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CHAPTER I: INTRODUCTION 

Deterministic mathematical programming is an important research field in 

modeling and analyzing the systems that involve complex decision making which 

cannot be handled through non-mathematical and non-computational approaches 

(e.g., intuition, experience based). This research field can be restrictive in its 

practicality because of the assumption that the model parameters are always known 

with certainty. For example, in supply chain networks, the supply process is not 

always certain because of fluctuations or disruptions that might happen during the 

period of supply. These fluctuations can occur because of seasonality, quality 

problems, transportation problems or disruptions in supply resources. In production 

planning, the production capacity is not certain because of the unexpected events 

that can happen during production, or unexpected changes in production 

requirements such as specific tools, machines, etc. The deterministic mathematical 

programming cannot account for these uncertainties and their effect on the solution 

except in few instances to a certain degree such as in the case of Linear 

Programming where sensitivity analysis can be employed. Furthermore, deterministic 

mathematical models do not consider possible future scenarios that are subject to 

changes in parameter values when optimizing problems (Chiralaksanakul 2003). 

Therefore, Stochastic Programming (SP) models are introduced as an extension of 

deterministic mathematical programs in order to deal with uncertain parameters in the 

system. 



2 
 

 
 

SP problems with recourse was first introduced by Dantzig (1955) for 

mathematical programs with uncertainties. Since then, SP has become one of the 

most important methods to optimize systems that include uncertain parameters or 

variables in some or all aspects of the model. The most important assumption in SP 

is that the probability distributions of the random variables are known. A commonly 

used objective of the SP is to identify a feasible solution which is optimal for the 

expected value function over all possible realizations (Solak 2007). There are other 

objectives such as identification of robust solutions and solutions that optimal with 

respect to a pre-specified trade-off between the expected value function and its 

variability. 

The most extensively studied SP models are the two-stage models. In the two-

stage SP approach, the decision variables are partitioned into two sets. The first 

stage variables are decided before the realization of the uncertain parameters 

becomes known. Once the random events have presented themselves, the second 

stage decisions are made to given the fixed first stage decisions. The objective is to 

find first stage decisions in a way that the sum of first stage costs and the expected 

objective function value of the random second stage or recourse costs are minimized 

or maximized (Ahmed and Shapiro 2002).  

To illustrate, consider the two-stage stochastic programming problem for fixed-

charge facility location where the decisions are locations of facilities and allocation of 

demand to the located facilities. The first stage decisions are the locations of facilities 

subject to the probabilistic knowledge of the demand. After first stage decisions are 
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made and demand realizations are observed, the demand is assigned optimally 

through the second stage decision.      

Two-stage SPs are generalized to multi-stage SP in order to model complex 

systems that include decisions subject to uncertainty in multiple time stages.  The 

decision and uncertainty realization sequence of two-stage SPs is generalized in 

multi-stage SPs. In particular, decisions are first made at the beginning of each stage 

before any of the future realizations are observed. These decisions depend only on 

the previously observed realizations and decisions made. Following the observation 

of uncertain realizations, the decisions for the next stage are made. The objective is 

to make decisions for each stage, sequentially, that optimizes the expected objective 

function value over all possible realizations. One main difference from two-stage SPs 

is that the expected recourse functions are recursive. For instance, in lot sizing 

problems, at the beginning of each stage, the production decisions are made that 

depend on the previous stages’ production decisions and the observed demand. The 

optimal production amount is decided with only probabilistic knowledge of the future 

demand scenarios.  

In order to determine the size of a stochastic programming problem, the 

mathematical model’s dimensions and the number of realizations of random vectors 

of the problem need to be considered. If the model’s random vectors have 

continuous distribution or have infinitely many dimensions, then the optimization of 

such SPs are typically impossible. One alternative is to approximate the uncertainty 

through scenario aggregation or discretizing the continuous probability distributions. 

In the multi-stage model, the complexity continues to escalate because in this model 
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the problem size grows exponentially also with the number of decision stages subject 

to uncertainty.  

SPs with small number of scenarios can be optimized with exact solution 

methods, e.g., by solving the deterministic equivalent of the problem or through 

primal or dual decomposition methods. When the numbers of scenarios in stochastic 

programming are too large to optimize with exact solution methods then sampling 

based methods, such as Sample Average Approximation method (SAA), are needed 

to approximate the objective function value. SAA solves stochastic programming 

problems through the Monte Carlo simulation (Kleywegt, Shapiro et al. 2001; Ahmed 

and Shapiro 2002). In the Monte Carlo simulation a random sample is utilized to find 

a sample average estimate to approximate the expected objective function. To solve 

the sample average approximation problem, deterministic optimization techniques 

are then used.  

A commonly used exact solution method to solve large scale stochastic 

programming problem is the Progressive Hedging Algorithm (PHA). The PHA 

proceeds by converting the original stochastic problem into its deterministic 

equivalent. This deterministic equivalent formulation includes non-anticipativity 

constraints which ensure that decisions in a set of scenarios are identical if those 

scenarios are undistinguishable up to the time of those decisions. The non-

anticipativity constraints are then relaxed using Augmented Lagrangean relaxation 

and the problem becomes separable by each scenario. The scenario sub-problems 

have augmented objective functions which include linear and quadratic Lagrange 

penalty functions corresponding to the relaxed non-anticipativity constraints. These 
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scenario sub-problems are then solved as deterministic problems. At each iteration of 

the PHA algorithm, solutions from all scenario sub-problems are collected and 

averaged according to their non-anticipativity constraints and scenario probabilities. 

The deviation of each scenario sub-problem solution from these averages is used to 

update the Lagrangian multipliers. Next, the scenario sub-problems are re-solved 

with the updated augmented Lagrangean objective function. This iterative process 

continues until the Lagrangean dual problem converges to a solution satisfying the 

non-anticipativity constraints. It is guaranteed that with the right multiplier values, the 

solution of scenario subproblems yield optimal solutions. However, in practice this 

guarantee is not available since the PHA’s convergence to the optimal multipliers is 

not guaranteed.  

Optimizing under uncertainty has been extensively studied in many areas 

other than stochastic programs, such as the Optimal Control Theory, Markov 

Decision Processes, Statistical Decision Theory and Stochastic Dynamic 

Programming. Although aforementioned techniques are related to the proposed work 

in coping with uncertainty, we do not discuss these methods because the theory of 

these techniques are developed and improved independently from SP literature 

(Chiralaksanakul 2003).   

1.1. Motivation 

Stochastic programming is an increasingly popularized methodology in the 

Operation Research field. It extends the deterministic mathematical programming 

approach to the problem instances where there are uncertainties in the problem 

parameters. With the latest optimization algorithms realistic sized deterministic 
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optimization problems can be successfully solved. However, it is still a challenge to 

solve large scale stochastic programming problems when the number of scenarios is 

large and the underlying deterministic problem is already large scale and NP-

complete.  

In today’s business environment, companies around the world are struggling 

with decision making under uncertainty that relate to their supply chain and 

production planning and often resort to myopic planning or consider few “most likely” 

scenarios for their long term planning. In the academic literature, large-scale multi-

stage stochastic problems arising in practice are rarely tackled successfully to an 

acceptable level of optimality. In practice, near future decisions are often more 

important than far future decisions because the uncertainty in far future resolutions 

are more indeterminate than near future resolutions. Better information is usually 

available or can be acquired (e.g., at a cost) for planning out near future rather than 

far future decisions. While there is less uncertainty affecting near-term decisions, the 

need to consider uncertainty affecting long term decisions are ever increasing. The 

globalization and increased competition requires companies to be agile and prepared 

for a wide range of uncertainties in the short as well as medium-to-long term 

planning. Therefore, in practice, it is often necessary to consider all of the scenarios 

for near future and the most likely or random sample scenarios for the far future. 

Current state of the art in two-stage and multi-stage SP literature is partially 

able to answer the need for computationally efficient and approximately optimal 

solution methods. For instance, the SAA procedure is widely applied to two-stage 

large scale SP programs. The success of the SAA resides on its demonstrated 
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property of increasing the sample sizes, exponentially increases the likelihood of 

finding the optimal solution. However, the recommended sample sizes are often very 

conservative and not applicable to practical sized problems. Accordingly, many users 

of SAA select the sample sizes and number of samples, not based on the 

recommended threshold values, but rather based on what can be solved with the 

current deterministic mathematical programming solvers. Hence, there is significant 

risk of suboptimality due to insufficient sampling. Further, the SAA procedure cannot 

be applied to the multi-stage problems due to the multiplicatively increasing number 

of scenarios required with the number of decision stages. Lastly, the SAA procedure 

can be calibrated through two parameters, i.e., number of samples and sample size 

and the flexibility in terms of adjusting the computational effort necessary for a given 

optimality requirement is limited. In contrast, the PHA method can solve SPs (both 

two-stage and multi-stage) optimally and provides tractability by decomposing large 

scale problems into smaller, hence solvable, deterministic instances. However, 

solving a large scale SP with PHA requires solving many through a multitude of 

iterations. Moreover, at an intermediate step, PHA does not provide a feasible 

solution that is satisfying all the non-anticipativity constraints.  Hence, there is a need 

to combine the exact methods such as PHA with sampling based methods such as 

SAA to develop flexible solution methods to tackle large-scale SPs. 

1.2. Research Objectives 

The goal of this study is to develop efficient and effective hybrid methods for 

large scale stochastic programming problem based on Progressive Hedging 
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Algorithm with Sample Average Approximation. The specific objectives are as 

follows: 

1. Developing hybrid method(s) integrating the exact solution method, 

Progressive Hedging Algorithm (PHA), and the sample based method, Sample 

Average Approximation (SAA). 

2. Demonstrating the effectiveness of proposed methods over the commonly 

used solution methods, such as, SAA and deterministic equivalent. 

The contribution of this research is to provide a configurable solution method 

which improves the sampling based methods’ efficiency and PHA’s accuracy for 

stochastic programs. The attainment of this contribution is demonstrated through the 

consistency of the solutions found by the proposed hybrid methods.  

1.3. Dissertation Organization 

The dissertation is organized as follows. Preceding literature on Stochastic 

Programming (SP) problems, two solution methodologies (Progressive Hedging 

Algorithm (PHA) and Sample Average Approximation (SAA)) and the mathematical 

and algorithmic formulations of the existing methodologies are provided in the earlier 

part of the Chapter 2. In the later part of the Chapter 2, we describe in detail the two 

proposed algorithms, Sampling Based Progressive Hedging Algorithm (SBPHA) and 

d-SBPHA.  

In Chapter 3, we first introduce the Capacitated Reliable Facility Location 

Problem (CRFLP) which is a two-stage SP and provide a brief literature review on the 

CRFLP. Next we apply the SBPHA and � −SBPHA methods to CRFLP and 

demonstrate the effectiveness in solving two-stage SPs. Lastly, we apply the d-
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SBPHA to multi-stage stochastic lot-sizing problem. Experimental results, 

computational times and the comparisons, in terms of computational effort and the 

solution quality, of the SBPHA and d-SBPHA with SAA are studied in detail. 

In the Chapter 4, analytical and computational analysis (using SBPHA) on the 

effect of the flexibility to mitigate supply chain disruptions is studied. Conclusions and 

future studies are given in Chapter 5 of the dissertation.  
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CHAPTER II: NEW HYBRID ALGORITHMS FOR STOCHASTIC PROGRAMMING 

PROBLEMS 

2.1. Stochastic Programming 

Stochastic Programming (SP) is an increasingly growing field for solving 

mathematical programming problems subject to parameter uncertainty (Kall and 

Wallace 1994; Ruszczynski and Shapiro 2003). The main assumption in SP is that 

the probability distributions of the random events are known or can be approximated. 

The objective of SP is to identify a feasible solution that optimizes the expected value 

of a function over all possible realizations of the random events.  

An extensive number of solution methods are proposed for solving SP 

problems. These solution methods can be classified into two classes; exact or 

approximation. Analytical solution methods and computational methods that solve SP 

algorithmically without approximating the objective function value to the optimal are 

considered as exact solution techniques. Solution techniques that approximate the 

optimal objective function value are considered as approximation methods. In this 

section we briefly review these two types (exact and approximation) of methods.  

Exact solution methods provide optimal solution and objective function value. 

If random variable set is finite with a moderately small number of realizations, so 

called “scenarios” (Rockafellar and Wets 1991), SP can be modeled as a 

deterministic equivalent program and solved to optimally by an optimization 

algorithm. Small sized linear SPs can be solved by simplex algorithm through the 

deterministic equivalent formulation of the SP. If the problem is mixed integer 
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program then it can easily be solved by a branch and bound (or another divide-and-

conquer based) algorithm applied to the deterministic equivalent formulation of the 

SP. However, if the number of scenarios is very large, generic linear programming 

techniques are not able to solve because of the large size of deterministic equivalent 

problems.  Some decomposition algorithms are proposed to solve stochastic linear 

programming problems that have a modest number of scenarios. 

