization between collagen and HAp.  Jager 

and Fratzl (2000) [96] and Gao et al (2003) [94] proposed similar models of collagen filaments and HAp 

crystals idealized under tensile loads (Figure 13 and 14).  The organization of both models stressed the 

overlap of the mineralized collagen filaments.  In addition, Jager and Fratzl (2000) [96] also compared 

their model with an unmineralized collagen overlap model and two serial HAp-collagen model without 

overlap (results were normalized to the unmineralized collagen model).  While the serial model resulted 

in an increased modulus from the HAp inclusion, the maximum stress decreased 3-30%.  The mineralized 

overlapping model increased the modulus by a factor of 59 and the maximum stress by a factor of 2.  The 

model stresses that it is the interaction and organization of the two constituents that impart the strength 

seen in bone at the structural level.  Mineralization alone did not increase the strength, despite increasing 

the modulus.  The special organization of the mineralized collagen is what gives the increased strength.  

Gao et al. (2003) [94] suggested that the HAp crystals carried the load in tension while the collagen 

transferred the load to the crystals by shear.  In an extension of the model, the importance of the nano-

sized HAp crystals is illustrated [94, 95].  At this length scale, the large aspect ratio of the nanocrystals 
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causes them to withstand stresses near the theoretical limit even if they are flawed.  Flaws are considered 

to be inclusions of the collagen molecules or other organic proteins within the crystal.   

 
Figure 13:  Two dimensional collagen model proposed by Jager and Fratzl (2000).  Staggered unmineralized collagen (right) was 
compared to serial mineralized collagen (center) and staggered mineralized collagen to show the importance of the staggering 
effect on the mechanical properties.  Reprinted from Biophysical Journal, 79, Jager, I. and Fratzl, P., “Mineralized Collagen 
Fibrils: A Mechanical Model with a Staggered Arrangement of Mineral Particles”, 1737-1746.  Copyright (2000), with 
permission from Elsevier. 
 

 
Figure 14:  Two dimensional collagen model proposed by Gao et al. (2003).  The model suggests that staggered mineralized 
collagen transfers load to the HAp crystals via shear with the crystals in tension.  Unloaded (left).   Loaded (right).  Reprinted 
from Proceedings of the National Academy of Sciences, 100(10), Gao, H., Ji, B., Jager, I., Arzt, E., Fratzl, P.  “Materials Become 
Insensitive to Flaws at Nanoscale:  Lessons from Nature”, 5597-5600. Copyright (2003), with permission from Proceedings of 
the National Academy of Sciences. 
 

While a good start, this is an oversimplified model.  One point in particular, the model is formulated 

as a 2-D planar model reminiscent of a brick and mortar configuration suggesting the entire length of the 

collagen filaments would be under shear, as described by Gao et al. (2003) [94] (Figure 14).  This does 

not fully account for the periodicity of the collagen filaments where the HAp crystals would not be in 

linear rows across the plane but would rather be staggered as in Figure 12.  This arrangement would place 
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the HAp crystals in shear and certain portions of the collagen filament in tension.  The shear stresses on 

the surface of the crystals may be negligible given their high aspect ratio as the shear component from 

many collagen filaments would be acting on a large surface area.  Perhaps more importantly, collagen 

filaments acting on opposite faces of a single crystal would cause a rotation of the crystal as the lines of 

force through the collagen filaments tried to align along the same axis.  This rotation may cause a 

transverse compression of the interstitial fluid within the unit.  As such, the model also does not account 

for the fluid content and its contributions to bearing loads.  The interstitial fluids may bear the transverse 

compressions described above.  The preceding discussion is used to emphasize how the organization of 

collagen and HAp crystals provide enhanced material properties to the whole structure.  An improved 

model should account for these conditions, but is beyond the scope of this study. 

3.5 Anisotropy 
 

Anisotropy is the opposite of homogeneity in all directions.  It is a material characteristic of being 

directionally dependent and can be defined as a difference in a physical property when measured along 

different axes.  The physical properties of composite materials are generally anisotropic in nature.  For 

instance, the elastic modulus of a composite will depend upon the directional orientation of the applied 

loads.  As with bone, material properties are different when measured along different axes.  

Bone’s highly ordered internal arrangement of collagen and HAp crystals predisposes it to anisotropy.  

Morphological analyses show that mineralized collagen fibers are approximately parallel within lamellae 

[46, 49].  Section 3.1 presented the material properties of bone and osteons.  The results clearly show the 

directional dependence, and hence anisotropy, of bone’s material properties.  Gibson et al. (1995) [54] 

showed that the lateral cortex of the equine third metacarpal bone exhibited higher bending modulus and 

failure strength.  Using polarized light microscopy and correlating to the data of Gibson et al. (1995) [54], 

Martin et al. (1996) [39] showed that the lateral cortex had longitudinally aligned collagen fibers.  

Skedros et al. (2003) [90] suggested that regional variations in the equine third metacarpal material 

properties were due to collagen alignment.  These studies support the idea that anisotropy in bone is a 

function of collagen orientation.  This would suggest that the random orientation packing density theory 
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does not appear to explain this phenomenon while the parallel collagen orientation and twisted plywood 

theories do explain the anisotropy observed in bone. 
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CHAPTER 4 - PHYSICOCHEMICAL CHARACTERIZATION OF A HY DROXYAPAPTITE-

COLLAGEN COMPOSITE 

4.1 Introduction 

Bone is a hierarchical structure comprised of mineral and organic constituents.  As an analogue to 

bone mineral, synthetic hydroxyapatite (HAp) has been studied extensively [104-106].  During 

mineralization, it is well known that the precipitating calcium phosphate undergoes environmentally and 

temporally dependent phase transitions prior to the end phase HAp [7-11].  Mineralization may involve an 

amorphous calcium phosphate (ACP) [12-21] and/or an octacalcium phosphate (OCP) [9, 22, 23] 

precursor dissolving and remineralizing as HAp over time [8, 11].  Aside from inhibitory factors, the 

resultant calcium phosphate phase is dependent on thermodynamic factors (supersaturation, pH, ionic 

strength) [8, 11, 24] and kinetic factors (ion ratios) [8, 11].  Solution pH can alter the solubility of the 

calcium phosphate phases, where HAp is the most stable calcium phosphate phase at pH >4 [8, 11].  Both 

high supersaturations and pH favor an ACP precursor, but the phase transitions may occur rapidly without 

the inclusion of inhibitory species (Mg2+, Zn2+) or proteins [8, 11].  Solution ionic strength may affect the 

interaction between the crystal surface and solution species due to the response of the double layer Debye 

length at the mineralization front [11, 25].  Ion ratios may affect a temporal factor like the kinetics of 

crystal growth, where the ion activities of the species making up the crystal growth units favor the lowest 

activation barriers [11].  In addition, foreign ions may inhibit or accelerate crystal growth kinetics.  

Carbonate ions are a calcium phosphate phase transition accelerant [8] and inclusion into the apatitic 

phase has been shown to increase with pH [26]. 

Much of the preceding work has been isolated to simplified solution environments which model 

specific calcium phosphate mineralization conditions.  In doing so, the mineralization solution 

environments have excluded collagen.  The effect collagen has on mineralization is controversial, where 

some studies suggest it promotes HAp [27] or ACP [13] nucleation, others suggest that it inhibits HAp 

nucleation [28], while still others claim it has no effect on HAp nucleation [29-32].  The latter affect may 

correctly characterize collagen’s influence since environmental and temporal factors (ion concentration, 
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pH, and duration) more specifically affect calcium phosphate mineralization in the presence of collagen 

[9-11].  Ion concentration (speciation), pH, and reaction duration may all affect the resultant calcium 

phosphate phase.  The latter two may also affect the mineral content and mineral crystallinity, 

respectively.  Concentration of the calcium and phosphate ions will influence the supersaturation of the 

respective phases, the ion activities, ionic strength, and the kinetics.  In general, the result is the favored 

precipitation of initial precursor phases and growth pathways with the lowest activation barriers [8, 11].  

Bradt et al. (1999) [9] suggested an ideal concentration of calcium and phosphate for the mineralization of 

collagen which would allow mineralization to proceed in concert with fibrillization.  Otherwise, elevated 

concentrations would result in an unstructured precipitate or lowered concentrations would lead to no 

calcium phosphate precipitation.  Calcium phosphate phase solubility is affected by the solution pH and 

can alter the respective phase supersaturation levels.  Experiments suggest that acidic conditions can 

result in the precipitation of calcium phosphate phases other than HAp on existing collagen or fibroin 

templates while physiologic and alkaline environments yield HAp [10, 34-37].  Experiments in acidic pH 

resulted in calcium phosphate phases of brushite (dicalcium phosphate dihydrate – DCPD) and 

octacalcium phosphate (OCP) [34, 35, 37].  Calcium phosphate phases included DCPD, OCP and HAp 

when mineralizing collagen in neutral (pH 7) and physiologic (pH 7.4) environments [34, 35, 37].  

Alkaline pH levels were shown to yield HAp only [10, 34, 35, 37].  Additionally, the mineral fraction of 

HAp coprecipitated with collagen varies with pH [10].  Like solution mediated calcium phosphate 

mineralization, the phase transitions of mineralizing collagen are also time dependent [9, 28, 35] and if 

amorphous phases are stabilized in collagen the crystallinity may also be time dependent.  Also, incorrect 

timing of mineralization with collagen fibrillogenesis may lead to no mineralization or to a structureless 

precipitate [9]. 

Thermodynamic and kinetic factors affecting calcium phosphate mineralization illustrate the 

optimization pathways for a synthetic HAp/C composite.  The present study aims to optimize the 

biomimetic coprecipitation of HAp and fibrillogenesis of collagen in a HAp/C composite and characterize 

the physicochemical properties with respect to bone.  Specifically, this study investigates the 
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environmental and temporal effects on the composition, phase, and crystallography of a biomimetic 

mineral and compares to that of natural bone.  

4.2 Materials and Methods 

The current study utilized a biomimetic process of collagen mineralization. The mineralizing calcium 

and phosphate ions are coprecipitated in an assembling collagen matrix.  An optimized starting calcium 

and phosphate concentration was held constant while varying the reaction pH and duration to quantify 

environmental and temporal effects. 

4.2.1 Precursor Solutions 

Mineralization precursor solutions were prepared by separating the calcium and collagen into one 

solution and the phosphate into another, before combining.  Collagen was extracted from rat tail tendons, 

lyophilized, and was subsequently dissolved in 0.01M HCl, with a concentration of 1 mg/mL.  Calcium 

and collagen were combined by adding 108 µL of 0.4 M CaCl2 to 600 µL of the dissolved collagen.  A 

potassium phosphate solution was prepared by adding a 1.6 M KH2PO4 stock solution to a 2.1 M K2HPO4 

stock solution in a 20:80 volume ratio to achieve a pH of 7.4.  Separately, a neutralization buffer was 

prepared with 160 µL of 0.5 M tris(hydroxymethyl)aminomethane (pH 7.4 with HCl) and 110 µL of 2 M 

NaCl.  The potassium phosphate solution (12.98 µL) was added to the neutralization buffer.  The 

mineralization solutions were estimated to produce a calcium to phosphorus (Ca/P) ratio of approximately 

1.67 and a 85:15 mineral:collagen ratio. 

4.2.2 Environmental (pH) Experiments 

The calcium/collagen and phosphate precursor solutions were slowly combined while monitoring the 

pH.  During precursor mixing, the pH was maintained at one of four pH levels; 6.8, 7.4, 8.0, or 9.0.  The 

separate precursor solutions were pumped into a central reaction vessel with peristaltic pumps 

(Pulsafeeder, Punta Gorda, FL, USA) at a flow rate of 5 mL/min.  The reaction vessel was maintained at 

37ºC in a water bath.  During mixing, the pH was monitored with an electrode (Pulse Instruments, Van 

Nuys, CA, USA) and controller (Jenco Instruments, San Diego, CA, USA), and activated micropumps 
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with a 1 M HCl or 1 M KOH titrant to maintain the pH at the desired level (Figure 15).  After mixing, the 

solutions were allowed to react (age) for 18 hours.  At the end of the 18 hour aging period, the 

mineralized collaged was recovered by vacuum filtration, washed three times with deionized H2O, and 

dried by lyophilization.  Each pH level experiment was repeated three times.   

 
Figure 15: Schematic of the experimental setup for mixing the HAp/C composite reactants. 
 
4.2.3 Temporal (Aging) Experiments 

The temporal experiments were designed to study the effects of the post mixing reaction, or aging, 

duration.  Precursor solutions were prepared and mixed as described above.  The pH was maintained at 

8.0 and the reactants were aged for one of three durations; 6, 12, or 24 hours. Each aging duration 

experiment was repeated three times.  
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4.2.4 Mineral-Collagen Composition 

Mineral and collagen weight fractions of the composite were determined for the environmental group.  

After environmental experiment HAp/C composite recovery, a sample from each of the three experiments 

at each pH level was obtained for composition analysis, with an average initial sample weight of wwet = 

360mg.  Each sample was placed in a furnace (Nytech 85P, Nytech, Bloomfield, CT, USA) and heated to 

200ºF for 24 hours to remove water and weighed for a second time to determine the composite dry weight 

(wdry).  Each sample was then placed back in the oven and heated to 600ºF for 24 hours to oxidize the 

organic constituent and weighed a final time to determine the remaining mineral weight (wmineral).  The 

mineral weight fraction was the ratio of the mineral weight to the composite dry weight: 

(wmineral / wdry) * 100%      (1). 

The collagen weight fraction was determined as: 

   (1 – wmineral / wdry) * 100%     (2). 

4.2.5 Calcium to Phosphorus Molar Ratio 

The molar ratio of calcium to phosphorus (Ca/P) in the HAp/C composite was determined by the use 

of energy-dispersive x-ray spectroscopy (EDS), which enabled molar ratio quantification of the 

environmental and temporal sample composites.  The EDS samples were prepared after vacuum filtration.  

Wet precipitate was placed onto a carbon tape disk, pressed flat to produce a thin film, and air dried.  

Samples were placed on a sample holder and then placed in a scanning electron microscope (SEM) with a 

tungsten filament and equipped with an EDS (JSM-6510LV-LGS, JEOL Ltd, Tokyo, Japan).  Calcium 

and phosphorus x-ray counts were quantified as atomic %.  The values of which were then used to derive 

the Ca/P ratio of the samples. 

4.2.6 X-ray Diffraction Analysis   

Diffraction patterns were obtained from 30 powder samples from the following groups: 

hydroxyapatite reference standard (HAp-RS), amorphous calcium phosphate reference standard (ACP-

RS), natural bone from the femora of male Wister rats, demineralized bone from the femora of male 

Wister rats, environmental experiment, and temporal experiment (Table 3).  The natural bone served as a 



37 

 

biological mineralization comparator (biological HAp/C).  A hydroxyapatite reference standard (HAp-

RS) (Sigma-Aldrich Corp., St. Louis, MO, USA) was used for background correction and peak search 

validation of the Powder4 pattern analysis application [107].  The HAp-RS powder was scanned with 

identical diffractometer operating parameters as the experimental x-ray diffraction (XRD) patterns and 

diffraction line positions were obtained.  XRD patterns were also obtained for an amorphous calcium 

phosphate reference standard (ACP-RS) and a demineralized collagen reference.  These patterns were 

obtained for two reasons; (1) it became clear that there was a complex background pattern underlying the 

biomimetic and biologic samples and (2) to aid in the understanding the characteristics of the background 

pattern.   

