
Wayne State University
DigitalCommons@WayneState

Wayne State University Dissertations

1-1-2012

Sampling based progressive hedging algorithms for
stochastic programming problems
Nezir Aydin
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Aydin, Nezir, "Sampling based progressive hedging algorithms for stochastic programming problems" (2012). Wayne State University
Dissertations. Paper 528.

http://digitalcommons.wayne.edu?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F528&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/528?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F528&utm_medium=PDF&utm_campaign=PDFCoverPages

SAMPLING BASED PROGRESSIVE HEDGING ALGORITHMS FOR STOCHASTIC
PROGRAMMING PROBLEMS

by

NEZIR AYDIN

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for degree of

DOCTOR OF PHILOSOPHY

2012

MAJOR: INDUSTRIAL AND SYSTEMS
ENGINEERING

 Approved By:

Advisor Date

ii

DEDICATION

To my Family…

iii

ACKNOWLEDGEMENTS

I would like to thank many people who directly or indirectly helped me with the

research presented in this dissertation. First of all, I cannot express enough my

gratitude to my advisor Dr. Alper E. Murat. His original ideas, perfectionism, and

enthusiasm, have not only directly contributed to the work presented in this

dissertation, but have also meant a lot to me personally.

I express my sincere appreciation to the committee members, Dr. Ratna Babu

Chinnam, Dr. Leslie Monplaisir and Dr. Boris S. Mordukhovich. I sincerely believe

that their valuable inputs to this research make it diverse and successful. Special

thanks go to Dr. Leslie Monplaisir, Chair of the Industrial & Systems Engineering

Department at Wayne State University, and Dr. Ratna Babu Chinnam, Graduate

Chair of the Industrial & Systems Engineering Department at Wayne State University,

for their support throughout my doctoral studies and also being excellent examples

as supervisors during my teaching assistantship to them.

 I am more than grateful to my family and I would especially like to thank my

parents for always giving me their unconditional love, support and encouragement

throughout the years. I can only hope that I made them proud to complete this far

away from home yet rewarding journey. I would also like to thank Lisa M. Corlew and

Erkan Isikli for sharing the difficult and happy moments of my life and making me feel

at home during Ph.D.

iv

TABLE OF CONTENTS

Dedication……………………………………………………………………………………ii

Acknowledgements ... iii

List of Tables ... vii

List of Figures .. ix

List of Acronyms .. xi

CHAPTER I: INTRODUCTION ... 1

1.1. Motivation ... 5

1.2. Research Objectives .. 7

1.3. Dissertation Organization ... 8

CHAPTER II: NEW HYBRID ALGORITHMS FOR STOCHASTIC PROGRAMMING

PROBLEMS ... 10

2.1. Stochastic Programming ... 10

2.1.1. Two-Stage Stochastic Programming ..13

2.1.2. Multi-Stage Stochastic Programming ...15

2.2. Exact and Sampling Methods: PHA and SAA .. 19

2.2.1. Progressive Hedging Algorithm (PHA) ...19

2.2.2. Sample Average Approximation (SAA)...26

2.3. Proposed Algorithms for Two-Stage Stochastic Programming Problems . 31

2.3.1. Sampling Based Progressive Hedging Algorithm (SBPHA)..........................32

2.3.2. Discarding-SBPHA (d-SBPHA) Algorithm for Binary First Stage SP

Problems ...37

2.3.3. Properties of SBPHA and d-SBPHA ...41

v

2.4. Proposed Algorithm for Multi-Stage Stochastic Programming Problem 43

CHAPTER III: APPLICATIONS of SBPHA and d-SBPHA 51

3.1. Capacitated Reliable Facility Location Problem (CRFLP) 51

3.1.1. Experimental Setting ..56

3.1.2. Parameter Sensitivity..58

3.1.3. Computational Performance of SBPHA and d-SBPHA.................................65

3.1.3.1 Analyze on d-SBPHA and SBPHA ... 66

3.1.3.2 SAA, SBPHA and d-SBPHA Tests, Comparisons 72

3.2. Multi-Stage Stochastic Lot-Sizing Problem ... 80

3.2.1. Illustrative Example ..85

3.2.2. Results and Comparison of SAA and SBPHA ..86

CHAPTER IV: FLEXIBILITY to MITIGATE SUPPLY CHAIN DISRUPTIONS 88

4.1. Introduction and Related Literature ... 88

4.2. Problem Formulation ... 92

4.2.1. Capacitated Reliable Facility Location and Product Allocation Problem92

4.3. Analytical Analysis .. 95

4.3.1. Flexibility Configurations...95

4.3.1.1 No Disruption Case .. 95

4.3.1.2 Disruption Case ... 96

4.3.2. Analytical Analysis – Homogenous Products and Plants97

4.3.2.1 Demand-Capacity Balanced Case ... 98

4.3.2.2 Demand-Capacity Unbalanced Case ... 102

4.4 Experimental Tests ... 111

vi

4.4.1. Experimental setting ... 111

CHAPTER V: CONCLUSIONS and FUTURE STUDIES 120

5.1 Summary of Study and Contributions ... 120

Appendix A: Results for SBPHA and d-SBPHA ... 123

Appendix B: Data Set Used in Chapter III for CRFLP... 129

References………………………………………………………………………………..130

Abstract……………………………………………………………………………………138

Autobiographical Statement .. 140

vii

LIST OF TABLES

Table 1: Random events and decision variables for scenario three in Figure 1 17

Table 2: Summary of literature review on Progressive Hedging Algorithm (PHA) 21

Table 3: Sample s and scenarios for Illustrative Example ... 49

Table 4: Summary Objective Function Results for Solving 10 Replications of
CRFLP with different parameter values. ..60

Table 5: Summary CPU Times for Solving 10 Replications of CRFLP with
different parameter values. ..62

Table 6: Index for Parameter Selection ... 65

Table 7: Solution Quality and CPU Time Performances of the SAA, SBPHA and
d-SBPHA for CRFLP with Facility Failure Probabilities � = 0.1 and � = 0.2. ..73

Table 8: Solution Quality and CPU Time Performances of the SAA, SBPHA and
d-SBPHA for CRFLP with Facility Failure Probabilities � = 0.3 and �
random. ..74

Table 9: Possible Demand for Lot-sizing Problem .. 85

Table 10: Lot-sizing Problem and SBPHA Algorithm Parameters 86

Table 11: SAA, SBPHA and Exact Solutions, Comparisons for Multi-stage
Stochastic Lot-sizing Problem ..87

Table 12: Objective Function Values of Test Samples .. 123

Table 13: Computational Time of Test Samples ... 125

Table 14: Average Objective Function Value of 10 Replications for Each
Parameter Configuration over Discarding .. 127

Table 15: Average CPU Time of 10 Replications for Each Parameter
Configuration over Discarding .. 128

viii

Table 16: Data set for CRFLP ... 129

ix

LIST OF FIGURES

Figure 1: An example of four-stage scenario tree ... 17

Figure 2: A Multistage Stochastic Tree Having � Stages and 3 Branches Per
Stage ...23

Figure 3 Flow Chart of the Progressive Hedging Algorithm (PHA) 26

Figure 4: A scenario tree of three-stage SP problem with nine scenarios 46

Figure 5: Scenario based decomposition of the problem in 49

Figure 6: Effect of Dynamic Δα=0.02 and Different ρ and β Strategies on the
Solution Quality for CRFLP with Facility Failure Probability � = 0.3...........60

Figure 7: Effect of Static α=0.6 and Different ρ and β Strategies on the Solution
Quality for CRFLP with Facility Failure Probability � = 0.3.61

Figure 8: Effect of Static α=0.6 and Different ρ and β Strategies on the CPU Time
for CRFLP with Facility Failure Probability� = 0.3......................................63

Figure 9: Creating Parameter Selection Index .. 65

Figure 10: Effect of Discarding Strategy on the Solution Quality for CRFLP with
Facility Failure Probabilities (a)	� = 0.1, (b) � = 0.2, (c) � = 0.3, and (d)
when � is random...69

Figure 11: CPU Time Performance of Discarding Strategy for CRFLP with Facility
Failure Probabilities (a)	� = 0.1, (b) � = 0.2, (c) � = 0.3, and (d) when �
is random. ..72

Figure 12: Effect of Sample Size on the Solution quality and CPU Time
performance of SAA in Comparison with d-SBPHA for CRFLP with
Facility Failure Probabilities (a) � = 0.1, (b) � = 0.2, (c) � = 0.3, (d) �
random. ..76

Figure 13: Latitude-Longitude of the Facilities and First Stage Solution of SAA 78

Figure 14: SBPHA's First Stage Solution .. 79

x

Figure 15: 1-SBPHA's and Optimal Solution of the First Stage 80

Figure 16: Different Flexibility Levels for	
 = 3 Products and	� = 3 Facilities 96

Figure 17: Examples of Failure Configurations in 1-chain flexibility for � =
 = 3 97

Figure 18: Examples of Failure Configurations for 1-Chain Flexibility 103

Figure 19: Total cost and service rate for no utilization requirement and no loss of
capacity case. .. 112

Figure 20 Number of open facilities and product-plant assignments for no
utilization requirement and no loss of capacity case. 113

Figure 21: Average number of products plant assignments for no utilization
requirement and no loss of capacity case. ... 114

Figure 22: Total cost and service rate for no utilization requirement and 10% loss
of capacity per additional product. ... 114

Figure 23: Number of open facilities and product-plant assignments for no
utilization requirement and 10% loss of capacity per additional product. . 115

Figure 24: Average number of products plant assignments for no utilization
requirement and 10% loss of capacity per additional product. 115

Figure 25: Effect of plant utilization requirement on total cost (a) no utilization, (b)
20% utilization, (c) 40% utilization, and (d) 60% utilization requirement. . 116

Figure 26: Effect of plant utilization requirement on total cost (a) no utilization, (b)
20% utilization, (c) 40% utilization, and (d) 60% utilization requirement. . 117

Figure 27: Effect of plant utilization requirement on number of plants open (a) no
utilization, (b) 20% utilization, (c) 40% utilization, and (d) 60%
utilization requirement. ... 118

Figure 28: Effect of plant utilization requirement on average number of product
assignment per plant (a) no utilization, (b) 20% utilization, (c) 40%
utilization, and (d) 60% utilization requirement... 119

xi

 LIST OF ACRONYMS

CMND: Capacitated Multi-commodity Network Design

CPLEX: An optimization software package

CRFLP: Capacitated Reliable Facility Location

CRFLPAP: Capacitated Reliable Facility Location and Product Allocation Problem

d-SBPHA: Discarding-Sampling Based Progressive Hedging Algorithm

LLN: Law of Large Numbers

LP: Linear Programming

MINOS: Modular In-Core Non-Linear Optimization System

MIP: Mixed Integer Programming

PHA: Progressive Hedging Algorithm

PMP: P-Median Problem

SAA: Sample Average Approximation

SBPHA: Sampling Based Progressive Hedging Algorithm

SP: Stochastic Programming

UFLP: Uncapacitated Facility Location Problem

URFLP: Uncapacitated Reliable Facility Location Problem

1

CHAPTER I: INTRODUCTION

Deterministic mathematical programming is an important research field in

modeling and analyzing the systems that involve complex decision making which

cannot be handled through non-mathematical and non-computational approaches

(e.g., intuition, experience based). This research field can be restrictive in its

practicality because of the assumption that the model parameters are always known

with certainty. For example, in supply chain networks, the supply process is not

always certain because of fluctuations or disruptions that might happen during the

period of supply. These fluctuations can occur because of seasonality, quality

problems, transportation problems or disruptions in supply resources. In production

planning, the production capacity is not certain because of the unexpected events

that can happen during production, or unexpected changes in production

requirements such as specific tools, machines, etc. The deterministic mathematical

programming cannot account for these uncertainties and their effect on the solution

except in few instances to a certain degree such as in the case of Linear

Programming where sensitivity analysis can be employed. Furthermore, deterministic

mathematical models do not consider possible future scenarios that are subject to

changes in parameter values when optimizing problems (Chiralaksanakul 2003).

Therefore, Stochastic Programming (SP) models are introduced as an extension of

deterministic mathematical programs in order to deal with uncertain parameters in the

system.

2

SP problems with recourse was first introduced by Dantzig (1955) for

mathematical programs with uncertainties. Since then, SP has become one of the

most important methods to optimize systems that include uncertain parameters or

variables in some or all aspects of the model. The most important assumption in SP

is that the probability distributions of the random variables are known. A commonly

used objective of the SP is to identify a feasible solution which is optimal for the

expected value function over all possible realizations (Solak 2007). There are other

objectives such as identification of robust solutions and solutions that optimal with

respect to a pre-specified trade-off between the expected value function and its

variability.

The most extensively studied SP models are the two-stage models. In the two-

stage SP approach, the decision variables are partitioned into two sets. The first

stage variables are decided before the realization of the uncertain parameters

becomes known. Once the random events have presented themselves, the second

stage decisions are made to given the fixed first stage decisions. The objective is to

find first stage decisions in a way that the sum of first stage costs and the expected

objective function value of the random second stage or recourse costs are minimized

or maximized (Ahmed and Shapiro 2002).

To illustrate, consider the two-stage stochastic programming problem for fixed-

charge facility location where the decisions are locations of facilities and allocation of

demand to the located facilities. The first stage decisions are the locations of facilities

subject to the probabilistic knowledge of the demand. After first stage decisions are

3

made and demand realizations are observed, the demand is assigned optimally

through the second stage decision.

Two-stage SPs are generalized to multi-stage SP in order to model complex

systems that include decisions subject to uncertainty in multiple time stages. The

decision and uncertainty realization sequence of two-stage SPs is generalized in

multi-stage SPs. In particular, decisions are first made at the beginning of each stage

before any of the future realizations are observed. These decisions depend only on

the previously observed realizations and decisions made. Following the observation

of uncertain realizations, the decisions for the next stage are made. The objective is

to make decisions for each stage, sequentially, that optimizes the expected objective

function value over all possible realizations. One main difference from two-stage SPs

is that the expected recourse functions are recursive. For instance, in lot sizing

problems, at the beginning of each stage, the production decisions are made that

depend on the previous stages’ production decisions and the observed demand. The

optimal production amount is decided with only probabilistic knowledge of the future

demand scenarios.

In order to determine the size of a stochastic programming problem, the

mathematical model’s dimensions and the number of realizations of random vectors

of the problem need to be considered. If the model’s random vectors have

continuous distribution or have infinitely many dimensions, then the optimization of

such SPs are typically impossible. One alternative is to approximate the uncertainty

through scenario aggregation or discretizing the continuous probability distributions.

In the multi-stage model, the complexity continues to escalate because in this model

4

the problem size grows exponentially also with the number of decision stages subject

to uncertainty.

SPs with small number of scenarios can be optimized with exact solution

methods, e.g., by solving the deterministic equivalent of the problem or through

primal or dual decomposition methods. When the numbers of scenarios in stochastic

programming are too large to optimize with exact solution methods then sampling

based methods, such as Sample Average Approximation method (SAA), are needed

to approximate the objective function value. SAA solves stochastic programming

problems through the Monte Carlo simulation (Kleywegt, Shapiro et al. 2001; Ahmed

and Shapiro 2002). In the Monte Carlo simulation a random sample is utilized to find

a sample average estimate to approximate the expected objective function. To solve

the sample average approximation problem, deterministic optimization techniques

are then used.

A commonly used exact solution method to solve large scale stochastic

programming problem is the Progressive Hedging Algorithm (PHA). The PHA

proceeds by converting the original stochastic problem into its deterministic

equivalent. This deterministic equivalent formulation includes non-anticipativity

constraints which ensure that decisions in a set of scenarios are identical if those

scenarios are undistinguishable up to the time of those decisions. The non-

anticipativity constraints are then relaxed using Augmented Lagrangean relaxation

and the problem becomes separable by each scenario. The scenario sub-problems

have augmented objective functions which include linear and quadratic Lagrange

penalty functions corresponding to the relaxed non-anticipativity constraints. These

5

scenario sub-problems are then solved as deterministic problems. At each iteration of

the PHA algorithm, solutions from all scenario sub-problems are collected and

averaged according to their non-anticipativity constraints and scenario probabilities.

The deviation of each scenario sub-problem solution from these averages is used to

update the Lagrangian multipliers. Next, the scenario sub-problems are re-solved

with the updated augmented Lagrangean objective function. This iterative process

continues until the Lagrangean dual problem converges to a solution satisfying the

non-anticipativity constraints. It is guaranteed that with the right multiplier values, the

solution of scenario subproblems yield optimal solutions. However, in practice this

guarantee is not available since the PHA’s convergence to the optimal multipliers is

not guaranteed.

Optimizing under uncertainty has been extensively studied in many areas

other than stochastic programs, such as the Optimal Control Theory, Markov

Decision Processes, Statistical Decision Theory and Stochastic Dynamic

Programming. Although aforementioned techniques are related to the proposed work

in coping with uncertainty, we do not discuss these methods because the theory of

these techniques are developed and improved independently from SP literature

(Chiralaksanakul 2003).

1.1. Motivation

Stochastic programming is an increasingly popularized methodology in the

Operation Research field. It extends the deterministic mathematical programming

approach to the problem instances where there are uncertainties in the problem

parameters. With the latest optimization algorithms realistic sized deterministic

6

optimization problems can be successfully solved. However, it is still a challenge to

solve large scale stochastic programming problems when the number of scenarios is

large and the underlying deterministic problem is already large scale and NP-

complete.

In today’s business environment, companies around the world are struggling

with decision making under uncertainty that relate to their supply chain and

production planning and often resort to myopic planning or consider few “most likely”

scenarios for their long term planning. In the academic literature, large-scale multi-

stage stochastic problems arising in practice are rarely tackled successfully to an

acceptable level of optimality. In practice, near future decisions are often more

important than far future decisions because the uncertainty in far future resolutions

are more indeterminate than near future resolutions. Better information is usually

available or can be acquired (e.g., at a cost) for planning out near future rather than

far future decisions. While there is less uncertainty affecting near-term decisions, the

need to consider uncertainty affecting long term decisions are ever increasing. The

globalization and increased competition requires companies to be agile and prepared

for a wide range of uncertainties in the short as well as medium-to-long term

planning. Therefore, in practice, it is often necessary to consider all of the scenarios

for near future and the most likely or random sample scenarios for the far future.

Current state of the art in two-stage and multi-stage SP literature is partially

able to answer the need for computationally efficient and approximately optimal

solution methods. For instance, the SAA procedure is widely applied to two-stage

large scale SP programs. The success of the SAA resides on its demonstrated

7

property of increasing the sample sizes, exponentially increases the likelihood of

finding the optimal solution. However, the recommended sample sizes are often very

conservative and not applicable to practical sized problems. Accordingly, many users

of SAA select the sample sizes and number of samples, not based on the

recommended threshold values, but rather based on what can be solved with the

current deterministic mathematical programming solvers. Hence, there is significant

risk of suboptimality due to insufficient sampling. Further, the SAA procedure cannot

be applied to the multi-stage problems due to the multiplicatively increasing number

of scenarios required with the number of decision stages. Lastly, the SAA procedure

can be calibrated through two parameters, i.e., number of samples and sample size

and the flexibility in terms of adjusting the computational effort necessary for a given

optimality requirement is limited. In contrast, the PHA method can solve SPs (both

two-stage and multi-stage) optimally and provides tractability by decomposing large

scale problems into smaller, hence solvable, deterministic instances. However,

solving a large scale SP with PHA requires solving many through a multitude of

iterations. Moreover, at an intermediate step, PHA does not provide a feasible

solution that is satisfying all the non-anticipativity constraints. Hence, there is a need

to combine the exact methods such as PHA with sampling based methods such as

SAA to develop flexible solution methods to tackle large-scale SPs.

1.2. Research Objectives

The goal of this study is to develop efficient and effective hybrid methods for

large scale stochastic programming problem based on Progressive Hedging

8

Algorithm with Sample Average Approximation. The specific objectives are as

follows:

1. Developing hybrid method(s) integrating the exact solution method,

Progressive Hedging Algorithm (PHA), and the sample based method, Sample

Average Approximation (SAA).

2. Demonstrating the effectiveness of proposed methods over the commonly

used solution methods, such as, SAA and deterministic equivalent.

The contribution of this research is to provide a configurable solution method

which improves the sampling based methods’ efficiency and PHA’s accuracy for

stochastic programs. The attainment of this contribution is demonstrated through the

consistency of the solutions found by the proposed hybrid methods.

1.3. Dissertation Organization

The dissertation is organized as follows. Preceding literature on Stochastic

Programming (SP) problems, two solution methodologies (Progressive Hedging

Algorithm (PHA) and Sample Average Approximation (SAA)) and the mathematical

and algorithmic formulations of the existing methodologies are provided in the earlier

part of the Chapter 2. In the later part of the Chapter 2, we describe in detail the two

proposed algorithms, Sampling Based Progressive Hedging Algorithm (SBPHA) and

d-SBPHA.

In Chapter 3, we first introduce the Capacitated Reliable Facility Location

Problem (CRFLP) which is a two-stage SP and provide a brief literature review on the

CRFLP. Next we apply the SBPHA and � −SBPHA methods to CRFLP and

demonstrate the effectiveness in solving two-stage SPs. Lastly, we apply the d-

9

SBPHA to multi-stage stochastic lot-sizing problem. Experimental results,

computational times and the comparisons, in terms of computational effort and the

solution quality, of the SBPHA and d-SBPHA with SAA are studied in detail.

In the Chapter 4, analytical and computational analysis (using SBPHA) on the

effect of the flexibility to mitigate supply chain disruptions is studied. Conclusions and

future studies are given in Chapter 5 of the dissertation.

10

CHAPTER II: NEW HYBRID ALGORITHMS FOR STOCHASTIC PROGRAMMING

PROBLEMS

2.1. Stochastic Programming

Stochastic Programming (SP) is an increasingly growing field for solving

mathematical programming problems subject to parameter uncertainty (Kall and

Wallace 1994; Ruszczynski and Shapiro 2003). The main assumption in SP is that

the probability distributions of the random events are known or can be approximated.

The objective of SP is to identify a feasible solution that optimizes the expected value

of a function over all possible realizations of the random events.

An extensive number of solution methods are proposed for solving SP

problems. These solution methods can be classified into two classes; exact or

approximation. Analytical solution methods and computational methods that solve SP

algorithmically without approximating the objective function value to the optimal are

considered as exact solution techniques. Solution techniques that approximate the

optimal objective function value are considered as approximation methods. In this

section we briefly review these two types (exact and approximation) of methods.

Exact solution methods provide optimal solution and objective function value.

If random variable set is finite with a moderately small number of realizations, so

called “scenarios” (Rockafellar and Wets 1991), SP can be modeled as a

deterministic equivalent program and solved to optimally by an optimization

algorithm. Small sized linear SPs can be solved by simplex algorithm through the

deterministic equivalent formulation of the SP. If the problem is mixed integer

11

program then it can easily be solved by a branch and bound (or another divide-and-

conquer based) algorithm applied to the deterministic equivalent formulation of the

SP. However, if the number of scenarios is very large, generic linear programming

techniques are not able to solve because of the large size of deterministic equivalent

problems. Some decomposition algorithms are proposed to solve stochastic linear

programming problems that have a modest number of scenarios.

Decomposition methods that are used for solving SP are categorized either by

stage-based decomposition or scenario based decomposition methods. The most

widely known stage-based decomposition method is L-shaped method proposed by

Slyke and Wets (1969); (Birge and Louveaux 1997). In the stage-based

decomposition method, each stage � has a number of sub-problems that is related to

each node at time stage	�. In this thesis, our focus is on the scenario based

decomposition (Lagrangean-based decomposition) methods and thus we will not

discuss the stage-based decomposition methods further

The goal of Lagrangean decomposition is the same as other decomposition

methods, which is to decompose the complex problem into sub-problems to be able

to solve them more efficiently. In the scenario based decomposition method, the non-

anticipativity constraints are relaxed by Lagrangean penalty terms. Once the problem

is decomposed, then each scenario becomes a deterministic problem to be solved.

The disadvantage of this method is the computational time since the method

iteratively solves the scenario subproblems and the convergence could be slow. For

detailed explanation reader is referred (Rockafellar and Wets 1991; Mulvey and

Ruszczynski 1995; Rosa and Ruszczynski 1996).

12

When the number of scenarios is large and exact solution methods fail to

solve the problem, approximation methods are then used to estimate the objective

function value. As an approximation method, Monte Carlo Sampling-based method is

widely used. A wide survey on Monte Carlo sampling in SP can be found in Morton

and Popova (2001). Monte Carlo sampling can be applied to SP either as interior or

exterior of the algorithm (Chiralaksanakul 2003). In the internal sampling method,

Monte Carlo estimates can be replaced with the difficult exact computations during

the solution process (Higle and Sen 1991; Infanger 1992). If a scenario tree is

constructed through Monte Carlo sampling and the objective function value of the

original problem is approximated at the onset, then this approach is referred to as

external sampling method. External sampling is also called Sample Average

Approximation (SAA) (Shapiro 2002). We cover the SAA which is used in the

proposed hybrid algorithms.

One of the motivation of this dissertation is that the decomposition and the

approximation algorithms can be used together to solve stochastic programming

problems efficiently and effectively. For instance, when the number of the scenarios

in a SP is very large, then the problem can be approximated by an approximation

method and the approximated problem can then be solved by the decomposition

methods.

In the next two subsections, we present the mathematical formulation of the

two-stage SP and multi-stage SP problems and review the related literature.

13

2.1.1. Two-Stage Stochastic Programming

The two-stage stochastic programming models are the most common models

in SP. In the two-stage model, the first stage decisions are made prior to the

realization of the uncertainty. In the second stage, the uncertainty is realized and

second stage decisions are made given the first stage decision and realizations. The

goal of the two-stage stochastic programming is to optimize the expected objective

value of the second stage decisions’ objective function and the objective of the first

stage decisions.

A typical formulation of class of the two-stage SP is as follows(Kall and

Wallace 1994; Birge and Louveaux 1997; Ahmed and Shapiro 2002):

Min�∈��g�x� ≔ c�x + �� �x, ξ�#$, (2.1)

where

 �x, ξ� ≔ inf&∈'�q�y:Wy ≥ h − Tx$	 (2.2)

is the optimal value and ξ ≔ �q, T,W, h� denotes vector of parameters of the second

stage problem. The vector of second stage	ξ represents the randomness in some or

all of the second stage parameters. The expectation of (2.1) is taken with respect to

the known probability distribution of	ξ. The problem (2.1) decides on the first stage

variables,	x ∈ ℝ01 , prior to a realization of ξ, and problem (2.2) decides on the second

stage variables, y ∈ ℝ02 , given the first stage decision and a realization of ξ.
Many solution approaches are proposed in literature for the two-stage SP

problems: Benders decomposition, L-shaped method, Progressively Hedging

14

Algorithm. Benders decomposition technique generates a split between first stage

and second stage decision variables (Benders 1962; Slyke and Wets 1969). This

method solves a first stage master problem to find a good solution for the first stage,

while optimistically estimating the objective function value of the second stage sub-

problems. If the first stage decision variables are infeasible then a “feasibility” cut is

added to the master problem. Furthermore, if the objective function value of the sub

problems is not optimal, then an “optimality” cut is added to the master problem.