Decomposition methods that are used for solving SP are categorized either by 

stage-based decomposition or scenario based decomposition methods. The most 

widely known stage-based decomposition method is L-shaped method proposed by 

Slyke and Wets (1969); (Birge and Louveaux 1997). In the stage-based 

decomposition method, each stage � has a number of sub-problems that is related to 

each node at time stage	�. In this thesis, our focus is on the scenario based 

decomposition (Lagrangean-based decomposition) methods and thus we will not 

discuss the stage-based decomposition methods further  

The goal of Lagrangean decomposition is the same as other decomposition 

methods, which is to decompose the complex problem into sub-problems to be able 

to solve them more efficiently. In the scenario based decomposition method, the non-

anticipativity constraints are relaxed by Lagrangean penalty terms. Once the problem 

is decomposed, then each scenario becomes a deterministic problem to be solved. 

The disadvantage of this method is the computational time since the method 

iteratively solves the scenario subproblems and the convergence could be slow. For 

detailed explanation reader is referred (Rockafellar and Wets 1991; Mulvey and 

Ruszczynski 1995; Rosa and Ruszczynski 1996).  
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When the number of scenarios is large and exact solution methods fail to 

solve the problem, approximation methods are then used to estimate the objective 

function value. As an approximation method, Monte Carlo Sampling-based method is 

widely used. A wide survey on Monte Carlo sampling in SP can be found in Morton 

and Popova (2001). Monte Carlo sampling can be applied to SP either as interior or 

exterior of the algorithm (Chiralaksanakul 2003). In the internal sampling method, 

Monte Carlo estimates can be replaced with the difficult exact computations during 

the solution process (Higle and Sen 1991; Infanger 1992). If a scenario tree is 

constructed through Monte Carlo sampling and the objective function value of the 

original problem is approximated at the onset, then this approach is referred to as 

external sampling method. External sampling is also called Sample Average 

Approximation (SAA) (Shapiro 2002). We cover the SAA which is used in the 

proposed hybrid algorithms.  

One of the motivation of this dissertation is that the decomposition and the 

approximation algorithms can be used together to solve stochastic programming 

problems efficiently and effectively. For instance, when the number of the scenarios 

in a SP is very large, then the problem can be approximated by an approximation 

method and the approximated problem can then be solved by the decomposition 

methods. 

In the next two subsections, we present the mathematical formulation of the 

two-stage SP and multi-stage SP problems and review the related literature.    
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2.1.1. Two-Stage Stochastic Programming 

The two-stage stochastic programming models are the most common models 

in SP. In the two-stage model, the first stage decisions are made prior to the 

realization of the uncertainty. In the second stage, the uncertainty is realized and 

second stage decisions are made given the first stage decision and realizations. The 

goal of the two-stage stochastic programming is to optimize the expected objective 

value of the second stage decisions’ objective function and the objective of the first 

stage decisions. 

A typical formulation of class of the two-stage SP is as follows(Kall and 

Wallace 1994; Birge and Louveaux 1997; Ahmed and Shapiro 2002): 

 

Min�∈��g�x� ≔ c�x + �� �x, ξ�#$,     (2.1) 

where 

 �x, ξ� ≔ inf&∈'�q�y:Wy ≥ h − Tx$	    (2.2) 

 

is the optimal value and ξ ≔ �q, T,W, h� denotes vector of parameters of the second 

stage problem.  The vector of second stage	ξ represents the randomness in some or 

all of the second stage parameters.  The expectation of (2.1) is taken with respect to 

the known probability distribution of	ξ. The problem (2.1) decides on the first stage 

variables,	x ∈ ℝ01 , prior to a realization of ξ, and problem (2.2) decides on the second 

stage variables, y ∈ ℝ02 , given the first stage decision and a realization of ξ. 
Many solution approaches are proposed in literature for the two-stage SP 

problems: Benders decomposition, L-shaped method, Progressively Hedging 
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Algorithm. Benders decomposition technique generates a split between first stage 

and second stage decision variables  (Benders 1962; Slyke and Wets 1969). This 

method solves a first stage master problem to find a good solution for the first stage, 

while optimistically estimating the objective function value of the second stage sub-

problems. If the first stage decision variables are infeasible then a “feasibility” cut is 

added to the master problem. Furthermore, if the objective function value of the sub 

problems is not optimal, then an “optimality” cut is added to the master problem. 

Benders decomposition method repeats this iterative process until no cut is 

necessary.  

Another solution approach to the two-stage SP problems is the L-shaped 

method. Louveaux and Vlerk (1993) studied a two-stage SP with integer second 

stage recourse problem. Second stage problem minimizes the penalty cost that 

results in the shortage and excess first stage decisions. Laporte and Louveaux 

(1993) studied a two-stage SP problem with binary first stage decision variables.  

A generalization of the integer L-shaped method is done by Caroe and Tind 

(1997) via duality theory. Penuel, Smith et al. (2010) introduced an integer 

decomposition algorithm for solving two-stage SP problem with second–stage 

activation costs. They applied the proposed algorithm to a scenario based facility 

location problem and compared to the Laporte and Louveaux (1993) in terms of 

performance.  

The other two popular methods for the two-stage SPs are Progressive 

Hedging Algorithm (PHA) and SAA which are discussed in detail in the next section.  
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2.1.2. Multi-Stage Stochastic Programming 

Multi-stage SP problems generalizes the two-stage SPs. In the multi-stage SP 

models, the decision at any time stage is made after the realization of random 

vectors and decision variables of the previous time stages. The goal of the multi-

stage model is to make decisions for different time periods in a sequence, while 

optimizing the expected objective function value of the current and future stages. In 

the multi-stage model, the size of the SP grows exponentially with the number of time 

horizons. If the number of scenarios is small, then multi-stage SPs can be optimized 

with exact solution methods.  

In multi-stage SP problems, a T-stage problem is considered and a series of 

decisions,	�x3$345� , is made with respect to random events 	�ξ3$345� . The decision 

	x3 ∈ ℝ06  at time stage	t, is made based on the information of the previous stages’ 

decisions,	x5, … , x395, and the observed random events,	ξ5, … , ξ3, while optimizing the 

objective function, f3�x5, … , x395, ξ5, … , ξ3:5�. Decision variables x3 are subject to 

constraints and may depend on x5, … , x395 and	ξ5, … , ξ3.  
Using the notation and the mathematical representation, used by (Solak 

2007), of the multi-stage SP problem with recourse can be formulated as follows: 

 

min		f5�x5� + Ε=1�min f>�x5, x>, ξ5� + Ε=2|=1�min f@�x5, x>, x@, ξ5, ξ>�																				 
  

+⋯+ Ε=BC1|=1,…,=BC2�min f��x5, … , x�, ξ5, … , ξ�95�#… ##				�2.3� 
   

s.t. 
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g5�x5� ≤ 0 

g>�x5, x>, ξ5� ≤ 0 

⋮ 																																																																																																 �2.4� 
g��x5, … , x�, ξ5, … , ξ�95� ≤ 0 

x3 ∈ x�, t = 1,2,… , T																																																																						�2.5� 
where x3 and ξ3 are decision variable and random event vectors, respectively, so 

that	x3 ∈ ℝ06,	ξ3 ∈ ℝH6  and t = 1,2,… , T. Then f3: ℛ01:⋯:06 × ℛH1:⋯:H6C1 → ℛ and 

g3: ℛ01:⋯:06 × ℛH1:⋯:H6C1 → ℛL6. 

If number of random events are finite and S denote the set of all possible 

realizations of the random events (i.e., scenarios), then the deterministic equivalent 

of the multi-stage SP (2.3)-(2.5) can be easily formulated as follows: 

 

min ∑ pP�c5Px5P + c>Px>P +⋯+ c�Px�P #	P∈Q          (2.6) 

s.t.  

A55P x5P ≤ b5P 		∀s ∈ S 
A>5P x5P + A>>P x>P ≤ b>P 		∀s ∈ S 

⋮               (2.7) 

A��95P x�95P + A��P x�P ≤ b�P 		∀s ∈ S 
x3P − x3PV = 0	∀s, sW ∈ S: �ξ5P , … , ξ3P� = Xξ5PV , … , ξ3PVY, t = 1,2,… , T       (2.8) 

x3P ≥ 0	∀s ∈ S, t = 1,2,… , T                        (2.9) 

 

In the formulation given above pP represent the occurrence probability of 

scenario s and objective function and constraints are assumed to be linear. 
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Constraints (2.8), are the non-anticipativity constraints, which ensure the equivalence 

of the decision variables that are made at time stage t for all scenarios that have the 

same history. Non-anticipativity constraints ensure that the decisions are 

implementable (Higle 2005; Solak 2007).  

The multi-stage SP formulation in (2.6)-(2.9) is scenario based formulation. 

Tree representation of the random events ξ3 is shown in Figure 1. Each path from 

root node to the last nodes represents a scenario in the scenario tree.  

 

Figure 1: An example of four-stage scenario tree 

Table 1: Random events and decision variables for scenario three in Figure 1 

Node: Root  A B C D E F G 

Random Event ξ55 ξ>5 ξ>> ξ@5 ξ@> ξ@@ ξ@Z ξ@[ 
Decision variables x55 x>5 x>> x@5 x@> x@@ x@Z x@[ 

 

The non-anticipativity implies that the decision variables at the root node have 

to be same for all scenarios	s = 1,2,… ,8, decision variables taken at node A have to 

t=1           
 
 
t=2         
 
 
t=3  
      
 
 
t=4 

Scenario:   1            2             3                  4          5          6             7           8 

Root Node 

A B 

F G E D C 
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be same for scenarios 1,2, and 3 and at node C have to be same for 1 and 2. The 

similar logic applies to other scenarios.    

While some efficient solution methods for multi-stage linear programming SPs 

have been developed in the stochastic programming literature, most of these solution 

methods are not efficient when applied to the multistage stochastic integer 

programming problem. This is because of the non-convexities caused by the integer 

decision variables. (Solak 2007). 

Rosa and Ruszczynski (1996) propose two augmented Lagrangean 

techniques for the multistage SP problems: decomposing the problem into nodes 

depending on stages and decomposing the problem by the scenarios. Another 

solution method is to implement Benders decomposition algorithm recursively to the 

nested decomposition introduced by Birge (1985). Rockafellar and Wets (1991) 

introduced a new solution method named Progressive Hedging Algorithm. The main 

idea of this algorithm is to decompose the problem into sub-problems based on 

scenarios and solving these sub-problems iteratively while applying non-anticipativity 

constraints in a novel manner. More detailed information on PHA is provided in the 

Progressive Hedging Algorithm section. Sampling based approaches for multi-stage 

SPs are also used to calculate lower bounds on the optimal value of objective 

function (Kleywegt, Shapiro et al. 2001; Wang 2007).The detailed description is 

provided in the SAA section.  

We now describe in detail the PHA and SAA integrated to obtain the proposed 

Sampling Based Progressive Hedging Algorithm (SBPHA).  
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2.2. Exact and Sampling Methods: PHA and SAA 

In this section, we review and present the algorithmic formulation of the two 

algorithms that are used to develop the hybrid SBPHA algorithm. First, method is the 

exact solution method, Progressive Hedging Algorithm (PHA), and the second one is 

the Monte-Carlo sampling based approximation method, Sample Average 

Approximation (SAA).  

2.2.1. Progressive Hedging Algorithm (PHA) 

When the SPs are very large or the underlying mixed-integer problem is 

difficult, then solving the SP as a single mathematical programming problem is 

impractical due to memory and computational time restrictions. Often, decomposition 

based methods are used to divide the problem into smaller and more manageable 

subproblems. These subproblems are then solved iteratively while enforcing those 

aspects of the problem relaxed for decomposition. One such decomposition method 

is the PHA proposed by (Rockafellar and Wets 1991). PHA decomposes SPs by 

scenarios rather than by time stages. PHA converges to the optimal solution when 

SPs convex programs. For the case when the decisions are integer, the PHA is used 

as a heuristic method (Lokketangen and Woodruff 1996; Fan and Liu 2010; Watson 

and Woodruff 2011).  