Table 3: Summary of powder samples analyzed by XRD 
Powder Sample Sample Size Experimental Test Levels 
Hydroxyapatite Reference Standard (HAp-RS) 1  
Amorphous Calcium Phosphate Reference Standard (ACP-RS) 1  
Natural Bone from Rat Femora 6  
Environmental Experiments 12 pH 6.8 (n=3) 

pH 7.4 (n=3) 
pH 8.0 (n=3) 
pH 9.0 (n=3) 

Temporal Experiments 9 6 Hours (n=3) 
12 Hours (n=3) 
24 Hours (n=3) 

 
All experimental and biologic samples were ground with a mortar and pestle and XRD patterns were 

obtained from a Rigaku, SmartLab, high-resolution XRD system (Rigaku, Tokyo, Japan).  The XRD 

analyses were conducted with the following parameters: the diffractometer was operating at 40 kV and 44 

mA, generating graphite-monochromatized CuKa radiation (wavelength, λ = 1.54059 Å); the XRD 

patterns were obtained over the 2θ range from 5° to 60° with a scan speed of 3° 2θ/min and step size of 

0.01° 2θ.     

Diffraction line positions (2θ-values) were determined for all biomimetic and biologic samples.  After 

XRD pattern acquisition, pattern smoothing was performed with a Savitzky-Golay filter (105 points) 

using the MDI Jade application (Jade, MDI, Livermore, CA, USA).  Filtered patterns were exported and 
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the lines were obtained from each background subtracted and corrected XRD patterns using the Powder4 

application.   

Experimental XRD patterns were prepared for analysis by, first, conducting an automatic background 

search with parameters for all samples set to a sampling interval of 28, a curvature of 3.0, and a search 

iteration of 100.  The sampling interval selection allowed the background to closely follow the XRD 

patterns of the samples and the selected number of iterations minimized the background peaks.  The 

curvature value had minimal affect on background selection.  Next, a cursory peak search was performed 

with search parameters across all samples set to a minimum height percent of 9.11% ±1.77% and a 

minimum width (2θ) of 1.02.  Lastly, additional peaks were manually identified and peaks outside of the 

range of interest (10°-55° 2θ) were deleted. 

Once the line positions and intensities were obtained, the 2θ line positions were converted to d 

spacing using Bragg’s Equation: 

   λ = 2dsinθ       (3), 

where λ is the wavelength of the x-ray source (CuKα), θ is the angle between the x-ray source and 

sample, and d is the d spacing.  The relative intensity of each line was obtained by dividing the line 

intensity by the strongest intensity in the pattern and multiplying by 100.  The d spacing and relative 

intensities were compared to the published HAp Powder Diffraction File (PDF) card #9-432 [108] using 

the Hanawalt, Rinn, and Frevel (HRF) [109] method described by Klug and Alexander, 1974 [78].  After 

validating the Powder4 application with the HAp-RS, the biologic and experimental samples were 

similarly compared to the HAp PDF 9-432 to verify the presence of HAp.  Sample diffraction lines that 

did not conform to the locations given for HAp were compared to the PDF cards for carbonated HAp 

(CHAp - PDF 19-272), dicalcium phosphate dehydrate (DCPD - PDF 9-077), octacalcium phosphate 

(OCP - PDF 26-1056), and tricalcium phosphate (TCP - PDF 9-169) [110] to identify traces of these other 

calcium phosphate phases. 
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After the diffraction lines were found from the corresponding peak intensities and d spacing derived 

from the 2θ line positions, the peak broadness was extracted from the XRD patterns.  Diffraction line 

broadening inversely correlates with the crystal size and lattice perfection where it is used as a measure of 

crystallinity [77].   The breadths of the XRD diffraction lines were determined from the full width of a 

diffraction peak at half its maximum intensity – full width at half maximum (FWHM).     

Crystallographic measures of crystallite size and unit cell lattice constants were quantified after 

correcting for instrumental broadening.  The HAp-RS served to obtain the instrumental broadening (b) 

using the Gaussian broadening correction equation [78]: 

β 2 = B 2 – b 2       (4) 

where β is the corrected line broadening and B is the experimental line broadening.  Then, the crystallite 

size and unit cell lattice constants a and c for each environmental, temporal, and biological sample could 

be calculated.  Crystallite size was determined from the Scherrer equation [78]: 

   L = Kλ / β cosθ       (5) 

where L is the mean crystallite dimension and K is a constant that is approximately equal to unity 

(K=0.89 from Bragg’s simplified derivation) and related to the crystallite shape [79].  Unit cell lattice 

constants a and c are determined from diffraction lines with the corresponding (hk0) and (00l) indices, 

respectively, using the relationship between d spacing and the Miller indices for a hexagonal crystal 

system: 

   dhkl
2 = (4/3a2) (h2 + k2 + hk) + (l2/c2)    (6) 

It is evident from equation (6) that the unit cell lattice constant a is dependent on [hk0] crystal planes and 

c is dependent on [00l] crystal planes for a hexagonal crystal system. 

4.2.7 Thermodynamic Model 

Solution chemistry affects the thermodynamics of calcium phosphate precipitation.  The precursor 

solutions used to produce the environmental samples were modeled with chemical equilibrium calculation 

software (Chemist 1.0.3, Micromath, St. Louis, MO, USA).  Mineralization solutions were built up from 
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the compounds and reagents specified in the Environmental (pH) Experiment section.  Each 

mineralization experiment was solved and the response of the thermodynamic factors – driving force, 

reaction chemical potential, and ionic strength – was reported for each pH level and each calcium 

phosphate phase expected to precipitate – DCPD, HAp, OCP, TCP.  Supersaturation is the 

thermodynamic driving force and affects the stability of the phases nucleating in the bulk solution, as well 

as the mode of crystal growth (spontaneous nucleation or step incorporation).  Supersaturation, expressed 

as the relative supersaturation (σ), allows comparison between the different expected calcium phosphate 

phases and is normalized by the number of growth units (n) in the unit cell, 

  σ = (IAP1/n – Ksp
1/n) / Ksp

1/n     (7) 

where IAP is the ion activity product and Ksp is the solubility product for the mineralization reactions [8, 

11].  The chemical potential of the precipitation reactions, or work performed by the system, is measured 

by the Gibb’s free energy (∆G),  

   ∆G = -(RT/n) ln(IAP/Ksp)     (8) 

where R is the gas constant and T is the absolute temperature (in Kelvin) [8].  The free energy may be 

considered a measure of the reaction spontaneity where a reaction with a negative free energy is favored 

and will release energy to the surroundings.  Ionic strength affects the screening length of ion-ion 

interactions in the bulk solution and the Debye length of the mineral surface-solution interactions. 

4.2.8 Statistical Analysis 

The Ca/P molar ratios determined in the calcium to phosphorus composition analysis, by EDS, were 

separately analyzed with an ANOVA for main effects due to pH or Aging.  Subsequently, post hoc 

analyses to identify significant differences between groups were conducted utilizing Tukey HSD, all pair 

wise comparison test, when the main effects were significant.     

The analysis of the XRD data was designed so that the environmental and temporal effects could be 

assessed relative to natural bone.  First, the presence of the HAp mineral phase was assessed by 

correlation of the biomimetic and biologic specimen d spacings to the Hap PDF 9-432 standard.  Next, 
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environmental and temporal effects on the resultant biomimetic HAp/C composites were compared to the 

biologic HAp/C composites.  Full profile intensity and d spacing data extracted from the specimen XRD 

patterns were tested via a repeated measures ANOVA.  A repeated measures treatment of the data was 

used to account for the multiple diffraction lines within each specimen sample in order to compare the 

entire diffraction pattern.  The last XRD pattern analysis assessed crystal structure related measures – 

intensity and FWHM.  Intensity and FWHM values were obtained from the strongest peaks present in all 

specimens.  The values were then normalized relative to the maximum intensity or FWHM value across 

all specimens in each group in order to assess the entire specimen profile instead of individual peaks.  The 

resultant number of peaks included in the analysis was 7 for the environmental group comparisons and 8 

for the temporal group comparisons. 

Analyses of crystallographic measures, crystallite size and unit cell dimensions, were conducted using 

a one-way ANOVA for main effects due to pH or Aging.  When necessary, post hoc analyses were 

conducted utilizing an all pair wise test (Tukey HSD).    

All statistical analyses were performed using commercially available software (SAS JMP, SAS 

Institute, Cary, NC, USA) and significance was set to 0.05. 

4.3 Results 

Biomimetically mineralized collagen composites were fabricated with controlled environmental pH 

levels and duration of mineralization reactions.  The composites were created to mimic the 

crystallographic nature of biologically occurring bone.  Precursor solutions were prepared to be 

supersaturated with respect to HAp and to obtain a mineral to collagen ratio of 85:15 wt%.  Four levels of 

pH and three levels of reaction aging were studied to investigate their effects on a mineralized, self 

assembling, collagen composite.  Bone from rat femora were analyzed to serve as a biologic HAp/C 

composite comparator.  In addition, thermodynamic modeling was performed to evaluate the preferential 

precipitation of HAp formation in the solution preparations used in these experiments. 

 

 



42 

 

4.3.1 Mineral-Collagen Composition 

Mineral weight fractions of the composite were determined for 12 samples in the environmental 

experiments.  The samples that were collected from the biomimetic HAp/C composite filtrate were still 

highly hydrated, with 88.43% ± 2.38% water content.  After dehydration and organic oxidation, the 

mineral weight fraction was 83-84wt% at pH levels below 9, at which point the mineral weight fraction of 

the composite increased to 88wt% (Figure 16).  Based on the concentrations of the precursor solutions, 

the calculated composition for complete calcium and phosphate precipitation in the collagen matrix would 

be 85.8 wt% mineral and 14.2 wt% collagen.   
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Figure 16: HAp/C composite composition response to pH change. 
 
4.3.2 Calcium to Phosphorus Molar Ratio 

Calcium to phosphorus ratios were determined for the 12 environmental and 9 temporal samples, by 

EDS.  The Ca/P ratio increased with increasing pH.  The ratio was 1.51, 1.55, 1.75, and 1.85 for the pH 

level 6.8, 7.4, 8.0, and 9.0, respectively (Figure 17).  The two basic pH levels of 8.0 and 9.0 produced 

Ca/P ratios of 1.75 and 1.85, respectively, which were greater than the stoichiometric molar ratio of HAp, 

at 1.67.  These two alkaline induced Ca/P ratios were both significantly different than the acidic and 

physiologic ratios (p<0.05).  When the pH was held constant during the temporal experiments the Ca/P 
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ratio remained constant (Figure 18).  The Ca/P ratio was approximately 1.8 across the three aging 

durations (6 hours, 12 hours, and 24 hours).  
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Figure 17: HAp/C composite Ca/P ratio response to pH. 
* Significantly different than pH 6.8 and pH 7.4 (p<0.05). 
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Figure 18: HAp/C composite Ca/P ratio response to aging duration. 
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4.3.3 X-ray Diffraction Analysis 

Diffraction patterns were obtained from 30 powder samples.  Examples of typical XRD patterns from 

the reference standard, biologic, and biomimetic HAp/C samples after pattern smoothing, background 

subtraction, and peak identification are shown in Figures 19-22 (all patterns are exhibited in Appendix A).  

The biologic and biomimetic patterns exhibited broader and less intense diffraction peaks than the HAp-

RS.  Peak overlap is present in the biologic and biomimetic samples where broad peaks overlap in several 

regions and obscure neighboring peaks.  This is most notable in the 2θ range of 31º-33º, where the three 

most intense diffraction peaks overlap, and between 46º-53º, where only three to four of the seven peaks 

are visible.  One other visible observation is the shape of the background curve.  The biomimetic HAp/C 

composite background has characteristics of ACP-RS while the biologic HAp/C composite background 

has characteristics of ACP-RS and collagen.  ACP-RS has broad peaks between 10º-15º and 20º-35º 

(Figure 23) while collagen has a peak at 7.605º and a broad peak from 10º-35º (Figure 24).  The XRD 

patterns of the biologic and biomimetic HAp/C composites appear to be riding on a background pattern 

that resembles ACP-RS and collagen.  
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Figure 19: Typical XRD pattern for HAp-RS.  The green curve is the original Savitzky-Golay smoothed XRD 
pattern, the grey curve is the calculated background, and the red curve is the background subtracted pattern (red 
inverted triangles are the peak identifiers). 
 



46 

 

 
Figure 20: Typical XRD pattern for biological sample from rat femora.  The green curve is the original Savitzky-
Golay smoothed XRD pattern, the grey curve is the calculated background, and the red curve is the background 
subtracted pattern (red inverted triangles are the peak identifiers). 
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Figure 21: Typical XRD pattern for environmental sample.  The green curve is the original Savitzky-Golay 
smoothed XRD pattern, the grey curve is the calculated background, and the red curve is the background subtracted 
pattern (red inverted triangles are the peak identifiers). 
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Figure 22: Typical XRD pattern for temporal sample.  The green curve is the original Savitzky-Golay smoothed 
XRD pattern, the grey curve is the calculated background, and the red curve is the background subtracted pattern 
(red inverted triangles are the peak identifiers). 
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Figure 23: XRD pattern of ACP-RS.  The XRD pattern of ACP exhibits characteristics of the background for 
biomimetic and biologic HAp/C composites. 
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Figure 24: XRD pattern of demineralized collagen from rat femora.  The XRD pattern of collagen exhibits 
characteristics of the background for biomimetic and biologic HAp/C composites. 

 
The HAp-RS diffraction pattern was used to validate the Powder4 application’s ability to identify the 

diffraction lines of interest in the current study.  Twenty three out of 26 diffraction lines identified for the 

HAp-RS were matched to the 29 diffraction lines of the HAp PDF 9-432 [108], in the 2θ range of interest 

10º-55º (Table 4).  The average d spacing difference between the 23 matched diffraction lines was 0.008 

Å, ± 0.008 Å.   The HAp-RS diffraction lines are positively correlated to the HAp PDF 9-432 standard 

[108] (correlation coefficient 0.99999), but have a greater d spacing.  This is equivalent to the HAp-RS 
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diffraction lines being shifted to lower 2θ values compared to the HAp PDF 9-432 standard [108].  The 

results confirmed that the Powder4 application was sufficiently capable of discerning the diffraction line 

locations.   