Benders decomposition method repeats this iterative process until no cut is

necessary.

Another solution approach to the two-stage SP problems is the L-shaped

method. Louveaux and Vlerk (1993) studied a two-stage SP with integer second

stage recourse problem. Second stage problem minimizes the penalty cost that

results in the shortage and excess first stage decisions. Laporte and Louveaux

(1993) studied a two-stage SP problem with binary first stage decision variables.

A generalization of the integer L-shaped method is done by Caroe and Tind

(1997) via duality theory. Penuel, Smith et al. (2010) introduced an integer

decomposition algorithm for solving two-stage SP problem with second–stage

activation costs. They applied the proposed algorithm to a scenario based facility

location problem and compared to the Laporte and Louveaux (1993) in terms of

performance.

The other two popular methods for the two-stage SPs are Progressive

Hedging Algorithm (PHA) and SAA which are discussed in detail in the next section.

15

2.1.2. Multi-Stage Stochastic Programming

Multi-stage SP problems generalizes the two-stage SPs. In the multi-stage SP

models, the decision at any time stage is made after the realization of random

vectors and decision variables of the previous time stages. The goal of the multi-

stage model is to make decisions for different time periods in a sequence, while

optimizing the expected objective function value of the current and future stages. In

the multi-stage model, the size of the SP grows exponentially with the number of time

horizons. If the number of scenarios is small, then multi-stage SPs can be optimized

with exact solution methods.

In multi-stage SP problems, a T-stage problem is considered and a series of

decisions,	�x3$345� , is made with respect to random events 	�ξ3$345� . The decision

	x3 ∈ ℝ06 at time stage	t, is made based on the information of the previous stages’

decisions,	x5, … , x395, and the observed random events,	ξ5, … , ξ3, while optimizing the

objective function, f3�x5, … , x395, ξ5, … , ξ3:5�. Decision variables x3 are subject to

constraints and may depend on x5, … , x395 and	ξ5, … , ξ3.
Using the notation and the mathematical representation, used by (Solak

2007), of the multi-stage SP problem with recourse can be formulated as follows:

min		f5�x5� + Ε=1�min f>�x5, x>, ξ5� + Ε=2|=1�min f@�x5, x>, x@, ξ5, ξ>�																				

+⋯+ Ε=BC1|=1,…,=BC2�min f��x5, … , x�, ξ5, … , ξ�95�#… ##				�2.3�

s.t.

16

g5�x5� ≤ 0

g>�x5, x>, ξ5� ≤ 0

⋮ 																																																																																																 �2.4�
g��x5, … , x�, ξ5, … , ξ�95� ≤ 0

x3 ∈ x�, t = 1,2,… , T																																																																						�2.5�
where x3 and ξ3 are decision variable and random event vectors, respectively, so

that	x3 ∈ ℝ06,	ξ3 ∈ ℝH6 and t = 1,2,… , T. Then f3: ℛ01:⋯:06 × ℛH1:⋯:H6C1 → ℛ and

g3: ℛ01:⋯:06 × ℛH1:⋯:H6C1 → ℛL6.

If number of random events are finite and S denote the set of all possible

realizations of the random events (i.e., scenarios), then the deterministic equivalent

of the multi-stage SP (2.3)-(2.5) can be easily formulated as follows:

min ∑ pP�c5Px5P + c>Px>P +⋯+ c�Px�P #	P∈Q (2.6)

s.t.

A55P x5P ≤ b5P 		∀s ∈ S
A>5P x5P + A>>P x>P ≤ b>P 		∀s ∈ S

⋮ (2.7)

A��95P x�95P + A��P x�P ≤ b�P 		∀s ∈ S
x3P − x3PV = 0	∀s, sW ∈ S: �ξ5P , … , ξ3P� = Xξ5PV , … , ξ3PVY, t = 1,2,… , T (2.8)

x3P ≥ 0	∀s ∈ S, t = 1,2,… , T (2.9)

In the formulation given above pP represent the occurrence probability of

scenario s and objective function and constraints are assumed to be linear.

17

Constraints (2.8), are the non-anticipativity constraints, which ensure the equivalence

of the decision variables that are made at time stage t for all scenarios that have the

same history. Non-anticipativity constraints ensure that the decisions are

implementable (Higle 2005; Solak 2007).

The multi-stage SP formulation in (2.6)-(2.9) is scenario based formulation.

Tree representation of the random events ξ3 is shown in Figure 1. Each path from

root node to the last nodes represents a scenario in the scenario tree.

Figure 1: An example of four-stage scenario tree

Table 1: Random events and decision variables for scenario three in Figure 1

Node: Root A B C D E F G

Random Event ξ55 ξ>5 ξ>> ξ@5 ξ@> ξ@@ ξ@Z ξ@[
Decision variables x55 x>5 x>> x@5 x@> x@@ x@Z x@[

The non-anticipativity implies that the decision variables at the root node have

to be same for all scenarios	s = 1,2,… ,8, decision variables taken at node A have to

t=1

t=2

t=3

t=4

Scenario: 1 2 3 4 5 6 7 8

Root Node

A B

F G E D C

18

be same for scenarios 1,2, and 3 and at node C have to be same for 1 and 2. The

similar logic applies to other scenarios.

While some efficient solution methods for multi-stage linear programming SPs

have been developed in the stochastic programming literature, most of these solution

methods are not efficient when applied to the multistage stochastic integer

programming problem. This is because of the non-convexities caused by the integer

decision variables. (Solak 2007).

Rosa and Ruszczynski (1996) propose two augmented Lagrangean

techniques for the multistage SP problems: decomposing the problem into nodes

depending on stages and decomposing the problem by the scenarios. Another

solution method is to implement Benders decomposition algorithm recursively to the

nested decomposition introduced by Birge (1985). Rockafellar and Wets (1991)

introduced a new solution method named Progressive Hedging Algorithm. The main

idea of this algorithm is to decompose the problem into sub-problems based on

scenarios and solving these sub-problems iteratively while applying non-anticipativity

constraints in a novel manner. More detailed information on PHA is provided in the

Progressive Hedging Algorithm section. Sampling based approaches for multi-stage

SPs are also used to calculate lower bounds on the optimal value of objective

function (Kleywegt, Shapiro et al. 2001; Wang 2007).The detailed description is

provided in the SAA section.

We now describe in detail the PHA and SAA integrated to obtain the proposed

Sampling Based Progressive Hedging Algorithm (SBPHA).

19

2.2. Exact and Sampling Methods: PHA and SAA

In this section, we review and present the algorithmic formulation of the two

algorithms that are used to develop the hybrid SBPHA algorithm. First, method is the

exact solution method, Progressive Hedging Algorithm (PHA), and the second one is

the Monte-Carlo sampling based approximation method, Sample Average

Approximation (SAA).

2.2.1. Progressive Hedging Algorithm (PHA)

When the SPs are very large or the underlying mixed-integer problem is

difficult, then solving the SP as a single mathematical programming problem is

impractical due to memory and computational time restrictions. Often, decomposition

based methods are used to divide the problem into smaller and more manageable

subproblems. These subproblems are then solved iteratively while enforcing those

aspects of the problem relaxed for decomposition. One such decomposition method

is the PHA proposed by (Rockafellar and Wets 1991). PHA decomposes SPs by

scenarios rather than by time stages. PHA converges to the optimal solution when

SPs convex programs. For the case when the decisions are integer, the PHA is used

as a heuristic method (Lokketangen and Woodruff 1996; Fan and Liu 2010; Watson

and Woodruff 2011).

PHA was first introduced by Rockafellar and Wets (1991) to solve SPs. It was

the first rigorous algorithmic procedure that worked to put a policy in place for a

variety of scenarios. Rockafellar and Wets (1991) introduced theoretical and

mathematical discussion on PHA which was constructed based on the principle of

20

scenario aggregation (Wallace and Helgason 1991). Wallace and Helgason (1991)

studied computational performance on implementing the solution methodology of

solving scenario problems approximately and individually using Lagrangean

approach in scenario aggregation procedure. They showed that the proposed

procedure does not need to increase the number of iterations to solve the sub-

problems more accurately. However, their method needed improvements in terms of

the speed of convergence.

In 1991, Mulvey and Vladimirou (1991) applied PHA to solve multi-stage

stochastic networks as an application of scenario aggregation. They also applied the

technique to stochastic generalized networks. In their problem the uncertainty is in

the constraint coefficients. They tested the performance of PHA by applying to the

stochastic generalized networks. In most cases they found a better solution than

other researchers by using MINOS with medium sized problems. Also, in their

literature review of financial risk management, Mulvey, Rosenbaum et al. (1997)

proposed PHA as an efficient methodology to deal with multi-stage stochastic

programming in the risk management field. Mulvey and Vladimirou (1992) proposed

using PHA as an proficient method in financial planning problems. Takriti, Birge et al.

(1996) report on favorable results from applying the PHA to stochastic multi-stage

commitment problems. They studied more general cases in which any of the data

could be stochastic and where there could be varying number of integer variables.

Robinson (1991) applied a new methodology to portfolio optimization problems to

extend the scenario analysis technique. His proposed research is different than the

algorithm proposed by Rockafellar and Wets (1991) in terms of having the chance to

21

put non-separable convex constraints instead of non-anticipativity constraints into

problem.

Takriti, Birge et al. (1996) applied Lagrangean relaxation to mixed-integer SP

production problem. In their study, they proposed a mathematical model and an

efficient solution methodology. In their comparison, they concluded that pure

Lagrangean relaxation needs many iterations to converge, on the other hand, PHA

converges much faster than pure Lagrangean relaxation methodology.

Table 2: Summary of literature review on Progressive Hedging Algorithm (PHA)

Reference Summary

Rockafellar and
Wets (1991)

Introduced PHA through this research and showed that
convergence to optimization is reached to optimal (depending
on the convergence criteria) both for convex and non-convex
types of problems.

Wallace and
Helgason (1991)

Introduced generic procedures and definitions on PHA. Showed
that using a scenario tree in computation is superior.

Helgason and
Wallace (1991)

Proposed methodology solves scenario problems approximately
and individually using Lagrangean approach in scenario
aggregation procedure. For accurate solutions, incremental in
number of scenario is not needed. However, the method
needed improvements in terms of the speed of convergence.

Mulvey and
Vladimirou
(1991)

Tested the performance of PHA by applying to stochastic
generalized networks. In most cases, finds a better solution
than other published results. Used MINOS for their
computations of medium sized problems.

Lokketangen and
Woodruff (1996)

Introduced a general purpose to improve solutions to multi-
stage stochastic mixed integer (0,1) by using Tabu search and
PHA .

Haugen,
Lokketangen et
al. (2001)

Applied PHA to minimize multi-stage stochastic mixed integer
problems. Optimized each sub problem (scenario) by dynamic
programming.

Woodruff and
Vob (2006)

Proposed a heuristic method to reduce problem size. The
method is to solve scenario sub-problems and then combine
these solutions to determine the values to binary variables.

Robinson (1991) Proposed research is different than the algorithm proposed by
Rockafeller and Wets (1991) in terms of having chance to put
non-separable convex constraints other than non-anticipativity
constraints into the problem.

22

Haugen, Lokketangen et al. (2001) applied PHA as a meta-heuristic by solving

each sub-problem that developed from each scenario heuristically while working with

multi-stage lot-sizing problems. In their study, they applied an exact solution method

instead of using an approximation algorithm. (Woodruff and Vob 2006) applied the

PHA to production planning in supply chain disruptions. In this mixed integer

stochastic problem binary variables were considered as indicators for production.

The goal of the problem was to minimize total cost. They developed a heuristic

method to increase the performance of algorithm. Crainic, Fu et al. (2009) proposed

Tabu search and PHA based heuristic method to the two-stage capacitated multi-

commodity network design (CMND) problem with stochastic demand. The objective

of the problem is to optimize the cost of designing the first stage and expected

distribution cost acquired in second stage. Detailed information on behavior of the

PHA methodology can be found in (Wallace and Helgason 1991), (Mulvey and

Vladimirou 1991), (Lokketangen and Woodruff 1996), (Crainic, Fu et al. 2009), and

(Watson and Woodruff 2011).

 t=1 t=2 t=3 …

Scenario 1
Scenario 2
 …
 …

 …

Scenario 3T-1

 …
 …

 …

 …

 …

 …

23

Figure 2: A Multistage Stochastic Tree Having � Stages and 3 Branches Per Stage

In implementing the PHA, the first step is to create a scenario set, such as the

example shown in Figure 1 and Figure 2. In Figure 1, each path (from root node to

leaf node) is a scenario where the number of scenario sets is equal to] (^ denotes

an individual scenario) and each scenario includes a full collection of random variable

realizations with a probability. Each scenario ^ is considered as a deterministic

problem which can be solved using exact solution methods.

To decompose the problem by scenarios, the PHA relaxes the non-

anticipativity constraints at each node. These non-anticipativity constraints are then

enforced during the solution procedure through the Augmented Lagrangian terms.

The augmented Lagrangian terms are calculated using the dual variables and the

mean of the solutions, e.g., probability averaged decision variables, at each node.

Dual variables for each relaxed non-anticipativity constraints are updated using the

mean solutions. The PHA convergence is based on the rate of change in the

subgradient, i.e, the deviation of scenario solutions for each stage from the mean of

the solutions. As noted in (Haugen, Lokketangen et al. 2001), solving the scenario

subproblems to optimality is not necessary and that approximating methods can be

applied.

We now illustrate the PHA for the two-stage SP in (1)-(2). Given a finite

number of realizations 	ξP, s = 1,… , S, and a positive occurrence probability 	pP, such

that	∑ pP = 1QP45 , the set	�	ξP, … , 	ξQ$,of scenarios, with the corresponding probabilities

pP, … , pQ, can be considered as a representation of the probability distribution. The

expected value function �� �x, ξ�# can be expressed as the finite summation

24

�� �x, ξ�# = ∑ pP �x, ξP�.QP45 By creating a copy of the second stage decision vector,

yP, for every scenario ξP, i.e. by considering yP = y�ξP�, s = 1,… , S, as a function of

scenarios, we can write the two-stage SP problem (1)-(2) as (Shapiro 2008):

Min�,&_,…,&`c�x + ∑ pPg�x, yP, ξP�	QP45 (2.10)

x ∈ X, yP ∈ �x, ξP�, s = 1,… , S

where ξP ≔ �qP, TP, WP, hP�, s = 1, … , S, are the corresponding scenarios (Shapiro,

2008). Each scenario sub-problem can be expressed as follows:

 Min	�c�x� + ∑ pP�fPyP�P∈Q (2.11)

s.t �x, yP� ∈ �x, ξP�	∀s ∈ S

where x is not scenario specific and xP = x, ∀s ∈ S. The	yP represent second stage

decision variables which are determined with a given first stage decision �x� and a

particular random point,	ξP, and fP. The fP represents second stage scenario specific

coefficient vectors. Problem (2.11) is the well-known extensive form of a two-stage

stochastic program (Watson and Woodruff 2011).

The following is the pseudo-code of the PHA algorithm (Watson and Woodruff

2011). Let b be a penalty factor�	b > 0�, and ϵ be a convergence threshold.

1: k ≔ 0

2: For all s ∈ S, xPf ≔ argmin�,&_�cx + fPyP�: �x, yP� ∈ �x, ξP�
3: xif ≔ ∑ pPxPfP∈Q

4: For all s ∈ S,wPf ≔ ρXxPf − xifY

PHA Algorithm for Two-Stage SP

25

5: k ≔ k + 1

6: For all s ∈ S, xPf ≔ argmin�,&_ lcx + ωPf95x + n
> ox − xif95o> + fPyPp : �x, yP� ∈ �x, ξP�

7: xif ≔ ∑ pPxPfP∈Q

8: For all s ∈ S,ωPf ≔ ωPf95 + ρXxPf − xifY
9: πf ≔ ∑ pPoxPf − xifoP∈Q

10: If πf < ϵ,	then go to step 5. Otherwise, terminate.

The index s shows the Iteration number; and Euclidian distance in iteration s

is expressed by πf. The vectors xPf, xif,	and	ωPf show decisions for scenario ^ in

iteration s, weighted (average) decisions of the problem in iteration s, and dual

multiplier for scenario ^ at iteration s, respectively. PHA converges to a common xi in

linear time if decision vector x is continuous (Watson and Woodruff, 2011). However

problem becomes much more complex to solve when x vector is integer i.e., binary.

26

Figure 3 Flow Chart of the Progressive Hedging Algorithm (PHA)

2.2.2. Sample Average Approximation (SAA)

Sampling based methods are usually used when the stochastic problem is too

large to solve by exact solution techniques. With the sampling based approaches, the

objective function is approximated through a random sample of scenarios.

Typically sampling based approaches are classified into two: Interior sampling

and exterior sampling methods (Verweij, Ahmed et al. 2003). In interior sampling

methods, sampling is performed inside a chosen algorithm with new (independent)

samples generated during the iterative solution process. These samples can be

generated through a resampling from the entire scenario set or by selecting subsets

Initialize:

• Determine the problem
parameters

• Construct the scenario tree
• Calculate the scenario probabilities

Relaxation and Decomposition:

• Formulate deterministic equivalent model
• Relax non-anticipativity constraints via augmented Lagrangean relaxation
• Decompose the model into deterministic scenario sub problems with augmented objective function

Solve Deterministic Scenario Sub Problems:

• Update the augmented Lagrangean objective
• Solve the problem

Check for Convergence:

• Are scenario sub problem solutions feasible
for non-anticipativity constraints?

Multiplier Update:

• Update Langangean multipliers using
subgradient update scheme.

Solution Reporting:

• Display results (Objective function and
solution vector).

Yes

No

27

of the previously selected samples. There are several studies using interior sampling

based approaches. Higle and Sen (1991) developed a stochastic decomposition

algorithm for two-stage stochastic programming problems. Infanger (1992) studied

statistical L-Shaped method. An interior sampling based branch and bound method is

introduced by Norkin, Pflug et al. (1998) for discrete stochastic problems.

In the exterior sampling approach, a sample of scenarios is generated from

possible realizations, and then deterministic optimization problem is developed from

the generated samples and solved. This procedure (generating samples and solving

deterministic problems) repeated several times. SAA is one of the exterior type

sampling based method.

SAA can be explained through a number of steps; random samples are

generated, a sample average function is applied to the selected random samples to

approximate the expected value function. The optimization problem that is developed

is solved iteratively until the stopping criterion is satisfied. Since SAA, using exterior

sampling, splits sampling part from optimization part (Rubinstein and Shapiro 1990),

applying SAA method is easier. Some advantages of SAA can be listed as (Shapiro

(2005): Ease of numerical implementation, often one can use existing software, good

convergence properties, well developed statistical inference (validation and error

analysis, stopping rules), easily amendable to variance reduction techniques and

ideal for parallel computations.

The main idea of Sample Average Approximation (SAA) approach can be

explained as follows. A sample ξ5, … , ξt of N realizations of the random vector ξ is

generated, and consequently the expected value function �� �x, ξ�# is approximated

28

by the sample average function	N95 ∑ �x, ξ�t045 . The obtained sample average

approximation	Min�∈��gvt�x� ≔ c�x + 	N95 ∑ �x, ξ0�t045 $, of the stochastic program

(2.1) is then solved by a deterministic optimization algorithm.

SAA Procedure:

Initialize: Generate M independent random samples
 = 1,2, … ,w with scenario sets

xy where |xy| = x. Each sample	
 consists of	x realizations of independently and

identically distributed (i.i.d.) random scenarios. We also select a reference sample

which is sufficiently large, e.g., 		|xW| ≫ x.

Step 1: For each sample	
, solve the following two-stage SP problem and record the

sample optimal objective function value {y and the sample optimal solution	|y.

w}�~∈� ���| + 5
|��|∑ �|, ������45 � (2.12)

Step 2: Calculate the average {̅� of the sample optimal objective function values

obtained in Step 1 as follows.

{̅� = 5
�∑ {y�y45 (2.13)

Step 3: Estimate the true objective function value {vy of the original problem for each

sample’s optimal solution. Solve the following problem for each sample using the

optimal first stage decisions |y from step 1.

{vy = Minimize∑ ��|y + 5
|�V|∑ �|y , ����V�45 (2.14)

Step 4: Select the solution |y with the best	{�y , i.e. |��� = ���
}�y45,…,� as the

solution and	{��� = miny45,…,�{vy, as the solution value of SAA.

Let {∗denote the optimal objective function value of the original problem (2.1)-

(2.2). The	{̅� 	is an unbiased estimator of ��{# which is the expected optimal objective

29

function value of sample problems. Since ��{# ≤ {∗, the {̅� provides a statistical

lower bound on the {∗ (Ahmed and Shapiro 2002). Each {vy45,…,�y 	 provides statistical

upper bound for	{∗. Kleywegt, Shapiro et al. (2001) and Shapiro (2003) discussed

that the optimal value of SAA problem converges to optimal value of “true” problem

with probability of one under condition of x → ∞. Clearly, selecting larger sample size

will provide better approximation (statistically speaking). Since larger sample size

causes computational complexity, solving SAA several times with smaller

independent and identically distributed samples is easier.

Another important estimator that needs to be considered for the quality of the

solution is the estimator of the variance of the optimality gap. The estimates of the

variances for {∗and {̅�can be calculated by (2.15) and (2.16), respectively.

�v���> = 5
���95�∑ �{y − {̅���y45 >

 (2.15)

�v�v�> = 5
�V��V95�∑ � �|y, ��� − {vy��V�45

>
 (2.16)

The estimate of the optimality gap of a candidate solution can be calculated

via {vy − {̅� , and the variance of the optimality gap can be calculated by �v���> + �v�v�> .

Quality of a solution to stochastic programming based sampling methods

depends on several criteria such as, sample size, convergence rate, and stopping

rules (criterion). Detailed discussion on the quality of a solution, which is found via

sampling methods, for stochastic programs can be found in (Bayraksan and Morton

2009). Bayraksan and Morton (2009) in their tutorial introduced a procedure that

shapes an interval estimator on the optimality gap of a certain solution. They provide

methods reducing the variance and computational effort of the estimator they

30

introduced. Also, they discussed ways to increase sample size without hurting

computational effort in a smart way what they call “sequential sampling procedure”.

Researches similar to the sequential sampling procedure are done both in simulation

and statistics (Chow and Robbins 1965; Law, Kelton et al. 1981; Law and Kelton

1982).

If the decision variables in (2.1) and (2.2) are continuous, it has been proven

that an optimal solution of the SAA problem provides exact solution of the true

problem with probability approaching one exponentially fast as N increases (Shapiro

and Homem-de-Mello 2001; Ahmed and Shapiro 2002). Many studies are conducted

to determine the required sample size.

Ahmed and Shapiro (2002) proposed using a decomposed branch and bound

algorithm. The algorithm proposed studies to partition the search space by creating

approximate problems with sampling method and solving by a novel optimization

algorithm. The quality of the solution converged is described with statistical and

deterministic bounds with fixed sample sizes.

Kleywegt, Shapiro et al. (2001) applied the SAA method to stochastic discrete

optimization problems, i.e., knapsack problem. They noted that the complexity of the

SAA methods usually increases exponentially, at least linearly, in terms of sample

size selected. Selecting the sample size is needed to consider the tradeoff between

the bounds on the optimality gap and the quality of an optimal solution of a SAA

problem and the computational performance. They expressed that selecting sample

size should dynamically change depending on the previous results that were

31

computed and the more proficient gap estimator of the approximated value function

improves the performance of SAA method applied to the algorithm.

Recent studies on SAA are usually focused on improving the quality of a

solution obtained from SAA and improving computational effort of SAA by combining

meta-heuristic methods especially in multi-stage stochastic mixed integer

programming problems (Solak 2007). For more detailed information on the SAA, we

refer the reader to several key articles (Kleywegt, Shapiro et al. 2001; Shapiro and

Homem-de-Mello 2001; Ahmed and Shapiro 2002; Shapiro 2002; Ruszczynski and

Shapiro 2003; Verweij, Ahmed et al. 2003).

2.3. Proposed Algorithms for Two-Stage Stochastic Programming Problems

In proposed algorithm, SBPHA, we hybridize an exact solution method,

Progressive Hedging Algorithm (PHA), and an external sampling-based

approximation algorithm, Sample Average Approximation (SAA), to efficiently solve

two-stage SP problems. While the standard SAA procedure is effective with

sufficiently large samples, the required sample size can be quite large for the desired

confidence level. Further, the SAA procedure selects the best performing sample

solution and discards the remaining sample solutions which contain valuable

information about the problem’s uncertainty.

The main idea of the proposed hybrid method is to re-use all the information

embedded in sample solutions by iteratively solving the samples with an Augmented

Lagrangian penalty term to find a common solution that all samples agree on.

32

2.3.1. Sampling Based Progressive Hedging Algorithm (SBPHA)

The proposed algorithm is a hybridization of the SAA and PHA. The motivation

for this hybridization originates from the final step of the SAA method (Step 4, in

SAA) where the best performing solution is selected and the rest of the solutions are

discarded. However, this discarding of �w − 1� sample solution is a loss of valuable

sample information as well as loss of effort spent in solving each sample’s problem.

Let’s consider the implementation of the classical SAA procedure in the context of

PHA and treat each sample solution as a scenario. Then implementation of SAA

would correspond to iterating the sample solutions in PHA only once and then

selecting the best performing sample. In the PHA, however, the scenarios are

sustained with the scenarios recent solution as well as the weighted solution of all

scenarios. Hence, in the proposed SBPHA approach, we modify the SAA method by

continuing the solution of the sample problems while enforcing probability weighted

solution of the samples and the best performing solution in original problem. The

underlying premise of this hybridization is that, by starting with sufficient number of

samples (representative of the entire scenario set), the continued iteration of the SAA

method, with implementing probability weighted and the best performing solutions via

augmented Lagrangian penalty concept would converge the sample solutions to the

optimal solution of the original problem.

An important distinction of the SBPHA from classical PHA is the sampling

concept and the size of the samples. Classical PHA considers the entire scenario set,

solves a problem for each scenario one by one at every iteration, and evaluates the

probability weighted solution for the original problem. In comparison, the SBPHA

33

solves only a few numbers of samples which entail multiple scenarios, and then

determines the probability weighted in a different way than PHA (will be explained in

algorithm section in detailed) and the best performing solution (so far found at any

iteration), at every iteration. Solving sample problems is more difficult than solving

one scenario problem but considerably easier than to solve original problem.