PHA was first introduced by Rockafellar and Wets (1991) to solve SPs. It was 

the first rigorous algorithmic procedure that worked to put a policy in place for a 

variety of scenarios. Rockafellar and Wets (1991) introduced theoretical and 

mathematical discussion on PHA which was constructed based on the principle of 
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scenario aggregation (Wallace and Helgason 1991). Wallace and Helgason (1991) 

studied computational performance on implementing the solution methodology of 

solving scenario problems approximately and individually using Lagrangean 

approach in scenario aggregation procedure. They showed that the proposed 

procedure does not need to increase the number of iterations to solve the sub-

problems more accurately. However, their method needed improvements in terms of 

the speed of convergence.  

In 1991, Mulvey and Vladimirou (1991) applied PHA to solve multi-stage 

stochastic networks as an application of scenario aggregation. They also applied the 

technique to stochastic generalized networks. In their problem the uncertainty is in 

the constraint coefficients.  They tested the performance of PHA by applying to the 

stochastic generalized networks. In most cases they found a better solution than 

other researchers by using MINOS with medium sized problems. Also, in their 

literature review of financial risk management, Mulvey, Rosenbaum et al. (1997) 

proposed PHA as an efficient methodology to deal with multi-stage stochastic 

programming in the risk management field. Mulvey and Vladimirou (1992) proposed 

using PHA as an proficient method in financial planning problems. Takriti, Birge et al. 

(1996) report on favorable results from applying the PHA to stochastic multi-stage 

commitment problems. They studied more general cases in which any of the data 

could be stochastic and where there could be varying number of integer variables. 

Robinson (1991) applied a new methodology to portfolio optimization problems to 

extend the scenario analysis technique. His proposed research is different than the 

algorithm proposed by Rockafellar and Wets (1991) in terms of having the chance to 
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put non-separable convex constraints instead of non-anticipativity constraints into 

problem.  

Takriti, Birge et al. (1996) applied Lagrangean relaxation to mixed-integer SP 

production problem. In their study, they proposed a mathematical model and an 

efficient solution methodology. In their comparison, they concluded that pure 

Lagrangean relaxation needs many iterations to converge, on the other hand, PHA 

converges much faster than pure Lagrangean relaxation methodology.  

Table 2:  Summary of literature review on Progressive Hedging Algorithm (PHA) 

Reference Summary 

Rockafellar and 
Wets (1991) 

Introduced PHA through this research and showed that 
convergence to optimization is reached to optimal (depending 
on the convergence criteria) both for convex and non-convex 
types of problems. 

Wallace and 
Helgason (1991) 

Introduced generic procedures and definitions on PHA. Showed 
that using a scenario tree in computation is superior. 

Helgason and 
Wallace (1991) 

Proposed methodology solves scenario problems approximately 
and individually using Lagrangean approach in scenario 
aggregation procedure. For accurate solutions, incremental in 
number of scenario is not needed. However, the method 
needed improvements in terms of the speed of convergence. 

Mulvey and 
Vladimirou 
(1991) 

Tested the performance of PHA by applying to stochastic 
generalized networks.  In most cases, finds a better solution 
than other published results.  Used MINOS for their 
computations of medium sized problems. 

Lokketangen and 
Woodruff (1996)  

Introduced a general purpose to improve solutions to multi-
stage stochastic mixed integer (0,1) by using Tabu search and 
PHA . 

Haugen, 
Lokketangen et 
al. (2001) 

Applied PHA to minimize multi-stage stochastic mixed integer 
problems. Optimized each sub problem (scenario) by dynamic 
programming. 

Woodruff and 
Vob (2006) 

Proposed a heuristic method to reduce problem size. The 
method is to solve scenario sub-problems and then combine 
these solutions to determine the values to binary variables. 

Robinson (1991) Proposed research is different than the algorithm proposed by 
Rockafeller and Wets (1991) in terms of having chance to put 
non-separable convex constraints other than non-anticipativity 
constraints into the problem. 
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Haugen, Lokketangen et al. (2001) applied PHA as a meta-heuristic by solving 

each sub-problem that developed from each scenario heuristically while working with 

multi-stage lot-sizing problems. In their study, they applied an exact solution method 

instead of using an approximation algorithm. (Woodruff and Vob 2006) applied the 

PHA to production planning in supply chain disruptions.  In this mixed integer 

stochastic problem binary variables were considered as indicators for production.  

The goal of the problem was to minimize total cost. They developed a heuristic 

method to increase the performance of algorithm.  Crainic, Fu et al. (2009) proposed 

Tabu search and PHA based heuristic method to the two-stage capacitated multi-

commodity network design (CMND) problem with stochastic demand. The objective 

of the problem is to optimize the cost of designing the first stage and expected 

distribution cost acquired in second stage. Detailed information on behavior of the 

PHA methodology can be found in (Wallace and Helgason 1991), (Mulvey and 

Vladimirou 1991), (Lokketangen and Woodruff 1996), (Crainic, Fu et al. 2009), and 

(Watson and Woodruff 2011). 

 

 

     t=1           t=2         t=3  …       

Scenario 1 
Scenario 2 
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Figure 2:   A Multistage Stochastic Tree Having � Stages and 3 Branches Per Stage  

In implementing the PHA, the first step is to create a scenario set, such as the 

example shown in Figure 1 and Figure 2. In Figure 1, each path (from root node to 

leaf node) is a scenario where the number of scenario sets is equal to ] (^ denotes 

an individual scenario) and each scenario includes a full collection of random variable 

realizations with a probability. Each scenario ^ is considered as a deterministic 

problem which can be solved using exact solution methods.  

To decompose the problem by scenarios, the PHA relaxes the non-

anticipativity constraints at each node. These non-anticipativity constraints are then 

enforced during the solution procedure through the Augmented Lagrangian terms. 

The augmented Lagrangian terms are calculated using the dual variables and the 

mean of the solutions, e.g., probability averaged decision variables, at each node. 

Dual variables for each relaxed non-anticipativity constraints are updated using the 

mean solutions. The PHA convergence is based on the rate of change in the 

subgradient, i.e, the deviation of scenario solutions for each stage from the mean of 

the solutions. As noted in (Haugen, Lokketangen et al. 2001), solving the scenario 

subproblems to optimality is not necessary and that approximating methods can be 

applied. 

We now illustrate the PHA for the two-stage SP in (1)-(2). Given a finite 

number of realizations 	ξP, s = 1,… , S, and a positive occurrence probability 	pP,  such 

that	∑ pP = 1QP45 , the set	�	ξP, … , 	ξQ$ ,of scenarios, with the corresponding probabilities 

pP, … , pQ, can be considered as a representation of the probability distribution. The 

expected value function �� �x, ξ�# can be expressed as the finite summation 
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�� �x, ξ�# = ∑ pP �x, ξP�.QP45  By creating a copy of the second stage decision vector, 

yP, for every scenario ξP, i.e. by considering yP = y�ξP�, s = 1,… , S, as a function of 

scenarios, we can write the two-stage SP problem (1)-(2) as (Shapiro 2008):  

Min�,&_,…,&`c�x + ∑ pPg�x, yP, ξP�	QP45      (2.10) 

x ∈ X, yP ∈  �x, ξP�, s = 1,… , S 

where ξP ≔ �qP, TP, WP, hP�, s = 1, … , S, are the corresponding scenarios (Shapiro, 

2008). Each scenario sub-problem can be expressed as follows: 

  Min	�c�x� + ∑ pP�fPyP�P∈Q       (2.11) 

s.t       �x, yP� ∈  �x, ξP�	∀s ∈ S      

where x is not scenario specific and xP = x, ∀s ∈ S. The	yP represent second stage 

decision variables which are determined with a given first stage decision �x� and a 

particular random point,	ξP, and fP. The fP represents second stage scenario specific 

coefficient vectors. Problem (2.11) is the well-known extensive form of a two-stage 

stochastic program (Watson and Woodruff 2011).  

The following is the pseudo-code of the PHA algorithm (Watson and Woodruff 

2011). Let b be a penalty factor�	b > 0�, and ϵ be a convergence threshold. 

 

1: k ≔ 0 

2: For all s ∈ S, xPf ≔ argmin�,&_�cx + fPyP�: �x, yP� ∈  �x, ξP� 
3: xif ≔ ∑ pPxPfP∈Q  

4: For all s ∈ S,wPf ≔ ρXxPf − xifY 

PHA Algorithm for Two-Stage SP 
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5: k ≔ k + 1 

6: For all s ∈ S, xPf ≔ argmin�,&_ lcx + ωPf95x + n
> ox − xif95o> + fPyPp : �x, yP� ∈  �x, ξP� 

7: xif ≔ ∑ pPxPfP∈Q  

8: For all s ∈ S,ωPf ≔ ωPf95 + ρXxPf − xifY 
9: πf ≔ ∑ pPoxPf − xifoP∈Q  

10: If πf < ϵ,	then go to step 5. Otherwise, terminate. 

 

The index s shows the Iteration number; and Euclidian distance in iteration s 

is expressed by πf. The vectors xPf, xif,	and	ωPf show decisions for scenario ^ in 

iteration s, weighted (average) decisions of the problem in iteration s, and dual 

multiplier for scenario ^ at iteration s, respectively.  PHA converges to a common xi in 

linear time if decision vector x is continuous (Watson and Woodruff, 2011). However 

problem becomes much more complex to solve when x vector is integer i.e., binary.  
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Figure 3   Flow Chart of the Progressive Hedging Algorithm (PHA)  

2.2.2. Sample Average Approximation (SAA) 

Sampling based methods are usually used when the stochastic problem is too 

large to solve by exact solution techniques. With the sampling based approaches, the 

objective function is approximated through a random sample of scenarios.  

Typically sampling based approaches are classified into two: Interior sampling 

and exterior sampling methods (Verweij, Ahmed et al. 2003). In interior sampling 

methods, sampling is performed inside a chosen algorithm with new (independent) 

samples generated during the iterative solution process. These samples can be 

generated through a resampling from the entire scenario set or by selecting subsets 

Initialize: 

• Determine the problem 
parameters 

• Construct the scenario tree 
• Calculate the scenario probabilities 

Relaxation and Decomposition: 

• Formulate deterministic equivalent model 
• Relax non-anticipativity constraints via augmented Lagrangean relaxation 
• Decompose the model into deterministic scenario sub problems with augmented objective function 

Solve Deterministic Scenario Sub Problems:  

• Update the augmented Lagrangean objective 
• Solve the problem 

Check for Convergence:  

• Are scenario sub problem solutions feasible 
for non-anticipativity constraints? 

Multiplier Update:  

• Update Langangean multipliers using 
subgradient update scheme. 

Solution Reporting:  

• Display results (Objective function and 
solution vector). 

Yes 

No 
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of the previously selected samples. There are several studies using interior sampling 

based approaches. Higle and Sen (1991) developed a stochastic decomposition 

algorithm for two-stage stochastic programming problems. Infanger (1992) studied 

statistical L-Shaped method. An interior sampling based branch and bound method is 

introduced by Norkin, Pflug et al. (1998) for discrete stochastic problems.  

In the exterior sampling approach, a sample of scenarios is generated from 

possible realizations, and then deterministic optimization problem is developed from 

the generated samples and solved. This procedure (generating samples and solving 

deterministic problems) repeated several times. SAA is one of the exterior type 

sampling based method.  

SAA can be explained through a number of steps; random samples are 

generated, a sample average function is applied to the selected random samples to 

approximate the expected value function. The optimization problem that is developed 

is solved iteratively until the stopping criterion is satisfied. Since SAA, using exterior 

sampling, splits sampling part from optimization part (Rubinstein and Shapiro 1990), 

applying SAA method is easier. Some advantages of SAA can be listed as (Shapiro 

(2005): Ease of numerical implementation, often one can use existing software, good 

convergence properties, well developed statistical inference (validation and error 

analysis, stopping rules), easily amendable to variance reduction techniques and 

ideal for parallel computations. 

The main idea of Sample Average Approximation (SAA) approach can be 

explained as follows. A sample  ξ5, … , ξt of N realizations of the random vector ξ is 

generated, and consequently the expected value function �� �x, ξ�# is approximated 
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by the sample average function	N95 ∑  �x, ξ�t045 . The obtained sample average 

approximation	Min�∈��gvt�x� ≔ c�x + 	N95 ∑  �x, ξ0�t045 $, of the stochastic program 

(2.1) is then solved by a deterministic optimization algorithm. 

SAA Procedure:  

Initialize: Generate M independent random samples 
 = 1,2, … ,w with scenario sets 

xy where |xy| = x. Each sample	
 consists of	x realizations of independently and 

identically distributed (i.i.d.) random scenarios.   We also select a reference sample 

which is sufficiently large, e.g., 		|xW| ≫ x.  

Step 1: For each sample	
, solve the following two-stage SP problem and record the 

sample optimal objective function value {y  and the sample optimal solution	|y.   

w}�~∈� ���| + 5
|��|∑  �|, ������45 �      (2.12) 

Step 2: Calculate the average {̅� of the sample optimal objective function values 

obtained in Step 1 as follows. 