Table 4: Comparison of HAp reference standard to HAp PDF 9-432 and difference in d spacing 
PDF 9-432 [108] HAp-RS d spacing Difference 

Rel Intensity d (Å) Rel Intensity d (Å) d (Å) 
100 2.814 100 2.820 0.006 
60 2.778 54 2.791 0.012 
60 2.720 57 2.725 0.005 
40 3.440 31 3.453 0.013 
40 1.841 26 1.847 0.006 
30 1.943 25 1.948 0.005 
20 2.262 19 2.269 0.007 
20 1.806 12 1.809 0.003 
20 1.722 10 1.726 0.004 
18 3.080 16 3.095 0.015 
16 1.890 11 1.893 0.003 
16 1.754 9 1.756 0.002 
12 8.170    
12 3.170 8 3.183 0.012 
12 1.780 9 1.782 0.002 
10 4.070 4 4.107 0.037 
10 3.880 4 3.905 0.026 
10 2.148 5 2.152 0.004 
8 2.296 3 2.293 0.003 
8 2.065 5 2.070 0.005 
6 5.260 2 5.269 0.009 
6 2.528 4 2.538 0.010 
6 2.000 3 2.001 0.001 
6 1.871 4 1.875 0.004 
4 4.720    
4 2.134    
2 3.510    
2 2.228    
2 2.040    
   Average Difference (SD) 0.008 (0.008) 

 
The environmental and temporal samples both exhibited, on average, 12 of the HAp PDF 9-432 [108] 

diffraction lines.  The difference in d spacing was similar to the difference observed for the HAp-RS with 

an average environmental difference of 0.009Å, ±0.006Å and an average temporal difference of 0.009Å, 

±0.007Å.  The biologic HAp/C composite exhibited an average of 13 of the HAp PDF 9-432 [108] 

diffraction lines with an average d spacing difference of 0.018Å, ±0.023Å.  The d spacing of the 
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environmental, temporal, and biologic diffraction lines was positively correlated to the HAp PDF 9-432 

[108] (Table 5).  The biologic HAp/C samples had the highest correlation to the PDF 9-432 standard 

[108], followed by the temporal samples, and then the environmental samples. 

Table 5: Environmental, temporal, and biologic correlation results  
 Environmental HAp/C 

vs 
HAp PDF 9-432 [108] 

Temporal HAp/C 
vs 

HAp PDF 9-432 [108] 

Biologic HAp/C 
vs 

HAp PDF9-432 [108] 
Correlation 
Coefficient 

0.9978 0.9988 0.9990 

 
After evaluating the samples for the presence of HAp, environmental and temporal samples were 

compared to biologic HAp/C composite samples, from bone, to determine crystallographic differences 

due to the sample preparation of the biomimetic HAp/C composite.  The d spacing was not significantly 

different between the environmental, or temporal, specimens and the biologic HAp/C composite (p>0.05).  

Crystal structure related measures (intensity and FWHM) were obtained from the strongest peaks present 

in all specimens and analyzed for their effects.  The pH was found to have a significant effect on the 

intensity, where all pH levels were greater than the biologic HAp/C composite (p≤0.0377).  A linear 

trendline fit to the data shows the inversely proportional relationship between pH and intensity (Figure 

25).  The data for bone are plotted on the same chart showing its relative pH if its intensity followed the 

trendline equation, where the bone intensities were representative of the alkaline environment above a pH 

of 9.0.  As the pH increased, the FWHM breadth increased but the effect was not significant (p=0.4898).  

Again, bone is plotted showing its relative pH if its FWHM followed the trendline (Figure 26).  Bone 

FWHM values were representative of the acidic environment below a pH of 6.8.  Aging effects on 

intensity were also significant.  All aging durations had intensities greater than the biologic HAp/C 

composite (p<0.0001) and they increased with the duration (Figure 27).   The FWHM effects were 

inversely proportional to aging (Figure 28), but were not significant (p=0.1734).  Bone was plotted in 

both figures, as before, showing its relative aging duration should its intensity and FWHM follow the 

trendlines.  All aging intensities are well above bone which is closest to 6 hours.  The FWHM of bone is 

representative of the 24 hour aging duration. 
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Figure 25: Response of the normalized XRD intensities to changes in the pH of the mineralization solution.  
Normalized intensity of bone is shown at a representative pH. 
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Figure 26: Response of the normalized XRD FWHM to changes in the pH of the mineralization solution.  
Normalized FWHM of bone is shown at a representative pH.  
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Figure 27: Response of the normalized XRD intensity to changes in the duration of the mineralization reaction. 
Normalized intensity of bone is shown at a representative aging. 
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Figure 28: Response of the normalized XRD FWHM to changes in the duration of the mineralization reaction.  
Normalized FWHM of bone is shown at a representative aging. 
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Further crystallographic examination was performed by analyzing the crystallite size and unit cell 

lattice constants.  Figures 29-32 show the environmental and temporal effects on the crystallite size and 

the unit cell lattice constants a and c, respectively.  Crystallite size and unit cell lattice constants were also 

determined for the biologic HAp/C composite.  Environmental treatments decreased the crystallite size 

with increasing pH (Figure 29).  Bone’s crystallite size was representative of a pH 8.0.  Aging increased 

the crystallite size, where bone was representative of the 24 hour aging treatment level (Figure 30).  

However, the environmental and temporal crystallite sizes were not significantly different (p>0.05). 
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Figure 29: Crystallite size effects due to variation of the environmental conditions used to synthesize the biomimetic 
HAp/C composites.  Crystallite size of bone is shown at a representative pH. 
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Figure 30: Crystallite size effects due to variation of the temporal conditions used to synthesize the biomimetic 
HAp/C composites.  Crystallite size of bone is shown at a representative pH. 

 
The HAp unit cell lattice constants a and c, derived from the environmental experiments, showed an 

increasing trend up to a pH of 8.0 and then dropped at a pH of 9.0 (Figure 31).  The environmental lattice 

constant a was not significantly different than the biologic HAp/C composite, but the biomimetic HAp/C 

composite produced at a pH of 6.8 had a significantly smaller lattice constant c (p=0.0075).  The biologic 

HAp/C composites were representative of a pH between 7.4 and 8.0.  Temporal effects on the HAp unit 

cell lattice constant a increased with aging while the lattice constant c decreased.   The only significant 

effect was on the lattice constant c at an aging duration of 24 hours (p=0.0161).  The biologic HAp/C 

composites were representative of an aging duration less than 6 hours (Figure 32). 
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Figure 31: Unit cell lattice constant a (A) and c (B) effects due to variation of the environmental conditions used to 
synthesize the biomimetic HAp/C composites. 
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Figure 32: Unit cell lattice constant a (A) and c (B) effects due to variation of the temporal conditions used to 
synthesize the biomimetic HAp/C composites. 

 
4.3.4 Thermodynamic Model 

Solution chemistry and thermodynamic factors were modeled based on the HAp/C precursor 

solutions and expected solid precipitates formed.  The mineralization solution was supersaturated (σ>0) 

with respect to the calcium phosphate phases: DCPD, HAp, OCP, and TCP (Figure 33).  The relative 

supersaturations for these 4 phases all increased with increased pH except for DCPD, which decreased 

after reaching a maximum at pH 7.4.  The relative supersaturation of HAp exhibited an exponential 

A 

A 

B 

B 
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increase with increased pH.   The reaction chemical potential, as measured by the Gibb’s free energy 

(∆G), decreased for HAp, OCP, and TCP as the pH increased (Figure 34).  HAp had the lowest ∆G of all 

the expected calcium phosphate phases.  The ionic strength of the mineralization solution increased from 

a pH of 6.8 to a maximum at pH 7.4, then decreased as the pH increased to 9.0 (Figure 35).   
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Figure 33: Influence of the solution pH on the relative supersaturations of the expected calcium phosphate phases in 
the thermodynamic models. 
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Figure 34: Influence of the solution pH on the reaction chemical potential (∆G) of the expected calcium phosphate 
phases in the thermodynamic models. 
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Figure 35: Influence of the solution pH on the ionic strength of the thermodynamically modeled mineralization 
solutions. 
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4.4 Discussion 

The study aimed to characterize physicochemical and crystallographic properties of a biomimetic 

coprecipitation of calcium, phosphate, and collagen, with respect to bone.  Environmental and temporal 

effects were investigated with respect to the composition, phase, and crystallography of a biomimetic 

HAp/C composite as it compares to that of natural bone. 

Environmental changes in solution pH significantly impacted the composition of the biomimetic 

HAp/C composite.  The mineral fraction of the biomimetic HAp/C composite was stable at or below a pH 

of 8.0, but increased when the pH increased to 9.0.  The mineral fraction was 83-84% when the pH was 

below 9 and was in agreement with calculations of the final mineral to collagen composition of 

approximately 85:15, based on the starting concentrations of the precursor solutions.  At these 

percentages of mineralization, a portion of the available calcium and phosphate would be expected to 

remain in solution when equilibrium was reached and balanced the ion adsorption and dissolution rates [8, 

11, 111].  When the pH was increased to 9, the mineral fraction also increased.  An increased mineral 

fraction may result from the increased alkalinity slowing the dissolution event [111].  Thermodynamic 

modeling supports the increased mineral fraction, whereby the increased alkalinity predicted an 

exponential increase in the supersaturation and a decrease in the free energy, both of which would favor a 

greater driving force for the precipitation of HAp.  However, the 88% mineral fraction of the HAp/C 

composite at a pH of 9 was greater than which could be accounted for by calcium phosphate precipitation 

alone.  Two factors may contribute to the increased mineral content: (1) increased pH produces a net 

negative surface charge [11] and (2) the decrease in ionic strength at pH 9 increases the Debye length [11, 

33].  Together, these two factors may increase the affinity for K+ and Na+ ions.  EDS measurements did 

note the presence of potassium, sodium, and chlorine, although these foreign ion inclusions were not 

quantified [154].  The foreign ion inclusions may have been significant enough to increase the measured 

mineral fraction.        

X-ray diffraction analysis of samples produced in the environmental and temporal experiments 

indicated a predominant HAp phase.  Dominant diffraction lines in these samples correlated to those from 
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the PDF 9-432 HAp standard [108].  Additional peaks corresponding to DCPD, TCP, OCP, and CHAp 

were found in the samples, but it was not clear which of these phases were prevalent among the different 

treatment levels in the biomimetic composites because there was significant peak overlap due to line 

broadening.  These results were not unexpected as the pH range favored the more stable HAp formation.  

A more acidic environment would be required to favor a DCPD phase or stabilize an OCP phase [8, 11].  

If calcium phosphate phases other than HAp presented, it would be expected in the temporal experiments 

conducted with aging durations of 6 and 12 hours.  However, mineralization experiments have shown that 

complete transformation to HAp can be achieved in 12 hours or less in physiologic or alkaline 

environments [7, 9, 35].  A confounding factor that may make it difficult to discern the presence of 

additional phases is the inclusion of collagen.  Collagen exhibits an XRD pattern with a peak located at 

approximately 8° degrees and a very broad peak at approximately 20° [113-115].  The broad peak at 20° 

may create significant peak overlap and contribute to the increased background profile that was subtracted 

using automated detection methods.  The result could include obscuring the presence of small quantities 

of additional phases because, as quantitative phase analysis methods indicate, the relative intensity of a 

particular phase is proportional to the amount of that phase present [76, 116].  Ultimately, small quantities 

of alternate calcium phosphate phases may be lost to noise.  The results from this analysis suggest that the 

phase of the composite produced by our methods was not sensitive to environmental or temporal effects.  

While the XRD results indicated that the calcium phosphate phase was not affected by the 

environment or aging duration, the Ca/P molar ratio was sensitive to environmental but not temporal 

effects.  The Ca/P molar ratio may be an indicator of the phase.  As the pH increased, the Ca/P molar ratio 

increased.  At physiologic pH and below, the mineralized HAp/C composite exhibited a calcium deficient 

HAp phase or ACP or TCP phases, which both have a stoichiometric Ca/P molar ratio of 1.5.  The Ca/P 

molar ratio increased above the stoichiometric ratio for HAp when the pH was alkaline.  ACP content 

may influence the Ca/P molar ratio across all pH levels.  ACP is favorable at high supersaturation [8] and 

may achieve a ratio >1.5 depending on foreign ion incorporation, the pH and supersaturation levels [117].  

The XRD patterns and the thermodynamic models support this finding.  The XRD patterns of these 
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samples indicated a HAp phase for all pH levels, a decreased crystallinity at increasing pH, and it was 

observed that the background mimicked an ACP-RS reference in both shape and intensity across all pH 

levels.  At acidic and physiologic pH the resultant phase may be a mixture of ACP and HAp.  Mixtures of 

DCPD, OCP, or TCP are not supported by the data since their associated peaks were not of high intensity 

or quantity.  At the alkaline pH levels, the increased Ca/P molar ratio is readily explained by foreign ion 

inclusions, specifically carbonate ions [11, 112, 117-119].  Carbonate inclusions have been observed 

arising from dissolved CO2 gas in the mineralization solutions [120].  Carbonate has also been shown to 

be more readily included at elevated pH levels [26].  No precautions were taken to exclude dissolved CO2 

in the mineralization solutions from forming carbonate in these experiments.  Other evidence supporting 

the role of carbonate substitutions for increasing the Ca/P molar ratio is provided by the analysis of the 

unit cell lattice constants.  Carbonate substitutions for the phosphate ion, type B carbonate, yields a 

decrease in the unit cell lattice constant a and increase in c [112, 121, 122].  The lattice constant c was 

observed to increase with increasing pH.  However, the lattice constant a increased from pH 6.8 to 8.0 and 

then decreased at a pH 9.0, which is suspected of having the greatest carbonate content due to its highest 

Ca:P ratio.  Although the unit cell lattice constant a did not behave according to the preceding description, 

both it and the lattice constant c were observed to have similar values as those reported by Ivanova (2001) 

[123].  Unfortunately, confirmation of a CHAp phase from the experimental conditions of the obtained 

XRD patterns is difficult due to the proximity of the CHAp diffraction peak locations with respect to the 

HAp diffraction peaks, especially where peak overlap occurs.  The Ca/P molar ratio was not sensitive to 

temporal effects, as the ratio was constant across the three aging levels.   

The study also examined crystallographic changes of the HAp/C composite due to environmental and 

temporal effects and compared those to that of natural bone.  Analysis of the X-ray diffraction patterns 

suggested that the diffraction line broadness (FWHM) of biomimetic HAp/C composites were not 

different than the biologic HAp/C composite.  No differences were detected between the biomimetic 

HAp/C composite and biologic HAp/C composite.  However, increased diffraction intensities were 

observed between environmental samples produced at a pH of 6.8, 7.4, and 8.0 and bone, as well as 
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between temporal samples aged 6, 12, and 24 hours and bone, suggesting that the only biomimetic HAp/C 

composite that was not more crystalline than the biologic HAp/C composite was those samples prepared 

in an alkaline environment with a pH of 9.  No crystallite size or unit cell lattice constant a differences 

were detected between biomimetic and biologic composites    Although no differences were found, the 

crystallite size of the pH 8.0 and 24 hour samples and the lattice constant a of pH 8.0 and 6 hour samples 

most closely approximately the crystallite size and lattice constant a of bone, respectively.  There were 

differences found for the unit cell lattice constant c.  Environmental samples prepared at pH 6.8 and 

temporal samples aged 24 hours both had a significantly smaller lattice constant c compared to bone.  The 

lattice constant c of the pH 7.4 and 6 hour samples most closely approximated that of bone.  On the basis 

of the crystallographic characteristics, an environment with a pH between 7.4 – 8.0 and an aging duration 

of 6 hours may possess the most bone-like crystallographic characteristics.  However, these 

environmental and temporal treatment levels possessed significantly greater crystallinity, given their XRD 

intensity levels.  The contributions of ACP and collagen to the XRD background profile of bone may be 

responsible.  Their broad peaks and intensity, relative to the crystalline phase, were subtracted as 

background, which may have significantly reduced the crystalline intensities relative to the experimental 

samples.   