We first present the proposed SBPHA algorithm and then describe its steps in

detail. For clarity, we give notation before describing the algorithm’s steps.

Notation for SBPHA:

s, sy�~ : iteration index and maximum number of iterations

�y , ��y : probability and normalized probability of realization of sample

|y,� 	: solution vector for sample
 at iteration s

|̅�	: samples’ probability weighted solution vector at iteration s

|̿�	: samples’ balanced solution vector at iteration s

|��� 	: best incumbent solution

{v��� 	: objective function value of the best incumbent solution with respect to x’
{v��� � 	: objective function value of the best solution at iteration s with respect to x’
¢y� 	: dual variable vector for sample
 at iteration s

b� 	: penalty factor at iteration s

£	: update parameter for the penalty factor

¤�	: weight for the best incumbent solution at iteration s

∆¦ 	: update factor for the weight of the best incumbent solution

§¦ 	: Euclidean norm distance of the sample solutions from |̿� at iteration s − 1

§	: convergence threshold for solution spread

34

|�¨©ª�	: best solution found by SBPHA

{�¨©ª� 	: objective function value of the best solution found by SBPHA

The pseudo-code for the sampling based progressive hedging algorithm is as follows:

Sampling Based Progressive Hedging Algorithm (SBPHA) for Two-Stage SP

Problems:

1: Initialize: Generate w samples,
 = 1,2,… ,w each with xy scenarios, where|NH| =
N.

2: Generate a reference sample with NW scenarios, where		|NW| ≫ N.

3: k ← 0,		ωHf4¬ ← 0 for ∀m = 1,… ,M, αf4¬ ← 1, and require ρf4¬ ≥ 0	,
4: PH ← ∏ pPP∈t° , P±H ← ²°

∑ ²°³°´1 , P± = µP±H¶∀H.
5: Execute steps 2-4 of SAA Algorithm.

6: x·¸P3 ← 	xQ¹¹,

7: for m = 1 → M, do

8: 								xy,�4¬ ← xH

9: end for

10: While �§� ≥ º	or	|̿� ≠ |��� �, and�s < sy�~� do

11: k ← k + 1,

12: xif ← P±xH,f95,
13: x¾f ← αfxif + X1 − αfYx·¸P3,
14: if αf95 = 0, αf ← αf95	else	αf ← αf95 − ∆¿.

15: if k ≥ 2,ρf ← À				βρf95 									if		ϵf > ϵf95/2				ρf95 	otherwise , else ρf ← ρf.

SBPHA Algorithm

35

16: 	ωHf ← 	ωHf95 + ρfXxy,�95 − x¾fY
17: for m = 1 → M, do

18: Ã{y,� , xH,fÄ ← Min ���xH,f + 5
|��|∑ �|, ������45 + 	ωHf xH,f +

																					nÅ> oxH,f − x¾fo>�																																																																																																�2.17�
19: end for

20: §� ≔ �∑ ‖xy,� − |̿�‖�y45 �12
21: for m = 1 → M, do

22: �{vy,�# ← Min ���xy,� + 5
|tV|∑ �|, ���tV�45 �																																															�2.18�

23: end for

24: {v��� ← È			{v��� � 									}É		{v��� � < {v��� 		{v��� 									Ê�ℎÌ�Í}^Ì

25: |��� ← À			|yV,�|
W = ���
}�y45,…,�	 {vy,� 									}É		{v��� � < {v��� 		|��� 									Ê�ℎÌ�Í}^Ì

26: end while

27: |�¨©ª� ← |��� , {�¨©ª� ← {v��� .

The initialization step of the SBPHA is similar to the SAA and the only

additional calculation is the sample	
’s probability and normalized probabilities, e.g.,

PH and	P±H. The probability P±H is used to calculate the samples probability weighted

solution xif at iteration k (Step 4). The first step in SBPHA is to execute the standard

SAA procedure (Step 5). Next, we calculate the samples’ weighted average solution

and the balanced solution. The samples’ balanced solution (x¾f) is a weighted

average of the average solution (xif) and the incumbent best solution (x·¸P3) as

36

calculated in Step 6. The weight factor αf ∈ �0,1# determines the bias of the best

incumbent solution; whereas high values tend the sample solutions to the sample

average solution, low values tend to the incumbent best solution. There are two

alternative implementations; αf can be static by setting ∆¿= 0 or dynamically

changing over the iterations by setting ∆¿> 0 (see Step 14). The advantage of

dynamic αf is that, beginning with a large αf,	we first prioritize the sample average

solution until the incumbent best solution quality improves. This approach allows

guiding the sample solutions to a consensus sample average initially and then

directing the consensus sample average in the direction of evolving best solution.

In Step 15, we update the penalty factor ρf depending whether the distance

(ϵf) of sample solutions from the most recent balanced solution has sufficiently

improved. We choose the improvement threshold as half of the distance in the

previous iteration (e.g., ϵf95) . Similarly, in Step 16, we update the dual variable (ωHf)

for the linear deviation of every sample’s solution from the balanced solution at

iteration k. Note that the ωHf are the Lagrange multipliers corresponding to the

equivalence of each sample’s solution to the balanced solution.

In Step 18, we solve each sample problem with additional objective function

terms representing the dual variables and calculate the deviation of the sample

solutions from the balanced solution (i.e., ϵf). Step 22 estimates the objective

function value of each sample solution in the original problem using the reference set

N′. Steps 24 and 25 identify the sample solution xH,f with the best {vy,� in iteration s

and updates the incumbent best vv·¸P3 if there is improvement. The Steps 22 and 24-

25 correspond to the integration of SAA method’s selection of the best performing

37

sample solution. Rather than terminating, the proposed SBPHA retains this

information in the next iteration through the balanced solution. Step 10 checks

whether the stopping conditions are met. If the iteration limit is reached k ≥ kHÐ� or

when the all sample solutions converged to the balanced solution within a tolerance

then the SBPHA terminates with the best found solution. The worst-case solution of

the SBPHA is equivalent to the SAA solution with the same set of samples. This can

be observed by noting that the best incumbent solution is initialized with the SAA’s

solution. Hence, the SBPHA ensures that there is always a feasible solution which

has same performance or better than that of SAA’s.

2.3.2. Discarding-SBPHA (d-SBPHA) Algorithm for Binary First Stage SP

Problems

The Discarding-SBPHA (d-SBPHA) is an enhanced version of the SBPHA and

aims at improving the solution. The main idea of the d-SBPHA is to re-solve SBPHA,

by adding a constraint(s) to optimization problem (17), at the beginning of the

iteration where the SBPHA finds the solution that it converges at the end. For

instance, if SBPHA finds a solution at iteration 5 and converges to that solution at

iteration 10, then d-SBPHA starts re-solving the sample problems by starting from

iteration 5 with the values (ω,α, ρ… � at iteration 5 , in order to follow a different path

from that SBPHA followed.

This modification of SBPHA can be considered as globalization of the SBPHA

in that by repeating the discarding steps, the d-SBPHA can find the optimum solution,

albeit the number of discarding steps could be infinite.

38

Additional Notation For d-SBPHA:

Ê��Ñ: Iteration number where the SBPHA or d-SBPHA finds the solution, where it is

found the very first, which is converged at the end.

�, �y�~: discarding index and maximum number of discards

Ò: set of discarded feasible solutions, (Ò 45,…,Ó�
�Ò : number of binary decision variables that are equal to 1 in discarded solution Ò
Ò 5: set of decision variables, that are =1 in discarded solution	�,
Ò ¬: set of decision variables, that are =0 in discarded solution	�,

Discarding-SBPHA Algorithm for Binary First Stage SP Problems:

1: Initialize: execute steps 1-27 of SBPHA

2: x·¸P3 ← 	x�¨©ª� , Ò ← Ô, Ê ≔ 0, � ← 0.

3: While � ≤ �y�~ do

4: � ← � + 1,

5: Ê ← Ê��Ñ,

6: for m = 1 → M, do

7: xy,� ← xH,Õ

8: end for

9: ρf ← ρÕ.
10: αf ← αÕ.
11: for m = 1 → M, do

12: 	ωHf ← 	ωHÕ

d-SBPHA Algorithm

39

13: end for

14: Ò ← Ò⋃x·¸P3
15: execute steps 10-16 of SBPHA.

16: for m = 1 → M, do

17: 	�{y,� , |y,�# ← Min ���|y,� + 5
|��|∑ �|, ������45 + 	ωHf |y,� +

																										nÅ> o|y,� − x¾fo>�																																																																																									�2.19�
 ^. �. ∑ |Ø~Ù∈ÓÚ1 −∑ |Û~Ü∈ÓÚÝ ≤ �Ò − 1, ∀� = 1,… , Ò

18: end for

19: execute steps 20-26 of SBPHA.

20: |ÞÞ9�¨©ª� ← |��� , {ÞÞ9�¨©ª� ← {v��� 	.
21: end while

22: {��� Þ9�¨©ª� ←
}�Þ45,…,Ó	 {ÞÞ9�¨©ª�

23: |��� Þ9�¨©ª� ←	|ÞÞ9�¨©ª� = ���
}�Þ45,…,Ó 	 {ÞÞ9�¨©ª�

Initialization step of the d-SBPHA is the implementation of the original SBPHA

and the only difference is to set up of the starting values of parameters for d-SBPHA.

In step1, parameters of the algorithm are set up as the values of the algorithm when

current best solution is found. Also in step 1, the set of the solutions that will be

discarded is updated to prevent the algorithm to re-converge to the same solution. In

step 2 to 13, algorithm updates the parameters according to starting point of the d-

SBPHA. Step 14 updates the set of discarded solution and step 15 executes SBPHA

steps to solve the sample problems. Please note that step 17 has the same objective

function as in step 18 of SBPHA with extra constraint(s). These constraints prevent

40

the algorithm to find the solutions that are already found (first stage solutions that are

discarded). Further, the discarding constraints prevent d-SBPHA to find the best

solution(s) that already found. Step 19 executes steps from 20 to 26 of the SBPHA,

which test solutions’ quality and performs the updating of the best solution. The only

difference, in step 21, of d-SBPHA then SBPHA is to check whether the maximum

number of discards is reached or not. If it is reached, then the algorithm reports the

solution with the best performance (in step 22 and 23) else continues discarding.

Discarding strategy provides better or (at least) the same solution as SBPHA

provides.

Lower Bounds for SBPHA and d-SBPHA:

The computational effort of SBPHA is spent in solving many sample problems

as well as in evaluating the first stage decisions in the larger reference set. As a

computational time improvement technique for SBPHA and d-SBPHA, a lower bound

can be provided for each sample that is solved by the optimization problem at step 18

in SBPHA and 17 in d-SBPHA. Providing a consistent/tight lower bound improves

solution time. The theoretical justification of the use of a lower bound for sample

problems is that if the balanced solution does not change, then the solution of the

sample problems is non-decreasing. Hence, one can use the previously found

solution as the lower bound (due to the Lagrangean duality property). However, if the

balanced solution changes, then the lower bound property of the previous solution is

not guaranteed hence a conservative estimate for lower bound is needed.

Let ßày,� be the lower bound for sample
 at iteration	s in SBPHA or d-

SBPHA. At step 18 in SBPHA (step 17 in d-SBPHA) another constraint should be

41

added: {y,� ≥ ßày,�, ∀
,
 = 1,…w, where ßày,� = �á�|ßày,�95, and 0 ≤ �á� ≤ 1.

However	�á�, should not be close 1 because it might cause infeasible solutions. There

is a trade of on value of	�á�. Higher values might cause either infeasible or sub-

optimal solutions, lower values does not provide consistent/tight constraints that

should help improving solution time. In this study, we tested multiple values for	�á�,

we suggest applicants to choose	0.4 ≤ �á� ≤ 0.6. Providing lower bound to

optimization problem saved 10%-15% of the solution time.

2.3.3. Properties of SBPHA and d-SBPHA

Proposition 1 (Equivalence): SBPHA is equivalent to SAA if algorithm is

executed in one iteration. Further, SBPHA is equivalent to PHA if the samples

are mutually exclusive and their union is the entire scenario set.

Proof: We prove this in two parts.

SAA: If SBPHA terminated at step 1, then	|�¨©ª� = |���, and	{�¨©ª� = {���. It can

be conluded that SBPHA is equivalent to SAA.

PHA: Under specified assumptions and for w =] and	xy45,…,� = 1, SBPHA=PHA.

Let’s consider a two-stage SP problem with finite number of scenarios	��, ^ = 1,… ,],

and each scenario occurs with a probability ã�, where ∑ ã� = 1��45 . Consider the

SBPHA with samples as the individual scenarios, e.g., w =] and	xy45,…,�, =
1,	where			
 ≠
′. It can be concluded that		PH = pP. If weight for the best incumbent

solution and update factor for the weight of the best incumbent solution are equal to 1

and 0, consecutively, at every iteration �¤� ≔ 1,∆¦= 0�, then x¾f: = xif ≔ ∑ ã�|���∈� ,

and |�¨©ª� = |©ª�	and	{�¨©ª� = {©ª�. □

42

Proposition 2(Convergence) SBPHA converges to the best solution found at

any iteration.

Proof: Let assume that SBPHA finds, at iteration	s, the best solution as x·¸P3 = x∗.
Let us assume that SBPHA algorithm converges to a solution xW ≠ x·¸P3 and has

worse objective value than x∗ (with respect to the reference scenario set). Note that

convergence implies x¾f = x¾f95 = xW (assuming sy�~ = ∞). Further in the last update,

we must have x¾f = xW = αfxW 	+ X1 − αfYx·¸P3 . Since αf < 1, this equality is satisfied

if and only if xW = x·¸P3 which is contradiction. □

Proposition 3: SBPHA and ä-SBPHA algorithms have the same convergence

properties as SAA with respect to the sample size.

Proof: It is showed in (Ahmed and Shapiro 2002) and (Ruszczynski and Shapiro

2003) that SAA converges with probability one (w.p.1) to optimal solution of the

original problem as sample size,	�x → ∞�, increases to infinity. Since step 1 in

SBPHA is the implementation of SAA and that SBPHA does converge to the best

solution found (Proposition 2), we can simply argue that SBPHA and d-SBPHA

converges to optimal solution of the original problem as SAA does with increasing

sample size. □

Since SBPHA and d-SBPHA guarantee a better or same solution quality as SAA

provides, we can conjecture that SBPHA and d-SBPHA have more chance to reach

the optimality than SAA with a given of samples and sample size.

43

Proposition 4: The d-SBPHA algorithm converges to the optimum solution as

ä → ∞.

Proof:

Given that the d-SBPHA does not allow finding the same solution, in the worst case,

the d-SBPHA iterates as many times as the number of feasible solutions (infinite in

the continuous and finite in the discrete case) for the first stage decisions before it

finds the optimum solution. □

Clearly, as the number of discarding constraints added increases linearly with the

number discarding iterations, the resulting problems become more difficult to solve.

However, according to our tests for the d-SBPHA algorithm we experienced that d-

SBPHA finds the optimal solution in less than 10 discarding iterations.

2.4. Proposed Algorithm for Multi-Stage Stochastic Programming Problem

In this subsection, we extend the SBPHA to multi-stage SPs. Discretization in

the form of scenario tree is the standard method to solve multistage SP problems

(Shapiro 2008). Let us consider a multi-stage problem with �, (� = 1,2, … , �) time

periods. At time period � = 1, we have only one root node which is associated with

random event	�5 which is assumed to be known prior to the first stage decisions. At

time period	� = 2, the number of nodes is equal to the number of different random

events of	�> that are considered. Each node } at	� = 2 is associated with a random

event �>Øof	�> and is connected to the root node. We generate as many nodes as the

number of random event	�@ that follow	�>Ø for each node	}. All nodes at	� = 3 that

follow �>Ø are connected to the node that is associated with	�>Ø , etc. Each node at time

44

period � is connected to an irreplaceable node at the previous time period	� − 1,

called “ancestor” node and is connected to an irreplaceable node at time period	� + 1,

called “children” node (Shapiro 2008).

Each child node	� :5ØÛ that is connected to the node associated with � Ø is

associated with a probability	ãØÛ > 0, so that	∑ ãØÛÛ = 1. The probability of each

scenario (a path starts from the root node and ends at the last period,	�) is calculated

by the product of the probabilities	ãØÛ associated to the nodes on this path. After the

scenario tree for multi-stage SP problem is constructed the deterministic formulation

of the problem can be written as a one large optimization problem as in (2.6)-(2.9).

We note that even the number of scenarios is comparable in a two-stage and

a multi-stage SP, solving the latter is more difficult than solving the former (Shapiro

2008). In both cases, it is impossible to solve if the number of the scenarios is very

big. One of the powerful methods to apply in such cases is the SAA. The sampled

scenario tree can be created as follows: a randomly selected sample	�>Ø ,	} =
1,2,… , x5, of x5 realizations (nodes) are generated. The probability of each node

is= 1/x5. With the same logic, a randomly selected sample	�@ØÛ ,	å = 1,2,… ,x>, is

generated for each node	�>Ø , etc. At the end, a scenario tree with x = ∏ x �95 45

scenarios will be generated. The occurance probability for all scenarios in this

scenario tree, will be equal	�= 5
��. This process is called “conditional sampling” in

Shapiro (2002); Shapiro (2003); Shapiro (2008).

Once the scenario tree generated, one can create a deterministic equivalent of

the problem and solve with any appropriate algorithm. Under mild regularity

conditions, it is shown that the optimal first stage solution and the optimal objective

45

function value of the SAA problem converges to the original of the multi-stage

problem’s first stage solution and objective function value w.p.1 as the sample sizes

x ,� = 1,2,… , � − 1, increases to infinity (Olsen 1976; Shapiro 2003; Pennanen 2005;

Shapiro 2008). However the number of scenarios in multi-stage SP problems

increases exponentially with increasing number of time stages. Therefore the

deterministic equivalent of the created scenario tree becomes too large to solve as

the number of time stages increases. Hence that multi-stage SP problems are way

more difficult than two-stage SP problems.

The main difficulty in extending the SBPHA to multi-stage SP problems is to

find an upper bound with fixing first stage solution and relaxing non-anticipativity

constraints in	� > 1 time periods.

To illustrate, let us consider a three stage SP problem with 9 scenarios as in

Figure 4.

5

9

8

7

6

3

4

1

2

2

10

11

12

13

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

Scenario 7

Scenario 8

Scenario 9

t=1 t=2 t=3

46

Figure 4: A scenario tree of three-stage SP problem with nine scenarios

 Mathematical formulation of the three-stage SP problem in

Figure 4 can be written as two-stage SP problem in the following form. Note

that the notation and formulations are from Shapiro (2002):

min~1 �5|5 + ��æ>�|5, �>�# subject	to	é55|5 = à5, |5 ≥ 0.																															�2.20�
Note that, æ>�|5, �>� itself is a SP problem, and can be estimated by sampling. For a

given |5 and	�>, the corresponding expected objective function value can be

estimated by SAA. Let æ�>�|5, �>� be the estimator of	æ>�|5, �>�, then

æ>�|5, �>� ≥ ��æ�>�|5, êë�|êë = �>#																																																								�2.21�
For every feasible |5 and	�>. æ>�|5, �>� can be written as;

min~2 �>|> + ��æ@�|>, êì�|êë# subject	to	é>5|5 + é>>|> = à>, |> ≥ 0.					�2.22�
where æ@�|>, �@� is optimal of the problem;

min~í �@|@ subject	to	é@>|> + é@@|@ = à@, |@ ≥ 0.																																									�2.23�

5

9

8

7

6

3

4

1

2

2

10

11

12

13

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

Scenario 7

Scenario 8

Scenario 9

t=1 t=2 t=3

47

If we relax the non-anticipativity constraints at the second stage of the problem in

(2.20), then two-stage SP problem can be written,

min~1∈�1 �5|5 + ��æ�|5, �>, �@�# ,																																																																																�2.24�
where î5 ≔ �|5 ∈ ℝ�1: é55|5 = à5, |5 ≥ 0$,
and æ�|5, �> , �@� represent the optimal value of the problem;

min�1,~í�>|> + �@|@																																																																																												
subject	to

é>5|5 + é>>|> = à>,																																																														
é@>|> + é@@|@ = à@,																																																		�2.25�
|> ≥ 0, |@ ≥ 0.																																																																								

The relaxed (non-anticipativity constraints) problem in (2.24) and (2.25) above gives

a lower objective function value than the problem in (2.20) – (2.23) gives.

Assume that ��æ�|5, �>, �@�# is finite. Then by the Law of Large Numbers

(LLN), the expected value of the right hand side is equal to the left hand side of the

(2.26).

�5|5 + 1
xïæX|5, �>Ø , �@ØY → �5|5 + ��æ�|5, �>, �@�#

�

Ø45
		w. p. 1	as	x → ∞,														�2.26�

Subsequently, we can argue that any (feasible) first stage solution of the problem in

the left hand side of (2.26) provides a valid upper statistical bound for the problem

given in (2.24) and (2.25). Since the problem given in (2.24) and (2.25) gives smaller

objective function values than the original problem-three stage SP problem in (2.20-

2.23), we cannot guarantee that the left hand side of the (2.26) gives valid statistical

upper bound for the original three-stage SP problem in (2.20-2.23)(Shapiro 2002;

48

Shapiro 2003). As we mentioned above, finding an upper bound for multi-stage SP

problem. In contrast, the upper bound can be calculated in two-stage problems

through a simple evaluation of a first stage solution in the reference set.

Further, evaluating the performance of sample solution is not as easy in a

multi-stage SP as in a two-stage SP problem. The reason is that a sample’s solution

might not have a decision at a particular node of the scenario tree. Only the first

stage decisions are guaranteed to be available from any sample solution. To

overcome this evaluation difficulty, we evaluate only the first stage decisions by

solving another SP for the time periods	� > 1.

In order to adapt the SBPHA to the multi-stage SP, one modification is the

non-anticipativity constraints in � > 1 time stages. Both two-stage and multi-stage SP

problems have non-anticipativity constraints at the first stage. In addition to the first

stage, multi-stage SPs have scenario based non-anticipativity in the latter stages. We

show this through anillustrative example.

49

Figure 5: Scenario based decomposition of the problem in

Figure 4

Let us consider the problem in

Figure 4. After decomposing the problem into scenarios, the decomposed tree is

shown in Figure 5. Let us sample three samples (w = 3,
 = 1,2,3) each with two

scenarios (x = 2, � = 1,2) from the scenario tree in Figure 5.

Table 3: Sample s and scenarios for Illustrative Example

Sample ð
Scenarios

First stage Decision

Variables

Second Stage Decision

Variables

n=1 n=2 n=1,2 n=1 n=2

t=1

ñòò

ñòë

ñòó

ñòô

ñòõ

ñòö

ñò÷

ñòø

ñòì

ñëò

ñëë

ñøì

ñøë

ñøò

ñìì

ñìë

ñìò

ñëì

ñ÷ò

ñöò

ñòìò

ñòëò

ñòòò
ñòùò
ñóò

ñôò

ñõò

t=2 t=3

5

9

8

7

6

3

4

1

2

2

10

11

12

13

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

Scenario 7

Scenario 8

Scenario 9

t=1 t=2 t=3

50

m=1 1 4 |55,Z�
 = 1� |>5�
 = 1�	 |>Z�
 = 1�	
m=2 5 9 |5[,ú�
 = 2� |>[�
 = 2�	 |>ú�
 = 2�	
m=3 1 8 |55,û�
 = 3� |>5�
 = 3�	 |>û�
 = 3�	

Clearly, the first stage decisions must satisfy non-anticipativity constraints.

	|55,Z�1� = |5[,ú�2� = |55,û�3�																																																																	�2.27�
Additional non-anticipativity constraints are as follows:

|>5�1� = |>5�3�																																																																																									�2.28�
|>Z�1� = |>[�2�																																																																																								�2.29�
|>ú�2� = |>û�3�																																																																																								�2.30�

Equation (2.28) shows that the second stage decisions have to be the same

for scenario 1, which is selected by sample 1 and 3. Equation (2.29) shows that the

second stage decision variables of scenario 4 in sample 1 and scenario 5 in sample 2

have to be the same since both of them stem from node 3, which means they have

the same history until time period 2. Equation (2.30) shows that the second stage

decision variables of scenario 9 in sample 2 and scenario 8 in sample 3 have to be

the same since both of them stem from node 4. Note that non-anticipativity

constraints are not applied to the last time period	��� decision variables.

The SBPHA algorithm is given in section 2.5, it checks the convergence of the

equations given above in step 20, updates penalty factor in step 15 and penalizes the

gap between the variables and the average values in step 18. The average values

are calculated in step 13. The rest of the SBPHA algorithm works the same for multi-

stage SP problems as it works for two-stage SP problems.

51

CHAPTER III: APPLICATIONS of SBPHA and d-SBPHA

This section presents the results of an experimental study performed to

investigate the computational and solution quality performance of the proposed

SBPHA and d-SBPHA for solving two-stage and multi-stage SP problems. For two-

stage SP problem, we selected the Capacitated Reliable Facility Location Problem

(CRFLP) and benchmark the results of SBPHA and d-SBPHA with those of SAA.

Secondly, we applied the SBPHA algorithm to the multi-stage stochastic lot–sizing

problem.

In what follows, we first present the results of the two-stage stochastic

programs (Section 3.1). After introducing the CRFLP and relevant past work, we

describe the experimental setting in Section 3.1.1., present results for algorithm

tuning in Section 3.1.2, and discuss the comparative results of SBPHA and d-SBPHA

vis-à-vis those of SAA. We then present the results of implementing SBPHA

algorithm to the multi-stage stochastic lot–sizing problem on an illustrative example.

All the code development and programming is performed in Matlab R2010b and the

integer programs are solved with CPLEX 12.1. The experiments are conducted on a

PC with Intel(R) Core 2 CPU, 2.13 GHz processor and 2.0 GB RAM running on

Windows 7 OS.

3.1. Capacitated Reliable Facility Location Problem (CRFLP)

Facility locations are primary strategic supply chain decisions and require significant

investments spanning over long planning horizons, e.g., ranging from 3 to 10 years

depending on the industry. Given the duration of the planning horizon and the level

52

and scope of uncertainty in today’s business environment, the supply chain

designers are compelled to anticipate and plan for uncertain future events in their

network design decisions. A notable category of these supply chain uncertainties is

the disruption of facilities which affect the supply chain’s ability to efficiently satisfy

the customer demand (Schütz, Tomasgard et al. 2009). These disruptions can be

either natural disasters or man-made (such as terrorist attacks, labor strikes, etc.). In

certain cases, the disruption at a region may extend or migrate through the network

and affect other parts of the supply chain network (Masihtehrani 2011). Recent

examples of such disruptions are the 2011 earthquake in Japan affecting Toyota's

ability to ship parts and finished vehicles (Brennan 2011; TheGuardian 2011),

hurricanes Katrina and Rita in 2005 disrupting the nation's oil refineries, and the 2000

fire at the Royal Philips Electronics radio frequency chip manufacturing plant in

Albuquerque halting the production of Ericsson and Nokia (Snyder, Scaparra et al.