{̅� = 5
�∑ {y�y45         (2.13) 

Step 3: Estimate the true objective function value {vy of the original problem for each 

sample’s optimal solution.  Solve the following problem for each sample using the 

optimal first stage decisions |y from step 1.  

{vy = Minimize∑ ��|y + 5
|�V|∑  �|y , ����V�45    (2.14) 

Step 4: Select the solution |y with the best	{�y , i.e. |��� = ���
}�y45,…,� as the 

solution and	{��� = miny45,…,�{vy, as the solution value of SAA.  

Let {∗denote the optimal objective function value of the original problem (2.1)-

(2.2). The	{̅� 	is an unbiased estimator of ��{# which is the expected optimal objective 
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function value of sample problems. Since ��{# ≤ {∗, the {̅�  provides a statistical 

lower bound on the {∗ (Ahmed and Shapiro 2002). Each {vy45,…,�y 	 provides statistical 

upper bound for	{∗. Kleywegt, Shapiro et al. (2001) and Shapiro (2003) discussed 

that the optimal value of SAA problem converges to optimal value of “true” problem 

with probability of one under condition of x → ∞. Clearly, selecting larger sample size 

will provide better approximation (statistically speaking). Since larger sample size 

causes computational complexity, solving SAA several times with smaller 

independent and identically distributed samples is easier.  

Another important estimator that needs to be considered for the quality of the 

solution is the estimator of the variance of the optimality gap. The estimates of the 

variances for {∗and {̅�can be calculated by (2.15) and (2.16), respectively. 

�v���> = 5
���95�∑ �{y − {̅���y45 >

      (2.15) 

�v�v�> = 5
�V��V95�∑ � �|y, ��� − {vy��V�45

>
     (2.16) 

The estimate of the optimality gap of a candidate solution can be calculated 

via {vy − {̅� , and the variance of  the optimality gap can be calculated by �v���> + �v�v�> .  

Quality of a solution to stochastic programming based sampling methods 

depends on several criteria such as, sample size, convergence rate, and stopping 

rules (criterion). Detailed discussion on the quality of a solution, which is found via 

sampling methods, for stochastic programs can be found in (Bayraksan and Morton 

2009). Bayraksan and Morton (2009) in their tutorial introduced a procedure that 

shapes an interval estimator on the optimality gap of a certain solution. They provide 

methods reducing the variance and computational effort of the estimator they 
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introduced. Also, they discussed ways to increase sample size without hurting 

computational effort in a smart way what they call “sequential sampling procedure”. 

Researches similar to the sequential sampling procedure are done both in simulation 

and statistics (Chow and Robbins 1965; Law, Kelton et al. 1981; Law and Kelton 

1982). 

If the decision variables in (2.1) and (2.2) are continuous, it has been proven 

that an optimal solution of the SAA problem provides exact solution of the true 

problem with probability approaching one exponentially fast as N increases (Shapiro 

and Homem-de-Mello 2001; Ahmed and Shapiro 2002). Many studies are conducted 

to determine the required sample size.  

Ahmed and Shapiro (2002) proposed using a decomposed branch and bound 

algorithm. The algorithm proposed studies to partition the search space by creating 

approximate problems with sampling method and solving by a novel optimization 

algorithm. The quality of the solution converged is described with statistical and 

deterministic bounds with fixed sample sizes.       

Kleywegt, Shapiro et al. (2001) applied the SAA method to stochastic discrete 

optimization problems, i.e., knapsack problem. They noted that the complexity of the 

SAA methods usually increases exponentially, at least linearly, in terms of sample 

size selected. Selecting the sample size is needed to consider the tradeoff between 

the bounds on the optimality gap and the quality of an optimal solution of a SAA 

problem and the computational performance. They expressed that selecting sample 

size should dynamically change depending on the previous results that were 
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computed and the more proficient gap estimator of the approximated value function 

improves the performance of SAA method applied to the algorithm.  

Recent studies on SAA are usually focused on improving the quality of a 

solution obtained from SAA and improving computational effort of SAA by combining 

meta-heuristic methods especially in multi-stage stochastic mixed integer 

programming problems (Solak 2007). For more detailed information on the SAA, we 

refer the reader to several key articles (Kleywegt, Shapiro et al. 2001; Shapiro and 

Homem-de-Mello 2001; Ahmed and Shapiro 2002; Shapiro 2002; Ruszczynski and 

Shapiro 2003; Verweij, Ahmed et al. 2003).  

2.3. Proposed Algorithms for Two-Stage Stochastic Programming Problems 

In proposed algorithm, SBPHA, we hybridize an exact solution method, 

Progressive Hedging Algorithm (PHA), and an external sampling-based 

approximation algorithm, Sample Average Approximation (SAA), to efficiently solve 

two-stage SP problems. While the standard SAA procedure is effective with 

sufficiently large samples, the required sample size can be quite large for the desired 

confidence level. Further, the SAA procedure selects the best performing sample 

solution and discards the remaining sample solutions which contain valuable 

information about the problem’s uncertainty.  

The main idea of the proposed hybrid method is to re-use all the information 

embedded in sample solutions by iteratively solving the samples with an Augmented 

Lagrangian penalty term to find a common solution that all samples agree on.  
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2.3.1. Sampling Based Progressive Hedging Algorithm (SBPHA)    

The proposed algorithm is a hybridization of the SAA and PHA. The motivation 

for this hybridization originates from the final step of the SAA method (Step 4, in 

SAA) where the best performing solution is selected and the rest of the solutions are 

discarded. However, this discarding of �w − 1� sample solution is a loss of valuable 

sample information as well as loss of effort spent in solving each sample’s problem.  

Let’s consider the implementation of the classical SAA procedure in the context of 

PHA and treat each sample solution as a scenario. Then implementation of SAA 

would correspond to iterating the sample solutions in PHA only once and then 

selecting the best performing sample. In the PHA, however, the scenarios are 

sustained with the scenarios recent solution as well as the weighted solution of all 

scenarios. Hence, in the proposed SBPHA approach, we modify the SAA method by 

continuing the solution of the sample problems while enforcing probability weighted 

solution of the samples and the best performing solution in original problem. The 

underlying premise of this hybridization is that, by starting with sufficient number of 

samples (representative of the entire scenario set), the continued iteration of the SAA 

method, with implementing probability weighted and the best performing solutions via 

augmented Lagrangian penalty concept would converge the sample solutions to the 

optimal solution of the original problem. 

An important distinction of the SBPHA from classical PHA is the sampling 

concept and the size of the samples. Classical PHA considers the entire scenario set, 

solves a problem for each scenario one by one at every iteration, and evaluates the 

probability weighted solution for the original problem. In comparison, the SBPHA 
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solves only a few numbers of samples which entail multiple scenarios, and then 

determines the probability weighted in a different way than PHA (will be explained in 

algorithm section in detailed) and the best performing solution (so far found at any 

iteration), at every iteration. Solving sample problems is more difficult than solving 

one scenario problem but considerably easier than to solve original problem.  

We first present the proposed SBPHA algorithm and then describe its steps in 

detail. For clarity, we give notation before describing the algorithm’s steps. 

Notation for SBPHA:  

s, sy�~ : iteration index and maximum number of iterations 

�y , ��y : probability and normalized probability of realization of sample 
 

|y,� 	: solution vector for sample 
 at iteration s 

|̅�	: samples’ probability weighted solution vector at iteration s 

|̿�	: samples’ balanced solution vector at iteration s 

|��� 	: best incumbent solution 

{v��� 	: objective function value of the best incumbent solution with respect to x’ 
{v��� � 	: objective function value of the best solution at iteration s with respect to x’ 
¢y� 	: dual variable vector for sample 
 at iteration s 

b� 	: penalty factor at iteration s 

£	: update parameter for the penalty factor 

¤�	: weight for the best incumbent solution at iteration s 

∆¦ 	: update factor for the weight of the best incumbent solution 

§¦ 	: Euclidean norm distance of the sample solutions from |̿� at iteration s − 1 

§	: convergence threshold for solution spread 
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|�¨©ª�	: best solution found by SBPHA 

{�¨©ª� 	: objective function value of the best solution found by SBPHA 

The pseudo-code for the sampling based progressive hedging algorithm is as follows: 

Sampling Based Progressive Hedging Algorithm (SBPHA) for Two-Stage SP 

Problems: 

1: Initialize: Generate w samples, 
 = 1,2,… ,w each with xy scenarios, where|NH| =
N. 

2: Generate a reference sample with NW scenarios, where		|NW| ≫ N. 

3: k ← 0,		ωHf4¬ ← 0 for ∀m = 1,… ,M, αf4¬ ← 1, and require ρf4¬ ≥ 0	, 
4: PH ← ∏ pPP∈t° , P±H ← ²°

∑ ²°³°´1 , P± = µP±H¶∀H. 
5: Execute steps 2-4 of SAA Algorithm. 

6: x·¸P3 ← 	xQ¹¹, 

7: for m = 1 → M, do 

8: 								xy,�4¬ ← xH 

9: end for 

10: While �§� ≥ º	or	|̿� ≠ |��� �, and�s < sy�~� do 

11:   k ← k + 1, 

12:            xif ← P±xH,f95, 
13:            x¾f ← αfxif + X1 − αfYx·¸P3, 
14:            if αf95 = 0, αf ← αf95	else	αf ← αf95 − ∆¿. 

15:            if k ≥ 2,ρf ← À				βρf95 									if		ϵf > ϵf95/2				ρf95 	otherwise , else ρf ← ρf. 

SBPHA Algorithm 
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16:           	ωHf ← 	ωHf95 + ρfXxy,�95 − x¾fY 
17:            for m = 1 → M, do 

18:                  Ã{y,� , xH,fÄ ← Min ���xH,f + 5
|��|∑  �|, ������45 + 	ωHf xH,f +

																					nÅ> oxH,f − x¾fo>�																																																																																																�2.17� 
19:             end for 

20:             §� ≔ �∑ ‖xy,� − |̿�‖�y45 �12 
21:             for m = 1 → M, do 

22:                  �{vy,�# ← Min ���xy,� + 5
|tV|∑  �|, ���tV�45 �																																															�2.18� 

23:             end for 

24:             {v���  ← È			{v��� � 									}É		{v��� � < {v��� 		{v���  									Ê�ℎÌ�Í}^Ì  

25:             |���  ← À			|yV,�|
W = ���
}�y45,…,�	 {vy,� 									}É		{v��� � < {v��� 		|���  									Ê�ℎÌ�Í}^Ì  

26: end while 

27: |�¨©ª� ← |��� , {�¨©ª� ← {v��� . 
 

The initialization step of the SBPHA is similar to the SAA and the only 

additional calculation is the sample	
’s probability and normalized probabilities, e.g., 

PH and	P±H. The probability P±H is used to calculate the samples probability weighted 

solution xif at iteration k (Step 4).  The first step in SBPHA is to execute the standard 

SAA procedure (Step 5). Next, we calculate the samples’ weighted average solution 

and the balanced solution. The samples’ balanced solution (x¾f) is a weighted 

average of the average solution (xif) and the incumbent best solution (x·¸P3) as 
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calculated in Step 6. The weight factor αf ∈ �0,1# determines the bias of the best 

incumbent solution; whereas high values tend the sample solutions to the sample 

average solution, low values tend to the incumbent best solution. There are two 

alternative implementations; αf can be static by setting ∆¿= 0 or dynamically 

changing over the iterations by setting ∆¿> 0 (see Step 14). The advantage of 

dynamic αf is that, beginning with a large αf,	we first prioritize the sample average 

solution until the incumbent best solution quality improves. This approach allows 

guiding the sample solutions to a consensus sample average initially and then 

directing the consensus sample average in the direction of evolving best solution.  

In Step 15, we update the penalty factor ρf depending whether the distance 

(ϵf) of sample solutions from the most recent balanced solution has sufficiently 

improved. We choose the improvement threshold as half of the distance in the 

previous iteration (e.g., ϵf95) . Similarly, in Step 16, we update the dual variable (ωHf ) 

for the linear deviation of every sample’s solution from the balanced solution at 

iteration k. Note that the ωHf  are the Lagrange multipliers corresponding to the 

equivalence of each sample’s solution to the balanced solution.  