Within the environmental and temporal treatment groups the observed trends in intensity and FWHM 

were coupled as expected.  As the pH increased the diffraction intensity decreased and the FWHM 

increased.  Decreased intensity and increased broadness are associated with lower crystallinity.  In 

contrast, as the aging duration increased the diffraction intensity increased and the FWHM decreased 

indicating increased crystallinity.  The elevated pH levels, if accompanied by a high supersaturation, 

could lead to increased ACP content and the decreased crystallinity [8].  In this study, the increased 

amorphous phase may be responsible for the observed broad background peaks, which are an indication 

of the non-crystalline ACP phase [117, 124-126].  These observations suggest that crystallinity was 

inversely proportional to pH and proportional to aging. 
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4.5 Conclusions 
 

Solution environment has a greater effect on the mineral fraction and the calcium to phosphorus ratio 

than the resultant mineral phase.  Unlike other reports [34-37], these results demonstrate that the effects of 

pH on the resultant calcium phosphate phase appear to be desensitized by the simultaneous fibrillogenesis 

of collagen in the mineralizing solution (i.e. no alternate calcium phosphate phases were found aside from 

HAp).  While the phase was not sensitive to changes in pH, the crystallinity, unit cell lattice constant c 

and Ca/P ratio were all affected.  The changes in Ca/P ratio may be indicative of the carbonate content.  

Mineralization duration does not influence the calcium phosphate phase, but does affect the crystallinity 

and unit cell lattice constant c.  This study showed that a HAp/C composite, synthesized in an 

environment with a pH between 7.4 to 8.0 and aged for 6 hours, can be tailored to approximate the 

physicochemical properties of a biologic HAp/C composite. 
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CHAPTER 5 - QUANTIFICATION OF COLLAGEN FIBER ALIGNME NT IN A THREE 

DIMENSIONAL HAP/C COMPOSITE SCAFFOLD 

5.1 Introduction 

Hydroxyapatite-collagen (HAp/C) composites are biocompatible materials that exhibit bonelike 

physicochemical characteristics, of which the latter was shown in the previous chapter.  However, the 

mechanical properties of these composites are one or more orders of magnitude less than bone.  One 

physical characteristic of bone that is not present in these HAp/C composites is an ordered arrangement of 

the collagen fibers.   

In bone, there is an ordered arrangement of collagen within osteons.  This ordered arrangement gives 

rise to the extinct or bright appearance of successive lamellae when examined under polarized light [127].  

It is generally accepted that there is a change in the collagen orientation from lamella to lamella [49, 53] 

and also within lamellae [58].  Thus, it is collagen’s orientation that causes the extinct or bright 

appearance of the lamellae.  

Collagen fibers will appear brightest in linearly polarized light when oriented at 45º to the crossed 

polarizer and analyzer (crossed polars) of a polarized light microscopy (PLM) system [50, 55, 128, 129].  

The brightness of the fibril will diminish as it is aligned out of the polarizing plane or at an angle less than 

45º to the crossed polars.  Collagen fibers will become extinct when perpendicular to the polarizing plane 

or parallel to a polarizing axis [50].  Given this pattern of extinction, an extinct lamella could only have 

longitudinally oriented collagen fibrils when it is extinct throughout all of the observable positions 

relative to the polarizing plane.  In this manner, prior research has shown that collagen fibers in bone are 

organized in their alignment within osteons.        

Experimental correlation of collagen alignment and mechanical properties shows that the aligned 

fibers have an impact on the resultant mechanical properties.  Collagen acts to both toughen [94-97] and 

strengthen [81, 130] bone.  The latter property is evident in bending and tensile loading environments.  

Studies of collagen alignment in the cortices of long bones suggest that the collagen fibers preferentially 

align to the loading environment [39, 46, 54, 56], where longitudinal collagen alignment dominates in the 
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tensile cortex of cortical bone.  Mechanical tests indicate an increased tensile strength in areas of greater 

longitudinally aligned collagen [39, 46, 54, 56, 130]. 

Preferred collagen fiber alignment is hypothesized to produce incremental tensile strength in 

preparations of three dimensional HAp/C composite scaffolds.  The goal of this study was to induce a 

preferential collagen alignment in a HAp/C composite scaffold.  Polarized light microscopy is used to 

evaluate the degree of alignment in the scaffold. The correlation of collagen alignment to the mechanical 

properties is the subject of a subsequent investigation and will be presented in the next chapter.   

5.2 Materials and Methods 

A biomimetic process of collagen mineralization was used, where the mineralizing calcium and 

phosphate ions are coprecipitated in an assembling collagen matrix.  The starting calcium and phosphate 

concentrations and pH where chosen based on the stoichiometric calcium to phosphorus ratio of HAp and 

physiologic pH, respectively.  Three dimensional (3D) HAp/C composite scaffolds were produced by a 

novel extrusion method developed to induce a varying degree of collagen alignment.  Taking advantage 

of the birefringent properties of collagen, PLM techniques were employed to analyze and quantify fiber 

alignment. 

5.2.1 Mineralization Solutions 

Mineralization precursor solutions were prepared by separating the calcium and collagen into one 

solution and the phosphate into another, before combining.  Collagen was extracted from rat tail tendons, 

dried, and was subsequently dissolved in 0.01M HCl, having a collagen concentration of 1 mg/mL.  

Calcium and collagen were combined by adding 72 mL of 0.4 M CaCl2 to 400 mL of the dissolved 

collagen.  A potassium phosphate solution was prepared by adding a 1.6 M KH2PO4 stock solution to a 

2.1 M K2HPO4 stock solution in a 20:80 volume ratio to achieve a pH of 7.4.  Separately, a neutralization 

buffer was prepared by combining 107 mL of 0.5 M tris(hydroxymethyl)aminomethane (pH 7.4 with 

HCl) and 73 mL of 2 M NaCl.  The potassium phosphate solution (8.6 mL) was added to 108 mL of the 

neutralization buffer and 211 mL of ddH2O.  The mineralization reactions were initiated by combining 

328 mL of the phosphate neutralization buffer to 427 mL of the calcium/collagen solution, with a starting 
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pH of 7.4, which decreased to 6.8.  The concentrations were estimated to produce a calcium to phosphate 

(Ca:P) ratio of approximately 1.67 and a mineral:collagen content of 85:15. 

5.2.2 HAp/C Specimen Preparation 

The calcium/collagen and phosphate precursor solutions were combined in a central reaction vessel.  

The reaction vessel was maintained at 37ºC in a water bath.  After combining, the solution was allowed to 

react, or age, for 18 hours.  At the end of the 18 hour aging period, the mineralized collagen was 

recovered by vacuum filtration.  Wet slurries of HAp/C were placed in the barrel of a custom made screw 

extruder and extruded into a 5 × 5 × 30 mm mold (Figure 36).  Specimens were extruded to produce one 

of three expected levels of collagen alignment: 1) high longitudinal alignment (HLA); 2) low longitudinal 

alignment (LLA); and 3) random alignment (RA).  The alignment levels corresponded to the type of 

breaker plate, or lack of plate, placed in the path of the extrudate.  Breaker plates are screens that impart 

an increase in the extrudate flow resulting in the induction of fiber alignment (is there reference for this 

statement?).  Reducing the hole dimension of the breaker plate is associated with increased alignment.  

The HLA and LLA fabrication methods utilized breaker plates with different sized hole dimensions (HLA 

holes < LLA holes) and the RA method did not use a breaker plate.  Each group consisted of 7 specimens 

for a total sample size (n) of 21.  The 5 × 5 × 30 mm molded beam specimens were compacted under a 

static pressure of 2.04 MPa for 17 hours.  After molding and compaction, the beams were removed from 

the mold and placed in a -80ºC freezer until they were dried by lyophilization. 
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Figure 36: HAp/C composite extruder and mold assembly showing direction of screw ram travel when extruding the wet 
composite slurry into the mold. 
 

Sections of the dried specimens were then obtained and prepared for PLM analysis.  Each specimen 

was successively sectioned along half the length to obtain PLM sections in the three planes; transverse 

plane (T-plane), compaction plane (C-plane), and extrusion plane (E-plane) (Figure 37).  To orient the 

reader: the direction of extrusion was the longitudinal direction of the beam in the x-direction; the 

compaction direction was perpendicular to the x-y plane; and the transverse direction was perpendicular 

to the length of the beam in the y-z plane.  Each of the three specimen sections were embedded in the 

Technovit embedding media (EXAKT Advanced Technologies GmbH, Norderstedt, Germany).  Prior to 

embedding the sections were prepared by: 1) fixing in 10% neutral buffered formalin (NBF) for 48 hours; 

2) washed; 3) demineralized in 10% EDTA for 24 hours; 4) washed; 5) dehydrated in successive alcohol 

concentrations for 1 hour each (75%, 95%, 100%, 100%, 100%); 6) infiltrated in 50:50 solution of 

Technovit and alcohol for 8 hours; 7) and then infiltrated in 100% Technovit for 16 hours; at which point 

the specimens were ready for embedding.  Cut sections were placed in the embedding mold and covered 



69 

 

with the liquid Technovit media and placed under a blue light to cure for 24 hours.  Embedded sections 

were mounted to slides, then ground and polished to a thickness of 200 µm. 

 
Figure 37: Schematic drawing of extruded HAp/C composite beams illustrating the PLM sections.  Sections were prepared to 
analyze the transverse, compaction, and extrusion planes. 
 

Specimen sections mounted to the slides were oriented such that the section faces containing the 

analysis plane were parallel to the microscope stage and perpendicular to the direction of the light path.  

The section planes allowed quantification of the fiber alignment in each of the three planes: extrusion, 

compaction, and transverse.  Imaging the E-plane enabled quantification of the collagen fiber alignment 

due to the extrusion method.  The T-plane enabled quantification of the fiber alignment due to the 

compaction while the C-plane quantified a combination of the two. 

5.2.3 Polarized Light Microscopy Image Analysis 

Specimen planar sections were viewed under microscope (Nikon Optiphot-2, Tokyo, Japan) with 

linearly polarized light at a magnification of 100x.  Two polarizing filters, a polarizer and analyzer (Nikon 

Optiphot-2, Tokyo, Japan), were placed above and below the specimens with their polarizing directions 

crossed at 90° to each other (crossed polars).  Each specimen planar section was imaged twice, once at an 
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angle of 0° relative to the polarizer and the other at an angle of 45°.  Digital images were captured by a 

high resolution digital CCD color camera (Evolution MP Color, Media Cybernetics, Bethesda, MD, USA) 

in a montage sequence via commercial image acquisition and stage control software (Image Pro Plus, 

Media Cybernetics, Bethesda, MD, USA).  Each image in the montage sequence had a resolution of 1280 

x 960 pixels.  Total image size was on the order of 5000 x 5000 pixels, or greater. 

In theory, when viewed with crossed polars the collagen fibers will appear extinct when their optical 

axis (long axis) is aligned parallel (0°) to the polarizing direction of the polarizer.  The fibers will be 

brightest when their optical axis at an angle of 45º to the direction of the polarizer.  However, if the 

thickness of the section retards the light by a full integer of a wavelength (i.e.: nλ, where n = 1, 2, 3 …), 

then the fibers lying in plane will appear extinct (Figure 38).  The extinct fibers are visible due to the 

background light intensity and exposure duration.  Thus, the polarized light images allow us to visualize 

the collagen fiber alignment and to apply mathematical techniques to quantify the degree of alignment.   
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Figure 38: PLM image of specimen section oriented at 45° relative to the polarizer.  Note the bright fibers at the upper left and 
bottom right of the specimen (black arrows) while there are extinct fibers along the upper right (grey arrows).   Crossed arrows 
indicate polarizer and analyzer orientation.  Long arrow at bottom of specimen section indicates the direction of preferred fiber 
alignment. 
 

Fiber alignment analysis utilized the discrete Fourier transform (DFT) method [71, 72].  Prior to 

applying the DFT method directly to the polarized light grayscale images, they were background 

corrected, rotated if necessary, and cropped using digital image processing software (ImageJ, 

http://imagej.nih.gov/ij, National Institutes of Health, Bethesda, MD, USA).  Briefly, the DFT technique 

performs a Fourier transform on the grayscale pixel intensities of an image and produces a centered power 

spectrum image [72] (Figure 39).  There is a radial alignment of the  
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Figure 39: DFT of the grayscale image (A) to the centered power spectrum image (B).  Note the hour glass shape of the power 
spectrum oriented vertically (B).  The DFT rotates peaks due to the original object orientation by 90º in the frequency domain.  
Also, original objects with a curvature generate an hour glass spectrum in the frequency domain [65]. 
 
spectral intensities of the power spectrum in frequency space, whose angular orientation correlates to the 

oriented objects in the original image.  From the spectral image, the intensities can be radially averaged 

and bandpass filtered to obtain a radial orientation distribution of the original image that is offset by 90° 

[65, 71].  The radial distribution can then be integrated to obtain an orientation tensor in the following 

form [71]: 

  F = -π/2∫
π/2 r (θ)     r (θ) DFT(θ) dθ      (1), 

where r (θ) x r (θ) is the dyad product equal to: 

r (θ)     r (θ) =  | cos2θ           cosθsinθ |     (2) 
  | cosθsinθ           sin2θ | 

The eigenvalues and eigenvectors can be obtained when the orientation tensor (F) is solved.  The 

eigenvalues allow computation of the anisotropy index (α), which is a measure of the degree of alignment 

[71]: 

  α = 1 – λ1 / λ2        (3), 

where λ1 and λ2 are the eigenvalues and λ1 is less than λ2.  An anisotropy index of 1 indicates perfect 

alignment while an index of 0 indicates isotropic alignment.  Obtaining these values from the image pixel 

A B 
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data is done by applying the DFT to the original cropped image using the 2D DFT plug-in for ImageJ 

[72], which produces the power spectrum image.  Bandpass filtering and obtaining the radial distribution 

function is accomplished using the Azimuthal Average plug-in for ImageJ.  The lowpass and highpass 

cutoff frequencies were estimated to be 60 Hz and 300 Hz, respectively.  This corresponded to image 

fiber diameters of 5 to 25 pixels.  