2006).

Following a disruption event, there is hardly any recourse action to change the

supply chain substructure rapidly (Snyder, Scaparra et al. 2006). Instead, a common

recourse is to reassign customers to other facilities or arrange alternative sources of

supply. In either case, the cost of serving the customer demand increases e.g., due

to higher transportation cost. Over the past decade, the consideration of such

disruptions affecting the supply chain network design has received significant

attention from both the researchers and practitioners.

An exemplary earlier study can be found in (Snyder and Daskin 2005).

Authors developed a reliability based formulation for Uncapacitated Facility Location

53

Problem (UFLP) and the p-median problem (PMP). More recently, Shen, Zhan et al.

(2011) studied a variant of reliable UFLP, and proposed efficient approximation

algorithms for URFLP by using the special structure of the problem. However these

approximations cannot be applied to the general class of facility location problems

such as Capacitated Reliable Facility Location Problems (CRFLP).

In practice, capacity decisions are considered jointly with the location

decisions. Further, the capacity of facilities often cannot be changed in the event of a

disruption. Following a facility failure, customers can be assigned to other facilities

only if these facilities have sufficient available capacity. Thus capacitated reliable

facility location problems are more complex than their uncapacitated counterparts

(Shen, Zhan et al. 2011) and the studies considering capacitated reliable facility

location problem are limited. Snyder and Ülker (2005) study the CRFLP and propose

an algorithm based on Sample Average Approximation (SAA) embedded with

Lagrangean relaxation. Gade (2007) apply the SAA method in combination with a

dual decomposition method to solve CRFLP.

Peng, Snyder et al. (2011) propose a hybrid meta-heuristic based on genetic

algorithm to solve a related problem where the objective is to minimize the total fixed

and transportation cost while limiting the disruption risk based on the ã-robustness

criterion. In summary, the earlier work on CRFLP uses SAA based approximation or

meta-heuristic methods to overcome the computational complexity associated with

large number of scenario realizations.

We now introduce the notation used for the formulation of CRFLP. Let	üý and

üþ denote the set of possible reliable and unreliable facility sites, respectively, and

54

ü = üý⋃üþ⋃�É�$ denote the set of all possible facility sites, including the emergency

facility (É�). Let � denote the set of customers (i.e., demand points). Let ÉØ be the

fixed cost for facility	} ∈ ü, which is incurred if the facility is opened, and �Û be the

demand for customer	å ∈ �. The �ØÛ denote the cost of satisfying each unit demand of

customer å from facility } and include such variable cost drivers as transportation,

production, and inventory. Each unit of demand that is satisfied by the emergency

facility cause a large penalty	�ℎÛ� cost. This penalty can be incurred due to finding an

alternative source or due to the lost sale. Lastly, the facility } has limited capacity and

can serve at most àØ 	units of demand.

We formulate the CRFLP as a two-stage SP problem. In the first stage, the

location decisions are made prior to the realization of random failures of the located

facilities. In the second stage, following the facility failures, the customer-facility

assignment decisions are made for every customer given the surviving facilities. The

goal is to identify the set of facilities to be opened while minimizing the total cost of

open facilities and the expected cost of meeting demand of customers from the

surviving facilities and the emergency facility.

In the scenario based formulation of CRFLP, let ^ denote a failure scenario

and the set of all failure scenarios is], where	^ ∈]. Let ã� be the probability that

scenario ^ occurs and ∑ ã� = 1�∈� . Further let	sØ� be the indicator parameter denoting

whether the facility } survives, i.e., sØ� = 1, and sØ� = 0 otherwise. For instance, in

case of independent facility failures, we have |]| = 2|�� | possible failure scenarios.

Note that our proposed method does not require any assumption on independence

and distribution of each facility’s failure.

55

The binary decision variable	|Ø specifies whether facility } is opened or not,

and the variable �ØÛ� specifies the fraction of demand of customer å satisfied by facility

} in scenario	^. The scenario based formulation of the CRFLP as a two-stage

stochastic program is as follows.

CRFLP:

								Minimize																					ïÉØ
Ø∈� |Ø +ïã�ïï�Û�ØÛ�ØÛ�

Ø∈�Û∈Ó
																						

�∈�
																								�3.1�

 Subject to

ï �ØÛ�
Ø∈� = 1																		∀å ∈ Ò, ^ ∈]																																																									�3.2�

�ØÛ� ≤ |Ø																							∀å ∈ Ò, } ∈ ü, ^ ∈]																																														�3.3�
																																							ï�Û

Û∈Ó
�ØÛ� ≤ sØ�àØ 									∀} ∈ ü, ^ ∈]																																																							�3.4�

																|Ø ∈ �0,1$																						∀} ∈ ü																																																																			�3.5�
																							�ØÛ� ∈ �0,1#																					∀å ∈ Ò, } ∈ ü, ^ ∈]																																										�3.6�

The objective function in formulation (3.1) minimizes the total fixed cost of

opening facilities and the expected second stage cost of satisfying customer demand

through surviving facilities and the emergency facility. Constraints (3.2) ensure that

demand of each customer is fully satisfied by either open facilities or the emergency

facility in every failure scenario. Constraints (3.3) ensure that, in any failure scenario,

a customer’s demand cannot be served from a facility that is not opened. Constraints

(3.4) prevent the assignment of any customer to a facility that is failed and also

ensure the total demand allocated to the facility does not exceed its capacity in any

56

failure scenario. Constraints (3.5) are integrality conditions and constraints (3.6) are

simple upper and lower bounds on the demand allocation variables.

3.1.1. Experimental Setting

We used the test data sets available from the literature Zhan (2007) which are also

used in Shen, Zhan et al. (2011) for the URFLP. In these data sets, the coordinates

of site locations (facility, customer) are i.i.d. and sampled from U�0,1# × U�0,1#. The

sets of customer and facility sites are identical. The customer demand is i.i.d.,

sampled from	U�0,1000#, and rounded to the nearest integer. The fixed cost of

opening an unreliable facility is i.i.d. and sampled from	U�500,1500#, and rounded to

the nearest integer. For the reliable facilities, we set the fixed cost to 2,000 for all

facilities. The variable costs	�ØÛ for } = 1,… , |ü| − 1 and ∀å are chosen as the

Euclidean distance between sites. We assign the large penalty cost �|�|Û for serving

customer å from the emergency facility as 20. Zhan (2007) and Shen, Zhan et al.

(2011) consider URFLP and thus their data sets do not have facility capacities. In all

our experiments, we selected identical capacity levels for all facilities, i.e., àØ45,..,|�| =
2,000.

In generating the failure scenarios, we assume that the facility failures are

independently and identically distributed according to the Bernoulli distribution with

probability	�Ø, i.e., the failure probability of facility }. We experimented with two sets of

failure probabilities; first set of experiments consider uniform failure rates, i.e.,

�Ø∈�� = � where � = �0.1, 0.2, 0.3$, and the second set of experiments consider

bounded non-uniform failure rates i.e.	�Ø, where 	�Ø ≤ 0.3. We restricted the failure

57

probabilities with 0.3 since larger failure rates are not practicable. The reliable

facilities and emergency facility are perfectly reliable, i.e.,	�Ø∈���∪	
� = 1. Note that the

case �Ø∈�� = 0 corresponds to the deterministic fixed-charge facility location problem,

and �Ø∈�� = 1 corresponds to the case where all unreliable facilities fail. The failure

scenarios ^ ∈] are generated as follows. Let ü	� ⊂ üþ denote the facilities that are

failed, and	ü�∈��� ≡ üþ\ü	� be the set of surviving facilities in scenario	^. The facility

indicator parameter in scenario ^ become sØ�=0 if i ∈ ü	�, and sØ�=1 otherwise, e.g., if

i ∈ ü�� ∪ üý ∪ �É�$. The probability of scenario ^ is then calculated as 	ã� =
�������1 − ��|���|. Detailed date set can be found in the Appendix in Table 16.

In all experiments, we used |�| = üý⋃üþ = 12 + 8 = 20 sites which is a large-

sized CRFLP problem and is more difficult to solve than the uncapacitated version

(URFLP). The size of the failure scenario set is |]| = 4,096. The deterministic

equivalent formulation has 20 binary |Ø and 1,720,320 = |ü| × |Ò| × |]| = 21 × 20 ×
4,096 continuous �ØÛ� variables. Further, there are 1,888,256 = 81,920+ 1,720,320 +
86,016 = |Ò| × |]| + |ü| × |Ò| × |]| +	 |ü| × |]| constraints corresponding to (3.2-4).

Hence, the size of the constraint matrix of the deterministic equivalent MIP

formulation is 1,720,320 × 1,888,256 which cannot be tackled with exact solution

procedures (e.g., branch-and-cut or column generation methods). Note that while

solving LPs with this size is computationally feasible, the presence of the binary

variables makes the solution a daunting task. For instance, there are 1,048,576 = 2>¬
possible combinations of binary variables |Ø and a large scale LP must be solved for

each combination. We generated sample sets for SAA and the SBPHA (and d-

58

SBPHA) by randomly sampling from U�0,1# as follows. Given the scenario

probabilities, ã�, we calculate the scenario cumulative probability vector �ã5, �ã5 +
ã>�,… , �	ã5 + ã> +⋯+ ã|�|95�, 1$ which has |]| intervals. We first generate the random

number and then select the scenario corresponding to the interval containing the

random number. We tested the SAA, SBPHA, and d-SBPHA algorithms with varying

number of samples	�w�, and sample sizes	�x�. Whenever possible, we use the same

sample sets for all three methods. We select the reference set (xW) as the entire

scenario set, i.e., xW =] which is used to evaluate the second stage performance of

a solution. We note that this is computationally tractable due to relatively small

number of scenarios and that the second stage problem is an LP. In case of large

scenario set or integer second stage problem, one should select xW ≪].

3.1.2. Parameter Sensitivity

In this section, we evaluate the sensitivity of the SBPHA with respect to the weight for

the best incumbent solution parameter�α�, penalty factor�ρ), and update parameter

for the penalty factor	�£�. Recall that	α determines the bias of the best incumbent

solution in obtaining the samples’ balanced solution, which is obtained as a weighted

average of the best incumbent solution and the samples’ probability weighted

solution. The parameter ρ penalizes the Euclidean distance of a solution from the

samples’ balanced solution and £ is the multiplicative update parameter for ρ

between two iterations. In all these tests, we set �w, x� = �5, 10�, and	� = 0.3 unless

otherwise stated. We experimented with two α strategies, static and dynamic α. We

solved in total 480�= 10	replications	 × 48	parameter	settings� problems.

59

The summary results of solving CRFLP using 10 independent sample sets

(replications) with static strategy α=0.6 and dynamic strategy ∆α = 0.03, £ =
�1.1,1.2,1.3,1.4,1.5,1.8$, and ρ = �1,20,40,80,200$ are shown in Table 4. The detailed

results of the 10 replications of Table 4 together with the detailed replication results

with static strategy for α={0.7,0.8} and dynamic strategy ∆α = �0.02,0.05$ are

presented in Table 12 in the Appendix.

The first column in Table 4 shows the α strategy and its parameter value, i.e.,

∆¦ for dynamic and ¤ for static. Note that in the dynamic strategy, we select the initial

value as	¤�4¬ = 1. The second and third columns show penalty factor	�ρ) and update

parameter for the penalty factor	�£�, consecutively. The objective function values for

the 10 replications (each replication consists of w = 5 samples) are reported in

columns	4,5,… ,13 (shown only for replications	1,	2 and 10 in Table 4 and detailed

results are shown in Table 12). Column 14 presents the average objective function

value across 10 replications, and Column 15 presents the optimality gap (i.e., ��ã5)
between the average replication solution and the best objective function value found

which is	8995.081. Columns 16 and 17 present the minimum and maximum objective

values across 10 replications. Average objective function value and ��ã5 are

calculated as follows:

 {ý��¹�¸�Ð�¸ = 5
ý��∑ {��¨©ª�ý���45 (3.7)

��ã5 = ��
������ �9�∗
�∗ × 100% (3.8)

1 The best solution is obtained by selecting the best amongst all SBPHA solutions (e.g., out of 480 solutions)

and the time-restricted solution of the CPLEX. The latter solution is obtained by solving the deterministic

equivalent using CPLEX method with %0.05 optimality gap tolerance and 10 hours (36,000 seconds) of time

limit until either the CPU time-limit is exceeded or the CPLEX terminates due to insufficient memory.

60

where "Ìã is the number of replications, e.g., "Ìã = 10 in this section’s experiments.

Table 4: Summary Objective Function Results for Solving 10 Replications of CRFLP
with different parameter values.

Alpha(α)

Strategy/

Parameter
Start

Update

Parameter(β)
1 2 … 10 Average Gap1 (%) Min Max

1 1.8 9,825 9,032 … 9,515 9,358 4.0 8,995 10,006

20 1.2 9,751 9,104 … 9,483 9,316 3.6 8,995 10,006

20 1.5 9,547 9,271 … 9,332 9,361 4.1 9,024 10,006

40 1.3 9,547 8,995 … 9,404 9,335 3.8 8,995 10,006

40 1.4 9,528 9,271 … 9,586 9,337 3.8 9,024 10,006

80 1.1 9,362 8,995 … 9,112 9,177 2.0 8,995 9,528

80 1.2 9,547 9,032 … 9,167 9,134 1.5 8,995 9,547

200 1.1 9,362 9,287 … 9,096 9,251 2.8 8,995 10,006

1 1.8 9,528 8,995 … 9,637 9,346 3.9 8,995 9,713

20 1.2 9,362 9,024 … 9,528 9,250 2.8 8,995 9,528

20 1.5 9,825 9,292 … 9,467 9,360 4.1 8,995 9,825

40 1.3 9,528 9,167 … 9,112 9,241 2.7 8,995 9,528

40 1.4 9,825 9,292 … 9,467 9,360 4.1 8,995 9,825

80 1.1 9,825 9,024 … 9,362 9,235 2.7 8,995 9,825

80 1.2 9,528 9,104 … 9,944 9,283 3.2 8,995 9,944

200 1.1 9,825 9,167 … 9,112 9,195 2.2 8,995 9,825

Objective

Static/ α=0.6

Dynamic/

Δα=0.03

Rho (ρ) Replication (1,…,Rep)

Figure 6: Effect of Dynamic Δα=0.02 and Different ρ and β Strategies on the Solution
Quality for CRFLP with Facility Failure Probability � = 0.3.

 8,400

 8,600

 8,800

 9,000

 9,200

 9,400

 9,600

 9,800

 10,000

O
b

je
ct

iv
e

Replication

Parameter sensitivity for Dynamic α (Δα=0.02)

ρ start=1, β=1.8

ρ start=20, β=1.2

ρ start=20, β=1.5

ρ start=40, β=1.3

ρ start=40, β=1.4

ρ start=80, β=1.1

ρ start=80, β=1.2

ρ start=200, β=1.1

61

Figure 7: Effect of Static α=0.6 and Different ρ and β Strategies on the Solution
Quality for CRFLP with Facility Failure Probability � = 0.3.

In Figure 6 and Figure 7 the effect of dynamic Δα=0.02 and static α=0.6 and

different ρ and β parameter settings on the solution quality for CRFLP with failure

probability � = 0.3 over 10 different replications are shown. The average objective

function value of these 10 replications shows that the proposed algorithm (SBPHA) is

relatively insensitive to the parameter settings to converge to good (optimal)

solution(s) with both dynamic and static α strategies.

In Table 5, we report on the computational (CPU) time in seconds for tests

presented in Table 4. The complete results are provided in Table 13 in the Appendix.

First observation from Table 4 and Table 5 is that the SBPHA is relatively insensitive

to the ¤ strategy employed and the parameter settings selected. Secondly, we

 8,400

 8,600

 8,800

 9,000

 9,200

 9,400

 9,600

 9,800

 10,000

 10,200

O
b

je
ct

iv
e

Replication

Parameter sensitivity for Static α (α=0.6)

ρ start=1, β=1.8

ρ start=20, β=1.2

ρ start=20, β=1.5

ρ start=40, β=1.3

ρ start=40, β=1.4

ρ start=80, β=1.1

ρ start=80, β=1.2

ρ start=200, β=1.1

62

observe that the performance of the SBPHA with different parameter settings

depends highly on the sample. As seen in Table 12 replication 7, most of the

configurations show good performance as they all obtain the optimal solution.

Further, as the ∆¦ increases, the best incumbent solution becomes increasingly more

important leading to decreased computational time. While some parameter settings

exhibit good performance in solution quality, their computational times are higher,

and vice versa.

Table 5: Summary CPU Times for Solving 10 Replications of CRFLP with different
parameter values.

Alpha(α) Time (s)

Strategy/

Parameter
Start

Update

Parameter(β)
1 2 … 10 Average

1 1.8 399 533 … 419 470.4

20 1.2 649 740 … 837 786.6

20 1.5 391 462 … 410 483.8

40 1.3 439 475 … 491 498.5

40 1.4 379 424 … 945 474.6

80 1.1 670 665 … 1,402 801.1

80 1.2 450 430 … 554 565.0

200 1.1 421 390 … 582 442.9

1 1.8 379 468 … 421 475.1

20 1.2 575 782 … 742 794.0

20 1.5 319 447 … 431 452.7

40 1.3 391 484 … 484 541.1

40 1.4 337 447 … 466 455.3

80 1.1 515 729 … 710 810.9

80 1.2 388 546 … 568 560.9

200 1.1 346 401 … 595 545.0

Static/ α=0.6

Dynamic/

Δα=0.03

Rho (ρ) Replication (1,…,Rep)

In Figure 8 the effect of static α=0.6 and different ρ and β parameter settings

on the CPU time for CRFLP with failure probability � = 0.3 over 10 different

replications are shown. The average CPU time value of these 10 replications shows

that the proposed algorithm (SBPHA) is relatively sensitive to the parameter settings

63

to converge to good (optimal) solution(s) with static α strategy. The same tests are

done for other parameter settings. We observe that a parameter selection index is

needed in order to test the SBPHA and d-SBPHA algorithms performances.

Figure 8: Effect of Static α=0.6 and Different ρ and β Strategies on the CPU Time for
CRFLP with Facility Failure Probability� = 0.3.

In selecting the parameter settings for SBPHA, we are interested in a

parameter setting that offers a balanced trade-off between the solution quality and

the solution time. In order to determine such parameter settings, we developed a

simple, yet effective, parameter configuration selection index. The selection criterion

is the product of average ��ã5 and CPU time. Clearly, smaller the index value, the

better is the performance of the corresponding parameter configuration. To illustrate,

using the results of the first row in Table 4 and Table 5, the index of static	α = 0.6,

with starting penalty factor �ρ� = 1 and penalty factor update £	 = 1.8, is calculated

 -

 200

 400

 600

 800

 1,000

 1,200

 1,400

T
im

e
(s

)

Replication

Parameter sensitivity for Static α (α=0.6)

ρ start=1, β=1.8

ρ start=20, β=1.2

ρ start=20, β=1.5

ρ start=40, β=1.3

ρ start=40, β=1.4

ρ start=80, β=1.1

ρ start=80, β=1.2

ρ start=200, β=1.1

64

as 19.00	�= 4.039%× 470.4�. Parameter selection indexes corresponding to all 480

experiments are shown in Table 6 (and in Figure 9). According to the aggregate

results in Table 6 (the ‘Total’ row at the bottom), the static	¤ = 0.7 setting is the best,

the static ¤ = 0.6 is the second best, and dynamic ¤ with ∆¦= 0.03 provides the third

best performance. Hence, we use only these ¤ parameter configurations in our

experiments. In terms of penalty parameter configuration, we select the best setting,

i.e., starting penalty factor �ρ� = 200 and penalty factor update £	 = 1.1 for all ¤

parameter configurations. Note that by selecting a larger starting penalty factor, the

SBPHA would converge faster but the quality of the solution converged would be

lower. Therefore, we restricted our experiments to penalty factor starting with

�ρ� = 200 which provides good solution quality and time trade-off.

4.039x470.4/100=19.0

Start
Update

Parameter(β)
 Δα=0.02 Δα=0.03 Δα=0.05 α=0.6 α=0.7 α=0.8 Total

1 1.8 18.95 18.52 25.28 19.00 18.89 25.17 125.8

20 1.2 26.58 22.53 26.33 28.07 16.54 23.88 143.9

20 1.5 13.30 18.37 20.20 19.66 17.09 18.65 107.3

40 1.3 14.58 14.78 24.30 18.83 18.83 18.14 109.5

40 1.4 20.23 18.49 18.03 18.02 14.32 15.12 104.2

80 1.1 21.73 21.62 24.26 16.23 17.67 17.02 118.5

80 1.2 15.88 17.92 21.27 8.70 17.83 20.33 101.9

200 1.1 14.75 12.09 14.77 12.59 13.48 11.98 79.6

146.0 144.3 174.5 141.1 134.6 150.3

Rho (ρ) Dynamic α Static α

Total:

65

Figure 9: Creating Parameter Selection Index

Further, among all the experiments, the best parameter configuration in terms

of index is with static ¤	 = 0.6, when starting penalty factor ρ = 80 and update

parameter	�£� 	= 1.2. In Table 4 and Table 12, this configuration of parameter

selection provides the best average gap performance and a good CPU time

performance. Hence we also included this parameter configuration in our

experiments.

Table 6: Index for Parameter Selection

Start
Update

Parameter(β)
 Δα=0.02 Δα=0.03 Δα=0.05 α=0.6 α=0.7 α=0.8 Total

1 1.8 18.95 18.52 25.28 19.00 18.89 25.17 125.8

20 1.2 26.58 22.53 26.33 28.07 16.54 23.88 143.9

20 1.5 13.30 18.37 20.20 19.66 17.09 18.65 107.3

40 1.3 14.58 14.78 24.30 18.83 18.83 18.14 109.5

40 1.4 20.23 18.49 18.03 18.02 14.32 15.12 104.2

80 1.1 21.73 21.62 24.26 16.23 17.67 17.02 118.5

80 1.2 15.88 17.92 21.27 8.70 17.83 20.33 101.9

200 1.1 14.75 12.09 14.77 12.59 13.48 11.98 79.6

146.0 144.3 174.5 141.1 134.6 150.3

Rho (ρ) Dynamic α Static α

Total:

In the remainder of the computational experiments, we used sample size and

number as �w,x� = �5, 10�, which enables the SBPHA to search the solution space

while maintaining computational time efficiency.

3.1.3. Computational Performance of SBPHA and d-SBPHA

In this section, we first show the performance of the d-SBPHA in improving the

solution quality of SBPHA and then compare the performances of the SAA and the

proposed �-SBPHA algorithm.

66

In the remainder of the experiments, with an abuse of the optimality definition, we

refer to the best solution as the “exact solution”. This solutions is is obtained by

selecting the best amongst all SBPHA, �-SBPHA, and SAA solutions and the time-

restricted solution of the CPLEX. The latter solution is obtained by solving the

deterministic equivalent using CPLEX method with %0.05 optimality gap tolerance

and 10 hours (36,000 seconds) of time limit until either the CPU time-limit is

exceeded or the CPLEX terminates due to insufficient memory.

3.1.3.1 Analyze on d-SBPHA and SBPHA

Figure 10 shows effect of discarding strategy on the solution quality for different

facility failure probabilities. In all figures, results are based on the average of 10

replications. Optimality gap (shown as ‘Gap’) is calculated as in (3.7) but substituted

{��¨©ª� with {��� ,�Þ9�¨©ª� in (3.8) to calculate {ý��¹�¸�Ð�¸. First observation is that the d-

SBPHA not only improves solution quality but also finds the optimal solution in most

facility failure probabilities cases. When failure probability is � = 0.1, d-SBPHA

converges to optimal solution in less than 5 discarding iterations with all parameter

configurations (Figure 10a). When	� = 0.2, d-SBPHA converges to optimal solution in

all static	α strategies in less than 5 discarding strategies, and less than	0.2%

optimality gap with dynamic α strategy (Figure 10b).

67

0.0%

0.1%

0.1%

0.2%

0.2%

0.3%

0.3%

0.4%

0.4%

0.5%

Gap

Solution Quality Improvement with Discarding for q=0.1

Static α=0.6,ρ=200,β=1.1

Static α=0.7,ρ=200,β=1.1

Static α=0.6,ρ=80,β=1.2

Dynamic Δα=0.03,ρ=200,β=1.1

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

Gap

Solution Quality Improvement with Discarding for q=0.2

Static α=0.6,ρ=200,β=1.1

Static α=0.7,ρ=200,β=1.1

Static α=0.6,ρ=80,β=1.2

Dynamic Δα=0.03,ρ=200,β=1.1

Figure 10 (a)

Figure 10 (b)

68

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

Gap

Solution Quality Improvement with Discarding for q=0.3

Static α=0.6,ρ=200,β=1.1

Static α=0.7,ρ=200,β=1.1

Static α=0.6,ρ=80,β=1.2

Dynamic α=0.03,ρ=200,β=1.1

Further, when failure probability is	0.3, d-SBPHA is not able converge to

optimal solution; however it converges to solutions that are less than 1% away from

the optimal on average (Figure 10c). Note that these results are based on the

average of 10 replications, and at least 5 out of 10 replications are converged to

optimal solution in all parameter configurations. Detailed results are provided in the

next section.

Figure 10
(c)

69

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

Gap

Solution Quality Improvement with Discarding for q random

Static α=0.6,ρ=200,β=1.1

Static α=0.7,ρ=200,β=1.1

Static α=0.6,ρ=80,β=1.2

Dynamic Δα=0.03,ρ=200,β=1.1

Figure 10: Effect of Discarding Strategy on the Solution Quality for CRFLP with
Facility Failure Probabilities (a)	� = 0.1, (b) � = 0.2, (c) � = 0.3, and (d) when � is
random.

Lastly, when failure probability is randomized, d-SBPHA converges to optimal

solution in 10 discarding iterations, with three out of the four selected parameter

configurations (Figure 10d). Hence, we conclude that discarding improves the

solution performance and the improvement rates depend on the parameter

configuration and the problem parameters. Reader is referred to Table 14 for detailed

results.

Next we present the CPU time performance of d-SBPHA for 10 discarding

iterations (Figure 11). Note that time plotted is cumulative over discarding iterations.

Time of each discarding iteration is based on average of 10 replications and time is

reported in seconds.

Figure 10 (d)

70

 First observation is that the CPU time is linearly increasing or increasing at a

decreasing rate. Further, the solution time is similar for all facility failure probabilities

(Figure 11 a, b, c and d) with all parameter configurations.