In Step 18, we solve each sample problem with additional objective function 

terms representing the dual variables and calculate the deviation of the sample 

solutions from the balanced solution (i.e., ϵf). Step 22 estimates the objective 

function value of each sample solution in the original problem using the reference set 

N′. Steps 24 and 25 identify the sample solution xH,f with the best {vy,� in iteration s 

and updates the incumbent best vv·¸P3 if there is improvement. The Steps 22 and 24-

25 correspond to the integration of SAA method’s selection of the best performing 
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sample solution. Rather than terminating, the proposed SBPHA retains this 

information in the next iteration through the balanced solution. Step 10 checks 

whether the stopping conditions are met. If the iteration limit is reached k ≥ kHÐ� or 

when the all sample solutions converged to the balanced solution within a tolerance 

then the SBPHA terminates with the best found solution. The worst-case solution of 

the SBPHA is equivalent to the SAA solution with the same set of samples. This can 

be observed by noting that the best incumbent solution is initialized with the SAA’s 

solution. Hence, the SBPHA ensures that there is always a feasible solution which 

has same performance or better than that of SAA’s. 

2.3.2. Discarding-SBPHA (d-SBPHA) Algorithm for Binary First Stage SP 

Problems 

The Discarding-SBPHA (d-SBPHA) is an enhanced version of the SBPHA and 

aims at improving the solution. The main idea of the d-SBPHA is to re-solve SBPHA, 

by adding a constraint(s) to optimization problem (17), at the beginning of the 

iteration where the SBPHA finds the solution that it converges at the end. For 

instance, if SBPHA finds a solution at iteration 5 and converges to that solution at 

iteration 10, then d-SBPHA starts re-solving the sample problems by starting from 

iteration 5 with the values (ω,α, ρ… � at iteration 5 , in order to follow a different path 

from that SBPHA followed. 

This modification of SBPHA can be considered as globalization of the SBPHA 

in that by repeating the discarding steps, the d-SBPHA can find the optimum solution, 

albeit the number of discarding steps could be infinite.  
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Additional Notation For d-SBPHA: 

Ê��Ñ: Iteration number where the SBPHA or d-SBPHA finds the solution, where it is 

found the very first, which is converged at the end. 

�, �y�~: discarding index and maximum number of discards  

Ò: set of discarded feasible solutions, ( Ò 45,…,Ó� 
�Ò : number of binary decision variables that are equal to 1 in discarded solution Ò  
Ò 5: set of decision variables, that are =1 in discarded solution	�,   
Ò ¬: set of decision variables, that are =0 in discarded solution	�, 
 

Discarding-SBPHA Algorithm for Binary First Stage SP Problems: 

1: Initialize: execute steps 1-27 of SBPHA 

2: x·¸P3 ← 	x�¨©ª� , Ò ← Ô, Ê ≔ 0, � ← 0. 

3: While � ≤ �y�~  do  

4:           � ← � + 1, 

5:           Ê ← Ê��Ñ, 

6:            for m = 1 → M, do   

7:                   xy,� ← xH,Õ  

8:             end for  

9:            ρf ← ρÕ. 
10:            αf ← αÕ. 
11:              for m = 1 → M, do   

12:                   	ωHf ← 	ωHÕ  

d-SBPHA Algorithm 



39 
 

 
 

13:              end for 

14:             Ò ← Ò⋃x·¸P3 
15:               execute steps 10-16 of SBPHA. 

16:               for m = 1 → M, do   

17:                    	�{y,� , |y,�# ← Min ���|y,� + 5
|��|∑  �|, ������45 + 	ωHf |y,� +

																										nÅ> o|y,� − x¾fo>�																																																																																									�2.19� 
                     ^. �. ∑ |Ø~Ù∈ÓÚ1 −∑ |Û~Ü∈ÓÚÝ ≤ �Ò  − 1, ∀� = 1,… , Ò 

18:               end for 

19:               execute steps 20-26 of SBPHA. 

20:              |ÞÞ9�¨©ª� ← |��� , {ÞÞ9�¨©ª� ← {v���  	. 
21: end while 

22: {��� Þ9�¨©ª� ← 
}�Þ45,…,Ó	 {ÞÞ9�¨©ª�  

23: |��� Þ9�¨©ª� ←	|ÞÞ9�¨©ª� = ���
}�Þ45,…,Ó 	 {ÞÞ9�¨©ª� 

 

Initialization step of the d-SBPHA is the implementation of the original SBPHA 

and the only difference is to set up of the starting values of parameters for d-SBPHA. 

In step1, parameters of the algorithm are set up as the values of the algorithm when 

current best solution is found. Also in step 1, the set of the solutions that will be 

discarded is updated to prevent the algorithm to re-converge to the same solution. In 

step 2 to 13, algorithm updates the parameters according to starting point of the d-

SBPHA. Step 14 updates the set of discarded solution and step 15 executes SBPHA 

steps to solve the sample problems. Please note that step 17 has the same objective 

function as in step 18 of SBPHA with extra constraint(s). These constraints prevent 
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the algorithm to find the solutions that are already found (first stage solutions that are 

discarded). Further, the discarding constraints prevent d-SBPHA to find the best 

solution(s) that already found. Step 19 executes steps from 20 to 26 of the SBPHA, 

which test solutions’ quality and performs the updating of the best solution. The only 

difference, in step 21, of d-SBPHA then SBPHA is to check whether the maximum 

number of discards is reached or not. If it is reached, then the algorithm reports the 

solution with the best performance (in step 22 and 23) else continues discarding. 

Discarding strategy provides better or (at least) the same solution as SBPHA 

provides.  

Lower Bounds for SBPHA and d-SBPHA:  

The computational effort of SBPHA is spent in solving many sample problems 

as well as in evaluating the first stage decisions in the larger reference set. As a 

computational time improvement technique for SBPHA and d-SBPHA, a lower bound 

can be provided for each sample that is solved by the optimization problem at step 18 

in SBPHA and 17 in d-SBPHA. Providing a consistent/tight lower bound improves 

solution time. The theoretical justification of the use of a lower bound for sample 

problems is that if the balanced solution does not change, then the solution of the 

sample problems is non-decreasing. Hence, one can use the previously found 

solution as the lower bound (due to the Lagrangean duality property). However, if the 

balanced solution changes, then the lower bound property of the previous solution is 

not guaranteed hence a conservative estimate for lower bound is needed.   

Let ßày,� be the lower bound for sample 
 at iteration	s in SBPHA or d-

SBPHA.  At step 18 in SBPHA (step 17 in d-SBPHA) another constraint should be 
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added: {y,� ≥ ßày,�, ∀
,
 = 1,…w, where ßày,� = �á�|ßày,�95, and 0 ≤ �á� ≤ 1. 

However	�á�, should not be close 1 because it might cause infeasible solutions. There 

is a trade of on value of	�á�. Higher values might cause either infeasible or sub- 

optimal solutions, lower values does not provide consistent/tight constraints that 

should help improving solution time. In this study, we tested multiple values for	�á�, 

we suggest applicants to choose	0.4 ≤ �á� ≤ 0.6. Providing lower bound to 

optimization problem saved 10%-15% of the solution time.  

2.3.3. Properties of SBPHA and d-SBPHA 

Proposition 1 (Equivalence): SBPHA is equivalent to SAA if algorithm is 

executed in one iteration. Further, SBPHA is equivalent to PHA if the samples 

are mutually exclusive and their union is the entire scenario set.  

Proof: We prove this in two parts. 

SAA: If SBPHA terminated at step 1, then	|�¨©ª� = |���, and	{�¨©ª� = {���. It can 

be conluded that SBPHA is equivalent to SAA.  

PHA: Under specified assumptions and for w = ] and	xy45,…,� = 1, SBPHA=PHA. 

Let’s consider a two-stage SP problem with finite number of scenarios	��, ^ = 1,… , ], 

and each scenario occurs with a probability ã�, where ∑ ã� = 1��45 . Consider the 

SBPHA with samples as the individual scenarios, e.g., w = ] and	xy45,…,�, =
1,	where			
 ≠ 
′. It can be concluded that		PH = pP. If weight for the best incumbent 

solution and update factor for the weight of the best incumbent solution are equal to 1 

and 0, consecutively, at every iteration �¤� ≔ 1,∆¦= 0�, then  x¾f: = xif ≔ ∑ ã�|���∈� , 

and |�¨©ª� = |©ª�	and	{�¨©ª� = {©ª�.           □ 
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Proposition 2(Convergence) SBPHA converges to the best solution found at 

any iteration. 

Proof: Let assume that SBPHA finds, at iteration	s, the best solution as x·¸P3 = x∗.  
Let us assume that SBPHA algorithm converges to a solution xW ≠ x·¸P3 and has 

worse objective value than x∗ (with respect to the reference scenario set). Note that 

convergence implies x¾f = x¾f95 = xW (assuming sy�~ = ∞	). Further in the last update, 

we must have x¾f = xW = αfxW 	+ X1 − αfYx·¸P3 . Since αf < 1, this equality is satisfied 

if and only if xW = x·¸P3 which is contradiction.          □ 

Proposition 3: SBPHA and ä-SBPHA algorithms have the same convergence 

properties as SAA with respect to the sample size. 

Proof: It is showed in (Ahmed and Shapiro 2002) and (Ruszczynski and Shapiro 

2003) that SAA converges with probability one (w.p.1) to optimal solution of the 

original problem as sample size,	�x → ∞�, increases to infinity. Since step 1 in 

SBPHA is the implementation of SAA and that SBPHA does converge to the best 

solution found (Proposition 2), we can simply argue that SBPHA and d-SBPHA 

converges to optimal solution of the original problem as SAA does with increasing 

sample size.                  □ 

Since SBPHA and d-SBPHA guarantee a better or same solution quality as SAA 

provides, we can conjecture that SBPHA and d-SBPHA have more chance to reach 

the optimality than SAA with a given of samples and sample size. 
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Proposition 4: The d-SBPHA algorithm converges to the optimum solution as 

ä → ∞. 

Proof: 

Given that the d-SBPHA does not allow finding the same solution, in the worst case, 

the d-SBPHA iterates as many times as the number of feasible solutions (infinite in 

the continuous and finite in the discrete case) for the first stage decisions before it 

finds the optimum solution.               □ 

Clearly, as the number of discarding constraints added increases linearly with the 

number discarding iterations, the resulting problems become more difficult to solve. 

However, according to our tests for the d-SBPHA algorithm we experienced that d-

SBPHA finds the optimal solution in less than 10 discarding iterations.   

2.4. Proposed Algorithm for Multi-Stage Stochastic Programming Problem 

In this subsection, we extend the SBPHA to multi-stage SPs. Discretization in 

the form of scenario tree is the standard method to solve multistage SP problems 

(Shapiro 2008). Let us consider a multi-stage problem with �, (� = 1,2, … , �) time 

periods. At time period � = 1, we have only one root node which is associated with 

random event	�5 which is assumed to be known prior to the first stage decisions. At 

time period	� = 2, the number of nodes is equal to the number of different random 

events of	�> that are considered. Each node } at	� = 2 is associated with a random 

event �>Øof	�> and is connected to the root node. We generate as many nodes as the 

number of random event	�@ that follow	�>Ø  for each node	}. All nodes at	� = 3 that 

follow �>Ø  are connected to the node that is associated with	�>Ø , etc. Each node at time 
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period � is connected to an irreplaceable node at the previous time period	� − 1, 

called “ancestor” node and is connected to an irreplaceable node at time period	� + 1, 

called “children” node (Shapiro 2008). 

Each child node	� :5ØÛ  that is connected to the node associated with � Ø is 

associated with a probability	ãØÛ > 0, so that	∑ ãØÛÛ = 1. The probability of each 

scenario (a path starts from the root node and ends at the last period,	�) is calculated 

by the product of the probabilities	ãØÛ  associated to the nodes on this path. After the 

scenario tree for multi-stage SP problem is constructed the deterministic formulation 

of the problem can be written as a one large optimization problem as in (2.6)-(2.9). 

We note that even the number of scenarios is comparable in a two-stage and 

a multi-stage SP, solving the latter is more difficult than solving the former (Shapiro 

2008). In both cases, it is impossible to solve if the number of the scenarios is very 

big. One of the powerful methods to apply in such cases is the SAA. The sampled 

scenario tree can be created as follows: a randomly selected sample	�>Ø ,	} =
1,2,… , x5, of x5 realizations (nodes) are generated. The probability of each node 

is= 1/x5. With the same logic, a randomly selected sample	�@ØÛ ,	å = 1,2,… ,x>, is 

generated for each node	�>Ø , etc. At the end, a scenario tree with x = ∏ x �95 45  

scenarios will be generated. The occurance probability for all scenarios in this 

scenario tree, will be equal	�= 5
��. This process is called “conditional sampling” in 

Shapiro (2002); Shapiro (2003); Shapiro (2008). 