5.2.4 Data Analysis 

At the onset of this study, it was expected that the synthetic HAp/C composites would be more porous 

than in cortical bone and would not possess the morphological features of osteons as observed in PLM 

studies of cortical bone.  It was also anticipated that the fibers would possess a degree of alignment in 

more than just the preferred longitudinal direction of interest.  Therefore, it was necessary to utilize a 

direct quantification method with greater sensitivity than previous PLM methods [39, 56, 57], which the 

DFT method provided, and to quantify the degree of alignment in an alternate section orientation other 

than the preferred orientation.  The 0° section orientation was chosen because the fibers aligned in the 

preferred direction would be extinct and could be reduced to the background intensity with a reduction in 

the exposure duration so that they would not contribute to a measure of the anisotropy at this angle.  If the 

degree of anisotropy then increased in the preferred direction when the section was oriented at 45°, this 

would indicate that there was a preferential inducement of the collagen fiber alignment.  Thus, the 0º 

section orientation served as a measure of the specimen baseline degree of alignment and the 45º 

orientation was a measure of the preferred degree of alignment. 

Radial distribution functions, eigenvalues, and anisotropy indices were obtained for each specimen 

plane at both image orientations.  The radial polar plots provided a visual observation of the quantified 

planar alignment of the collagen fibers while the anisotropy indices were used for comparison between 

specimen planes at both of the orientations.  Initial anisotropy index comparisons were made between the 

E-, C-, and T-planes and within the plane orientations at 0º and 45º to first assess in-plane changes in the 

anisotropy index due to the specimen section orientation.  Next, the data was grouped by the extrusion 

fabrication methods RA, LLA, HLA to assess the extrusion effects.  In both cases, a repeated measures 
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ANOVA was performed using commercially available software (SAS JMP, SAS Institute, Cary, NC, 

USA).  and significance was set to 0.05.  

5.3 Results 

Radial orientation distributions were obtained from the power spectrum images and plotted in polar 

coordinates.  The resultant polar plots give a visual interpretation of the frequency data (Figures 40 & 41).  

Specimen planar sections oriented at 0º typically produced circular (Figure 40A) or square (Figure 41A) 

radial orientation distributions.  Those same planar sections oriented at 45º produced circular or elliptical 

(Figure 40B and Figure 41B) radial orientation distributions.  The square distributions have their corners 

oriented at 45º in each quadrant while the elliptical distributions are closely aligned to the horizontal 

direction or vertical direction and both are associated with a higher anisotropy index than the circular 

distributions.  The PLM image and associated power spectrum for the square radial distribution of Figure 

41 is shown in Figure 42.  Note the increased intensities on the two approximately 45º diagonals in the 

frequency domain (Figure 42B).   

 
Figure 40: Polar plots showing the change in the radial orientation distribution from a planar section oriented at 0º (A) and 45º 
(B).  Planar section is from the same specimen shown in Figure 4, which was oriented at 45º. 
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Figure 41: Polar plots showing the alternative square radial distribution from a planar section oriented at 0º (A) and the 
corresponding elliptical distribution at 45º (B).  Square and elliptical distributions are associated with a higher anisotropy index 
compared to circular distributions. 
 

 
Figure 42: DFT of the grayscale image (A) to the centered power spectrum image (B) for the specimen planar section shown in 
Figure 41, with a square radial distribution at 0º. 
 

The anisotropy indices (α) for each planar section at both imaging orientations were obtained for all 

specimens.  An initial comparison was made between the three specimen planes (E-plane, C-plane, and T-

plane) and within the plane orientations at 0º and 45º to assess in-plane changes in the anisotropy index 

due to the specimen section orientation (Figure 43).  The average anisotropy index of the planar sections 

increased from the 0º orientation to the 45º orientation (p=0.0171), but of all the planes the anisotropy 
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index was lowest in the E-plane (p>0.0001).  The increased anisotropy in the C-plane from the 0º 

orientation to the 45º orientation was the only statistically significant intraplanar anisotropy increase 

(p=0.0031).   
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Figure 43: Intraplanar anisotropy chart of the individual and combined effects of extrusion and compaction. 
 

Planar sections orientated at 45º to the crossed polars in the PLM setup indicated the extent to which 

the degree of alignment was due to the composite fabrication.  The T-plane anisotropy is representative of 

the specimen compaction induced fiber alignment while the E-plane anisotropy is representative of the 

extrusion induced fiber alignment.  C-plane anisotropy is a combination of the compaction and extrusion 

and the anisotropy was the highest of all the planes.  Anisotropy in the T-plane was the next highest.  

These data indicate that compaction was responsible for the preferred fiber alignment to a greater extent 

than extrusion (p=0.0052).  Also, compaction and extrusion together further increased the extent of fiber 

alignment in the preferred direction, but was only significantly greater than extrusion alone (p<0.0001). 

Next, the HAp/C composite extrusion method was included in the analysis to determine the effects of 

the RA, LLA, and HLA methods on the preferred collagen fiber alignment (Figure 44).  The extrusion 
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methods generally followed the intraplanar trends noted above.  C-plane and T-plane anisotropies were 

higher than in the E-plane and the anisotropies increased in the 45º orientation.  These trends held except 

in the case of the RA fabrication method where the anisotropy in the E- and T-plane decreased for the 

45ºorientation.  Overall, the analysis showed that the extrusion effects alone were not different between 

the RA, LLA, or HLA extrusion methods (p=0.3447).   However, within the fabrication methods, the C-

plane anisotropy of the RA method and the T-plane anisotropy of the HLA method were significantly 

greater in the 45º orientation, p=0.0177 and p=0.0473, respectively.   Of the three fabrication methods, the 

LLA method produced the largest extrusion related anisotropy increase in the E-plane. 
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Figure 44: Intraplanar anisotropy chart of the individual and combined effects of extrusion and compaction for each of the 
HAp/C composite fabrication methods: RA, LLA, and HLA. 
 
5.4 Discussion 

Preferred collagen fiber alignment is a possible factor for increasing the tensile strength in synthetic 

3D HAp/C composite scaffolds.  The goal of this study was to quantify the extent to which a novel 

extrusion process would induce a preferential collagen fiber alignment in a HAp/C composite scaffold.  

The study hypothesized that increased hydrodynamic shear flow would increase the alignment of collagen 
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fibers and that the alignment would be in a preferred direction.  Preliminary scaffold fabrication trials 

resulted in the modification of the fabrication protocol.  Initially, the extruded scaffolds retained an 

excessive water content that left them too porous and as a result, too fragile for lyophilization and post 

drying handling.  The solution was to modify the molds to allow the excess water to be driven off by 

compaction.  Compaction had also been shown to have the benefit of increasing the mechanical properties 

in other HAp applications, but with mineral preparations only or in preparations without concern for 

collagen fiber alignment [2, 131].  A second protocol modification arose after the original SEM image 

modality was abandoned due to specimen preparation issues.  Specifically, SEM imaging of collagen 

alignment required demineralization which resulted in excessive fiber matrix shrinkage when dried.  The 

solution was to embed the demineralized collagen network and pursue a new polarized light microscopy 

based quantification protocol, the one used in this study.  Polarized light microscopy was successfully 

used and combined with quantitative methods to evaluate the degree of alignment in the scaffold.   

Polarized light microscopy was successfully used to visualize collagen fiber alignment in a synthetic 

3D HAp/C composite scaffold.  Birefringent fiber patterns were observed, imaged, and resolved for 

quantitative analyses.  The degree of collagen fiber alignment from PLM images was then quantified 

using established techniques for fibrous networks [65, 71, 72].  The level of anisotropy was shown to 

increase in the preferential direction as a result of the combined effects of extrusion and compaction 

fabrication methods.   

The goal of extruding the HAp/C composite was to increase the degree of fiber alignment in the 

longitudinal direction of the specimens.  Results from analyzing the fiber alignment in the E-plane of the 

three extrusion process types showed that the use of the breaker plates while extruding the LLA and HLA 

specimens increased the anisotropy in this direction relative to the baseline anisotropy.  Extrusion without 

the breaker plate actually showed a decreased anisotropy in the longitudinal direction relative to the 

baseline.  This was to be expected, but it was not expected that the LLA specimens would exhibit a 

greater anisotropy than the HLA specimens and a greater change in anisotropy from the baseline.  This 

may be a result of extrusion instabilities or fractures [132-135] occurring during extrusion of the HLA 
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specimens.  An instability commonly referred to as “sharkskinning” occurs when surface cracks occur 

and curl perpendicular to the direction of flow.  The surface cracks appear “saw-toothed” and are caused 

by surface accelerations at the exit of the die (or breaker plate in this study) that increases the surface 

tensile stresses beyond the tensile strength of the extrudate [136].  A more severe instability is gross 

fracture where high shear rates are developed between the extrudate surface and wall of the die causing 

compression of the extrudate beyond the exit of the die [133].  These defects may lead to distortions in the 

fiber alignment and the decreased anisotropy of the HLA specimens.  This phenomenon is supported by 

the results from the T-plane data.  The HLA specimen alignment in this direction was significantly 

increased over the baseline.  In fact, the anisotropy was the highest for the HLA group compared to the 

LLA and RA specimens.  Overall, the data suggest that the LLA extrusion method produced a higher 

degree of alignment than the other two methods in the preferred direction of the extrudate flow, 

corresponding to the longitudinal direction of the specimens.      

Modification of the extruder may eliminate the extrusion instabilities attributed to causing the 

reduction in the HLA fiber alignment.  Extruder modification may improve the degree of fiber alignment 

for both the HLA and LLA extrusion process types.  The instabilities arise from the excessive surface 

shear and tensile stresses at the wall of the die and after the exit, respectively.  The stresses cause 

turbulent flow in the extrudate exiting the die, which might be eliminated by a funneled approach to the 

die opening and creating laminar flow [135].  Modifying the extruder breaker plate would require a 

funneled approach to the breaker plate holes.  The funnel would create a gradual increase in the extrudate 

stresses, thus initiating the fiber alignment further upstream from the onset of the breaker plate and 

prevent the extrudate fracture instabilities from distorting the fiber alignment.  However, it is unknown 

whether this type of funneled breaker plate could feasibly be manufactured for the 0.3 mm hole size used 

for the HLA method or even for the 1.0 mm hole size for the LLA method.  Therefore, the optimal hole 

size and design may be that used with the LLA method since it produced the highest degree of fiber 

alignment in the preferred direction. 
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The E-plane and T-plane alignment responses are indicative of the individual extrusion and 

compaction contribution to changes in the degree of fiber alignment, respectively.    Both planes exhibited 

increased alignment over their respective baseline measures, but the increases were not statistically 

significant.  The compaction only contribution to fiber alignment was significantly greater than the 

extrusion only contribution.  The breakthrough finding was that the combination of the two, measured in 

the C-plane, contributed to a statistically significant increase over the baseline anisotropy.  This 

significant anisotropy increase was preferentially aligned in the longitudinal axis of the specimens, which 

would provide a direct relationship with the resultant mechanical properties.  The goal of inducing a 

preferential collagen fiber alignment in a HAp/C composite scaffold was achieved.  The hydrodynamic 

shear flow produced an incremental alignment and when coupled with the compaction process the 

resultant fiber alignment was induced and increased in a 3D HAp/C composite scaffold. 

5.5 Conclusions 

The application of extrusion and compaction fabrication methods was successfully employed to 

induce a preferred collagen fiber alignment in a synthetic 3D HAp/C composite scaffold.  The 

combination of extrusion and compaction significantly increased the collagen fiber alignment in the 

preferential direction over baseline measures.  Extrusion breaker plates imparted an increased degree of 

alignment versus not using them.  The larger hole dimension used in the LLA extrusion method induced 

greater alignment than the smaller hole dimension in the HLA method.  The optimal hole size and design 

may be the current LLA extrusion process method.  Although the resultant anisotropies in the study were 

found to be relatively low (α = 1 is completely aligned and α = 0 is isotropic alignment), it is expected 

that the degree of alignment can be increased with incremental compaction and modification to the 

extruder design, as discussed above.  Design modification may initiate fiber alignment earlier in the 

extruder body and prevent the extrudate fracture instabilities from distorting the fiber alignment.  Also, 

compaction pressures two orders of magnitude greater than the compaction pressure used in this study 

were shown to produce composite mechanical properties less than an order of magnitude lower than 
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cortical bone [2].  The PLM technique was successfully employed with quantitative methods to analyze 

and evaluate the degree of collagen fiber alignment in 3D HAp/C composite scaffolds.   
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CHAPTER 6 - MECHANICAL PROPERTIES OF A PREFERENTIAL LY ALIGNED 

HYDROXYAPATITE-COLLAGEN COMPOSITE SCAFFOLD 

6.1 Introduction 

Bone’s hierarchical structure lends to its mechanical properties.  Collagen molecules are ordered in a 

close packed arrangement that is mineralized by crystals observing a longitudinal orientation in concert 

with the collagen [41, 42, 102]. Further up the length scale, concentric lamellar sheets of mineralized 

collagen align to the applied physiologic stresses [39, 54, 56].  The result is a composite material that 

maximizes its strength and toughness in preferred orientations concomitant with the applied loading 

conditions. 

Hydroxyapatite-collagen (HAp/C) composites are a synthetic bone analogue that closely resembles 

the constituent materials of bone, namely hydroxyapatite mineral crystals and collagen fibers.  Several 

precipitation techniques have been employed to synthesize HAp/C composites: 1) HAp precipitation onto 

a collagen matrix [36, 37], 2) HAp precipitation onto single collagen fibers [34], and 3) coprecipitation of 

HAp and collagen [2, 137, 138].  Ideally, a biomimetic bone analogue should mimic not only the 

constituent materials, but the composition of those constituents (mineral fraction) and, to the extent 

possible, the morphology (collagen alignment).  Mineralization of existing collagen gels, sheets, or 

individual fibers result in compositions with mineral fractions less than that of bone.  Coprecipitation 

addresses the issue of reduced mineral fraction but the collagen alignment is often random within the 

composite.  One coprecipitation alignment method employed a freezing technique to induce collagen 

alignment, but the resultant composite was very porous [138], to the point that the collagen orientation 

would not aid in the improvement of the mechanical properties.  

This chapter reports on the mechanical response to preferred collagen fiber alignment.  This is the 

second part of the collagen alignment study conducted in the previous chapter.  That previous study 

synthesized a HAp/C composite that was compositionally similar to bone and employed a novel extrusion 

process that induced a preferred orientation of the collagen fibers.  The objective of the current study was 
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to determine the extent that the preferred collagen alignment would increase the mechanical properties of 

the HAp/C composite.    

6.2 Materials and Methods 

The current study builds upon the biomimetic mineralization process and three dimensional (3D) 

HAp/C composite scaffold fabrication method examined in Chapter 5 - Quantification of Collagen Fiber 

Alignment in a Three Dimensional HAp/C Composite Scaffold.  The mineralizing calcium and phosphate 

ions were coprecipitated in an assembling collagen matrix with conditions mimicking the physiologic 

environment.  During the fabrication of the 3D HAp/C composite, the degree of collagen alignment was 

varied in order to study the effects of collagen alignment on mechanical strength. 