0

200

400

600

800

1,000

1,200

1,400

1,600

Time (s)

Computational Time for q=0.1

Static α=0.6,ρ=200,β=1.1

Static α=0.7,ρ=200,β=1.1

Static α=0.6,ρ=80,β=1.2

Dynamic Δα=0.03,ρ=200,β=1.1

0

200

400

600

800

1,000

1,200

1,400

1,600

Time (s)

Computational Time for q=0.2

Static α=0.6,ρ=200,β=1.1

Static α=0.7,ρ=200,β=1.1

Static α=0.6,ρ=80,β=1.2

Dynamic Δα=0.03,ρ=200,β=1.1

Figure 11 (a)

Figure 11(b)

71

Full results are provided in the Appendix in Table 15. One main reason for

linearly increasing CPU time is that the d-SBPHA uses the carried over information.

In particular, d-SBPHA does not test any first stage solution performance in the

reference sample (x′) if the first stage solution is already tested before.

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

Time (s)

Computational Time For q=0.3

Static α=0.6,ρ=200,β=1.1

Static α=0.7,ρ=200,β=1.1

Static α=0.6,ρ=80,β=1.2

Dynamic Δα=0.03,ρ=200,β=1.1

0

200

400

600

800

1,000

1,200

1,400

1,600

Time (s)

Computational Time For q random

Static α=0.6,ρ=200,β=1.1

Static α=0.7,ρ=200,β=1.1

Static α=0.6,ρ=80,β=1.2

Dynamic Δα=0.03,ρ=200,β=1.1

Figure 11
(c)

Figure 11

72

Figure 11: CPU Time Performance of Discarding Strategy for CRFLP with Facility
Failure Probabilities (a)	� = 0.1, (b) � = 0.2, (c) � = 0.3, and (d) when � is random.

3.1.3.2 SAA, SBPHA and d-SBPHA Tests, Comparisons

In this section, we compare the performances of the SBPHA, d-SBPHA, and

SAA. First, we analyzed the performance of the proposed SBPHA and d-SBPHA with

respect to that of the exact method and the SAA method with different sample sizes

(N) and number of samples (M). We only use one of the parameter configuration,

¤	 = 0.7,	ρ = 200,and £ = 1.1.

 Table 7 and Table 8 illustrate these benchmark results for

� = �0.1, 0.2,0.3, ����Ê
$ for one of the replications and average results across all

replications are shown in Figure 12. The second column for SAA shows number of

samples and sample size, i.e., (M, N). For d-SBPHA, it shows number of

replications	�,	�M,N�, and number of discarding iterations (�). Note that when the

number of discarding iterations is	� = 0, d-SBPHA becomes SBPHA. Third

column,	ü∗, indicates the solution converged by each method, e.g., facilities opened.

For instance with	� = 0.3, the SAA’s solution is to open facilities	ü∗ = �1,2,8,10,12$
whereas the SBPHA opens facilities 	ü∗ = �1,2,4,10,12$, 2-SBPHA and exact solution

opens facilities	ü∗ = �1,2,10,11,12$.
Fourth column presents the objective function value for SAA, SBPHA, d-

SBPHA and exact method, {��� , {�¨©ª� , {��� Þ9�¨©ª� and	{∗. Fifth column presents CPU

time and the sixth column shows the optimality gap	���ã>� measures. Reported time

for d-SBPHA is the average time of converged solution is found during the discarding

73

iterations. Gap2 for SAA, SBPHA and �-SBPHA uses the optimal solution value	{∗. It
is defined as,

��ã> =
#$%
$& �'((9�∗

�∗ x100%																								for	SAA,
�')*+(9�∗

�∗ x100%													for	SBPHA,
�.
�Ú/C')*+(9�∗

�∗ x100%				for	� − SBPHA.
 (3.9)

Table 7: Solution Quality and CPU Time Performances of the SAA, SBPHA and d-
SBPHA for CRFLP with Facility Failure Probabilities � = 0.1 and � = 0.2.

Method M-N F* Objective Time(sec.) Gap2(%) F* Objective Time(sec.) Gap2(%)

 5-10 1,2,8,10,12 6,115 53 2.1 1,2,4,11,12 10,055 59 35.0

 5-25 1,2,8,10,12 6,115 132 2.1 1,2,7,8,10,12 7,856 152 5.5

 5-40 1,2,4,11,12 6,047 208 1.0 1,2,4,7,11,12 7,762 326 4.2

 5-50 1,2,4,11,12 6,047 307 1.0 1,2,8,10,11,12 7,649 325 2.7

 5-75 1,2,10,11,12 5,990 695 0.0 1,2,4,8,11,12 7,706 741 3.5

 10-10 1,2,8,10,12 6,115 94 2.1 1,3,4,8,10,12 8,465 122 13.7

 10-25 1,2,4,11,12 6,047 267 1.0 1,2,3,4,10,12 7,856 277 5.5

 10-40 1,2,4,11,12 6,047 445 1.0 1,2,4,7,11,12 7,762 646 4.2

 10-50 1,2,4,11,12 6,047 638 1.0 1,2,8,10,11,12 7,649 676 2.7

 10-75 1,2,10,11,12 5,990 1,430 0.0 1,2,8,10,11,12 7,649 1,636 2.7

 20-10 1,2,8,10,12 6,115 174 2.1 1,4,5,8,11,12 8,450 236 13.5

 20-25 1,2,4,11,12 6,047 526 1.0 1,2,7,8,10,12 7,856 558 5.5

 20-40 1,2,4,11,12 6,047 874 1.0 1,2,8,10,11,12 7,649 1,222 2.7

 20-50 1,2,4,11,12 6,047 1,340 1.0 1,2,4,10,11,12 7,614 1,368 2.2

 20-75 1,2,10,11,12 5,990 2,791 0.0 1,2,4,10,11,12 7,614 3,348 2.2

Method rxM-N,d F* Objective Time(sec.) Gap2(%) F* Objective Time(sec.) Gap2(%)

SBPHA 1x5-10, 0 1,2,4,10,12 6,106 183 1.9 1,2,4,5,11,12 7,447 331 0.0

1x5-10, 1 1,2,10,11,12 5,990 309 0.0 1,2,4,5,11,12 7,447 437 0.0

1x5-10, 2 1,2,10,11,12 5,990 387 0.0 1,2,4,5,11,12 7,447 669 0.0

SBPHA 2x5-10, 0 1,2,10,11,12 5,990 323 0.0 1,2,4,5,11,12 7,447 976 0.0

2x5-10, 1 1,2,10,11,12 5,990 652 0.0 1,2,4,5,11,12 7,447 1,211 0.0

2x5-10, 2 1,2,10,11,12 5,990 810 0.0 1,2,4,5,11,12 7,447 1,713 0.0

SBPHA 3x5-10, 0 1,2,10,11,12 5,990 529 0.0 1,2,4,5,11,12 7,447 1,159 0.0

3x5-10, 1 1,2,10,11,12 5,990 932 0.0 1,2,4,5,11,12 7,447 1,506 0.0

3x5-10, 2 1,2,10,11,12 5,990 1,168 0.0 1,2,4,5,11,12 7,447 2,309 0.0

Exact - 1,2,10,11,12 5,990 >>10800 - 1,2,4,5,11,12 7,447 >>14400 -

SAA

q=0.1 q=0.2

Static α=0.7,ρ=200, β=1.1Static α=0.7,ρ=200, β=1.1

d -SBPHA

d -SBPHA

d -SBPHA

74

Table 8: Solution Quality and CPU Time Performances of the SAA, SBPHA and d-
SBPHA for CRFLP with Facility Failure Probabilities � = 0.3 and � random.

Method M-N F* Objective Time(sec.) Gap2(%) F* Objective Time(sec.) Gap2(%)

 5-10 1,2,4,7,10,12 11,877 119 32.0 2,4,5,11,12 7,609 52 12.2

 5-25 1,2,4,5,8,10,12 9,798 342 8.9 2,5,8,10,11,12 7,310 116 7.8

 5-40 1,2,7,8,10,11,12, 9,658 815 7.4 1,2,4,10,11,12 6,979 236 2.9

 5-50 1,2,4,5,10,11,12 9,645 1,378 7.2 2,4,5,8,11,12 7,169 291 5.7

 5-75 1,2,8,10,11,12,14 9,083 4,570 1.0 2,3,4,5,10,12 7,016 816 3.5

 10-10 1,2,4,11,12,14 9,839 236 9.4 2,4,5,11,12 7,609 99 12.2

 10-25 1,2,4,7,8,10,12 9,744 708 8.3 1,2,4,10,11,12 6,979 234 2.9

 10-40 1,2,11,12,14,18 9,096 2,044 1.1 1,2,4,5,10,12 6,887 474 1.6

 10-50 1,2,11,12,14,18 9,096 3,468 1.1 1,2,4,5,10,12 6,887 696 1.6

 10-75 1,2,8,10,11,12,14 9,083 7,746 1.0 2,4,5,10,11,12 6,780 1,550 0.0

 20-10 1,2,4,11,12,14 9,839 487 9.4 2,4,5,10,12 7,598 201 12.1

 20-25 1,2,7,8,10,11,12, 9,658 1,509 7.4 1,2,4,10,11,12 6,979 481 2.9

 20-40 1,2,11,12,14,18 9,096 3,960 1.1 2,4,5,10,11,12 6,780 893 0.0

 20-50 1,2,11,12,14,18 9,096 6,367 1.1 2,4,5,10,11,12 6,780 1,359 0.0

 20-75 1,2,4,10,11,12,14 8,995 13,867 0.0 2,4,5,10,11,12 6,780 2,824 0.0

Method rxM-N,d F* Objective Time(sec.) Gap2(%) F* Objective Time(sec.) Gap2(%)

SBPHA 1x5-10, 0 1,2,4,10,11,12,20 9,024 422 0.3 2,4,5,7,10,12 7,263 250 7.1

1x5-10, 1 1,2,4,10,11,12,20 9,024 456 0.3 2,4,5,10,11,12 6,780 467 0.0

1x5-10, 2 1,2,4,10,11,12,20 9,024 490 0.3 2,4,5,10,11,12 6,780 590 0.0

SBPHA 2x5-10, 0 1,2,4,10,11,12,20 9,024 804 0.3 1,2,4,5,10,12 6,887 603 1.5

2x5-10, 1 1,2,4,10,11,12,14 8,995 999 0.0 2,4,5,10,11,12 6,780 901 0.0

2x5-10, 2 1,2,4,10,11,12,14 8,995 1,203 0.0 2,4,5,10,11,12 6,780 1,270 0.0

SBPHA 3x5-10, 0 1,2,4,10,11,12,14 8,995 1,503 0.0 2,4,5,10,11,12 6,780 1,000 0.0

3x5-10, 1 1,2,4,10,11,12,14 8,995 2,093 0.0 2,4,5,10,11,12 6,780 1,470 0.0

3x5-10, 2 1,2,4,10,11,12,14 8,995 2,442 0.0 2,4,5,10,11,12 6,780 1,951 0.0

Exact - 1,2,4,10,11,12,14 8,995 >>21600 - 2,4,5,10,11,12 6,780 >>10800 -

q=0.3 q random

SAA

Static α=0.7,ρ=200, β=1.1 Static α=0.7,ρ=200, β=1.1

d -SBPHA

d -SBPHA

d -SBPHA

Table 7 and

Table 8 show that with larger sample sizes, the objective function on the

SAA’s objective function is not always monotonously decreasing while the CPU time

increases exponentially. The observation about the time is in accordance with those

in Figure 12. SAA finds optimal solution only when N=75 for � = 0.1 and cannot find

optimal solution for � = 0.2 with any of M-N configurations. SAA, also finds optimal

solution for � = 0.3 only when w=20 and x=75 in more than 13,000 seconds and

75

shows relatively good performance for random � when M=20. d-SBPHA finds optimal

solution in all facility failure probabilities.

α=0.6

ρ=200

β=1.1

α=0.7,

ρ=200,

β=1.1

α=0.6,

ρ=80,

β=1.2

Δα=0.03,

ρ=200,

β=1.1

0

100

200

300

400

500

600

700

800

0%

5%

10%

15%

20%

N=10 N=25 N=40 N=50 N=75
CPU

Time(sec.)
Gap

d -SBPHA vs SAA for q=0.1

SAA Objective
d-SBPHA Objective
d-SBPHA Time
SAA Time

α=0.6,

ρ=200,

β=1.1

α=0.7,

ρ=200,

β=1.1

α=0.6,

ρ=80,

β=1.2

Δα=0.03,

ρ=200,

β=1.1

0

100

200

300

400

500

600

700

800

900

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

N=10 N=25 N=40 N=50 N=75 CPU

Time(sec.)
Gap

d-SBPHA vs SAA for q=0.2
d-SBPHA Objective

SAA Objective

d-SBPHA Time

SAA Time

Figure 12 (a)

Figure 12 (b)

76

α=0.6,

ρ=200,

β=1.1

α=0.7,

ρ=200,

β=1.1

α=0.6,

ρ=80,

β=1.2

Δα=0.03,

ρ=200,

β=1.1

0

400

800

1,200

1,600

2,000

2,400

2,800

3,200

3,600

4,000

0%

3%

5%

8%

10%

13%

15%

18%

20%

23%

25%

N=10 N=25 N=40 N=50 N=75

CPU

Time(sec.)

Gap

d-SBPHA vs SAA for q=0.3

d-SBPHA Objective

SAA Objective

d-SBPHA Time

SAA Time

α=0.6,

ρ=200,

β=1.1

α=0.7,

ρ=200,

β=1.1

α=0.6,

ρ=80,

β=1.2

Δα=0.03,

ρ=200,

β=1.1

0

100

200

300

400

500

600

700

800

0%

2%

4%

6%

8%

10%

12%

14%

N=10 N=25 N=40 N=50 N=75 CPU

Time(sec.)
Gap

d-SBPHA vs SAA for q random

d-SBPHA Objective SAA Objective d-SBPHA Time SAA Time

Figure 12: Effect of Sample Size on the Solution quality and CPU Time performance
of SAA in Comparison with d-SBPHA for CRFLP with Facility Failure Probabilities (a)
� = 0.1, (b) � = 0.2, (c) � = 0.3, (d) � random.

Figure 12 (c)

Figure 12 (d)

77

Results for d-SBPHA (� = 10) in Figure 12 are for all four parameter settings;

first setting is for static ¤ = 0.6,	b = 200, and £ = 1.1, second is static ¤ = 0.7,	b =
200, and £ = 1.1, third is static ¤ = 0.6,	b = 200, and £ = 1.2, and fourth one is

dynamic Δ¦ = 0.03,	b = 200, and £ = 1.1.

In Figure 12, we present the CPU time and solution quality performances of

the SAA for N=�10,25,40,50,75$ sample sizes and compare with that of the proposed

d-SBPHA, in which	� = 10, with N=10 in solving CRFLP with failure probabilities	q =
�0.1, 0.2	,0.3, random$. We use M=5 samples in both methods and four different

parameter configurations in the proposed method. The results indicate that the

sample size effect on the SAA’s CPU time is high. For instance, the CPU time of the

SAA is growing exponentially. In none of the failure probability cases, however, the

solution quality performance of SAA has converged to that of d-SBPHA. The solution

quality of all four configurations of the proposed d-SBPHA are either optimal or near

optimal. The Gap in Figure 12 is calculated as in Figure 10 and the CPU time of d-

SBPHA shows the average CPU time when the converged solution is found during

the discarding iterations.

78

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
o

n
g

it
u

d
e

Latitude

Latitude and Longitude of the Facility Locations

and First Stage SAA Solution

Total Expected
Cost: $7609

Figure 13: Latitude-Longitude of the Facilities and First Stage Solution of SAA

Now we are interested in presenting an illustrative example of the first stage

decisions �F∗� start with SAA decisions, continue with SBPHA and end with d-

SBPHA algorithms. Let’s illustrate solution of one of the replications shown in

Table 8. The first stage solution of SAA, when random failure probability is

selected, is	F∗ = �2,4,5,11,12$. Please see latitude-longitude positions of the facilities

(these are also demand points) and SAA’ first stage solution in Figure 13. The total

expected cost of the objective function is $7,609 for the solution that SAA provides.

SBPHA starts with this solution and improves iteratively. SAA opens 5 facilities while

SBPHA opens 6 facilities. The solution that SBPHA provides is	F∗ = �2,4,5,7,10,12$.
SBPHA decide not to open facility	11, instead to open two new facilities	�7,10�. The

total expected cost of the objective function value is reduced to $7,263. The solution

79

that SBPHA provides offers more than 5% saving in total expected cost. Graphically

illustration of the SBPHA’s solution is shown in Figure 14.

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
o

n
g

it
u

d
e

Latitude

SBPHA Solution

Total Expected
Cost: $7263

Figure 14: SBPHA's First Stage Solution

Next we start 1-SBPHA (d-SBPHA algorithm with one discarding iteration).

The 1-SBPHA algorithm starts with discarding the solution that SBPHA provides and

analyzes search space to come up with a better solution than that of SBPHA

provides. 1-SBPHA decides not to open facility 7 and instead to reopen facility 11

that SAA decides to open at first. Then, the solution that 1-SBPHA provides is

F∗ = �2,4,5,10,11,12$ with a total expected cost of $6780. In total 1-SBPHA decides to

open 6 facilities as SBPHA decides, opposed to SAA’s decision. Graphically

illustration of the 1-SBPHA’s solution is shown in Figure 15.

80

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

L
o

n
g

it
u

d
e

Latitude

1-SBPHA Solution

Total Expected
Cost: $6780

Figure 15: 1-SBPHA's and Optimal Solution of the First Stage

1-SBPHA improves solution quality of SBPHA while SBPHA improves SAA’s

solution. 1-SBPHA reduced total expected cost of the objective function value that

SBPHA provides by $483, which is more than 7% of the optimal objective function

value. In total more than 12% of the total expected objective function value is

reduced. The solution and the objective function value that 1-SBPHA provides is the

optimal solution and objective function value of the problem. For this illustrative

example, in both SBPHA and 1-SBPHA static	α = 0.7, ρ = 200, β = 1.1, parameters

configuration is used.

3.2. Multi-Stage Stochastic Lot-Sizing Problem

In this section we describe the stochastic lot sizing problem that is used to test

the SBPHA method proposed for multi-stage SP stochastic programming problems.

81

Production planning’s aim is to employ the resources in order to satisfy

production goal such as demand, etc. over a time period (Karimi, Ghomi et al. 2003).

Lot sizing models determine the best timing and level of production (Jans and

Degraeve 2007). Lot sizing problems essentially can be categorized as: single or

multiple products, with fixed cost or without fixed cost, with capacity or without

capacity, with linear or nonlinear cost function, with bill of materials or without bill of

materials, single period or multi period, with backlogging or without backlogging and

stochastic or deterministic. Some solution methodologies that are applied to lot sizing

problems are Lagrangean relaxation, Benders decomposition and column generation

as decomposition methods, also Adhoc Heuristics, Meta Heuristics, Dynamic

Programming and Approximation methods have been utilized to tackle lot sizing

problems.

There are several good review papers on lot sizing problems such as,Kuik,

Salomon et al. (1994) which discusses the production planning and lot sizing

impacts. A good review on the history of the single item lot sizing is provided in

(Wolsey 1995). Single item uncapacitated problem is the simplest structure of

dynamic lot-sizing problem and first discussed by Wagner and Whitin (1958).

Zangwill (1969) describe the lot sizing problem as a network problem.

Mathematical formulation of the scenario based stochastic lot-sizing problem

can be formulated as follows (Haugen, Lokketangen et al. 2001):

Notation for stochastic lot-sizing:

��, : indicator of the production for scenario ^, in period �
|�, : amount to be produced in period scenario ^, in period �

82

2�, : : positive (carried over) ending inventory for scenario ^, in period �
2�, 9 : negative (backlogged) ending inventory for scenario ^, in period �
2¬ : initial inventory

2�, 9 : negative (backlogged) ending inventory for scenario ^, in period �
É : set up cost in period �
� : production cost per product in period �
ℎ : : inventory holding cost in period �
ℎ 9 : shortage cost in period �
� : demand in period �

Scenario Based Stochastic Lot-Sizing Problem:

Min ∑ ã� ∑ �É ��, + � |�, + ℎ :2�, : + ℎ 92�, 9 #� 45�∈� (3.10)

Subject to

|�, + 2�, 95: − 2�, 959 + 2�, 9 = ��, ∀^ ∈], � ∈ �1,… , �$ (3.11)

|�, ≥ 0 ∀^ ∈], � ∈ �1, … , �$ (3.12)

2�, : ≥ 0 ∀^ ∈], � ∈ �1, … , �$ (3.13)

2�, 9 ≥ 0 ∀^ ∈], � ∈ �1, … , �$ (3.14)

��, = È0	if	|�, = 0	
1	if	|�, > 0 ∀	� ∈ �1,… , �$ (3.15)

|�, − |�V, = 0, ��, − ��V, = 0, 2�, : − 2�V, : = 0, 2�, 9 − 2�V, 9 = 0,

∀s, sW ∈ S: �ξ5P , … , ξ3P� = Xξ5PV , … , ξ3PVY, t = 1,2,… , T (3.16)

where (3.10) is the objective function which minimizes the total production, carrying

over and shortage cost; constraints in (3.11) are the flow conservation constraints

and allow carrying over inventory for the next periods’ demand and backlogging if not

83

all the demand is satisfied, (3.12)-(3.14) are non-negativity constraints. Constraints in

(3.15) force the set up cost if any production done in the last period. Lastly,

constraints in (3.16) ensure the non-anticipativity. Production and inventory decision

variables are continuous and non-negative, while the set up decisions are binary

type.

The more practical formulations of the lot sizing problems are those which

consider capacity restriction and multiple items. The version of the capacitated lot

sizing without set up cost studied by Karmarkar and Schrage (1985). Miller and

Wolsey (2003) studied the discrete lot sizing problem with set ups but without

startups. Mekler (1993) and Denizel, Erengüç et al. (1997) discussed the tradeoff

between set up cost and benefit in terms of reducing set up time.

Capacity production tools can be considered as a constraint in production

plants if company has limited tools and equipment. Jans and Degraeve (2004) model

a production planning model which limits the production tools. Akturk and Onen

(2002) combined the tool management problem and lot sizing problem. Machine

capacity is studied various ways, such as decision on increasing number of machines

or using different types (Clark and Clark 2000). Another important topic that is studied

in lot sizing problems is inventory. Backlogging allows the company to satisfy

demand at a later period. In other words, it is negative inventory which is going to be

satisfied later. Clearly, backlogging has a cost, since the company cannot satisfy the

customers’ demands on time. There are two effects of backlogging: earning less than

planned because of late demand satisfaction, discounts, and loosing customer in the

future (Aksen, Altinkemer et al. 2003). If demand is not satisfied on time instead of

84

backlogging lost sales occur. Backlogging case can be considered as single source

fixed charge network problem (Zangwill 1969).

In real life production planning (schedules) is always applied according to

rolling horizon methodology. They apply the plan for the closest period by considering

1-2 periods further. At the end of each period plans and schedules are updated by

considering realization of the demand and supply. Baker (1977) indicated that small

planning horizon plans can be perform optimally by heuristics and with the rolling

horizon technique Wagner-Whitin algorithm is no longer optimal.

There are many studies considering stochastic lot sizing problems in the

literature. In lot sizing problems, uncertainty can stem from many parameters such

as, demand, capacity, supply, source, set up time, production time etc. Sox (1997)

have studied static control policies underneath the non-stationary stochastic demand

supposition in rolling horizon structure. Within this study a mixed integer lot-sizing

problem with dynamic costs is presented. Alp, Erkip et al. (2003) introduced dynamic

lot/batch sizing with deterministic demands and stochastic lead times. Ahmed, King

et al. (2003) study the stochastic lot-sizing problem. In this study, demand follows a

stochastic process which is described by a scenario tree. Guan, Ahmed et al. (2006)

to solve the stochastic lot-sizing problem with zero lead times he proposed a branch-

and-cut algorithm.

Lot-sizing has a wide literature in terms of problem types and many solution

methodology and techniques have been applied to tackle with, such as, branch and

bound, cut-generation (Barany, Roy et al. 1984). Other than exact methods (Barany,

Roy et al. 1984; Belvaux and Wolsey 2002) also heuristic methods (Dogramaci,

85

Panayiotopulos et al. 1982), are applied. These heuristics are; period by period

heuristics, improvement heuristics, relaxation heuristics, branch and bound

heuristics, set portioning and column generation heuristics (Karimi, Ghomi et al.

2003). The ways to obtain good formulations via extensions of basic lot sizing

problems is discussed by Belvaux and Wolsey (2002). To solve large scale lot-sizing

problems, some other heuristics methods have been applied by researchers

(Staggemeier and Clark 2001; Stadtler 2003).

The problem we implemented the SBPHA is a multi-period stochastic lot sizing

problem with demand uncertainty and backlogging. The problem is formulated in a

scenario based formulation.

3.2.1. Illustrative Example

The lot sizing problem instance is uncapacitated and has four stages. The

decision variables are: binary production decision (whether to produce or not at the

first stage), amount to be produced, carrying over inventory and backlogged demand.

The objective is to minimize total setup, production, inventory and shortage costs.

Table 9 illustrates the demand realizations where the first stage has only one

possible demand realization and other stages have six possible demand realizations

each. Total number of scenarios is	1x6x6x6 = 216.

Table 9: Possible Demand for Lot-sizing Problem

86

Realization Demand Probability Demand Probability

1 500 0.15

2 400 0.2

3 300 0.2

4 200 0.2

5 100 0.15

6 0 0.1

1300

Demand

Stage 1 Stages 2-3-4

Problem and SBPHA algorithm parameters are shown in Table 10.

Table 10: Lot-sizing Problem and SBPHA Algorithm Parameters

Problem Parameters Value Value

Initial pozitif Inventory: 0 Initial 0

Initial Negative Inventory: 0 Start 10

Set Up Cost: 400.0$ Beta(β) Update 1.2

Production Cost: 3.0$ Initial 1

Inventory Carrying Cost: 0.6$ Start 0.8

Shortage Cost: 3.5$ Update 0

Alpha (α)

SBPHA Parameters

Rho(ρ)

The production, inventory carrying and shortage costs are per unit values.

 3.2.2. Results and Comparison of SAA and SBPHA

The multi-stage lot-sizing problem is solved with SAA and SBPHA, then

results are compared with optimal solution and objective function value. The samples

are randomly selected and are identical for both the SAA and the SBPHA. We used

the conditional sampling to obtain samples (Ruszczynski and Shapiro (2003);

Shapiro (2003).

Results in Table 11 are first stage solutions and objective function values of

multi-stage stochastic lot-sizing problem for SAA, SBPHA and exact method. Last

87

column in the table presents gap of the objective function values from the optimal

(exact) objective function value.