Once the scenario tree generated, one can create a deterministic equivalent of 

the problem and solve with any appropriate algorithm. Under mild regularity 

conditions, it is shown that the optimal first stage solution and the optimal objective 
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function value of the SAA problem converges to the original of the multi-stage 

problem’s first stage solution and objective function value w.p.1 as the sample sizes 

x ,� = 1,2,… , � − 1, increases to infinity (Olsen 1976; Shapiro 2003; Pennanen 2005; 

Shapiro 2008). However the number of scenarios in multi-stage SP problems 

increases exponentially with increasing number of time stages. Therefore the 

deterministic equivalent of the created scenario tree becomes too large to solve as 

the number of time stages increases. Hence that multi-stage SP problems are way 

more difficult than two-stage SP problems. 

The main difficulty in extending the SBPHA to multi-stage SP problems is to 

find an upper bound with fixing first stage solution and relaxing non-anticipativity 

constraints in	� > 1 time periods. 

To illustrate, let us consider a three stage SP problem with 9 scenarios as in 
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Figure 4: A scenario tree of three-stage SP problem with nine scenarios  

 Mathematical formulation of the three-stage SP problem in  

Figure 4 can be written as two-stage SP problem in the following form. Note 

that the notation and formulations are from Shapiro (2002): 

min~1 �5|5 + ��æ>�|5, �>�# subject	to	é55|5 = à5, |5 ≥ 0.																															�2.20� 
Note that, æ>�|5, �>� itself is a SP problem, and can be estimated by sampling. For a 

given |5 and	�>, the corresponding expected objective function value can be 

estimated by SAA. Let æ�>�|5, �>� be the estimator of	æ>�|5, �>�, then  

æ>�|5, �>� ≥ ��æ�>�|5, êë�|êë = �>#																																																								�2.21� 
For every feasible |5 and	�>.  æ>�|5, �>� can be written as;  

min~2 �>|> + ��æ@�|>, êì�|êë# subject	to	é>5|5 + é>>|> = à>, |> ≥ 0.					�2.22� 
where æ@�|>, �@� is optimal of the problem; 

min~í �@|@ subject	to	é@>|> + é@@|@ = à@, |@ ≥ 0.																																									�2.23� 
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If we relax the non-anticipativity constraints at the second stage of the problem in 

(2.20), then two-stage SP problem can be written, 

min~1∈�1 �5|5 + ��æ�|5, �>, �@�# ,																																																																																�2.24� 
where  î5 ≔ �|5 ∈ ℝ�1: é55|5 = à5, |5 ≥ 0$, 
and æ�|5, �> , �@� represent the optimal value of the problem; 

min�1,~í�>|> + �@|@																																																																																												 
subject	to 

é>5|5 + é>>|> = à>,																																																														 
é@>|> + é@@|@ = à@,																																																		�2.25� 
|> ≥ 0, |@ ≥ 0.																																																																								 

The relaxed (non-anticipativity constraints) problem in (2.24) and (2.25) above gives 

a lower objective function value than the problem in (2.20) – (2.23) gives.  

Assume that ��æ�|5, �>, �@�# is finite. Then by the Law of Large Numbers 

(LLN), the expected value of the right hand side is equal to the left hand side of the 

(2.26).  

�5|5 + 1
xïæX|5, �>Ø , �@ØY → �5|5 + ��æ�|5, �>, �@�#

�

Ø45
		w. p. 1	as	x → ∞,														�2.26� 

Subsequently, we can argue that any (feasible) first stage solution of the problem in 

the left hand side of (2.26) provides a valid upper statistical bound for the problem 

given in (2.24) and (2.25). Since the problem given in (2.24) and (2.25) gives smaller 

objective function values than the original problem-three stage SP problem in (2.20-

2.23), we cannot guarantee that the left hand side of the (2.26) gives valid statistical 

upper bound for the original three-stage SP problem in (2.20-2.23)(Shapiro 2002; 
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Shapiro 2003). As we mentioned above, finding an upper bound for multi-stage SP 

problem. In contrast, the upper bound can be calculated in two-stage problems 

through a simple evaluation of a first stage solution in the reference set. 

Further, evaluating the performance of sample solution is not as easy in a 

multi-stage SP as in a two-stage SP problem. The reason is that a sample’s solution 

might not have a decision at a particular node of the scenario tree. Only the first 

stage decisions are guaranteed to be available from any sample solution. To 

overcome this evaluation difficulty, we evaluate only the first stage decisions by 

solving another SP for the time periods	� > 1.  

In order to adapt the SBPHA to the multi-stage SP, one modification is the 

non-anticipativity constraints in � > 1 time stages. Both two-stage and multi-stage SP 

problems have non-anticipativity constraints at the first stage. In addition to the first 

stage, multi-stage SPs have scenario based non-anticipativity in the latter stages. We 

show this through anillustrative example. 
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Figure 5: Scenario based decomposition of the problem in  

Figure 4 

Let us consider the problem in  

Figure 4. After decomposing the problem into scenarios, the decomposed tree is 

shown in Figure 5. Let us sample three samples (w = 3,
 = 1,2,3) each with two 

scenarios (x = 2, � = 1,2) from the scenario tree in Figure 5.  

Table 3: Sample s and scenarios for Illustrative Example 
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m=1 1 4 |55,Z�
 = 1� |>5�
 = 1�	 |>Z�
 = 1�	
m=2 5 9 |5[,ú�
 = 2� |>[�
 = 2�	 |>ú�
 = 2�	
m=3 1 8 |55,û�
 = 3� |>5�
 = 3�	 |>û�
 = 3�	

 

Clearly, the first stage decisions must satisfy non-anticipativity constraints. 

	|55,Z�1� = |5[,ú�2� = |55,û�3�																																																																	�2.27� 
Additional non-anticipativity constraints are as follows: 

|>5�1� = |>5�3�																																																																																									�2.28� 
|>Z�1� = |>[�2�																																																																																								�2.29� 
|>ú�2� = |>û�3�																																																																																								�2.30� 

Equation (2.28) shows that the second stage decisions have to be the same 

for scenario 1, which is selected by sample 1 and 3. Equation (2.29) shows that the 

second stage decision variables of scenario 4 in sample 1 and scenario 5 in sample 2 

have to be the same since both of them stem from node 3, which means they have 

the same history until time period 2. Equation (2.30) shows that the second stage 

decision variables of scenario 9 in sample 2 and scenario 8 in sample 3 have to be 

the same since both of them stem from node 4. Note that non-anticipativity 

constraints are not applied to the last time period	��� decision variables.  

The SBPHA algorithm is given in section 2.5, it checks the convergence of the 

equations given above in step 20, updates penalty factor in step 15 and penalizes the 

gap between the variables and the average values in step 18. The average values 

are calculated in step 13. The rest of the SBPHA algorithm works the same for multi-

stage SP problems as it works for two-stage SP problems.   
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CHAPTER III: APPLICATIONS of SBPHA and d-SBPHA 

This section presents the results of an experimental study performed to 

investigate the computational and solution quality performance of the proposed 

SBPHA and d-SBPHA for solving two-stage and multi-stage SP problems. For two-

stage SP problem, we selected the Capacitated Reliable Facility Location Problem 

(CRFLP) and benchmark the results of SBPHA and d-SBPHA with those of SAA. 

Secondly, we applied the SBPHA algorithm to the multi-stage stochastic lot–sizing 

problem. 

In what follows, we first present the results of the two-stage stochastic 

programs (Section 3.1). After introducing the CRFLP and relevant past work, we 

describe the experimental setting in Section 3.1.1., present results for algorithm 

tuning in Section 3.1.2, and discuss the comparative results of SBPHA and d-SBPHA 

vis-à-vis those of SAA. We then present the results of implementing SBPHA 

algorithm to the multi-stage stochastic lot–sizing problem on an illustrative example. 

All the code development and programming is performed in Matlab R2010b and the 

integer programs are solved with CPLEX 12.1. The experiments are conducted on a 

PC with Intel(R) Core 2 CPU, 2.13 GHz processor and 2.0 GB RAM running on 

Windows 7 OS. 

3.1. Capacitated Reliable Facility Location Problem (CRFLP) 

Facility locations are primary strategic supply chain decisions and require significant 

investments spanning over long planning horizons, e.g., ranging from 3 to 10 years 

depending on the industry. Given the duration of the planning horizon and the level 
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and scope of uncertainty in today’s business environment, the supply chain 

designers are compelled to anticipate and plan for uncertain future events in their 

network design decisions. A notable category of these supply chain uncertainties is 

the disruption of facilities which affect the supply chain’s ability to efficiently satisfy 

the customer demand (Schütz, Tomasgard et al. 2009). These disruptions can be 

either natural disasters or man-made (such as terrorist attacks, labor strikes, etc.). In 

certain cases, the disruption at a region may extend or migrate through the network 

and affect other parts of the supply chain network (Masihtehrani 2011). Recent 

examples of such disruptions are the 2011 earthquake in Japan affecting Toyota's 

ability to ship parts and finished vehicles (Brennan 2011; TheGuardian 2011), 

hurricanes Katrina and Rita in 2005 disrupting the nation's oil refineries, and the 2000 

fire at the Royal Philips Electronics radio frequency chip manufacturing plant in 

Albuquerque halting the production of Ericsson and Nokia (Snyder, Scaparra et al. 

2006). 

Following a disruption event, there is hardly any recourse action to change the 

supply chain substructure rapidly (Snyder, Scaparra et al. 2006). Instead, a common 

recourse is to reassign customers to other facilities or arrange alternative sources of 

supply. In either case, the cost of serving the customer demand increases e.g., due 

to higher transportation cost. Over the past decade, the consideration of such 

disruptions affecting the supply chain network design has received significant 

attention from both the researchers and practitioners.  

An exemplary earlier study can be found in (Snyder and Daskin 2005). 

Authors developed a reliability based formulation for Uncapacitated Facility Location 
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Problem (UFLP) and the p-median problem (PMP). More recently, Shen, Zhan et al. 

(2011) studied a variant of reliable UFLP, and proposed efficient approximation 

algorithms for URFLP by using the special structure of the problem. However these 

approximations cannot be applied to the general class of facility location problems 

such as Capacitated Reliable Facility Location Problems (CRFLP). 

In practice, capacity decisions are considered jointly with the location 

decisions. Further, the capacity of facilities often cannot be changed in the event of a 

disruption. Following a facility failure, customers can be assigned to other facilities 

only if these facilities have sufficient available capacity. Thus capacitated reliable 

facility location problems are more complex than their uncapacitated counterparts 

(Shen, Zhan et al. 2011) and the studies considering capacitated reliable facility 

location problem are limited. Snyder and Ülker (2005) study the CRFLP and propose 

an algorithm based on Sample Average Approximation (SAA) embedded with 

Lagrangean relaxation. Gade (2007) apply the SAA method in combination with a 

dual decomposition method to solve CRFLP.  

Peng, Snyder et al. (2011) propose a hybrid meta-heuristic based on genetic 

algorithm to solve a related problem where the objective is to minimize the total fixed 

and transportation cost while limiting the disruption risk based on the ã-robustness 

criterion. In summary, the earlier work on CRFLP uses SAA based approximation or 

meta-heuristic methods to overcome the computational complexity associated with 

large number of scenario realizations. 

We now introduce the notation used for the formulation of CRFLP. Let	üý and 

üþ denote the set of possible reliable and unreliable facility sites, respectively, and  
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ü = üý⋃üþ⋃�É�$ denote the set of all possible facility sites, including the emergency 

facility (É�). Let � denote the set of customers (i.e., demand points).  Let ÉØ be the 

fixed cost for facility	} ∈ ü, which is incurred if the facility is opened, and �Û be the 

demand for customer	å ∈ �. The �ØÛ denote the cost of satisfying each unit demand of 

customer å  from facility } and include such variable cost drivers as transportation, 

production, and inventory. Each unit of demand that is satisfied by the emergency 

facility cause a large penalty	�ℎÛ� cost. This penalty can be incurred due to finding an 

alternative source or due to the lost sale. Lastly, the facility } has limited capacity and 

can serve at most àØ 	units of demand. 

We formulate the CRFLP as a two-stage SP problem. In the first stage, the 

location decisions are made prior to the realization of random failures of the located 

facilities. In the second stage, following the facility failures, the customer-facility 

assignment decisions are made for every customer given the surviving facilities. The 

goal is to identify the set of facilities to be opened while minimizing the total cost of 

open facilities and the expected cost of meeting demand of customers from the 

surviving facilities and the emergency facility.  