6.2.1 Mineralization Solutions 

Mineralization precursor solutions were prepared as in Chapter 5 - Quantification of Collagen Fiber 

Alignment in a Three Dimensional HAp/C Composite Scaffold.  Briefly, an acidic solution of calcium 

and collagen was combined with a phosphate containing neutralization buffer.  The mineralization 

reactions were initiated by combining 328 mL of the phosphate neutralization buffer to 427 mL of the 

calcium/collagen solution, with a starting pH of 7.4, which decreased to 6.8.  The concentrations were 

estimated to produce a calcium to phosphate (Ca:P) ratio of approximately 1.67 and a mineral:collagen 

content of 85:15. 

6.2.2 HAp/C Specimen Preparation 

The calcium/collagen and phosphate precursor solutions were combined in a central reaction vessel.  

The reaction vessel was maintained at 37ºC in a water bath.  After combining, the solution was allowed to 

react, or age, for 18 hours.  At the end of the 18 hour aging period, the mineralized collaged was 

recovered by vacuum filtration.  Wet slurries of HAp/C were placed in the barrel of a custom made 

extruder and extruded into a 5 × 5 × 30 mm mold (Figure 45).  Specimens were extruded to produce one 

of three expected levels of collagen alignment: 1) high longitudinal alignment (HLA); 2) low longitudinal 

alignment (LLA); and 3) random alignment (RA).  The alignment levels corresponded to the type of 

breaker plate, or lack of plate, placed in the path of the extrudate.  Breaker plates are screens that impart 
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an increase in the extrudate flow resulting in the induction of fiber alignment.  Reducing the hole 

dimension of the breaker plate is associated with increased alignment.  The HLA and LLA fabrication 

methods utilized breaker plates with different sized hole dimensions (HLA holes < LLA holes) and the 

RA method did not use a breaker plate.  Each group consisted of 7 specimens for a total sample size (n) of 

21.  The 5 × 5 × 30 mm molded beam specimens were compacted under a static pressure of 2.04 MPa for 

17 hours.  After molding and compaction, the beams were removed from the mold and placed in a -80ºC 

freezer until they were dried by lyophilization.  The dried beams were then machined into dog bone 

mechanical test specimens, with a width (w) of 2.20 mm (±0.21 mm), thickness (t) of 2.15 mm (±0.64 

mm), and gage length (lg) of 7.06 mm (±0.12 mm) (Figure 46). 

 
Figure 45: HAp/C composite extruder and mold assembly showing direction of ram travel when extruding the wet composite 
slurry into the mold. 
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Figure 46: HAp/C composite dogbone mechanical test specimen preparation.  As molded 5 x 5 x 30 mm HAp/C specimen (A).  
Machined dogbone mechanical test specimen (B).  Schematic drawing of the dogbone mechanical test specimen dimensions (C).   
 
6.2.3 Mechanical Tests 

Tensile tests were conducted on 21 dog bone mechanical test specimens, evenly divided into the three 

alignment groups (n=7 HLA, n=7 LLA, n=7 RA).  Each specimen was potted separately in the cup of the 

upper test grip, using a two part polyester resin and hardener (Dynalite, Dynatron, 3M, St. Paul, MN, 

USA).  The upper test grip was installed to a servohydraulic materials test machine (Instron 8501, 

Walther, MA, USA).  Next, the lower test grip was installed to the test machine, the cup filled with 

potting material, the specimen was lowered into the cup, and the potting material was allowed to cure 

(Figure 47).  The tensile tests were conducted at a loading rate of 0.02 mm/s until failure.  Load and 

displacement data was captured on a PC at a rate of 100 Hz.  These data were then used to calculate the 

mechanical properties: maximum load, stiffness, maximum strain, ultimate tensile stress (UTS), Young’s 

elastic modulus, and the work to fracture (toughness).       
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Figure 47: Mechanical test setup in materials test machine (A) and close up showing specimen potting (B). 
 
6.2.4 Statistical Analysis 

The effects of the type of extrusion process were determined by conducting a one-way ANOVA test 

on each of the 6 mechanical properties identified in the previous section.  In addition, a regression 

analysis was conducted to determine whether the degree of alignment, or anisotropy, affected the 

mechanical properties of the HAp/C composites.  The degree of alignment could be influenced by the 

extrusion process (E-plane), the compaction process (T-plane), or a combination of the two (C-plane), as 

described in the preceding chapter.  Briefly, each specimen was successively sectioned along half the 

length to measure the degree of collagen fiber alignment in the extrusion plane (due to extrusion alone), 

transverse plane (due to compaction alone), and the compaction plane (due to a combination of the two) 

(Figure 48).  To orient the reader: the direction of extrusion was the longitudinal direction of the beam in 

the x-direction; the compaction direction was perpendicular to the x-y plane; and the transverse direction 

was perpendicular to the length of the beam in the y-z plane.  All statistical analyses were performed 

using commercially available software (SAS JMP, SAS Institute, Cary, NC, USA) and significance was 

set to 0.05. 
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Figure 48: Schematic drawing of extruded HAp/C composite beams illustrating the fiber alignment sections.  Sections were 
prepared to analyze the transverse, compaction, and extrusion planes. 
 
6.3 Results 

 
Uniaxial tensile tests were conducted on the 3D HAp/C composite scaffolds fabricated by an 

extrusion process that used three types of breaker plates to induce varying degrees of collagen fiber 

alignment in a preferred direction.  The preferred direction corresponded to the longitudinal direction of 

the test specimens and the tensile axis under examination.  The mechanical properties of the HAp/C 

composite scaffolds were quantified to determine the effects of the extrusion process type and dependence 

on the degree of collagen fiber alignment. 

Fracture patterns were nearly identical for all test specimens in all groups.  The fractures occurred 

within the narrow section of the gage length (Figure 49).  The fractures were transversely aligned, but 

most fractures were not completely perpendicular to the long axis of the specimen.  They were at an 

oblique angle. 
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Figure 49: Post fracture specimen removal from the test fixture showing the typical fracture pattern. 
 

Load-time and displacement-time histories were recorded for all specimen tensile tests.  The load and 

displacement histories were combined into a load-displacement curve (Figure 50), from which the 

maximum load, stiffness, strain, UTS, Young’s modulus, and work to failure could be computed.  The 

specimens behaved in a brittle manner with little post yield displacement.  Loads increased linearly, 

having a constant slope, until the yield point where the slope decreased but did not have a large 

displacement prior to failure. 
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Figure 50: Typical load-displacement curve.  Dashed line added to emphasize the linear loading phase prior to yielding where the 
slope of the curve decreases prior to failure. 
 

Figures 51-56 shows the mechanical properties of the HAp/C composites fabricated by the three 

different extrusion process types.  The average load, stiffness, UTS, and modulus of the HLA fabricated 

specimens were greater than the other two extrusion types.  The LLA extrusion method exhibited a 

greater maximum strain and work to failure response than the other extrusion methods.  Each of the six 

measured mechanical properties were compared between the three extrusion types to determine the effect, 

but the analysis did not find a statistically significant effect from the type of extrusion process employed 

(p>0.05). 
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Figure 51: HAp/C composite mechanical response of the maximum load. 
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Figure 52: HAp/C composite mechanical response of the stiffness. 
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Figure 53: HAp/C composite mechanical response of the strain. 
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Figure 54: HAp/C composite mechanical response of the UTS. 
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Figure 55: HAp/C composite mechanical response of the elastic modulus. 
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Figure 56: HAp/C composite mechanical response of the work to failure. 
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In addition to the types of extrusion process used to fabricate the HAp/C composite scaffolds, they 

were all subjected to a compaction process.  The degree of collagen fiber alignment was shown to be 

influenced by the fabrication processes described in Chapter 5 - Quantification of Collagen Fiber 

Alignment in a Three Dimensional HAp/C Composite Scaffold.  Each of the quantified mechanical 

properties from the three types of extrusion was evaluated for their dependence on the degree of 

alignment, or anisotropy.  A regression analysis was conducted to demonstrate whether the dependence of 

the mechanical properties were due to extrusion alone, compaction alone, or a combination of the two 

(Figures B1-B18 in Appendix B).  The regression analysis showed two distinct characteristics of the 

relationship between the mechanical properties and the degree of alignment in the planes representing the 

fabrication processes: 1) the individual mechanical properties were either positively or negatively affected 

by the anisotropy of the plane, defined by the direction of the slope of the linear fit line; and 2) the 

mechanical properties associated with each type of extrusion process were significantly dependant on a 

particular planar anisotropy.  Table 6 summarizes the positive, negative, and significant relationships 

between the planar anisotropies and the mechanical properties from the extrusion type used to fabricate 

the HAp/C composite scaffolds.  The mechanical properties of the RA and HLA extruded specimens were 

positively associated with the anisotropies in all planes, with the exception of the RA maximum strain in 

the C-plane that had a negative association.  The mechanical properties of the LLA  

Table 6: Mechanical property dependence on the degree of fiber alignment for the three groups of 
extrusion process type  
Anisotropy 

Extrusion 
Maximum 

Load 
Stiffness Maximum 

Strain 
UTS Modulus Work to 

Failure 
E-plane       

RA + + + + + + 
LLA - - - - - - 
HLA + + + + p=0.0322 + + p=0.0340 

T-plane       
RA + p=0.0277 + + + p=0.0083 + p=0.0144 + p=0.0373 

LLA + + + - + - 
HLA + + + + + + 

C-plane       
RA + + - + + + 

LLA + p=0.0142 + + p=0.0376 + p=0.0020 + p=0.0087 + p=0.0044 
HLA + + + + + + 

+ = positive correlation between mechanical response and planar anisotropy 
- = negative correlation between mechanical response and planar anisotropy 
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specimens were positively associated with the anisotropy in the C- and T-planes with the exception of the 

negative UTS and work to failure in the T-plane.  All of the mechanical properties of the LLA specimens 

were negatively associated with the anisotropy in the E-plane. 

UTS and work to failure were significantly dependent on the E-plane anisotropy of the HLA 

specimens.  Load, UTS, modulus, and work to failure were all significantly dependent on the T-plane 

anisotropy of the RA specimens.  All of the LLA mechanical properties, except stiffness, were 

significantly dependent on the C-plane anisotropy. 

6.4 Discussion 

Uniaxial tensile tests were conducted on the 3D HAp/C composite scaffolds fabricated by three 

extrusion process types that induced varying degrees of collagen fiber alignment in a preferred direction.  

This study investigated the association between the HAp/C scaffold mechanical properties and the 

quantified extent of collagen fiber alignment from the combined extrusion and compaction fabrication 

process.  The aim was to determine the extent that the preferred collagen alignment would increase the 

mechanical properties of the HAp/C composite. 

The fabrication processes employed in producing the 3D Hap/C composite scaffolds were chosen for 

their simplicity in effecting changes in the mechanical properties of the scaffold.  Extrusion was chosen as 

the scaffold fabrication method due to the simplicity of the techniques used to align fibers in the load 

bearing direction and vary the degree of fiber alignment.  Extruded fiber reinforced matrices were shown 

to increase fiber alignment in a preferred direction [139] with simple techniques that increased the shear 

and compressive forces during extrusion [140].  Compaction was chosen as an additional processing 

technique because it had been shown to increase the mechanical properties of HAp and HAp/C scaffolds 

[2, 38, 131] and incrementally increased extruded HAp/C scaffolds [40].   

The extrusion process types used in this study showed that the mechanical properties can be increased 

by the type of process used.  Both the LLA and HLA extrusion processes produced specimens that 

increased the mechanical strength and toughness relative to the RA process.  However, the increases 

measured were not significantly different.  Compaction could have influenced the response of the RA 
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specimens.  The compaction induced alignment in the specimens was greater than the alignment produced 

by extrusion alone.  This finding was supported by four of the six mechanical properties being 

significantly dependent on compaction induced alignment, which may account for the RA specimens 

having mechanical properties that were not significantly less than the other extruded samples.  The 

expected random alignment in the specimens were significantly influenced by the compaction process.  

The expected increased alignment in the HLA group was not present because of possible extrudate 

instabilities which caused an increase in the transverse fiber alignment and not an increase in the preferred 

longitudinal direction.  This was evident when only two of the mechanical properties were shown to be 

dependent on the collagen alignment from extrusion.  While the HLA specimens had increased transverse 

alignment, the significant effects on its mechanical properties were from extrusion. 

LLA prepared specimens exhibited mechanical properties on par with the HLA group and, to an 

extent, greater for those properties whose response has been shown to be dependent on the collagen 

alignment, namely toughness [56, 141-144] and strain [56, 130, 145-148].  These specimens also showed 

the highest degree of alignment due to extrusion.  However, the response of this group was a special case 

since the mechanical properties had a negative relationship with the degree of alignment due to extrusion.  

On the other hand, all of the mechanical properties, except stiffness, were dependent on the combined 

fiber alignment seen in the C-plane anisotropy.  The latter finding suggests that the LLA specimens were 

influenced to the greatest extent by the combined effects of the extrusion and compaction.  It is not clear 

as to why there was not a significant effect from the extrusion process when this group showed the 

highest degree of alignment due to the extrusion process.  The only explanation would be that there was a 

preexisting fabrication flaw, such as a crack, that reduced the mechanical response of the group as a 

whole.  In fact, the specimen with the highest E-plane anisotropy supported the lowest load applied and 

the specimen with the second highest E-plane anisotropy only supported a below average load. 

While enhancements were shown, the mechanical properties were one or more orders of 

magnitude less than those of natural bone.  Additional methods during scaffold preparation, such as 

collagen fiber crosslinking, may provide further improvements to the upper load limits.    Crosslinking is 
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responsible for increasing the mechanical properties of collagen fibers [149].  However, the relationship 

between the mineral-fiber interactions and fiber alignment were not masked by including crosslinking as a 

factor in the current study.  Compaction was necessary due to the fragility of the specimens without this 

added fabrication process.  The compaction process was deemed not to be confounding since it is additive 

in nature by affecting only the degree of alignment in the preferred direction.  Large variations in the 

mechanical properties are suspected to be a result of the specimen fragility noted above.  In future 

embodiments of the fabrication process, it is anticipated that modified extruder design [135], compaction 

pressure [2, 40, 131], and collagen crosslinking [149, 150] will all act in concert to increase the collagen 

fiber alignment and mechanical properties. 

6.5 Conclusions 

The application of extrusion and compaction fabrication methods were successfully employed to 

induce a preferred collagen fiber alignment in a synthetic 3D HAp/C composite scaffold and influence the 

mechanical properties.  Extrusion breaker plates with larger hole dimensions induced greater fiber 

alignment in a preferred direction than smaller hole dimensions, resulting in a significant interdependence 

between mechanical properties and fiber alignment.  Fiber alignment dependent mechanical properties 

(strain and toughness) were increased.  While the results suggest that the larger hole dimension improved 

fiber alignment which significantly influenced its mechanical properties, the optimal hole size can not be 

concluded from this study because initial expectations were for the smaller hole size to increase fiber 

alignment and extruder design modifications may support this outcome in the future. 
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CHAPTER 7 – CONCLUSIONS 

7.1 Discussion 

The subject of this body of work was centrally focused on the alignment of collagen fibers in a 

hydroxyapatite-collagen composite as it relates to optimizing the composition and mineral phase, 

increasing the degree of alignment, and ultimately enhancing the mechanical properties.  To achieve the 

end goals, the research anticipated that the three following Specific Aims needed to be addressed: 1) 

characterize the physicochemical properties of a synthetic HAp/C composite with bone-like composition, 

apatitic mineral crystal phase, and crystallinity; 2) quantify the collagen alignment morphology in a 

HAp/C composite induced by a novel extrusion process; and 3) determine the extent to which collagen 

alignment increases the material properties of the HAp/C composite. 