Table 11: SAA, SBPHA and Exact Solutions, Comparisons for Multi-stage Stochastic
Lot-sizing Problem

Method
Prodction

Decision

Production

amount
Inventory Shortage Objective Gap

SAA 1 600.0 300.0 0.0 4547.673 0.2%

SBPHA 1 700.3 400.3 0.0 4539.999 0.0%

Exact 1 700.0 400.0 0.0 4539.903 -

Solution

Note that solution of the SAA shows the solution that performed the best in

the full scenario set. As seen in Table 11, both SAA and SBPHA decide to produce at

first stage as in the exact solution. SAA decides on producing 600 units, while

SBPHA produces 700.3 units close to the optimal solution of 700 units. Since there is

no any backlogged demand to satisfy from previous stage and amount to be

produced is higher than demand (= 300), shortage is = 0 in all three methods

The gap for objective function values are calculated via:
�'((9�∗

�∗ for SAA and

�')*+(9�∗
�∗ for SBPHA. According to gaps, SAA shows a good performance in terms of

objective function value, and only 0.2% far from optimal objective function value.

However, SBPHA improves the solution of SAA and converges to optimal solution

(with 0.0% gap). Even SAA shows a good performance in terms of objective function

value, does not show the same performance in decision variables. SAA decides to

produce 100 units less than optimal which cause a 14.3% gap from the optimal

solution.

88

CHAPTER IV: FLEXIBILITY to MITIGATE SUPPLY CHAIN DISRUPTIONS

4.1. Introduction and Related Literature

In this chapter, we apply the proposed SBPHA to solve a strategic supply

chain problem which has been becoming more important with the increased

disruption risks affecting today’s global supply chains. The goal of this chapter is to

analytically study the plant-product flexibility strategies for stylized problems and then

perform an experimental study using SBPHA methodology to investigate the effect of

different flexibility strategies.

Facility location and flexibility decisions (i.e., process, volume, product-mix

flexibility etc.) are strategic supply chain decisions and require considerable

investment affecting the firms’ long term profitability. An important category of such

uncertain events is the disruption of facilities which are critical for the ability to

efficiently serve the customer demand (Schütz, Tomasgard et al. 2009). These

disruptions can be natural disasters or man-made (such as terrorist attacks, labor

strikes, etc.). Sheffi (2005) classifies disruption causes as direct (disruptions in

supplies, problems in facility, and breakdowns in information system) and indirect

reasons that can cause disruptions in supply chain. In numerous cases, the

disruption at a region may extend or migrate through the network and affect other

parts of the supply chain network (Masihtehrani 2011). Recent examples of such

disruptions are the 2011 earthquake in Japan affecting Toyota’s ability to ship parts

and finished vehicles (Brennan 2011; TheGuardian 2011), hurricanes Katrina and

89

Rita in 2005 disrupting the nation’s oil refineries, and the 2011 fire at the Philips plant

halting the production of Ericsson and Nokia (Snyder, Scaparra et al. 2006).

In practice, capacity decisions are considered jointly with the location

decisions. Further, the capacity of facilities often cannot be changed in the event of a

disruption. Following a facility failure, customers can be assigned to other facilities

only if these facilities have sufficient available capacity and are designed (i.e. process

flexibility) to be able to produce the products. Flexibility permits management to shift

production among different facilities and suppliers to be able to cope with internal and

external fluctuations (Chen, Egbelu et al. 1994). Thus, adding flexibility to the

facilities becomes another strategy in managing disruptions (Elabassi, Benjaafar et

al. 2010).

In order to develop a robust supply chain, managers need to consider not only

which candidate facilities to open and their capacity levels but also the flexibility level

of the facilities. Flexibility and the advantages can be obtained from flexibility have

received significant attention from both the researchers and practitioners for decades.

As Chou, Chua et al. (2010) state, the consumer markets show a switch toward more

customized products and faster renovations in technology. This enforces companies

to design more flexible facilities that are capable of producing variety of products in a

facility to satisfy customer demand in case of any change in market or disruption in

any of the manufacturing facilities or supplies.

Iravani, Oyen et al. (2005) motivating from “structural flexibility” concept, they

proposed new flexibility measures and the applicability of the new methodology to

manufacturing and service systems. In a recent study Chod, Rudi et al. (2009)

90

focused on three types of flexibility, “mix”, “volume” and “time” flexibility, to respond

changes in market conditions. Bish, Muriel et al. (2005) studied the impact of

flexibility on the supply chain. They showed that a certain flexibility level (partial

flexibility) might seem reasonable but may end up in higher costs in terms of higher

inventory levels what increases operational costs and decreases profitability. Muriel,

Somasundaram et al. (2006) applied this concept to larger systems. In another

research, Aksin and Karaesmen (2007) analyzed a network flow model to show

interaction between flexibility and capacity and they analytically demonstrated that

the expected throughput is concave in the degree of flexibility.

One of the most common flexibility types that are studied by researchers and

the practitioners is process flexibility. The process flexibility concerns the number of

product types that can be manufactured in each production facility (Sethi and Sethi

1990; Jordan and Graves 1995; Garavelli 2003; Chou, Chua et al. 2010). As

Garavelli (2003) pointed, the costs associated to the facility capability of producing

different types of products increase with the number of products. In most cases due

to high flexibility investments producing all types of products in all facilities are not

economic, so called “total flexibility” in Jordan and Graves (1995) and Garavelli

(2003) and “full flexibility” in Chou, Chua et al. (2010) and Elabassi, Benjaafar et al.

(2010). On the other hand, designing each facility to be capable of producing a few

types of products is not efficient as well, because of higher transportation costs

(Garavelli 2003), called “limited flexibility” in Jordan and Graves (1995) and Garavelli

(2003).

91

Jordan and Graves (1995) introduced “chaining” concept as an intermediate

level of process flexibility, where company gains most of the advantages of full

flexibility only having limited flexibility, by creating the longest close loop between

facilities and products so that all facilities and products are connected directly or

indirectly. They called this form “1-chain” flexibility and showed that “1-chain”

flexibility provides almost all the benefits of full flexibility when concern lost sales.

Also Graves (2008) showed that when chaining form is set up right, provides the

same benefits as full flexibility provides. Jordan and Graves (1995) compared the “1-

chain” flexibility and full flexibility performances under uncertain demand

environment. They also show some results on different flexibility level performance

for different capacity levels. Garavelli (2003) proposed a simulation model to evaluate

the performances of no flexibility, process flexibility and full flexibility levels in supply

chain.

Chou, Chua et al. (2010) analytically studied the flexibility levels (process

flexibility, full flexibility) for both symmetrical and asymmetrical demand (i.e., demand

is not symmetrical around its mean) cases. Their model also can be applied to

unbalanced cases (i.e., capacity is not equal to mean demand). To the best of our

knowledge, the only work that considers facility disruptions when comparing flexibility

level performances is Elabassi, Benjaafar et al. (2010). However, Elabassi, Benjaafar

et al. (2010) focused only on balanced (i.e., capacity is equal or little higher than total

demand) cases. In this study, we present different flexibility levels (i.e., no flexibility,

process flexibility with chaining and without chaining, full flexibility) performances for

92

both balanced and unbalanced capacity-demand cases. Our work is not limited to

numerical studies; we also study analytically both balanced and unbalanced cases.

4.2. Problem Formulation

In this section, we first present Capacitated Reliable Facility Location and

Product Allocation Problem (CRFLPAP) with assignment decisions. Next, we show

flexibility configurations in location-allocation problems.

 4.2.1. Capacitated Reliable Facility Location and Product Allocation Problem

We now introduce the notation used throughout this chapter. Let F denote the

set of possible facility sites including the emergency facility and � denote the set of

products (i.e., type of products). Let fÛ be the fixed cost for facility	å ∈ F, which is

incurred if the facility is opened, and ãØ be the product	} ∈ �. The	{ØÛ denotes the cost

of designing the facility å in order to be capable of producing product	}. The �34
denotes costs of satisfying each demand unit of product } from facility å and includes

such variable cost drivers as transportation, production, and inventory. Whenever a

demand unit of product } cannot be served by any of the opened facilities that can

produce product	}, then the demand for product } is assigned to the emergency

facility and a large penalty cost ℎØ is incurred for each unit of unsatisfied demand.

This penalty can be incurred due to finding an alternative source or due to the lost

sale. Furthermore, the facility å has limited capacity and can serve at most bÛ 	units of

demand, and the total demand for product } is	�Ø. The	5ØÛ denotes the usage rate

from capacity of facility å for each demand unit of product	}.

93

We formulate the CRFLPAP as a two-stage stochastic programming problem.

In the first stage, the location and design decisions are made before random failures

of the located facilities. In the second stage, following the facility failures, the product-

facility assignment decisions are made for every product given the facilities that have

not failed. The goal is to identify the set of facilities to be opened while minimizing the

total cost of open facilities and the expected cost of meeting demand of products

from the lasting facilities and the emergency facility. In the scenario based

formulation of CRFLPAP, let s denote a failure scenario and the set of all failure

scenarios is	S, where	s ∈ S. Let pP be the probability that scenario s occurs

and	∑ pP = 1P∈Q . Further let	kÛP denote whether the facility å survives (i.e.,kÛP = 1) and

kÛP = 0 otherwise. For instance, in case of independent facility failures, we have

|S| = 2|6|95 possible failure scenarios for |F| − 1 facilities and the last facility is the

emergency facility which is perfectly reliable. Note that our proposed method does

not require any assumption on independence and distribution of each facility’s failure.

The binary decision variable	zÛ specifies whether facility å is opened or not,

and the binary variable �ØÛ specifies whether facility j designed to be capable of

producing product	i. Integer variable |ØÛ� denotes the number of product } assigned to

facility å in scenario	s. Lastly, the scenario based formulation of the CRFLPAP (with

assignment decisions) as a two-stage stochastic program is as follows.

minïÉÛ
Û∈� 7Û +ïï{ØÛ�ØÛ

Û∈�Ø∈©
+ïã�ïï�ØÛ|ØÛ�

Û∈�Ø∈©
		

�∈�
																																		�4.1�

subject to

	ï|34P
Û∈� = �Ø , ∀} ∈ �, s ∈ S																																																																																	�4.2�	

94

�ØÛ ≤ zÛ, ∀å ∈ ü, } ∈ �																																																																															�4.3�
ï 7Û
Û∈� ≤ nHÐ�, ∀å ∈ ü																																																																																�4.4�

|ØÛ� ≤ àÛ5ØÛ �ØÛ 		, ∀} ∈ �, å ∈ ü, ^ ∈]																																																										�4.5�

	ï5ØÛ
Ø∈©

|ØÛ� ≤ sÛ�àÛ7Û , ∀å ∈ F, s ∈ S																																																																�4.6�
|ØÛP ≥ 0,∀} ∈ �, å ∈ ü, ^ ∈]																																																																										�4.7�
	7Û ∈ �0,1$, ∀å ∈ ü																																																																																													�4.8�
�ØÛ ∈ �0,1$, ∀} ∈ �, å ∈ ü																																																																																�4.9�

The objective function in formulation (4.1) minimizes the total fixed cost of

opening facilities, designing facilities to produce different types of products and the

expected second stage cost of satisfying demand through lasting and emergency

facility. Constraints (4.2) ensure that demand for each product is satisfied.

Constraints (4.3) prevent designing a facility to produce any product if it is not an

opened facility. Constraints (4.4) assure the total number of opened facilities is not

exceeding the number of facilities that applicant wants to open�nHÐ��. Constraints

(4.5) prevent the assignment of any demand to a facility if it is not designed to

produce that product and ensure that assigned amount does not exceed its capacity

in every failure scenario. Constraints (4.6) prevent assignments to a failed or not

opened facility and prevent total assignment does not exceed its capacity if it is

survived and opened facility. Constraints (4.7), (4.8) and (4.9) are integrality

constraints.

95

4.3. Analytical Analysis

4.3.1. Flexibility Configurations

The level of flexibility and the allocation strategy directly affect the rate of

benefit that can be gained from process flexibility. In case of facility disruptions,

product assignment decisions (can be at plant level or line level), the level of process

flexibility (number of links between a product and facilities), play important role to

mitigate supply chain disruptions.

In order to make the right decision on where to add flexibility, the concept of

“chaining” is very important (Jordan and Graves 1995). A "chain" can be explained

as: a group of products and plants which are all connected. This connection can be

either directly or indirectly, by product assignment decisions (Elabassi, Benjaafar et

al. 2010). Within a chain, all products or plants are connected via links between them.

All products are produced only by the plants that are members of the chain and these

plants only can produce the products that are members of the chain.

4.3.1.1 No Disruption Case

In order to demonstrate and compare the value of flexibility levels we consider

the assignment of
-products to �–facilities (where	� =
). The bipartite graph

representation of flexibility structure is shown in Figure 16 for	� =
 = 3. Flexibility

levels will be expressed by total number of links between products and facilities. A

link between product } and facility å shows that the facility å is designed to be capable

of producing product	}, e.g., �ØÛ = 1.

96

P1

P2

P3

F1

F2

F3

PRODUCTS FACILITIES

a) Dedicated with n links

P1

P2

P3

F1

F2

F3

PRODUCTS FACILITIES

b) Low flexibility with 2n-t

links, ò ≤ 8 ≤ 9+ ò

P1

P2

P3

F1

F2

F3

PRODUCTS FACILITIES

c) 1-chain flexibility with 2n links

P1

P2

P3

F1

F2

F3

PRODUCTS FACILITIES

d) High flexibility with 2n+t

links, 1≤ 8 ≤ 9ë − ë9 − ò

P1

P2

P3

F1

F2

F3

PRODUCTS FACILITIES

e) Full flexibility 9ë links

Figure 16: Different Flexibility Levels for	
 = 3 Products and	� = 3 Facilities

In Figure 16, a) dedicated case; each facility is capable of producing only one

product, and each product is assigned to a different facility. In b), one product is

produced in more than one facility while others are produced in only one facility. This

configuration is considered as low flexibility level. The configuration in c) one chain;

each facility is able to produce two products and a long single chain created to be

able to switch capacity from lower demand products to higher demand products

(Jordan and Graves 1995). In e) full flexibility; all facilities are designed to be capable

of produce all types of products.

4.3.1.2 Disruption Case

Let �v represent the total number of products that can be satisfied if there were

sufficient capacity; in the example (a) below, the �v = 3 since all three products can

be served from F2 and	F3. In contrast, in example (b) below, the product 1 cannot be

97

served (due to elimination of all assignment links) hence only P2 and P3 can be

served, e.g., �v = 2.

Figure 17: Examples of Failure Configurations in 1-chain flexibility for � =
 = 3

If number of failed facilities (�) is less than number of total facilities (�),	1 ≤ � < �,:

i. In general: 1 ≤ �v ≤ �

ii. 1-chain:	� − � + 1 ≤ �v ≤ �,

iii. Full Flexibility:	�v = �

iv. Dedicated:	nv = n − r
We next compare the performance of different flexibility levels to the full

flexibility level performance both analytically and numerically under different capacity

levels of facilities. All facilities are subject to fail with a given failure probability. In the

next subsection, we compare “1-chain” flexibility with full flexibility analytically both for

balanced and unbalanced demand-capacity cases.

4.3.2. Analytical Analysis – Homogenous Products and Plants

In this section, we first demonstrate comparison of 1-chain flexibility and full

flexibility for balanced demand-capacity case when capacity of a facility is equal or

higher than demand of a product up to a certain point. Then we compare these two

levels of flexibility for unbalanced case when capacity of a facility is much higher than

the demand of a product.

98

We consider “symmetric” cases where products and facilities are identical as

discussed in Elabassi, Benjaafar et al. (2010) for facility disruption case and Chou,

Chua et al. (2010) for uncertain demand case.

Assumptions:

Demand satisfying cost (service): �34 = c		∀å ∈ ü, } ∈ �.
Design cost: {34 = {		∀å ∈ ü, } ∈ �.
Capacity: àÛ = à		∀å ∈ ü.
Demand: �Ø = �		∀	} ∈ �.
Penalty/Outsourcing cost: ℎØ = ℎ		∀	} ∈ �.
Failure probability for facilities: �Û = �		∀å ∈ ü.
Number of products, facilities:
 = � > 2.
Capacity, demand relation: à > �.

4.3.2.1 Demand-Capacity Balanced Case

Under the assumption that capacity,	à, is always greater than the demand, �,

and they are balanced, then we can easily express following equation: �� ≥
�� − 1�à	.
Proposition 1: 1-chain flexibility always satisfy as the same amount of demand

as full flexibility and is superior to full flexibility in terms of total cost (TC)

because of high designing cost in full the flexibility case.

Proof: Total Cost (TC) function of CRFLPAP as shown above in (4.1):

Minimize																				ïÉÛ
Û∈� 7Û +ïï{ØÛ�ØÛ

Û∈�Ø∈©
+ïã�ïï�ØÛ|ØÛ�

Û∈�Ø∈©
	

�∈�

99

There are three terms in the cost function. First term is total open cost, second

term is total designing cost, and the third term is the expected total demand satisfying

cost. Total open cost is equal for both 1-chain and full flexibility since we open all

facilities in both cases.

	:;���59<=�Ø� = :;���	>áá =ïÉÛ
Û∈� = �É																																																						�4.10�

In 1-chain flexibility case each facility is capable of producing 2 products, in

other word each product is assigned to two facilities. Since there are	
	�= ��
products, total designing cost for 1-chain flexibility is:

:Þ��Ø?�59<=�Ø� =ïï{ØÛ�ØÛ
Û∈�Ø∈©

= 2�{																																																				�4.11�

In full flexibility case, all facilities are deigned to produce all products, then

total designing cost for full flexibility case is:

:Þ��Ø?�	>áá =ïï{ØÛ�ØÛ
Û∈�Ø∈©

= �>{																																														�4.12�

Let us now calculate demand satisfying service cost for 1-chain flexibility case.

Let	� facilities are failed in the system, then available capacity is	�� − ��à, and

number of products that can be served is	�� − � + 1�, then total demand that can be

served is�� − � + 1��.

In any failure scenario,	min	��� + ��1 − ��, �à − �à� of demand can be

satisfied (see Proposition 2). As it is proved above	�� + ��1 − �� ≥ �à − �à, total

satisfied demand is �� − ��à, and unsatisfied demand is �� − �� − ��à.

100

Since facility failures are independent, the occurrence probability of a scenario

with � failures is ���1 − ���9�. Demand satisfying service cost can be expressed as

follows:

:����Ø<�59<=�Ø� = ����1 − ��� +ïl��p���1 − ���9�
�

�45 ��� − �� − ��à�ℎ																																								

+ïl��p���1 − ���9�
�

�45 �� − ��à�																																																																			�4.14�

In full flexibility case, all facilities can serve all products. Total satisfied

demand, under � failed facilities scenario, is determined via min	���, �� − ��à�.
Because of the assumption in balanced case:	�� ≥ �� − 1�à and � ≥ 1, total satisfied

demand is �� − ��à and unsatisfied demand is �� − �� − ��à. Then total demand

satisfying service cost for full flexibility can be expressed as:

:����Ø<�	>áá = ����1 − ��� +ïl��p���1 − ���9��

�45 ��� − �� − ��à�ℎ																																															

+ïl��p���1 − ���9�
�

�45 �� − ��à�																																																																				�4.15�

Let us compare 1-chain and full flexibilities performances in terms of Total

Cost (TC) by subtracting TCs.

101

�:	>áá − �:59<=�Ø� = :;���	>áá + :Þ��Ø?�	>áá + :����Ø<�	>áá − :;���59<=�Ø� − :Þ��Ø?�59<=�Ø� − :����Ø<�59<=�Ø� 	
= �É + �>{ + 			����1 − ��� +ïl��p���1 − ���9�

�

�45 ��� − �� − ��à�ℎ

+ïl��p���1 − ���9�
�

�45 �� − ��à� − �É − 2�{

− @����1 − ��� +ïl��p���1 − ���9��

�45 ��� − �� − ��à�ℎ

+ïl��p���1 − ���9�
�

�45 �� − ��à�A
=	�>{ − 2�{																																																																																																									�4.16�

If { = 0 ��:	>áá = �:59<=�Ø�

If { > 0 ��:	>áá > �:59<=�Ø� , since	� > 2. □

Proposition 2: Because of the balanced assumption (9ä ≥ �9− ò�B	C9ä, ä < B,

then it can be proved that total available capacity is less than total demand:

�� − � + 1�� > �� − ��à																																																							�4.13�
Proof: Given that	�� ≥ �� − 1�à	and, � < à,

�� + à ≥ �à

When �à is subtracted from both sides of equation:

�� + à − �à ≥ �à − �à or �� + �1 − ��à ≥ �à − �à

Since	� ≥ 1, and		�1 − ��à ≤ �1 − ��� (both sides of equation is “0” or negative)

When �1 − ��à	is replaced by 	�1 − ���, then we conclude that �� + �1 − ��� ≥ �à −
�à . □

102

Please note that proofs above are modified from Elabassi, Benjaafar et al.

(2010). We want to use proofs above for the clarity of the concept and the proof for

unbalanced case.

4.3.2.2 Demand-Capacity Unbalanced Case

In this subsection, we compare 1-chain and full flexibility level performances in

terms of TC for unbalanced demand and capacity case.

Proposition-3: The assumption (9ä ≥ �9 − ò�B� is made in balanced case, but

this assumption is not valid for the unbalanced case. Let us reverse the

assumption that is made in balanced case as:	9ä ≤ �9− ò�B. Then it can be

argued that 9ä + ä�ò − D� ≥ 9B − DB is not always true.

Proof: Given that	�� ≤ �� − 1�à	and, � < à

�� + à ≤ �à

If	�à is subtracted from both sides of the equation

�� + à − �à ≤ �à − �à

Since	� ≥ 1, and		�1 − ��à ≤ �1 − ��� (both sides of equation is “0” or negative)

When à − �à	is replaced by 	� − ��,	then it can be concluded that �� + ��1 − �� ⋛
�à − �à. □

The proof above shows that the total satisfied demand varies and is

dependent on the capacity of facilities and the demand for products. Thus we cannot

conclude 1-chain or full flexibilities are superior to one another.

In order to compare total satisfied demand and Total Cost	��:� for 1-chain and

full flexibilities, we introduce block failure concept. Let us consider a system for 1-

103

chain flexibility with 6 facilities and products. Some failure scenarios are shown in

Figure 18.

P1

P2

P3

F1

F2

F3

PRODUCTS FACILITIES

a) 1 block 2 failed

P4 F4

P5 F5

P6 F6

P1

P2

P3

F1

F2

F3

PRODUCTS FACILITIES

c) 2 blocks 2 failed each

P4 F4

P5

P6 F6

P1

P2

P3

F1

F2

F3

PRODUCTS FACILITIES

b) 1 block 3 failed

P4 F4

P5 F5

P6 F6

F5

Figure 18: Examples of Failure Configurations for 1-Chain Flexibility

 P1

 P2

 P3

 F1

 F2

 F3

PRODUCTS FACILITIES

d) 1 block 1 failed

 P4 F4

 P5 F5

 P6 F6

 P1

 P2

 P3

 F1

 F2

 F3

PRODUCTS FACILITIES

e) 3 blocks 1 failed each

 P4 F4

 P5 F5

 P6 F6

104

In Figure 18, a) Fá,� = 1, and �Ê�� → �Ê�5 = 2, in b)	Fá,� = 1, and �Ê�� →
�Ê�5 = 3, in c) Fá,� = 2, and �Ê�� → �Ê�5 = 2, �Ê�> = 2, in d) Fá,� = 1, and �Ê�� →
�Ê�5 = 1 and in d) Fá,� = 3, and �Ê�� → �Ê�5 = 1, �Ê�> = 1, �Ê�@ = 1.

Notation and description that is used in this subsection is as follows:

Block: A set of chained facilities that failed. Single failed facility can also be a block.

Any two facilities are chained if production capacity in one facility can be used to

increase the available capacity in another facility by shifting production levels of

several products. Jordan and Graves (1995) have a similar description. Also, any two

facilities are chained if they share at least one product. If facility pairs �F1,F2� and

�F2,F3� are chained, then facility pair �F1,F3� are also chained.

Notation:

]�: set of failure scenarios

]��: set of failure scenarios with � failed facilities, i.e.,]� = ⋃]���

ß: index for failure configuration

Fá,�: number of blocks in ß = failure scenario of � failures

�Ê��á�: number of consecutive failed facilities in � = block of ß = failure scenario of �
failures

Total number of failures:

� = ï�Ê��á�
¨G,�
�45

																																																																					�4.17�

1-chain flexibility

��Ê��á� − 1�: number of products that cannot be served due to failures in block �

105

No flexibility

��Ê��á��: number of products that cannot be served due to facility failures in block �

Full flexibility

��Ê��á� − �Ê��á��: number of products that cannot be served due to facility failures in

block �

For instance, ∑ ��Ê��á� − 1��¨G,��45 : total demand that cannot be served due to

facility failures in all blocks of failure scenario ß of � facility failures in 1-chain flexibility

case.

]á,�	>áá : Total satisfied demand for full flexibility level when � facilities are failed as

configuration ß
]á,�59<=�Ø�: Total satisfied demand for 1-chain flexibility level when � facilities are failed

as configuration ß
Total open cost and designing cost in unbalanced case will be identical to one

in balanced case for both 1-chain and full flexibility levels as shown in (4.10)-(4.12).

Since all facilities are opened (7Û = 1, å = 1, 2, … , ü).

:;���59<=�Ø� = :;���	>áá =ïÉÛ
Û∈� = �É																																																															

:Þ��Ø?�59<=�Ø� =ïï{ØÛ�ØÛ
Û∈�Ø∈©

= 2�{																																																															

:Þ��Ø?�	>áá =ïï{ØÛ�ØÛ
Û∈�Ø∈©

= �>{																																																																		

Given a failure scenario, where � out of � facilities are failed; the total demand

that can be served as a percentage of the total demand

106

b��, �� ≤ min��v�, �� − ��à$
�� 																																																							�4.18�

Recall that	�v represents the total number of products that can be satisfied if

there were sufficient capacity.

�v = � −ï��Ê��á� − 1�
¨G,�
�45

																																																															�4.19�

Total satisfied demand when � facilities are failed in 1-chain flexibility is

]á,�59<=�Ø� ≤
}�	 ��� − ��à, l� − ∑ ��Ê��á� − 1�¨G,��45 p��							�4.20�
, and total satisfied demand when � facilities are failed in full flexibility is

]�á,�	>áá =
}���� − ��à, ��$																																																									�4.21�
Since	�� ≥ �� − ∑ ��Ê��á� − 1��¨G,��45 , it can be concluded that total satisfied demand in

full flexibility is more than 1-chain flexibility in some failure scenarios, what may

cause 1-chain flexibility be more costly than full flexibility:

]á,�59<=�Ø� ≤]á,�	>áá 																																																																												�4.22�
Let us now calculate demand satisfying cost for 1-chain and full flexibility levels.