In the scenario based formulation of CRFLP, let ^ denote a failure scenario 

and the set of all failure scenarios is	], where	^ ∈ ]. Let ã� be the probability that 

scenario ^ occurs and ∑ ã� = 1�∈� . Further let	sØ� be the indicator parameter denoting 

whether the facility } survives, i.e., sØ� = 1, and sØ� = 0 otherwise. For instance, in 

case of independent facility failures, we have |]| = 2|�� | possible failure scenarios. 

Note that our proposed method does not require any assumption on independence 

and distribution of each facility’s failure.    
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The binary decision variable	|Ø specifies whether facility }  is opened or not, 

and the variable �ØÛ�  specifies the fraction of demand of customer å satisfied by facility 

} in scenario	^. The scenario based formulation of the CRFLP as a two-stage 

stochastic program is as follows. 

CRFLP: 

								Minimize																					ïÉØ
Ø∈� |Ø +ïã�ïï�Û�ØÛ�ØÛ�

Ø∈�Û∈Ó
																						

�∈�
																								�3.1� 

   Subject to 

ï �ØÛ�
Ø∈� = 1																		∀å ∈ Ò, ^ ∈ ]																																																									�3.2� 

�ØÛ� ≤ |Ø																							∀å ∈ Ò, } ∈ ü, ^ ∈ ]																																														�3.3� 
																																							ï�Û

Û∈Ó
�ØÛ� ≤ sØ�àØ 									∀} ∈ ü, ^ ∈ ]																																																							�3.4� 

																|Ø ∈ �0,1$																						∀} ∈ ü																																																																			�3.5� 
																							�ØÛ� ∈ �0,1#																					∀å ∈ Ò, } ∈ ü, ^ ∈ ]																																										�3.6� 

The objective function in formulation (3.1) minimizes the total fixed cost of 

opening facilities and the expected second stage cost of satisfying customer demand 

through surviving facilities and the emergency facility. Constraints (3.2) ensure that 

demand of each customer is fully satisfied by either open facilities or the emergency 

facility in every failure scenario. Constraints (3.3) ensure that, in any failure scenario, 

a customer’s demand cannot be served from a facility that is not opened. Constraints 

(3.4) prevent the assignment of any customer to a facility that is failed and also 

ensure the total demand allocated to the facility does not exceed its capacity in any 
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failure scenario. Constraints (3.5) are integrality conditions and constraints (3.6) are 

simple upper and lower bounds on the demand allocation variables. 

3.1.1. Experimental Setting 

We used the test data sets available from the literature Zhan (2007) which are also 

used in Shen, Zhan et al. (2011) for the URFLP.  In these data sets, the coordinates 

of site locations (facility, customer) are i.i.d. and sampled from U�0,1# × U�0,1#. The 

sets of customer and facility sites are identical. The customer demand is i.i.d., 

sampled from	U�0,1000#, and rounded to the nearest integer. The fixed cost of 

opening an unreliable facility is i.i.d. and sampled from	U�500,1500#, and rounded to 

the nearest integer. For the reliable facilities, we set the fixed cost to 2,000 for all 

facilities. The variable costs	�ØÛ for } = 1,… , |ü| − 1 and ∀å are chosen as the 

Euclidean distance between sites.  We assign the large penalty cost �|�|Û for serving 

customer å from the emergency facility as 20. Zhan (2007) and Shen, Zhan et al. 

(2011) consider URFLP and thus their data sets do not have facility capacities. In all 

our experiments, we selected identical capacity levels for all facilities, i.e., àØ45,..,|�| =
2,000.  

In generating the failure scenarios, we assume that the facility failures are 

independently and identically distributed according to the Bernoulli distribution with 

probability	�Ø, i.e., the failure probability of facility }. We experimented with two sets of 

failure probabilities; first set of experiments consider uniform failure rates, i.e.,  

�Ø∈�� = � where � = �0.1, 0.2, 0.3$, and the second set of experiments consider 

bounded non-uniform failure rates i.e.	�Ø, where 	�Ø ≤ 0.3. We restricted the failure 
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probabilities with 0.3 since larger failure rates are not practicable. The reliable 

facilities and emergency facility are perfectly reliable, i.e.,	�Ø∈���∪	
� = 1. Note that the 

case �Ø∈�� = 0 corresponds to the deterministic fixed-charge facility location problem, 

and �Ø∈�� = 1 corresponds to the case where all unreliable facilities fail. The failure 

scenarios ^ ∈ ] are generated as follows. Let ü	� ⊂ üþ denote the facilities that are 

failed, and	ü�∈��� ≡ üþ\ü	� be the set of surviving facilities in scenario	^. The facility 

indicator parameter in scenario ^ become sØ�=0 if i ∈ ü	�, and sØ�=1 otherwise, e.g., if 

i ∈ ü�� ∪ üý ∪ �É�$. The probability of scenario ^ is then calculated as 	ã� =
�������1 − ��|���|. Detailed date set can be found in the Appendix in Table 16. 

In all experiments, we used |�| = üý⋃üþ = 12 + 8 = 20 sites which is a large-

sized CRFLP problem and is more difficult to solve than the uncapacitated version 

(URFLP). The size of the failure scenario set is |]| = 4,096. The deterministic 

equivalent formulation has 20 binary |Ø and 1,720,320 = |ü| × |Ò| × |]| = 21 × 20 ×
4,096 continuous �ØÛ�  variables. Further, there are 1,888,256 = 81,920+ 1,720,320 +
86,016 = |Ò| × |]| + |ü| × |Ò| × |]| +	 |ü| × |]| constraints corresponding to (3.2-4). 

Hence, the size of the constraint matrix of the deterministic equivalent MIP 

formulation is 1,720,320 × 1,888,256 which cannot be tackled with exact solution 

procedures (e.g., branch-and-cut or column generation methods). Note that while 

solving LPs with this size is computationally feasible, the presence of the binary 

variables makes the solution a daunting task. For instance, there are 1,048,576 = 2>¬ 
possible combinations of binary variables |Ø and a large scale LP must be solved for 

each combination. We generated sample sets for SAA and the SBPHA (and d-
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SBPHA) by randomly sampling from U�0,1# as follows.  Given the scenario 

probabilities, ã�, we calculate the scenario cumulative probability vector �ã5, �ã5 +
ã>�,… , �	ã5 + ã> +⋯+ ã|�|95�, 1$ which has |]| intervals. We first generate the random 

number and then select the scenario corresponding to the interval containing the 

random number. We tested the SAA, SBPHA, and d-SBPHA algorithms with varying 

number of samples	�w�, and sample sizes	�x�. Whenever possible, we use the same 

sample sets for all three methods. We select the reference set (xW) as the entire 

scenario set, i.e., xW = ] which is used to evaluate the second stage performance of 

a solution. We note that this is computationally tractable due to relatively small 

number of scenarios and that the second stage problem is an LP. In case of large 

scenario set or integer second stage problem, one should select xW ≪ ].  

3.1.2. Parameter Sensitivity 

In this section, we evaluate the sensitivity of the SBPHA with respect to the weight for 

the best incumbent solution parameter�α�, penalty factor�ρ), and update parameter 

for the penalty factor	�£�. Recall that	α determines the bias of the best incumbent 

solution in obtaining the samples’ balanced solution, which is obtained as a weighted 

average of the best incumbent solution and the samples’ probability weighted 

solution. The parameter ρ penalizes the Euclidean distance of a solution from the 

samples’ balanced solution and £ is the multiplicative update parameter for ρ 

between two iterations. In all these tests, we set �w, x� = �5, 10�, and	� = 0.3 unless 

otherwise stated. We experimented with two α strategies, static and dynamic α. We 

solved in total 480�= 10	replications	 × 48	parameter	settings� problems. 
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The summary results of solving CRFLP using 10 independent sample sets 

(replications) with static strategy α=0.6 and dynamic strategy ∆α = 0.03, £ =
�1.1,1.2,1.3,1.4,1.5,1.8$, and ρ = �1,20,40,80,200$ are shown in Table 4. The detailed 

results of the 10 replications of Table 4 together with the detailed replication results 

with static strategy for α={0.7,0.8} and dynamic strategy ∆α = �0.02,0.05$ are 

presented in Table 12 in the Appendix.  

The first column in Table 4 shows the α strategy and its parameter value, i.e., 

∆¦ for dynamic and ¤ for static. Note that in the dynamic strategy, we select the initial 

value as	¤�4¬ = 1. The second and third columns show penalty factor	�ρ) and update 

parameter for the penalty factor	�£�, consecutively. The objective function values for 

the 10 replications (each replication consists of w = 5 samples) are reported in 

columns	4,5,… ,13 (shown only for replications	1,	2 and 10 in Table 4 and detailed 

results are shown in Table 12). Column 14 presents the average objective function 

value across 10 replications, and Column 15 presents the optimality gap (i.e., ��ã5) 
between the average replication solution and the best objective function value found 

which is	8995.081. Columns 16 and 17 present the minimum and maximum objective 

values across 10 replications. Average objective function value and ��ã5 are 

calculated as follows: 

 {ý��¹�¸�Ð�¸ = 5
ý��∑ {��¨©ª�ý���45         (3.7) 

��ã5 = ��
������ �9�∗
�∗ × 100%          (3.8) 

                                            

1 The best solution is obtained by selecting the best amongst all SBPHA solutions (e.g., out of 480 solutions) 

and the time-restricted solution of the CPLEX. The latter solution is obtained by solving the deterministic 

equivalent using CPLEX method with %0.05 optimality gap tolerance and 10 hours (36,000 seconds) of time 

limit until either the CPU time-limit is exceeded or the CPLEX terminates due to insufficient memory.  
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where "Ìã is the number of replications, e.g., "Ìã = 10 in this section’s experiments. 

Table 4: Summary Objective Function Results for Solving 10 Replications of CRFLP 
with different parameter values.   

Alpha(α) 

Strategy/ 

Parameter
Start

Update 

Parameter(β)
1 2 … 10 Average Gap1 (%) Min Max

1 1.8 9,825    9,032    … 9,515    9,358      4.0 8,995   10,006   

20 1.2 9,751    9,104    … 9,483    9,316      3.6 8,995   10,006   

20 1.5 9,547    9,271    … 9,332    9,361      4.1 9,024   10,006   

40 1.3 9,547    8,995    … 9,404    9,335      3.8 8,995   10,006   

40 1.4 9,528    9,271    … 9,586    9,337      3.8 9,024   10,006   

80 1.1 9,362    8,995    … 9,112    9,177      2.0 8,995   9,528     

80 1.2 9,547    9,032    … 9,167    9,134      1.5 8,995   9,547     

200 1.1 9,362    9,287    … 9,096    9,251      2.8 8,995   10,006   

1 1.8 9,528    8,995    … 9,637    9,346      3.9 8,995   9,713     

20 1.2 9,362    9,024    … 9,528    9,250      2.8 8,995   9,528     

20 1.5 9,825    9,292    … 9,467    9,360      4.1 8,995   9,825     

40 1.3 9,528    9,167    … 9,112    9,241      2.7 8,995   9,528     

40 1.4 9,825    9,292    … 9,467    9,360      4.1 8,995   9,825     

80 1.1 9,825    9,024    … 9,362    9,235      2.7 8,995   9,825     

80 1.2 9,528    9,104    … 9,944    9,283      3.2 8,995   9,944     

200 1.1 9,825    9,167    … 9,112    9,195      2.2 8,995   9,825     

Objective

Static/ α=0.6

Dynamic/ 

Δα=0.03

Rho (ρ) Replication (1,…,Rep)

 

 

Figure 6: Effect of Dynamic Δα=0.02 and Different ρ and β Strategies on the Solution 
Quality for CRFLP with Facility Failure Probability � = 0.3. 
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Figure 7: Effect of Static α=0.6 and Different ρ and β Strategies on the Solution 
Quality for CRFLP with Facility Failure Probability � = 0.3. 

In Figure 6 and Figure 7 the effect of dynamic Δα=0.02 and static α=0.6 and 

different ρ and β parameter settings on the solution quality for CRFLP with failure 

probability � = 0.3 over 10 different replications are shown. The average objective 

function value of these 10 replications shows that the proposed algorithm (SBPHA) is 

relatively insensitive to the parameter settings to converge to good (optimal) 

solution(s) with both dynamic and static α strategies.       

In Table 5, we report on the computational (CPU) time in seconds for tests 

presented in Table 4. The complete results are provided in Table 13 in the Appendix. 

First observation from Table 4 and Table 5 is that the SBPHA is relatively insensitive 

to the ¤ strategy employed and the parameter settings selected. Secondly, we 
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observe that the performance of the SBPHA with different parameter settings 

depends highly on the sample. As seen in Table 12 replication 7, most of the 

configurations show good performance as they all obtain the optimal solution. 