Discussion of the results that addressed each of these three aims was previously presented in detail in 

their respective chapters. The discussion presented here will summarize those findings in relation to the 

original hypotheses for each of the aims, above.  

7.1.1 Physicochemical Characterization of a Hydroxyapatite-Collagen Composite 

The experimental section on the physicochemical characterization of a HAp/C composite addressed 

the first aim.  The study aimed to characterize the physicochemical and crystallographic properties of a 

biomimetic coprecipitation of calcium, phosphate, and collagen, with respect to bone.  Specifically, the 

study investigated the environmental and temporal effects on the composition, phase, and crystallography 

of a biomimetic HAp/C composite as it compares to that of natural bone.  The hypotheses were: 1) the 

mineral content will decrease as the pH increases; 2) precipitation reaction aged for durations beyond 8 

hours will yield a HAp calcium phosphate mineral phase; and 3) the degree of mineral crystallinity will 

increase with increased incubation duration.  

Environmental changes in the solution pH significantly impacted the composition of the biomimetic 

HAp/C composite.  The mineral fraction of the biomimetic HAp/C composite was stable at or below pH 

8, but increased when the pH increased to 9.  This satisfied the first part of the original hypothesis that 

stated the mineral fraction was sensitive to changes in pH, but counter to the second part that stated the 



98 

 

mineral fraction would decrease with increased pH.  The mineral fraction was 83-84% when the pH was 

below 9, but when the pH was increased to 9, the mineral fraction increased to 88%.  These findings do 

not suggest that the hypothesis was refuted, but rather that the original hypothesis may have been 

incorrectly based on a dissimilar HAp/C coprecipitation process [2].  The hypothesis was based on a prior 

study that used H3PO4 + Collagen and Ca(OH)2 precursors which differed from those used in the current 

study.      

The second hypothesis of this aim stated that aging durations beyond 8 hours will yield a HAp 

calcium phosphate mineral phase.  XRD phase analysis of samples produced in the environmental and 

temporal experiments indicated a predominant HAp phase.  The majority of the specimen diffraction 

lines, from samples at all levels of pH and aging duration, coincided with those of HAp, from the PDF 

card file 9-432 and the HAp-RS reference.  Additional peaks corresponding to DCPD, TCP, OCP, and 

CHAp were found in the samples.  However, there was no clear trend to distinguish whether any of these 

phases were prevalent among the different treatment levels in the biomimetic composites. If calcium 

phosphate phases other than HAp presented, it would be expected in the temporal experiments conducted 

with aging durations of 6 and 12 hours.  Mineralization experiments have shown that complete 

transformation to HAp can be achieved in 12 hours or less in physiologic or alkaline environments [7, 6, 

35].  The results from this analysis satisfied the second hypothesis and showed that aging effects on 

calcium phosphate phase were not as rigorous as had been assumed since an aging duration as low as 6 

hours still transformed to the HAp phase.  

The last hypothesis stated that the crystallinity will increase with increased aging duration, but made 

no provision for environmental effects.  The study did address both factors in its analysis and compared 

the crystallography of the HAp/C composite to that of natural bone.  Increased diffraction intensities were 

observed between environmental samples produced at a pH of 6.8, 7.4, and 8.0 and bone, as well as 

between temporal samples aged 6, 12, and 24 hours and bone, suggesting that the only biomimetic HAp/C 

composite that was not more crystalline than the biologic HAp/C composite was those samples prepared 
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in an alkaline environment with a pH of 9.  These observations suggest that crystallinity was inversely 

proportional to pH and proportional to aging, confirming the original hypothesis. 

7.1.2 Quantification of Collagen Fiber Alignment in a Three Dimensional HAp/C Composite 

Scaffold 

The study of extrusion induced preferential collagen fiber alignment addressed the second aim in this 

body of research.  The goal was to quantify the extent to which a novel extrusion process would induce a 

preferential collagen fiber alignment in a HAp/C composite scaffold.  It was hypothesized that increased 

hydrodynamic shear flow would: 1) increase the alignment of collagen fibers; and 2) that the alignment 

would be in a preferred direction.   

The goal of extruding the HAp/C composite was to increase the degree of fiber alignment in the 

longitudinal direction of the specimens.  Results from analyzing the fiber alignment in the E-plane of the 

three extrusion process types showed that the use of the breaker plates while extruding the LLA and HLA 

specimens increased the anisotropy in this direction relative to the baseline anisotropy.  Extrusion without 

the breaker plate actually showed a decreased anisotropy in the longitudinal direction relative to the 

baseline.  This was to be expected, but it was not expected that the LLA specimens would exhibit a 

greater anisotropy than the HLA specimens and a greater change in anisotropy from the baseline.  

Overall, the data suggested that the LLA extrusion method produced a higher degree of alignment than 

the other two methods in the preferred extruded direction.      

The E-plane and T-plane alignment responses are indicative of the individual extrusion and 

compaction contribution to changes in the degree of fiber alignment, respectively.  Both planes exhibited 

increased alignment over their respective baseline measures, but the increases were not statistically 

significant.  The compaction-only contribution to fiber alignment was significantly greater than the 

extrusion-only contribution.  The breakthrough finding was that the combination of the two, measured in 

the C-plane, contributed to a statistically significant increase over the baseline anisotropy.  This 

significant anisotropy increase was preferentially aligned in the longitudinal axis of the specimens, which 

would provide a direct relationship with the resultant mechanical properties.  The goal of inducing a 
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preferential collagen fiber alignment in a HAp/C composite scaffold was achieved.  The hydrodynamic 

shear flow produced an incremental alignment and when coupled with the compaction process the 

resultant fiber alignment was induced and increased in a 3D HAp/C composite scaffold. 

7.1.3 Mechanical Properties of a Preferentially Aligned Hydroxyapatite-Collagen Composite 

Scaffold 

Uniaxial tensile tests were conducted on the 3D HAp/C composite scaffolds fabricated by the three 

extrusion process types that induced varying degrees of collagen fiber alignment in a preferred direction.  

This study investigated the association between the HAp/C scaffold mechanical properties and the 

quantified extent of collagen fiber alignment from the combined extrusion and compaction fabrication 

process.  The goal was to determine the extent that the preferred collagen alignment would increase the 

mechanical properties of the HAp/C composite.  The hypothesis was that preferential alignment of 

collagen fibers in the HAp/C composite will be associated with increased tensile material properties 

The extrusion process types used in this study showed that the mechanical properties can be increased 

by the type of process used.  Both the LLA and HLA extrusion processes produced specimens that 

increased the mechanical strength and toughness relative to the RA process.  However, the increases 

measured were not significantly different.  LLA prepared specimens exhibited mechanical properties on 

par with the HLA group and, to an extent, slightly greater for those properties whose response has been 

shown to be dependent on the collagen alignment, toughness [56, 141-144] and strain [56, 130, 145-148].  

These specimens also showed the highest degree of alignment due to extrusion.  All of the mechanical 

properties, except stiffness, were dependent on the combined extrusion and compaction fiber alignment 

seen in the C-plane anisotropy.  The degree of alignment was preferential in the direction of the tensile 

loading axis and confirmed the hypothesis. 

7.2 Limitations 

Each of the study aims presented with experimental limitations, such as solution chemistry, analytical 

methods, fabrication processing techniques, and omitted processing.  The limitations taken in whole or in 

part may have affected the results observed in this work. 
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Solution chemistry limitations involved foreign ion inclusions and substitutions.  Foreign ion 

inclusions consisted of potassium, sodium, and chloride ions.  EDS measurements noted the presence of 

potassium, sodium, and chloride ions in the precursor solutions and buffers.  These ions were thought to 

be residual salts that remained after washing and were not incorporated into the mineral crystal.  

However, it has been reported that these ions can be adsorbed into the crystal structure [112].  Their 

possible inclusion became evident when the mineral fraction exceeded the theoretical fraction limit at pH 

9.  The inclusions could have skewed the Ca/P ratios observed, increased XRD peak broadening (crystal 

strains), and act to weaken the crystalline phase of the composite by producing internal distortion (crystal 

strains) and dislocation with the apatite crystals.  Ca/P ratio and XRD broadening effects may have 

masked the presence of fractional calcium phosphate phases other than HAp.  Use of Fourier transform 

infrared (FTIR) spectroscopy may discern phase related changes in phosphate P-O bonding to confirm 

apatite phase and obtain another level of certainty.  Any affects on the mechanical properties may be 

minimized since the specimens were produced with a pH of 7.4 and these ions may not have been as 

readily adsorbed given the observed mineral fraction reflected the calculated fractions.  Further 

prevention of these foreign ions may require changing the precursor solutions, which rely heavily on HCl 

for dissolving collagen and buffering with Tris.  An alternative is to utilize H3PO4 for dissolving collagen 

and Ca(OH)2 as precursor solutions [2].  Foreign ion substitutions, such as that of CO3, may account for 

the Ca/P ratios observed.  This is not necessarily a detriment since bone is a carbonated apatite.  The 

concern, however, is that the techniques used were either not sensitive enough to detect (XRD) or that this 

ion was not specifically quantified (EDS).  Peak overlap in the XRD profiles and the close proximity of 

carbonated apatites to HAp made it difficult to discern one from the other.  New tools [151] have been 

found with the knowledge gained that would allow revisiting the XRD profiles for better peak 

determinations overall.  Also, FTIR may again be employed to observe the CO3 bonding patterns.  

Together, these two additional approaches would enhance the present phase analysis. 

Analytical technique limitations may manifest in errors quantifying the degree of fiber alignment 

using PLM.  The quantification of the degree of alignment broadly followed previous application on SEM 
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or other idealized images [65, 71].  The applications used to quantify the degree of alignment were 

ImageJ plug-ins that may not have explicitly followed the desired quantification algorithms.  The result 

may be an averaging effect that smoothed the data and reduced the observable effects between test 

groups. 

Fabrication processing limitations included the fragility of the specimens and the associated 

compaction process.  After consolidating the wet HAp/C composite by vacuum filtration to the 

consistency of a paste, the composite still maintained a water content of 88%.  Extruding, molding, and 

drying specimens in this state would leave the resultant HAp/C composite too porous and fragile to 

conduct mechanical test, let alone handle for machining, potting, and other setup.  The compaction 

process was introduced to overcome these issues by driving excess water out of the specimen while in the 

mold.  While the compaction process improved the fragility, there were still issues with sample frailty.  

An explanation for the remaining fragility was that specimen compaction may be uneven.  Several 

specimens were compacted at the same time in a hydraulic press.  If there was an unbalanced fraction of 

water between the specimens, then the specimens with the higher water content would not be compacted 

to the extent of the other specimens present during that compaction cycle.  Care was taken to eliminate 

specimens when it was obvious there was uneven compaction.  This was evident in either the thickness 

differences between specimens in the same compaction cycle or differences in the displacement of the 

mold compactor.  Specimens were eliminated when these differences were observed.  This and other 

fragility issues were prevalent.  Eighty four specimens were produced and only 21 specimens were 

mechanically tests.   Other processing steps that may introduce inaccuracies were the freezing and 

handling during machining.  The fragility of the specimens is postulated to have caused the large variation 

in the mechanical properties.  Despite this, statistically significant relationships were observed.  One 

method to overcome the fragility is speculated to be increasing the compaction pressure.  The current 

compaction pressures used were approximately 2 MPa.  Others have used 200 MPa [2] or 400 MPa [131].  

Further optimization of the compaction process should be conducted  
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While the current study may have been limited by omitting other strengthening processes, the results 

presented provide a baseline strength which needed to be established for the extrusion process, with 

minimal influence from compaction and without collagen crosslinking.  Future work can be directed at 

studying the effects of compaction in greater detail and the effects of crosslinking.  

7.3 Future Work and Direction 

The limitations described present new challenges and opportunities for future study.  Work related to 

the mineral phase characterization of calcium phosphate mineralization of collagen, reduction of foreign 

ion inclusions, PLM analytical techniques, scaffold fabrication, and mineralization methodologies could 

all be expanded. 

One area of research envisioned is an improved phase profiling and quantification of the relative 

fractions of calcium phosphate phases present in collagenous scaffolds.  The presence of collagen and 

possibly ACP were deemed responsible for the background XRD profile observed in the current work.  

The large broad peaks of the background collagen and ACP may have masked the observation of other 

calcium phosphate phases.  This may occur since quantitative phase analysis methods rely on the fact that 

the relative intensity of a particular phase is proportional to the amount of that phase present [76, 116].  

This work proposes to quantify the fractions of calcium phosphate phases and the contribution of collagen 

to the background XRD profile by varying known amounts of different calcium phosphate phases from 

powder standards (ACP, CO3HAp, DCPD, HAp, OCP, and TCP) with and without collagen.  XRD 

patterns would be obtained with a decreased scan speed than in the current study, in order to obtain better 

resolution of the acquired pattern.  Computational methods [151] for individual peak extraction from 

overlapped peaks would be used to determine peak locations.  These computational methods would be 

applied to the existing composite patterns and compared to those from the known calcium phosphate 

powder mixtures for an improved analysis of the phase response to the HAp/C composite synthesis 

environment. 

The analytical technique used to quantify the degree of fiber alignment from the PLM images 

presents an opportunity to study the ability of this method to accurately quantify fiber alignment.  A study 
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to address this is could involve incorporating electrospun collagen fiber processing techniques.  The aim 

would be to determine the extent to which PLM quantified collagen fiber anisotropy differs from that of 

collagen fiber anisotropy derived from SEM imaging.  Collagen fibers can be electrospun with varied 

orientations based on flow rate and collector RPM [152].  The electrospun fibers samples could 

subsequently be imaged by PLM and then by SEM.  DFT algorithms have been validated against SEM 

images [71].  Both images could be analyzed by the DFT to obtain the degree of alignment for each 

imaging modality and compared to determine the accuracy of the PLM application.  

Fabricated HAp/C composite scaffolds exhibited a high degree of fragility resulting in observed 

mechanical properties that were approximately two orders of magnitude less than that of bone.  

Compaction [2, 38, 40, 131] and crosslinking [150] have been to shown to increase the mechanical 

properties of HAp scaffolds and collagen fibers, respectively.  Use of polyaspartate in the synthesis of the 

HAp/C composite during mineralization may improve the mineralization within the collagen fibers and 

the mineral interaction with the collagen fibrils [9, 153].  Thus, inclusion of polyaspartate assisted 

mineralization may also aid the improvement of the mechanical properties.  Future work in this area 

envisions two aims that would determine the individual and combined effects of these three synthesis and 

fabrication processes on a three dimensional HAp/C composite scaffold.  This future direction would 

build upon the current body of work, utilize the currently developed methodologies and fabrication 

processes, and it is hypothesized that the mechanical properties could be tuned to approach that of bone.   