:����Ø<�59<=�Ø� 				= ����1 − ��� + �ï���1 − ���9�ï]á,�59<=�Ø�
XH�Y
á45

																																		
�

�45
+ ℎï���1 − ���9�ï��� −]á,�59<=�Ø��

XH�Y
á45

�

�45 																																																�4.23�

107

:����Ø<�	>áá 								= ����1 − ��� + �ï���1 − ���9�ï]á,�	>áá
XH�Y
á45

�

�45 			

+ ℎï���1 − ���9�ïX�� −]á,�	>ááY
XH�Y
á45

�

�45 																																																									 �4.24�

Let us now compare 1-chain and full flexibilities performances in terms of Total

Cost (TC).

�:	>áá − �:59<=�Ø� = :;���	>áá + :Þ��Ø?�	>áá + :����Ø<�	>áá − :;���59<=�Ø� − :Þ��Ø?�59<=�Ø� − :����Ø<�59<=�Ø�			�4.25�

= �É + �>{ + ����1 − ��� + �ï���1 − ���9�ï]á,�	>áá
XH�Y
á45

�

�45
+ ℎï���1 − ���9�ïX�� −]á,�	>ááY

XH�Y
á45

�

�45 − �É − 2�{ − ����1 − ���

− �ï���1 − ���9�ï]á,�59<=�Ø�
XH�Y
á45

�

�45 − ℎï���1 − ���9�ïX�� −]á,�59<=�Ø�Y
XH�Y
á45

�

�45

=	�>{ − 2�{ + �ï���1 − ���9�ïX]á,�	>áá −]á,�59<=�Ø�Y
XH�Y
á45

�

�45
− ℎï���1 − ���9�ïX]á,�	>áá −]á,�59<=�Ø�Y

XH�Y
á45

�

�45

= �>{ − 2�{ + �� − ℎ�Iï���1 − ���9�ïX]á,�	>áá −]á,�59<=�Ø�Y
XH�Y
á45

�

�45 J

Term1 Term2 Term3

108

If	{ = 0

�Ì�
1 = 0,

Since	ℎ > � ,�Ì�
2 < 0,

Since

	ï]á,�	>áá
XH�Y
á45

≥ï]á,�59<=�Ø�
XH�Y
á45

, �Ì�
3 ≥ 0

Then, it can be easily concluded that	:	>áá − :5<=�Ø� ≤ 0;

	�:	>áá ≤ �:59<=�Ø�

If	{ > 	0: Possible Outcomes:

i. If	�:	>áá − �:59<=�Ø� = 0, both full flexibility and 1-chain flexibility show the

same performance,

ii. If	�:	>áá − �:59<=�Ø� > 0, 1-chain flexibility shows better performance than full

flexibility,

iii. If	�:	>áá − �:59<=�Ø� < 0, full flexibility shows better performance than 1-chain

flexibility,

We can argue that the performance of full flexibility and 1-chain flexibility

depends on value of	{, failure probability���, capacity�à�, demand���, service

cost���, and lost sale cost�ℎ�. Put in another way, there will be some situations that

full flexibility performs better, while in others 1-chain flexibility performs better.

An example for ì facilities, and ì products case:

There will be four situations; no fail, 1, 2, or 3 failed facilities.

109

No Failure: � = 0		,K = 1. In this situation there will be only one configuration,

�ß = 1�. Writing the equations (4.20) and (4.21):	
]5,¬	>áá = minX�� − 0�à, ��Y = min��à, ���, since b > �, �à > ��,]5,¬	>áá = ��	
]5,¬59<=�Ø� = minX�� − 0�à, ��Y = min��à, ���, since b > �, �à > ��,]5,¬59<=�Ø� = ��	

1 Failure:	� = 1		, K = 3. In this situation there will be three configurations,

�ß = 3�.
a� Facility 1 fails, 2 and 3 survive 	
b� Facility 2 fails, 1 and 3 survive 	
c� Facility 3 fails, 1	and 2 survive 	

]5,5	>áá =]>,5	>áá =]@,5	>áá = minX�� − 1�à, ��Y = min�2à, 3��	
]5,559<=�Ø� =]>,559<=�Ø� =]@,559<=�Ø� ≤ minX�� − 1�à, �� − 0Y = min�2à, 3��	
Since there is no failures other than one block with 1 failed facility,

]5,559<=�Ø� =]>,559<=�Ø� =]@,559<=�Ø� = minX�� − 1�à, �� − 0Y = min�2à, 3��
2 Failure:	� = 2		, K = 3:In this situation there will be three configurations,

�ß = 3�.
a� Facility 1 and 2 fails, 3 survives 	
b� Facility 1 and 3 fails, 2 survives 	
c� Facility 2 and 3 fails, 1 survives 	

]5,>	>áá =]>,>	>áá =]@,>	>áá = minX�� − 2�à, ��Y = min�à, 3��	
]5,>59<=�Ø� =]>,>59<=�Ø� =]@,>59<=�Ø� ≤ minX�� − 2�à, �� − �2 − 1��Y = min�à, 2��	
Since there is no failures other than one block (with 2 failed facilities),

]5,>59<=�Ø� =]>,>59<=�Ø� =]@,>59<=�Ø� = minX�� − 2�à, �� − �2 − 1��Y = min�à, 2��

110

3 Failure:	� = 3		, K = 1:In this situation there will be three configuration,

�ß = 3�.
]5,@	>áá = minX�� − 3�à, ��Y = min�0, 3�� = 0	
]5,@59<=�Ø� = minX�� − 3�à, �� − �3 − 1��Y ≤ min�0, �� = 0

Total Cost Difference:

�:	>áá − �:59<=�Ø� = 	3É + 9{ + ���1 − ��@�� + 3��1 − ��>min�2à, 3��																														
+3�>�1 − ��min�à, 3�� + �@0# + ℎ� �1 − ��@0 + 3��1 − ��> �3d − min�2à, 3���
+3�>�1 − ���3� − min�à, 3�� + �@3�# − 3É − 6{ − ���1 − ��@��																												
+3��1 − ��>min�2à, 3�� + 3�>�1 − ��min�à, 2�� + �@0# − ℎ� �1 − ��@0														
+3��1 − ��> �3d −min�2à, 3��� + 3�>�1 − ���3� − min�à, 2�� + �@3�#														

= 3{ + 3�>�1 − ���� − ℎ�	�min�à, 3�� −min�à, 2��#

If à < 2�

�:	>áá − �:59<=�Ø� = 3{, 1-chain flexibility is superior to full flexibility

If 2� < à < 3� , then

�:	>áá − �:59<=�Ø� = 3{ + 3�>�1 − ���� − ℎ�	�à − 2��, their performances depend on

the value of	{, à, �, �, ℎ, and	�.

If	{ = |�>�1 − ���� − ℎ�	�b − 2��|, 1-chain and full flexibility show the same

performances

If { > |�>�1 − ���� − ℎ�	�b − 2��|, 1-chain flexibility is superior to full flexibility

If { < |�>�1 − ���� − ℎ�	�b − 2��|, full flexibility is superior to 1chain flexibility

If 3� < à , then

111

:	>áá − :5<=�Ø� = 3{ + 3�>�1 − ���� − ℎ��3� − 2��, their performances depend on the

value of	{, à, �, �, ℎ, and	�.

If	{ = |�>�1 − ���� − ℎ�	�|, 1-chain and full flexibility show the same performances

If	{ > |�>�1 − ���� − ℎ�	�|, 1-chain flexibility is superior to full flexibility

If	{ < |�>�1 − ���� − ℎ�	�|, full flexibility is superior to 1chain flexibility

According to the proofs and analysis above, it can be concluded that

performances of 1-chain and full flexibility depend on the parameters of the problem

in unbalanced demand-capacity case.

4.4 Experimental Tests

In this section, we have performed an experimental study to understand the

impact of various problem parameters on the total cost, service rate (demand

satisfaction level), degree of plant-product assignment, and average number of

products assigned per plant. All the problem instances are solved using SBPHA

algorithm. Note that while SBPHA is not guaranteed to be exact for any given

problem, we have extensively tested the degree of optimality in calibrating the

SBPHA’s parameters.

4.4.1. Experimental setting

In these experiments, we have considered 7 plant locations (including the

emergency facility) and 6 customers. In total there are 64 plant failure scenarios. The

assignment cost is taken as 100; each customer has 850 units of demand; unit cost

is 1; cost of unit unmet demand is 10; cost of operating a plant is 1000. We have

varied the remainder of the problem parameters, e.g., plant failure probability, plant

112

capacity, utilization threshold and loss of capacity due to increased set ups with

additional product assignments. In all instances, we consider the homogenous plants

and customers, e.g. plants all have identical capacity and failure probability.

Figure 15 illustrates the effect failure probability and plant capacity level on the

total cost and the service rate when there are no minimum utilization requirements

and no loss of capacity due to assigning more than one product. Total cost results

indicate that the effect of capacity increase is most apparent when the failure

probabilities are between 0.5 and 0.8. At the extreme failure probabilities, the effect

of capacity on total cost is not as significant. When the capacity levels are tight (with

respect to demand), the total cost increases linearly with the increasing failure rate.

However, the total cost increases at an increasing rate when there is excess

capacity. The same is also true for the service rate. As in total cost results, the

service rate decreases linearly with tighter capacity and nonlinearly with excess

capacity configuration.

.

(a) (b)

Figure 19: Total cost and service rate for no utilization requirement and no loss of
capacity case.

113

Figure 16 illustrates the effect on the number of facilities and total number of

plant-product assignments. Clearly, increasing failure probability leads to increased

number of facilities. This increase is most discernable when there is excess capacity.

The total number of plant-product assignments first increases and then decreases

with the increasing failure rate.

(a) (b)

Figure 20 Number of open facilities and product-plant assignments for no utilization
requirement and no loss of capacity case.

Figure 17 illustrates the effect on the average number of product assignments

per plant. Again, this statistic is first increasing and then decreasing with the

increasing failure rate. This indicates that there is no single dominating flexibility level

(e.g., 1-chain or full-flexibility) that provides the best performance. Further, the

optimal flexibility configuration depends on the failure probability which supports the

analytical results in the preceding section.

114

Figure 21: Average number of products plant assignments for no utilization

requirement and no loss of capacity case.

The figures 18 to 20 shows the similar observation as above when we

incorporate the capacity loss with additional product assignments. One visible effect

is the dampening of the capacity effect.

.

(a) (b)

Figure 22: Total cost and service rate for no utilization requirement and 10% loss of
capacity per additional product.

115

(a) (b)

Figure 23: Number of open facilities and product-plant assignments for no utilization
requirement and 10% loss of capacity per additional product.

Figure 24: Average number of products plant assignments for no utilization
requirement and 10% loss of capacity per additional product.

Figure 21 shows the effect of capacity utilization requirement on the total cost.

Clearly, total cost differences among different capacity levels decrease with

tightening utilization requirements.

116

(a) (b)

(c) (d)

Figure 25: Effect of plant utilization requirement on total cost (a) no utilization, (b)
20% utilization, (c) 40% utilization, and (d) 60% utilization requirement.

Figure 22 shows the effect of capacity utilization requirement on the service rate.

Interestingly, the total demand met is no longer monotone with the capacity level

under restrictive utilization requirements.

117

(a) (b)

(c) (d)

Figure 26: Effect of plant utilization requirement on total cost (a) no utilization, (b)
20% utilization, (c) 40% utilization, and (d) 60% utilization requirement.

Figure 23 shows the effect of capacity utilization requirement on the number of

plants.

118

(a) (b)

(c) (d)

Figure 27: Effect of plant utilization requirement on number of plants open (a) no
utilization, (b) 20% utilization, (c) 40% utilization, and (d) 60% utilization requirement.

Figure 24 shows the effect of capacity utilization requirement on the average

product assignment per plant.

(a) (b)

119

(c) (d)

Figure 28: Effect of plant utilization requirement on average number of product
assignment per plant (a) no utilization, (b) 20% utilization, (c) 40% utilization, and (d)
60% utilization requirement.

120

CHAPTER V: CONCLUSIONS and FUTURE STUDIES

In this dissertation, we have developed hybrid algorithms for stochastic

programming problems. The proposed algorithm is a hybridization of two existing

methods. The first one is the Monte Carlo sampling based algorithm, which is called

Sample Average Approximation (SAA). Sample Average Approximation method

provides an attractive approximation for stochastic programming problems when the

number of uncertain parameters increases. The second algorithm is Progressive

Hedging Algorithm (PHA) which is an exact solution methodology for stochastic

programming problems. The research presented in this dissertation mainly addresses

two issues that arise when using SAA and PHA methods individually; lack of

effectiveness in solution quality of SAA and lack of efficiency in computational time of

PHA.

 5.1 Summary of Study and Contributions

The first proposed algorithm is called Sampling Based Progressive Hedging

Algorithm (SBPHA), which is the integration of SAA and PHA. This integration

considers each sample as a small deterministic problem and employs the SAA

algorithm iteratively. In each iteration, the non-anticipativity constraints is injected into

the solution process by introducing penalty terms in the objective that guides the

solution of each sample to the samples' balanced solution and to ensure that non-

anticipativity constraints are satisfied. The two key parameters of SBPHA are the

weight of the best incumbent solution and the penalty factor.

121

The weight for the best incumbent solution adjusts the importance given to

samples’ best found solution and to the most recent average sample solution in

calculating the balanced solution. The penalty factor modulates the rate at which the

sample solutions converge to the samples’ balanced solution. Given that the best

found solution improves over time, we propose two strategies for the weight of the

best incumbent solution: static versus dynamic strategy.

We first conducted experiments for sensitivity analysis of the algorithm with

respect to the parameters. The results show that the SBPHA's solution quality

performance is relatively insensitive to the choice of strategy for the weight of the

best incumbent solution, i.e., both the static and dynamic strategies are able to

converge to the optimum solution. SBPHA is able to converge to the optimal solution

even with small number of samples and small sample sizes.

In addition to the sensitivity experiments, we compared the performances of

SBPHA and d-SBPHA with SAA's. These results show that the SBPHA and d-

SBPHA are able to improve the solution quality noticeably with reasonable

computational effort compared to SAA. Further, increasing SAA's sample size to

match the solution quality performance of SBPHA requires significant computational

effort which is not affordable in many practical instances.

The contributions of this research are as follows:

Contribution 1: Developed SBPHA which provides a configurable solution method

that improves the sampling based methods’ accuracy and PHA’s efficiency for two-

stage and multi-stage stochastic programming problems.

122

Contribution 2: Enhanced the SBPHA for SPs with binary first stage decision

variables. The improved algorithm is called Discarding-SBPHA (d-SBPHA). It is

analytically proved that SBPHA guarantee optimal solution to the mentioned

problems when the number of discarding iterations approaches to infinity.

There are three possible avenues of future research on SBPHA.

First opportunity is to investigate the integration of alternative solution

methodologies in order to improve the convergence rate and solution quality, such as

Stochastic Decomposition (SD), Stochastic Dual Dynamic Programming (SDDP), L-

Shaped decomposition.

Second extension is the research on the application of the d-SBPHA to the

Stochastic Programs that have linear first stage decision variables.

Another extension is the investigations on the development of a general

strategy for the SBPHA and d-SBPHA specific parameters in order reduce the

computational effort spent on the parameter sensitivity steps.

APPENDIX A: RESULTS for SBPHA and d-SBPHA

Table 12: Objective Function Values of Test Samples

Alpha(α)

Strategy/

Parameter

Start

(ρ)

Update

Parameter

(β)

1 2 3 4 5 6 7 8 9 10 Average Gap Min Max

1 1.8 9,362 9,167 9,254 9,703 9,490 9,713 9,024 9,254 9,161 9,287 9,341 3.9% 9024 9713

20 1.2 9,825 9,167 9,124 9,083 9,448 9,713 8,995 9,083 9,167 9,254 9,286 3.2% 8995 9713

20 1.5 9,319 9,167 9,266 9,344 9,545 9,183 8,995 9,266 9,161 9,167 9,241 2.7% 8995 9545

40 1.3 9,528 9,024 8,995 9,547 9,478 9,362 8,995 9,083 9,161 9,138 9,231 2.6% 8995 9547

40 1.4 9,319 9,167 9,266 9,828 9,490 9,347 8,995 9,271 9,161 9,839 9,368 4.1% 8995 9839

80 1.1 9,825 9,032 8,995 9,208 9,478 9,221 9,024 9,083 9,124 9,287 9,228 2.6% 8995 9478

80 1.2 9,825 9,167 8,995 9,345 9,478 9,221 8,995 9,083 9,161 9,096 9,236 2.7% 8995 9478

200 1.1 9,345 9,167 8,995 9,398 9,448 9,333 8,995 9,083 9,161 9,316 9,224 2.5% 8995 9448

1 1.8 9,528 8,995 9,024 9,637 9,490 9,713 9,024 9,288 9,471 9,287 9,346 3.9% 8995 9713

20 1.2 9,362 9,024 8,995 9,528 9,412 9,370 9,024 9,288 9,221 9,280 9,250 2.8% 8995 9528

20 1.5 9,825 9,292 9,266 9,467 9,490 9,713 8,995 9,254 9,161 9,138 9,360 4.1% 8995 9713

40 1.3 9,528 9,167 9,032 9,112 9,490 9,383 8,995 9,254 9,161 9,287 9,241 2.7% 8995 9490

40 1.4 9,825 9,292 9,032 9,467 9,478 9,713 8,995 9,254 9,221 9,326 9,360 4.1% 8995 9713

80 1.1 9,825 9,024 8,995 9,362 9,448 9,369 8,995 9,083 9,083 9,167 9,235 2.7% 8995 9448

80 1.2 9,528 9,104 8,995 9,944 9,478 9,221 8,995 9,112 9,161 9,287 9,283 3.2% 8995 9944

200 1.1 9,825 9,167 8,995 9,112 9,448 8,995 9,024 9,083 9,161 9,138 9,195 2.2% 8995 9448

1 1.8 9,825 9,347 9,083 10,006 9,700 9,362 9,024 9,715 9,292 9,693 9,505 5.7% 9024 10006

20 1.2 9,362 9,104 9,210 9,715 9,539 9,515 9,024 9,161 9,292 9,183 9,310 3.5% 9024 9715

20 1.5 9,825 9,032 9,288 10,006 9,562 9,362 8,995 9,838 9,167 9,136 9,421 4.7% 8995 10006

40 1.3 9,679 9,266 9,210 10,006 9,490 9,183 8,995 9,838 9,471 9,167 9,430 4.8% 8995 10006

40 1.4 9,825 9,266 9,271 9,788 9,562 9,221 8,995 9,254 9,221 9,136 9,354 4.0% 8995 9788

80 1.1 9,825 8,995 8,995 9,362 9,292 9,221 8,995 9,838 9,221 9,287 9,303 3.4% 8995 9838

80 1.2 9,362 9,104 8,995 10,006 9,545 9,498 9,024 9,838 9,161 9,167 9,370 4.2% 8995 10006

200 1.1 9,825 9,167 8,995 9,658 9,490 9,221 9,024 9,254 9,167 9,083 9,288 3.3% 8995 9658

Objective

Dynamic/

Δα=0.05

Rho

Dynamic/

Δα=0.02

Dynamic/

Δα=0.03

Replication (r=1,…,Rep)

123

 Table 12 continues…

1 1.8 9,825 9,032 9,266 10,006 9,208 9,362 8,995 9,083 9,292 9,515 9,358 4.0% 8995 10006

20 1.2 9,751 9,104 8,995 10,006 9,161 9,362 8,995 9,083 9,221 9,483 9,316 3.6% 8995 10006

20 1.5 9,547 9,271 9,203 10,006 9,208 9,713 9,024 9,083 9,221 9,332 9,361 4.1% 9024 10006

40 1.3 9,547 8,995 9,124 10,006 9,161 9,713 9,024 9,083 9,292 9,404 9,335 3.8% 8995 10006

40 1.4 9,528 9,271 9,124 10,006 9,161 9,362 9,024 9,083 9,221 9,586 9,337 3.8% 9024 10006

80 1.1 9,362 8,995 8,995 9,528 9,161 9,319 9,024 9,254 9,024 9,112 9,177 2.0% 8995 9528

80 1.2 9,547 9,032 8,995 8,995 9,161 9,167 9,024 9,083 9,167 9,167 9,134 1.5% 8995 9547

200 1.1 9,362 9,287 8,995 10,006 9,124 9,221 8,995 9,254 9,167 9,096 9,251 2.8% 8995 10006

1 1.8 9,528 9,326 8,995 9,775 9,490 9,516 8,995 9,083 9,471 9,287 9,347 3.9% 8995 9775

20 1.2 9,751 9,024 9,024 9,344 9,161 9,221 8,995 9,083 9,161 8,995 9,176 2.0% 8995 9751

20 1.5 9,825 9,032 9,254 9,344 9,448 9,713 9,024 9,254 9,221 9,341 9,346 3.9% 9024 9825

40 1.3 9,825 9,024 9,104 10,006 9,161 9,713 9,024 9,083 9,161 9,124 9,322 3.6% 9024 10006

40 1.4 9,825 8,995 9,266 9,513 9,161 9,691 8,995 9,254 9,167 9,024 9,289 3.3% 8995 9825

80 1.1 9,547 8,995 8,995 9,528 9,161 9,221 9,024 9,083 9,221 9,083 9,186 2.1% 8995 9547

80 1.2 9,825 8,995 9,203 10,006 9,161 9,370 9,024 9,254 9,161 9,024 9,302 3.4% 8995 10006

200 1.1 9,024 9,167 8,995 10,006 9,083 9,713 8,995 9,254 9,083 9,104 9,242 2.7% 8995 10006

1 1.8 9,825 9,167 9,254 9,765 9,833 9,320 9,024 9,254 9,471 9,713 9,463 5.2% 9024 9833

20 1.2 9,825 8,995 9,124 9,344 9,448 9,221 8,995 9,083 9,161 9,254 9,245 2.8% 8995 9825

20 1.5 9,825 9,167 9,254 9,645 9,545 9,221 8,995 9,254 9,161 9,326 9,339 3.8% 8995 9825

40 1.3 9,319 9,167 9,254 9,485 9,448 9,713 8,995 9,254 9,161 9,138 9,293 3.3% 8995 9713

40 1.4 9,319 8,995 9,254 9,645 9,490 9,353 8,995 9,254 9,221 9,287 9,281 3.2% 8995 9645

80 1.1 9,319 8,995 8,995 9,319 9,161 9,326 8,995 9,254 9,161 9,096 9,162 1.9% 8995 9326

80 1.2 9,825 9,167 9,254 9,456 9,448 9,353 8,995 9,254 9,161 9,167 9,308 3.5% 8995 9825

200 1.1 9,345 9,032 8,995 9,370 9,448 9,221 8,995 9,254 9,161 9,138 9,196 2.2% 8995 9448

Static/ α=0.7

Static/ α=0.8

Static/ α=0.6

124

Table 13: Computational Time of Test Samples

Alpha(α) Time (s)

Strategy/

Parameter
Start

Update

Parameter(β)
1 2 3 4 5 6 7 8 9 10 Average

1 1.8 371 518 641 546 445 534 663 448 360 394 492.04

20 1.2 568 777 1,183 823 753 907 992 738 654 833 822.79

20 1.5 346 428 620 472 447 590 547 596 376 440 486.06

40 1.3 395 517 761 580 566 630 505 592 467 549 556.10

40 1.4 370 452 624 495 464 556 505 579 384 450 487.83

80 1.1 551 746 1,090 895 815 952 959 827 779 795 840.79

80 1.2 386 518 799 657 574 695 625 604 484 577 591.98

200 1.1 435 458 720 613 581 742 503 667 488 588 579.48

1 1.8 379 468 629 489 415 512 664 426 349 421 475.14

20 1.2 575 782 1,135 696 767 914 995 653 680 742 794.04

20 1.5 319 447 613 411 424 512 555 468 346 431 452.71

40 1.3 391 484 715 552 515 706 616 502 446 484 541.12

40 1.4 337 447 629 394 426 508 505 459 382 466 455.29

80 1.1 515 729 1,115 823 771 1,089 863 726 768 710 810.94

80 1.2 388 546 767 531 501 649 612 568 479 568 560.92

200 1.1 346 401 696 579 537 777 449 556 515 595 544.99

1 1.8 393 439 646 356 387 499 648 384 329 381 446.36

20 1.2 641 688 1,026 784 653 876 914 704 568 656 751.03

20 1.5 348 398 586 405 385 469 531 372 354 418 426.60

40 1.3 409 524 702 458 451 581 584 427 415 471 502.21

40 1.4 340 466 613 523 366 523 497 391 379 423 452.01

80 1.1 477 660 1,051 836 630 794 814 520 649 652 708.24

80 1.2 398 491 701 478 467 603 577 402 499 488 510.43

200 1.1 304 376 639 483 439 509 403 472 398 508 453.18

Rho (ρ) Replication (r=1,…,Rep)

Dynamic/

Δα=0.02

Dynamic/

Δα=0.03

Dynamic/

Δα=0.05

125

Table 13 Continues…

1 1.8 399 533 638 385 390 519 627 444 349 419 470.38

20 1.2 649 740 1,229 554 709 797 967 710 675 837 786.60

20 1.5 391 462 632 315 408 426 508 410 876 410 483.75

40 1.3 439 475 754 346 463 518 588 485 425 491 498.48

40 1.4 379 424 633 306 366 456 457 410 369 945 474.61

80 1.1 670 665 1,206 741 720 413 692 688 816 1,402 801.07

80 1.2 450 430 789 410 438 599 508 1,023 449 554 564.96

200 1.1 421 390 698 269 370 499 373 400 427 582 442.95

1 1.8 393 452 658 451 440 562 634 456 349 441 483.58

20 1.2 641 726 1,209 706 762 1,046 976 681 721 768 823.52

20 1.5 355 407 625 373 435 510 525 386 364 404 438.48

40 1.3 442 476 780 412 464 531 578 481 441 571 517.60

40 1.4 385 403 631 432 389 449 510 364 383 436 438.24

80 1.1 683 673 1,235 804 704 903 802 795 764 976 833.96

80 1.2 415 473 832 375 458 618 535 447 508 563 522.35

200 1.1 491 385 730 311 536 482 390 420 558 601 490.37

1 1.8 384 461 654 458 469 540 671 433 356 416 484.20

20 1.2 623 816 1,251 746 838 996 1,017 732 695 885 859.79

20 1.5 459 414 642 503 462 596 565 410 405 417 487.37

40 1.3 405 506 737 580 558 582 623 464 460 555 546.96

40 1.4 459 411 630 517 458 561 510 417 376 412 475.13

80 1.1 744 682 1,302 891 929 1,210 910 661 796 1,046 917.22

80 1.2 452 523 750 615 590 726 618 461 490 623 584.84

200 1.1 458 421 753 600 546 601 452 471 477 589 536.55

Static/ α=0.6

Static/ α=0.7

Static/ α=0.8

126

127

Table 14: Average Objective Function Value of 10 Replications for Each Parameter
Configuration over Discarding