In addition to compaction and crosslinking studies building upon the current work, a feasibility study 

to assess the extent that modification of the extruder may eliminate extrusion instabilities would also 

seem beneficial.  Extruder modification may improve the degree of fiber alignment for both the HLA and 

LLA extrusion process types.  Instabilities arise from the excessive surface shear and tensile stresses at 

the wall of the die and after the exit, respectively.  The stresses cause turbulent flow in the extrudate 

exiting the die, which might be eliminated by funneling the interior of the extruder body as it approaches 

the die opening in order to create laminar flow [135].  Modifying the extruder breaker plate with a 

funneled approach design may address these issues.  The funnel would create a gradual increase in the 
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extrudate stresses, thus initiating the fiber alignment further upstream from the onset of the breaker plate 

and prevent the extrudate fracture instabilities from distorting the fiber alignment.  This work could be 

included in the previously defined compaction and crosslinking scaffold fabrication studies to best 

optimize the composite. 

7.4 Conclusions 

7.4.1. Physicochemical Characterization of a Hydroxyapatite-Collagen Composite 

The research concludes that the solution environment had a greater effect on the mineral fraction and 

the calcium to phosphorus ratio than the resultant mineral phase.  Unlike other reports [34-37], these 

results demonstrate that the effects of pH on the resultant calcium phosphate phase appear to be 

desensitized by the simultaneous fibrillogenesis of collagen in the mineralizing solution (i.e. no alternate 

calcium phosphate phases were found aside from HAp).  While the phase was not sensitive to changes in 

pH, the crystallinity, unit cell lattice constant c and Ca/P ratio were all affected.  The changes in Ca/P 

ratio may be indicative of the carbonate content.  Mineralization duration does not influence the calcium 

phosphate phase, but does affect the crystallinity and unit cell lattice constant c.   This study showed that 

a HAp/C composite, synthesized in an environment with a pH between 7.4 to 8.0 and aged for 6 hours, 

can be tailored to approximate the physicochemical properties of a biologic HAp/C composite. 

7.4.2 Quantification of Collagen Fiber Alignment in a Three Dimensional HAp/C Composite 

Scaffold  

The application of extrusion and compaction fabrication methods was successfully employed to 

induce a preferred collagen fiber alignment in a synthetic 3D HAp/C composite scaffold.  The 

combination of extrusion and compaction significantly increased the collagen fiber alignment in the 

preferential direction over baseline measures.  Extrusion breaker plates imparted an increased degree of 

alignment versus not using them.  The larger hole dimension used in the LLA extrusion method induced 

greater alignment than the smaller hole dimension in the HLA method.  The optimal hole size and design 

may be the current LLA extrusion process method.  Although the resultant anisotropies in the study were 

found to be relatively low (α = 1 is completely aligned and α = 0 is isotropic alignment), it is expected 
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that the degree of alignment can be increased with incremental compaction and modification to the 

extruder design, as discussed above.  Design modification may initiate fiber alignment earlier in the 

extruder body and prevent the extrudate fracture instabilities from distorting the fiber alignment.  Also, 

compaction pressures two orders of magnitude greater than the compaction pressure used in this study 

were shown to produce composite mechanical properties less than an order of magnitude lower than 

cortical bone [2].  The PLM technique was successfully employed with quantitative methods to analyze 

and evaluate the degree of collagen fiber alignment in 3D HAp/C composite scaffolds. 

7.4.3 Mechanical Properties of a Preferentially Aligned Hydroxyapatite-Collagen Composite 

Scaffold 

The application of extrusion and compaction fabrication methods were successfully employed to 

induce a preferred collagen fiber alignment in a synthetic 3D HAp/C composite scaffold and influence the 

mechanical properties.  Extrusion breaker plates with larger hole dimensions induced greater fiber 

alignment in a preferred direction than smaller hole dimensions, resulting in a significant interdependence 

between mechanical properties and fiber alignment.  Fiber alignment dependent mechanical properties 

(strain and toughness) were increased as a result of increased fiber alignment.  The results of the study 

confirm the hypothesis that the induced alignment would result in increased mechanical properties.  The 

larger hole dimension improved fiber alignment which significantly influenced the related mechanical 

properties and may serve to be the optimal hole size, despite initial expectations that the smaller hole size 

would be optimal.   
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APPENDIX A 
 

X-RAY DIFFRACTION PATTERNS OF ALL SAMPLES 
 

 
Figure A1: XRD pattern of sample 49LA.  The green curve is the original Savitzky-Golay smoothed XRD pattern, the 
grey curve is the calculated background, and the red curve is the background subtracted pattern (red inverted 
triangles are the peak identifiers). 

 
 
 
 
 
 

 



108 

 

 
Figure A2: XRD pattern of sample 51LA.  The green curve is the original Savitzky-Golay smoothed XRD pattern, the 
grey curve is the calculated background, and the red curve is the background subtracted pattern (red inverted 
triangles are the peak identifiers). 
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Figure A3: XRD pattern of sample 53RP.  The green curve is the original Savitzky-Golay smoothed XRD pattern, the 
grey curve is the calculated background, and the red curve is the background subtracted pattern (red inverted 
triangles are the peak identifiers). 
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Figure A4: XRD pattern of sample 55LA.  The green curve is the original Savitzky-Golay smoothed XRD pattern, the 
grey curve is the calculated background, and the red curve is the background subtracted pattern (red inverted 
triangles are the peak identifiers). 
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Figure A5: XRD pattern of sample 57LP.  The green curve is the original Savitzky-Golay smoothed XRD pattern, the 
grey curve is the calculated background, and the red curve is the background subtracted pattern (red inverted 
triangles are the peak identifiers). 
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Figure A6: XRD pattern of sample 58RP.  The green curve is the original Savitzky-Golay smoothed XRD pattern, the 
grey curve is the calculated background, and the red curve is the background subtracted pattern (red inverted 
triangles are the peak identifiers). 
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Figure A7: XRD pattern of sample HAp-RS.  The green curve is the original Savitzky-Golay smoothed XRD pattern, the 
grey curve is the calculated background, and the red curve is the background subtracted pattern (red inverted 
triangles are the peak identifiers). 
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Figure A8: XRD pattern of sample pH68HApC1.  The green curve is the original Savitzky-Golay smoothed XRD pattern, 
the grey curve is the calculated background, and the red curve is the background subtracted pattern (red inverted 
triangles are the peak identifiers). 
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Figure A9: XRD pattern of sample pH68HApC2.  The green curve is the original Savitzky-Golay smoothed XRD pattern, 
the grey curve is the calculated background, and the red curve is the background subtracted pattern (red inverted 
triangles are the peak identifiers). 

 
 
 
 
 
 
 
 
 
 
 



116 

 

 
Figure A10: XRD pattern of sample pH68HApC3.  The green curve is the original Savitzky-Golay smoothed XRD 
pattern, the grey curve is the calculated background, and the red curve is the background subtracted pattern (red 
inverted triangles are the peak identifiers). 
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Figure A11: XRD pattern of sample pH74HApC1.  The green curve is the original Savitzky-Golay smoothed XRD 
pattern, the grey curve is the calculated background, and the red curve is the background subtracted pattern (red 
inverted triangles are the peak identifiers). 
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Figure A12: XRD pattern of sample pH74HApC2.  The green curve is the original Savitzky-Golay smoothed XRD 
pattern, the grey curve is the calculated background, and the red curve is the background subtracted pattern (red 
inverted triangles are the peak identifiers). 
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Figure A13: XRD pattern of sample pH74HApC3.  The green curve is the original Savitzky-Golay smoothed XRD 
pattern, the grey curve is the calculated background, and the red curve is the background subtracted pattern (red 
inverted triangles are the peak identifiers). 
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Figure A14: XRD pattern of sample pH80HApC1.  The green curve is the original Savitzky-Golay smoothed XRD 
pattern, the grey curve is the calculated background, and the red curve is the background subtracted pattern (red 
inverted triangles are the peak identifiers). 
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Figure A15: XRD pattern of sample pH80HApC2.  The green curve is the original Savitzky-Golay smoothed XRD 
pattern, the grey curve is the calculated background, and the red curve is the background subtracted pattern (red 
inverted triangles are the peak identifiers). 
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Figure A16: XRD pattern of sample pH80HApC3.  The green curve is the original Savitzky-Golay smoothed XRD 
pattern, the grey curve is the calculated background, and the red curve is the background subtracted pattern (red 
inverted triangles are the peak identifiers). 
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Figure A17: XRD pattern of sample pH90HApC1.  The green curve is the original Savitzky-Golay smoothed XRD 
pattern, the grey curve is the calculated background, and the red curve is the background subtracted pattern (red 
inverted triangles are the peak identifiers). 
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Figure A18: XRD pattern of sample pH90HApC2.  The green curve is the original Savitzky-Golay smoothed XRD 
pattern, the grey curve is the calculated background, and the red curve is the background subtracted pattern (red 
inverted triangles are the peak identifiers). 
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Figure A19: XRD pattern of sample pH90HApC3.  The green curve is the original Savitzky-Golay smoothed XRD 
pattern, the grey curve is the calculated background, and the red curve is the background subtracted pattern (red 
inverted triangles are the peak identifiers). 
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Figure A20: XRD pattern of sample 6HRpH80HApC1.  The green curve is the original Savitzky-Golay smoothed XRD 
pattern, the grey curve is the calculated background, and the red curve is the background subtracted pattern (red 
inverted triangles are the peak identifiers). 
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Figure A21: XRD pattern of sample 6HRpH80HApC2.  The green curve is the original Savitzky-Golay smoothed XRD 
pattern, the grey curve is the calculated background, and the red curve is the background subtracted pattern (red 
inverted triangles are the peak identifiers). 
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Figure A22: XRD pattern of sample 6HRpH80HApC3.  The green curve is the original Savitzky-Golay smoothed XRD 
pattern, the grey curve is the calculated background, and the red curve is the background subtracted pattern (red 
inverted triangles are the peak identifiers). 
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Figure A23: XRD pattern of sample 12HRpH80HApC1.  The green curve is the original Savitzky-Golay smoothed XRD 
pattern, the grey curve is the calculated background, and the red curve is the background subtracted pattern (red 
inverted triangles are the peak identifiers). 
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Figure A24: XRD pattern of sample 12HRpH80HApC2.  The green curve is the original Savitzky-Golay smoothed XRD 
pattern, the grey curve is the calculated background, and the red curve is the background subtracted pattern (red 
inverted triangles are the peak identifiers). 
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Figure A25: XRD pattern of sample 12HRpH80HApC3.  The green curve is the original Savitzky-Golay smoothed XRD 
pattern, the grey curve is the calculated background, and the red curve is the background subtracted pattern (red 
inverted triangles are the peak identifiers). 
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Figure A26: XRD pattern of sample 24HRpH80HApC1.  The green curve is the original Savitzky-Golay smoothed XRD 
pattern, the grey curve is the calculated background, and the red curve is the background subtracted pattern (red 
inverted triangles are the peak identifiers). 
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Figure A27: XRD pattern of sample 24HRpH80HApC2.  The green curve is the original Savitzky-Golay smoothed XRD 
pattern, the grey curve is the calculated background, and the red curve is the background subtracted pattern (red 
inverted triangles are the peak identifiers). 
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Figure A28: XRD pattern of sample 24HRpH80HApC3.  The green curve is the original Savitzky-Golay smoothed XRD 
pattern, the grey curve is the calculated background, and the red curve is the background subtracted pattern (red 
inverted triangles are the peak identifiers). 
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Figure A29: XRD pattern of sample ACP-RS. 
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Figure A30: XRD pattern of sample of demineralized collagen from rat femora. 
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APPENDIX B 
 

MECHANICAL TEST DATA: REGRESSION ANALYSIS 
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Figure B1: Maximum load versus anisotropy in the E-plane. 
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Figure B2: Stiffness versus anisotropy in the E-plane. 
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Figure B3: Maximum strain versus anisotropy in the E-plane. 
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Figure B4: UTS versus anisotropy in the E-plane. 
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Figure B5: Young’s modulus versus anisotropy in the E-plane. 
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Figure B6: Work to failure versus anisotropy in the E-plane. 
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Figure B7: Maximum load versus anisotropy in the T-plane. 
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Figure B8: Stiffness versus anisotropy in the T-plane. 
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Figure B9: Maximum strain versus anisotropy in the T-plane. 
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Figure B10: UTS versus anisotropy in the T-plane. 
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Figure B11: Young’s modulus versus anisotropy in the T-plane. 
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Figure B12: Work to failure versus anisotropy in the T-plane. 
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Figure B13: Maximum load versus anisotropy in the C-plane. 
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Figure B14: Stiffness versus anisotropy in the C-plane. 
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Figure B15: Maximum strain versus anisotropy in the C-plane. 
 

UTS

0

1

2

3

4

5

6

7

0.000 0.050 0.100 0.150 0.200 0.250

Anisotropy Index - C Plane

S
tre

ss
 (

M
P

a)

RA LLA HLA
 

Figure B16: UTS versus anisotropy in the C-plane. 
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Figure B17: Young’s modulus versus anisotropy in the C-plane. 
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Figure B18: Work to failure versus anisotropy in the C-plane. 
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The synthesis of biomimetic hydroxyapatite-collagen composites is desirable from the 

perspective of graft elimination and load-bearing support when treating damaged or diseased 

bone.  Bone is an organized network of carbonated hydroxyapatite mineralized collagen, whose 

strength and toughness is dependent on the organized array of mineralized collagen fibers that 

align with applied physiologic stresses.  The apatitic calcium phosphate phase, hydroxyapatite, is 

promising for the biomimetic mineralization of collagen.  Hydroxyapatite-collagen composites 

are osteoconductive and resorbable.  However, the mechanical properties of these composites are 

one or more orders of magnitude less than bone.  The aim of this study was to produce a bone-

like hydroxyapatite-collagen composite with an induced collagen fiber alignment in order to 

improve the mechanical properties of the composite.  In this study, environmental and temporal 

effects on the synthesis of a hydroxyapatite-collagen composite were characterized and 

compared to bone.  Three dimensional hydroxyapatite-collagen composite scaffolds were 

fabricated by a combined extrusion and compaction process producing three different levels of 

collagen fiber alignment, which were quantified and correlated to the resultant mechanical 

properties.  The levels of collagen fiber alignment corresponded to an expected random 



162 

 

alignment, low longitudinal alignment, and high longitudinal alignment.  The results showed that 

a bone-like hydroxyapatite-collagen composite is best synthesized in physiologic to alkaline pH 

(7.4 – 8.0) and allowed to react for 6 hours.  Composite scaffolds fabricated with the low 

longitudinal alignment method produced the highest degree of alignment among the fabrication 

methods.  Degree of collagen alignment produced the best strain and toughness responses.  

Compaction aided strength related mechanical properties.  This study gives proof of concept for 

a collagen fiber alignment process and indicates that the mechanical properties of a three 

dimensional HAp/C composite scaffold fabricated by this process are dependent on the degree of 

collagen fiber alignment. 
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