Dynamic α Dynamic α

Replications

α=0.6

ρ=200

β=1.1

α=0.7

ρ=200

β=1.1

α=0.6

ρ=80

β=1.2

Δα=0.03

ρ=200

β=1.1

α=0.6

ρ=200

β=1.1

α=0.7

ρ=200

β=1.1

α=0.6

ρ=80

β=1.2

Δα=0.03

ρ=200

β=1.1

No Dicard 6,002 6,007 6,002 6,015 7,554 7,511 7,557 7,541

1-Discard 5,990 5,996 5,990 6,008 7,540 7,502 7,520 7,487

2-Discard 5,990 5,993 5,990 5,990 7,520 7,451 7,484 7,476

3-Discard 5,990 5,993 5,990 5,990 7,463 7,447 7,464 7,476

4-Discard 5,990 5,990 5,990 5,990 7,458 7,447 7,447 7,476

5-Discard 5,990 5,990 5,990 5,990 7,458 7,447 7,447 7,476

6-Discard 5,990 5,990 5,990 5,990 7,447 7,447 7,447 7,470

7-Discard 5,990 5,990 5,990 5,990 7,447 7,447 7,447 7,470

8-Discard 5,990 5,990 5,990 5,990 7,447 7,447 7,447 7,470

9-Discard 5,990 5,990 5,990 5,990 7,447 7,447 7,447 7,470

10-Discard 5,990 5,990 5,990 5,990 7,447 7,447 7,447 7,459

Exact Solution 5,990 7,447

Dynamic α Dynamic α

Replications

α=0.6

ρ=200

β=1.1

α=0.7

ρ=200

β=1.1

α=0.6

ρ=80

β=1.2

Δα=0.03

ρ=200

β=1.1

α=0.6

ρ=200

β=1.1

α=0.7

ρ=200

β=1.1

α=0.6

ρ=80

β=1.2

Δα=0.03

ρ=200

β=1.1

No Dicard 9,251 9,242 9,134 9,195 6,851 6,938 6,862 6,987

1-Discard 9,220 9,059 9,109 9,116 6,842 6,859 6,861 6,927

2-Discard 9,137 9,057 9,081 9,113 6,822 6,859 6,861 6,801

3-Discard 9,100 9,057 9,081 9,110 6,801 6,812 6,820 6,790

4-Discard 9,067 9,033 9,076 9,081 6,790 6,801 6,810 6,790

5-Discard 9,057 9,033 9,067 9,081 6,790 6,801 6,800 6,790

6-Discard 9,057 9,033 9,067 9,065 6,790 6,790 6,800 6,790

7-Discard 9,057 9,033 9,067 9,065 6,790 6,790 6,800 6,790

8-Discard 9,057 9,033 9,059 9,065 6,790 6,780 6,800 6,790

9-Discard 9,057 9,033 9,059 9,065 6,780 6,780 6,800 6,780

10-Discard 9,057 9,024 9,056 9,065 6,780 6,780 6,800 6,780

Exact Solution 8,995 6,780

q random

Static α

Static α Static α

q=0.1 q=0.2

q=0.3

Static α

128

Table 15: Average CPU Time of 10 Replications for Each Parameter Configuration
over Discarding

Dynamic α Dynamic α

Replications

α=0.6

ρ=200

β=1.1

α=0.7

ρ=200

β=1.1

α=0.6

ρ=80

β=1.2

Δα=0.03

ρ=200

β=1.1

α=0.6

ρ=200

β=1.1

α=0.7

ρ=200

β=1.1

α=0.6

ρ=80

β=1.2

Δα=0.03

ρ=200

β=1.1

No Dicard 248 250 288 268 333 366 366 380

1-Discard 108 121 106 146 98 101 128 149

2-Discard 124 130 137 143 110 164 108 107

3-Discard 97 116 97 108 131 102 60 77

4-Discard 131 143 114 143 85 106 122 102

5-Discard 88 93 94 109 117 126 114 133

6-Discard 101 146 85 125 103 80 81 110

7-Discard 106 105 98 93 106 106 63 85

8-Discard 75 78 64 103 103 102 88 47

9-Discard 82 86 84 87 89 116 89 93

10-Discard 122 117 97 108 86 76 79 71

Total Time 1,282 1,386 1,263 1,434 1,360 1,444 1,297 1,354

Time (Best

Solution found)
114 160 165 165 515 458 521 523

Dynamic α Dynamic α

Replications

α=0.6

ρ=200

β=1.1

α=0.7

ρ=200

β=1.1

α=0.6

ρ=80

β=1.2

Δα=0.03

ρ=200

β=1.1

α=0.6

ρ=200

β=1.1

α=0.7

ρ=200

β=1.1

α=0.6

ρ=80

β=1.2

Δα=0.03

ρ=200

β=1.1

No Dicard 430 476 503 533 279 308 302 329

1-Discard 172 210 100 204 133 173 155 157

2-Discard 138 132 78 139 126 148 119 163

3-Discard 107 122 75 137 124 147 109 130

4-Discard 96 116 72 106 78 91 85 88

5-Discard 110 136 76 66 89 100 82 80

6-Discard 117 119 57 68 106 79 73 76

7-Discard 110 102 50 62 108 98 57 95

8-Discard 89 72 50 78 98 120 64 101

9-Discard 97 67 50 52 97 147 65 78

10-Discard 73 65 47 35 83 75 52 88

Total Time 1,540 1,618 1,159 1,479 1,320 1,485 1,162 1,384

Time (Best

Solution found)
648 686 727 692 423 499 373 614

Static α Static α

q=0.1 q=0.2

Static α Static α

q=0.3 q random

129

APPENDIX B: DATA SET USED in CHAPTER III for CRFLP

First column of Table 16 shows whether the possible facility site is reliable or

not. Second column shows the facility no. Third and fourth columns show the location

(lat-long) of the facility sites. Fifth column presents the demand of the location and

sixth column presents the fix opening cost that is going to be applied if a facility is

opened on the specified location. Lastly the seventh column presents the failure

probability if it is a random failure case otherwise all values in this column (only rows

1-12) are equal, e.g., � = �Ø = 0.1. Emergency cost (demand satisfying cost if the

demand is not satisfied from an opened facility but from emergency, e.g., dummy,

facility) is 20 and is equal for all facility sites. Capacity for all facilities is taken 2000.

Table 16: Data set for CRFLP

Type No

1 0.82 0.18 957 938 0.24
2 0.54 0.70 202 642 0.12
3 0.91 0.72 186 1,230 0.13
4 0.15 0.31 635 1,008 0.11
5 0.74 0.16 737 1,279 0.08
6 0.58 0.92 953 1,431 0.25
7 0.60 0.09 450 1,187 0.29
8 0.37 0.19 188 1,044 0.30
9 0.70 0.52 206 1,466 0.26

10 0.22 0.40 995 989 0.17
11 0.50 0.45 429 948 0.17
12 0.30 0.52 528 585 0.24
13 0.95 0.20 570 2,000 0.00
14 0.65 0.07 938 2,000 0.00
15 0.53 0.11 726 2,000 0.00
16 0.95 0.95 533 2,000 0.00
17 0.15 0.13 565 2,000 0.00
18 0.31 0.40 322 2,000 0.00
19 0.98 0.73 326 2,000 0.00
20 0.59 0.04 663 2,000 0.00

Facility

U
n

re
li

a
b

le
R

e
li

a
b

le

Failure

Probability

Fixed

Open Cost
Demandlonglat

130

REFERENCES

Ahmed, S., A. J. King, et al. (2003). "A multi-stage stochastic integer programming

approach for capacity expansion under uncertainty." Journal of Global

Optimization 26(3-24).

Ahmed, S. and A. Shapiro (2002). The sample average approximation method for

stochastic programs with integer recourse, Georgia Institute of Technology.

Aksen, D., K. Altinkemer, et al. (2003). "The single-item lot-sizing problem with

immediate lost sales." European Journal of Operational Research 147(558-

566).

Aksin, O. and F. Karaesmen (2007). "Characterizing the performance of process

flexibility structures." Operations Research Letters 35(4): 477-484.

Akturk, M. S. and S. Onen (2002). "Dynamic lot sizing and tool management in

automated manufacturing systems." Computers and Operations Research 29:

1059-1079.

Alp, O., N. K. Erkip, et al. (2003). "Optimal lot-sizing/vehicle-dispatching policies

under stochastic lead times and stepwise fixed costs." Operations Research

51(1): 160-166.

Baker, K. R. (1977). "An experimental study of the effectiveness of rolling schedules

in production planning." Decision Sciences 8(19-27).

Barany, I., T. J. V. Roy, et al. (1984). "Strong formulations for multi-item capacitated

lot sizing." Management Science 30(10): 1255-1261.

Bayraksan, G. and D. P. Morton (2009). Assessing solution quality in stochastic

programs via sampling. Tutorials in Operations Research. INFORMS: 102-

122.

Belvaux, G. and L. A. Wolsey (2002). "Modeling practical lot-sizing problems as

mixed integer programs." Management Science 47(7): 993-1007.

Benders, J. F. (1962). "Partitioning procedures for solving mixed variable

programming problems." Numerical Math 4: 283-252.

131

Birge, J. R. (1985). "Decomposition and partitioning methods for multistage

stochastic linear programs." Operations Research 33(5): 989-1007.

Birge, J. R. and F. V. Louveaux (1997). Introduction to Stochastic Programming. New

York.

Bish, E., A. Muriel, et al. (2005). "Managing flexible capacity in a make to- order

environment." Management Science 51(2): 167-180.

Brennan, P. (2011) "Lessons learned from the Japan earthquake." Disaster Recovery

Journal 24.

Caroe, C. C. and J. Tind (1997). "L-shaped decomposition of two-stage stochastic

programs with integer recourse." Mathematical Programming 83: 451-464.

Chen, C.-F., P. J. Egbelu, et al. (1994). "Production planning models for a central

factory with multiple satellite factories." International Journal of Production

Research 32(6): 1431-1450.

Chiralaksanakul, A. (2003). Monte Carlo Methods for Multi-stage Stochastic

Programs. Doctor of Philosophy.

Chod, J., N. Rudi, et al. (2009). Mix, time, and volume flexibility: Valuation and

corporate diversification. Chicago, USA, Northwestern University.

Chou, M. C., G. A. Chua, et al. (2010). "Design for process flexibility: Efficiency of the

long chain and sparse structure." Operations Research 58: 43-58.

Chow, Y. S. and H. Robbins (1965). "On the asymptotic theory of fixed-width

sequential confidence intervals for the mean." Annals of Mathematical

Statistics 36: 457-462.

Clark, A. R. and S. J. Clark (2000). "Rolling-horizon lot-sizing when set-up times are

sequence dependent." International Journal of Production Research 38(10):

2287-2307.

Crainic, T. G., X. Fu, et al. (2009). "Progressive hedging-based meta-heuristics for

stochastic network design." CIRRELT 3: 1-20.

Dantzig, G. B. (1955). "Linear programming under uncertainty." Management

Science 1(3-4): 197-206.

Denizel, M., S. Erengüç, et al. (1997). "Dynamic lot-sizing with setup cost reduction."

European Journal of Operational Research 100: 537-549.

132

Dogramaci, A., J. C. Panayiotopulos, et al. (1982). "The dynamic lot-sizing problem

for the multiple items under limited capacity." AIIE Transactions 13(4): 294-

303.

Elabassi, S. B., S. Benjaafar, et al. (2010). On the performance of flexibility chaining

in location-allocation problems under disruption. 8th International Conference

of Modeling and Simulation-MOSIM’10, Hammamet, Tunisia.

Fan, T. and C. Liu (2010). "Solving stochastic transportation network protection

problem using the progressive hedging-based method." Network and Spatial

Economics 10(2): 193-208.

Gade, D. (2007). Capacitated facilities location problems with unreliable facilities.

Master's Thesis, University of Arkansas.

Garavelli, A. C. (2003). "Flexibility configurations for the supply chain management."

International Journal of Production Economics 85: 141-153.

Graves, S. C. (2008). Flexibility Principles. Chapter 3 in Building Intuition: Insights

from basic operations management models and principles. C. a. L. Eds,

Springer US.

Guan, Y., S. Ahmed, et al. (2006). "A branch-and-cut algorithm for the stochastic

uncapacitated lot-sizing problem." Mathematical Programming 105(1): 55-84.

Haugen, K. K., A. Lokketangen, et al. (2001). "Progressive hedging as a meta-

heuristic applied to stochastic lot-sizing." European Journal of Operational

Research 132: 116-122.

Helgason, T. and S. W. Wallace (1991). "Approximate scenario solutions in the

progressive hedging algorithm: A numerical study with an application to

fisheries management." Annals of Operations Research 31: 425-444.

Higle, J. L. (2005). Stochastic programming: Optimization when uncertainty matters.

In: Tutorials in Operations Research.

Higle, J. L. and S. Sen (1991). "Stochastic decomposition: an algorithm for two-stage

linear programs with recourse." Mathematics of Operations Research 16: 650–

669.

133

Infanger, G. (1992). "Monte Carlo (importance) sampling within a benders

decomposition algorithm for stochastic linear programs." Annals of Operations

Research 39(69-95).

Iravani, S. M., M. P. V. Oyen, et al. (2005). "Structural flexibility: A new perspective

on the design of manufacturing and service operations." Management Science

51(2): 151-166.

Jans, R. and Z. Degraeve (2004). "An industrial extension of the discrete lot sizing

and scheduling problem." IIE Transactions 36(1): 47-58.

Jans, R. and Z. Degraeve (2007). "Meta-heuristics for dynamic lot-sizing: a review

and comparison of solution approaches." European Journal of Operational

Research 177: 1855-1875.

Jordan, W. C. and S. C. Graves (1995). "Principles on the benefits of manufacturing

process flexibility." Management Science 41: 577-594.

Kall, P. and S. W. Wallace (1994). Stochastic Programming. New York, Wiley.

Karimi, B., S. M. T. F. Ghomi, et al. (2003). "The capacitated lot-sizing problem: a

review of models and algorithms." Omega 31: 365-378.

Karmarkar, U. S. and L. Schrage (1985). "The deterministic dynamic product cycling

problem." Operations Research 33(2): 326-345.

Kleywegt, A. J., A. Shapiro, et al. (2001). "The Sample Average Approximation

Method for Stochastic Discrete Optimization." SIAM Journal on Optimization

12(2): 479:502.

Kuik, R., M. Salomon, et al. (1994). "Batching decisions: structure and models."

European Journal of Operational Research 75: 243-263.

Laporte, G. and F. V. Louveaux (1993). "The integer L-shaped method for stochastic

integer programs with complete recourse." Operations Research Letters 13:

133-142.

Law, A. M. and W. D. Kelton (1982). "Confidence intervals for steady-state

simulations II: A survey of sequential procedures." Management Science 28:

550-562.

Law, A. M., W. D. Kelton, et al. (1981). "Relative Width Sequential Confidence

Intervals For the Mean." Communications in Statistics B10: 29-39.

134

Lokketangen, A. and D. L. Woodruff (1996). "Progressive hedging and tabu search

applied to mixed Integer (0,1) multi stage stochastic programming." Journal of

Heuristics 2(2): 111-128.

Louveaux, F. V. and M. H. v. d. Vlerk (1993). "stochastic Programming with simple

integer recourse." Mathematical Programming 61: 301-325.

Masihtehrani, B. (2011). Stochastic analysis of disruption in supply chain networks.

Doctor of Philosophy, Pennsylvania State University.

Mekler, V. A. (1993). "Setup cost reduction in the dynamic lot-size model." Journal of

Operations Management 11: 35-43.

Miller, A. J. and L. A. Wolsey (2003). "Tight formulations for some simple mixed

integer programs and convex objective integer programs." Mathematical

Programming Serial B(98): 73-88.

Morton, D. and E. Popova (2001). Monte Carlo simulations for stochastic

optimization. Encyclopedia of Optimization. I. C. A. Floudas and P. M.

Pardalos, Kluwer Academic Publishers.

Mulvey, J. M., D. P. Rosenbaum, et al. (1997). "Strategic financial risk management

and operations research." European Journal of Operational Research 97: 1-

16.

Mulvey, J. M. and A. Ruszczynski (1995). "A new scenario decomposition method for

large-scale stochastic optimization." Operations Research 43: 477-490.

Mulvey, J. M. and H. Vladimirou (1991). "Applying the progressive hedging algorithm

to stochastic generalized networks." Annals of Operations Research 31: 399-

424.

Mulvey, J. M. and H. Vladimirou (1992). "Stochastic network programming for

financial planning problems." Management Science 39(11): 1642-1664.

Muriel, A., A. Somasundaram, et al. (2006). "Impact of partial manufacturing flexibility

on production variability." Manufacturing Service Operations Management

8(2): 192-205.

Norkin, V. I., G. C. Pflug, et al. (1998). "A branch and bound method for stochastic

global optimization." Mathematical Programming 83: 425-450.

135

Olsen, P. (1976). "Discretization of multistage stochastic programming problems."

Mathematical Programming Study 6: 111-124.

Peng, P., L.-V. Snyder, et al. (2011). "Reliable logistics networks design with facility

disruptions." Transportation Research, Part B 45: 1190-1211.

Pennanen, T. (2005). "Epi-Convergent discretizations of multistage stochastic

programs." Mathematical Operations Research 30: 245-256.

Penuel, J., J. C. Smith, et al. (2010). "An integer decomposition algorithm for solving

a two-stage facility location problem with second-stage activation cost." Naval

research Logistics 57: 391-402.

Robinson, S. (1991). "Extended scenario analysis." Annals of Operations Research

31: 385-398.

Rockafellar, R. T. and R. J.-B. Wets (1991). "Scenarios and policy aggregation in

optimization under uncertainty." Mathematics and Operations Research 16:

119-147.

Rosa, C. H. and A. Ruszczynski (1996). "On augmented Lagrangean decomposition

methods for multistage stochastic programs." Annals of Operations Research

64: 289-309.

Rubinstein, R. Y. and A. Shapiro (1990). "Optimization of static simulation models by

the score function method." Mathematics and Computers in Simulation 32:

373-392.

Ruszczynski, A. and A. Shapiro (2003). Monte Carlo Sampling. Handbooks in OR

and MS, Elsevier Science. 10: 353-403.

Ruszczynski, A. and A. Shapiro (2003). Stochastic Programming Models. Stochastic

Programming, Handbooks in Operations Research and Management Science.

10.

Schütz, P., A. Tomasgard, et al. (2009). "Supply chain design under uncertainty

using sample average approximation and dual decomposition." European

Journal of Operational Research 199(2): 409-419.

Sethi, A. and S. Sethi (1990). "Flexibility in manufacturing: A survey." International

Journal of Flexible Manufacturing Systems 2: 289-328.

136

Shapiro, A. (2002) "Statistical inference of multistage stochastic programming

problems." Optimization Online. www.optimization-online.org.

Shapiro, A. (2003). "Inference of statistical bounds for multistage stochastic

programming problems." Mathematical Methods of Operations Research 58:

57-68.

Shapiro, A. (2005). Complexity of Two and Multi-stage Stochastic Programming

Problems. Tutorial Notes for School of Industrial and Systems Engineering.

Atlanta, Georgia 30332-0205, USA, Georgia Institute of Technology: 1-27.

Shapiro, A. (2008). "Stochastic programming approach to optimization under

uncertainty." Mathematical Programming ser. B , 112: 183-220.

Shapiro, A. and T. Homem-de-Mello (2001). "On the rate of convergence of Monte

Carlo approximations of stochastic programs." SIAM Journal on Optimization

11: 76-86.

Sheffi, Y. (2005). The resilient enterprise: Overcoming vulnerabilities for competitive

advantage. MIT Press. Cambridge, MA.

Shen, Z.-J. M., R. L. Zhan, et al. (2011). "The reliable facility location problem:

Formulations, heuristics, and approximation algorithms." Informs Journal on

Computing 23(3): 470-482.

Slyke, R. M. V. and R. J.-B. Wets (1969). "L-shaped linear programs with

applications to optimal control and stochastic programming." SIAM Journal on

Applied Mathematics 17: 638–663.

Snyder, L.-V. and M. S. Daskin (2005). "Reliability models for facility location: The

expected failure cost case." Transportation Science 39: 400-416.

Snyder, L.-V., M.-P. Scaparra, et al. (2006). Planning for disruptions in supply chain

networks. Informs. F. i. T. i. O. Research. Baltimore, MD, USA.

Snyder, L.-V. and N. Ülker (2005). A model for locating capacitated, unreliable

facilities. IERC Conference. Atlanta, GA, USA.

Solak, S. (2007). Efficient solution procedures for multistage stochastic formulations

of two problem classes. Doctor of Philosophy, Georgia Institute of Technology.

Sox, C. A. (1997). "Dynamic lot-sizing with random demand and non-stationary

costs." Operations Research Letters 20(15-164).

137

Stadtler, H. (2003). "Multilevel lot-sizing with set-up times and multiple constrained

resources: internally rolling schedules with lot-sizing windows " Operations

Research 51(3): 487-502.

Staggemeier, A. T. and A. R. Clark (2001). A survey of lot-sizing and scheduling

models. 23rd Annual Symposium of the Brazilian Operational Research

Society (SOBRAPO).

Takriti, S., J. R. Birge, et al. (1996). "A stochastic model for the unit commitment

problem." IEEE Transactions on Power Systems 11: 1497-1508.

TheGuardian (2011) "Toyota profit slides on Japan earthquake disruption."

Verweij, B., S. Ahmed, et al. (2003). "The sample average approximation method

applied to stochastic routing problems: A computational study." Computational

Optimization and Applications 24: 289-333.

Wagner, H. M. and T. M. Whitin (1958). "Dynamic version of the economic lot size

model." Management Science 5(1): 89-96.

Wallace, S. W. and T. Helgason (1991). "Structural properties of the progressive

hedging algorithm." Annals of Operations Research 31: 445-456.

Wang, W. (2007). Sample average approximation of risk-averse stochastic programs.

Doctor of Philosophy, Georgia Institute of Technology.

Watson, J. P. and D. L. Woodruff (2011). "Progressive hedging innovations for a

class of stochastic mixed-integer resource allocation problems."

Computational Management Science 8: 355-370.

Wolsey, L. A. (1995). "Progress with single-item lot-sizing." The European Journal of

Operational Research 86: 395-401.

Woodruff, D. L. and S. Vob (2006). Planning for a big-bang in a supply chain: fast

hedging for production indicators. Proceedings of the 39th Hawaii International

Conference on System Sciences.

Zangwill, W. I. (1969). "Backlogging model and a multi-echelon model of a dynamic

economic lot size production system– A network approach." Management

Science 15(9): 506-527.

Zhan, R.-L. (2007). Models and algorithms for reliable facility location problems and

system reliability optimization. Doctor of Philosophy, University of Florida.

138

ABSTRACT

SAMPLING BASED PROGRESSIVE HEDGING ALGORITHMS
FOR STOCHASTIC PROGRAMMING PROBLEMS

by

NEZIR AYDIN

August 2012

Advisor: Dr. Alper E. Murat

Major: Industrial and Systems Engineering

Degree: Doctor of Philosophy

Many real-world optimization problems have parameter uncertainty. For

instances where the uncertainties can be estimated to a certain degree, stochastic

programming (SP) methodologies are used to identify robust plans. Despite

advances in SP, it is still a challenge to solve real world stochastic programming

problems, in part due to the exponentially increasing number of scenarios. For two-

stage and multi-stage problems, the number of scenarios increases exponentially

with the number of uncertain parameters, and for multi-stage problems also with the

number of decision stages.

In the case of large scale mixed integer stochastic problem instances, there

are usually two common approaches: approximation methods and decomposition

methods. Most common sampling-based approximation (SAA) SP technique is the

Monte Carlo sampling-based method. The Progressive Hedging Algorithm (PHA) on

the other hand can optimally solve large problems through the decomposition into

smaller problem instances. The SAA, while effectively used in many applications, can

139

lead to poor solution quality if the selected sample sizes are not sufficiently large.

With larger sample sizes and multi-stage SPs, however, the SAA method is not

practical due to the significant computational effort required. In contrast, PHA suffers

from the need to solve many sub-problems iteratively which is computationally

expensive.

In this dissertation, we develop novel SP algorithms integrating sampling

based SAA and decomposition based PHA SP methods. The proposed integrated

methods are novel in that they marry the complementary aspects of PHA and SAA in

terms of exactness and computational efficiency. Further, the developed methods are

practical in that they allow the analyst to calibrate the tradeoff between the exactness

and speed of attaining a solution.

We demonstrate the effectiveness of the developed integrated approaches,

Sampling Based Progressive Hedging Algorithm (SBPHA) and Discarding SBPHA (d-

SBPHA), over the pure strategies (i.e. SAA or PHA) as well as other commonly used

SP methods through extensive experimentation. In addition, we develop alternative

hybridization strategies and present results of extensive experiments for these

strategies under different uncertainty models. The validation of the methods is

demonstrated through Capacitated Reliable facility Location Problem (CRFLP) and

Multi-stage stochastic lot-sizing problems.

140

AUTOBIOGRAPHICAL STATEMENT

Nezir Aydin was born in Batman, Turkey on June 26, 1981, the son of Ibrahim

and Medine Aydin. He received the Bachelor of Science in 2005 from Yildiz Technical

University, Istanbul/Turkey. When he was an undergraduate student he worked for

Lider Lighting Co. as a Quality Department Manager/ISO Quality Standards

practitioner in 2004 and 2005. After receiving his B.S degree he worked at Yildiz

Technical University as a Research Assistant. He received Master of Science degree

in Industrial Engineering from the Yildiz Technical University, Istanbul, Turkey, in

2007.

In 2007, he resumed his studies to earn a Ph.D. in the Industrial and Systems

Engineering at the Wayne State University, Detroit, Michigan/USA. Upon graduation,

he plans to work as an assistant professor at the Industrial Engineering Department

at the Yildiz Technical University.

During his studies at Wayne State University and Yildiz Technical University,

he made a number of technical presentations at INFORMS, SAE and several

conferences. His articles have been published and/or are under review in journals

like International Journal of Production Economics and Computers & Industrial

Engineering. He is a member of INFORMS and IIE.

	Wayne State University
	DigitalCommons@WayneState
	1-1-2012

	Sampling based progressive hedging algorithms for stochastic programming problems
	Nezir Aydin
	Recommended Citation