Further, as the ∆¦ increases, the best incumbent solution becomes increasingly more 

important leading to decreased computational time. While some parameter settings 

exhibit good performance in solution quality, their computational times are higher, 

and vice versa. 

Table 5: Summary CPU Times for Solving 10 Replications of CRFLP with different 
parameter values.              

Alpha(α) Time (s)

Strategy/ 

Parameter
Start

Update 

Parameter(β)
1 2 … 10 Average

1 1.8 399        533        … 419        470.4          

20 1.2 649        740        … 837        786.6          

20 1.5 391        462        … 410        483.8          

40 1.3 439        475        … 491        498.5          

40 1.4 379        424        … 945        474.6          

80 1.1 670        665        … 1,402    801.1          

80 1.2 450        430        … 554        565.0          

200 1.1 421        390        … 582        442.9          

1 1.8 379        468        … 421        475.1          

20 1.2 575        782        … 742        794.0          

20 1.5 319        447        … 431        452.7          

40 1.3 391        484        … 484        541.1          

40 1.4 337        447        … 466        455.3          

80 1.1 515        729        … 710        810.9          

80 1.2 388        546        … 568        560.9          

200 1.1 346        401        … 595        545.0          

Static/ α=0.6

Dynamic/ 

Δα=0.03

Rho (ρ) Replication (1,…,Rep)

 

In Figure 8 the effect of static α=0.6 and different ρ and β parameter settings 

on the CPU time for CRFLP with failure probability � = 0.3 over 10 different 

replications are shown. The average CPU time value of these 10 replications shows 

that the proposed algorithm (SBPHA) is relatively sensitive to the parameter settings 
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to converge to good (optimal) solution(s) with static α strategy. The same tests are 

done for other parameter settings. We observe that a parameter selection index is 

needed in order to test the SBPHA and d-SBPHA algorithms performances.        

 

Figure 8: Effect of Static α=0.6 and Different ρ and β Strategies on the CPU Time for 
CRFLP with Facility Failure Probability� = 0.3. 
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as 19.00	�= 4.039%× 470.4�. Parameter selection indexes corresponding to all 480 

experiments are shown in Table 6 (and in Figure 9). According to the aggregate 

results in Table 6 (the ‘Total’ row at the bottom), the static	¤ = 0.7 setting is the best, 

the static ¤ = 0.6 is the second best, and dynamic ¤ with ∆¦= 0.03 provides the third 

best performance. Hence, we use only these ¤ parameter configurations in our 

experiments. In terms of penalty parameter configuration, we select the best setting, 

i.e., starting penalty factor �ρ� = 200 and penalty factor update £	 = 1.1 for all ¤ 

parameter configurations. Note that by selecting a larger starting penalty factor, the 

SBPHA would converge faster but the quality of the solution converged would be 

lower. Therefore, we restricted our experiments to penalty factor starting with 

�ρ� = 200 which provides good solution quality and time trade-off.  

4.039x470.4/100=19.0 

Start
Update 

Parameter(β)
 Δα=0.02  Δα=0.03  Δα=0.05 α=0.6 α=0.7 α=0.8 Total

1 1.8 18.95 18.52 25.28 19.00 18.89 25.17 125.8

20 1.2 26.58 22.53 26.33 28.07 16.54 23.88 143.9

20 1.5 13.30 18.37 20.20 19.66 17.09 18.65 107.3

40 1.3 14.58 14.78 24.30 18.83 18.83 18.14 109.5

40 1.4 20.23 18.49 18.03 18.02 14.32 15.12 104.2

80 1.1 21.73 21.62 24.26 16.23 17.67 17.02 118.5

80 1.2 15.88 17.92 21.27 8.70 17.83 20.33 101.9

200 1.1 14.75 12.09 14.77 12.59 13.48 11.98 79.6

146.0 144.3 174.5 141.1 134.6 150.3

Rho (ρ) Dynamic α Static α

Total:
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Figure 9: Creating Parameter Selection Index 

Further, among all the experiments, the best parameter configuration in terms 

of index is with static ¤	 = 0.6, when starting penalty factor ρ = 80 and update 

parameter	�£� 	= 1.2. In Table 4 and Table 12, this configuration of parameter 

selection provides the best average gap performance and a good CPU time 

performance. Hence we also included this parameter configuration in our 

experiments.  

Table 6: Index for Parameter Selection 

Start
Update 

Parameter(β)
 Δα=0.02  Δα=0.03  Δα=0.05 α=0.6 α=0.7 α=0.8 Total

1 1.8 18.95 18.52 25.28 19.00 18.89 25.17 125.8

20 1.2 26.58 22.53 26.33 28.07 16.54 23.88 143.9

20 1.5 13.30 18.37 20.20 19.66 17.09 18.65 107.3

40 1.3 14.58 14.78 24.30 18.83 18.83 18.14 109.5

40 1.4 20.23 18.49 18.03 18.02 14.32 15.12 104.2

80 1.1 21.73 21.62 24.26 16.23 17.67 17.02 118.5

80 1.2 15.88 17.92 21.27 8.70 17.83 20.33 101.9

200 1.1 14.75 12.09 14.77 12.59 13.48 11.98 79.6

146.0 144.3 174.5 141.1 134.6 150.3

Rho (ρ) Dynamic α Static α

Total:

 

In the remainder of the computational experiments, we used sample size and 

number as �w,x� = �5, 10�, which enables the SBPHA to search the solution space 

while maintaining computational time efficiency.   

3.1.3. Computational Performance of SBPHA and d-SBPHA 

In this section, we first show the performance of the d-SBPHA in improving the 

solution quality of SBPHA and then compare the performances of the SAA and the 

proposed �-SBPHA algorithm.  
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In the remainder of the experiments, with an abuse of the optimality definition, we 

refer to the best solution as the “exact solution”. This solutions is is obtained by 

selecting the best amongst all SBPHA, �-SBPHA, and SAA solutions and the time-

restricted solution of the CPLEX. The latter solution is obtained by solving the 

deterministic equivalent using CPLEX method with %0.05 optimality gap tolerance 

and 10 hours (36,000 seconds) of time limit until either the CPU time-limit is 

exceeded or the CPLEX terminates due to insufficient memory. 

3.1.3.1 Analyze on d-SBPHA and SBPHA  

Figure 10 shows effect of discarding strategy on the solution quality for different 

facility failure probabilities. In all figures, results are based on the average of 10 

replications. Optimality gap (shown as ‘Gap’) is calculated as in (3.7) but substituted 

{��¨©ª� with {��� ,�Þ9�¨©ª� in (3.8) to calculate {ý��¹�¸�Ð�¸. First observation is that the d-

SBPHA not only improves solution quality but also finds the optimal solution in most 

facility failure probabilities cases. When failure probability is � = 0.1, d-SBPHA 

converges to optimal solution in less than 5 discarding iterations with all parameter 

configurations (Figure 10a). When	� = 0.2, d-SBPHA converges to optimal solution in 

all static	α strategies in less than 5 discarding strategies, and less than	0.2% 

optimality gap with dynamic α strategy (Figure 10b).   
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Figure 10 (a) 

Figure 10 (b) 
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Further, when failure probability is	0.3, d-SBPHA is not able converge to 

optimal solution; however it converges to solutions that are less than 1% away from 

the optimal on average (Figure 10c). Note that these results are based on the 

average of 10 replications, and at least 5 out of 10 replications are converged to 

optimal solution in all parameter configurations. Detailed results are provided in the 

next section. 

Figure 10 
(c)
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Figure 10: Effect of Discarding Strategy on the Solution Quality for CRFLP with 
Facility Failure Probabilities (a)	� = 0.1, (b) � = 0.2, (c) � = 0.3, and (d) when � is 
random. 

Lastly, when failure probability is randomized, d-SBPHA converges to optimal 

solution in 10 discarding iterations, with three out of the four selected parameter 

configurations (Figure 10d). Hence, we conclude that discarding improves the 

solution performance and the improvement rates depend on the parameter 

configuration and the problem parameters. Reader is referred to Table 14 for detailed 

results. 

Next we present the CPU time performance of d-SBPHA for 10 discarding 

iterations (Figure 11). Note that time plotted is cumulative over discarding iterations. 

Time of each discarding iteration is based on average of 10 replications and time is 

reported in seconds.  

Figure 10 (d) 
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 First observation is that the CPU time is linearly increasing or increasing at a 

decreasing rate. Further, the solution time is similar for all facility failure probabilities 

(Figure 11 a, b, c and d) with all parameter configurations.  
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Full results are provided in the Appendix in Table 15. One main reason for 

linearly increasing CPU time is that the d-SBPHA uses the carried over information. 

In particular, d-SBPHA does not test any first stage solution performance in the 

reference sample (x′) if the first stage solution is already tested before.  
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Figure 11: CPU Time Performance of Discarding Strategy for CRFLP with Facility 
Failure Probabilities (a)	� = 0.1, (b) � = 0.2, (c) � = 0.3, and (d) when � is random. 

3.1.3.2 SAA, SBPHA and d-SBPHA Tests, Comparisons  

In this section, we compare the performances of the SBPHA, d-SBPHA, and 

SAA. First, we analyzed the performance of the proposed SBPHA and d-SBPHA with 

respect to that of the exact method and the SAA method with different sample sizes 

(N) and number of samples (M). We only use one of the parameter configuration, 

¤	 = 0.7,	ρ = 200,and £ = 1.1. 

 Table 7 and Table 8  illustrate these benchmark results for 

� = �0.1, 0.2,0.3, ����Ê
$ for one of the replications and average results across all 

replications are shown in Figure 12. The second column for SAA shows number of 

samples and sample size, i.e., (	M, N). For d-SBPHA, it shows number of 

replications	�,	�M,N�, and number of discarding iterations (�). Note that when the 

number of discarding iterations is	� = 0, d-SBPHA becomes SBPHA. Third 

column,	ü∗, indicates the solution converged by each method, e.g., facilities opened. 

For instance with	� = 0.3, the SAA’s solution is to open facilities	ü∗ = �1,2,8,10,12$ 
whereas the SBPHA opens facilities 	ü∗ = �1,2,4,10,12$, 2-SBPHA and exact solution 

opens facilities	ü∗ = �1,2,10,11,12$.   
Fourth column presents the objective function value for SAA, SBPHA, d-

SBPHA and exact method, {��� , {�¨©ª� , {��� Þ9�¨©ª� and	{∗. Fifth column presents CPU 

time and the sixth column shows the optimality gap	���ã>� measures. Reported time 

for d-SBPHA is the average time of converged solution is found during the discarding 
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iterations. Gap2 for SAA, SBPHA and �-SBPHA uses the optimal solution value	{∗. It 
is defined as, 

��ã> =
#$%
$& �'((9�∗

�∗ x100%																								for	SAA,
�')*+(9�∗

�∗ x100%													for	SBPHA,
�.
�Ú/C')*+(9�∗

�∗ x100%				for	� − SBPHA.
      (3.9) 

Table 7: Solution Quality and CPU Time Performances of the SAA, SBPHA and d-
SBPHA for CRFLP with Facility Failure Probabilities � = 0.1 and � = 0.2. 

Method M-N F* Objective Time(sec.) Gap2(%) F* Objective Time(sec.) Gap2(%)

 5-10 1,2,8,10,12 6,115        53               2.1 1,2,4,11,12 10,055     59               35.0

 5-25 1,2,8,10,12 6,115        132             2.1 1,2,7,8,10,12 7,856        152             5.5

 5-40 1,2,4,11,12 6,047        208             1.0 1,2,4,7,11,12 7,762        326             4.2

 5-50 1,2,4,11,12 6,047        307             1.0 1,2,8,10,11,12 7,649        325             2.7

 5-75 1,2,10,11,12 5,990        695             0.0 1,2,4,8,11,12 7,706        741             3.5

 10-10 1,2,8,10,12 6,115        94               2.1 1,3,4,8,10,12 8,465        122             13.7

 10-25 1,2,4,11,12 6,047        267             1.0 1,2,3,4,10,12 7,856        277             5.5

 10-40 1,2,4,11,12 6,047        445             1.0 1,2,4,7,11,12 7,762        646             4.2

 10-50 1,2,4,11,12 6,047        638             1.0 1,2,8,10,11,12 7,649        676             2.7

 10-75 1,2,10,11,12 5,990        1,430         0.0 1,2,8,10,11,12 7,649        1,636         2.7

 20-10 1,2,8,10,12 6,115        174             2.1 1,4,5,8,11,12 8,450        236             13.5

 20-25 1,2,4,11,12 6,047        526             1.0 1,2,7,8,10,12 7,856        558             5.5

 20-40 1,2,4,11,12 6,047        874             1.0 1,2,8,10,11,12 7,649        1,222         2.7

 20-50 1,2,4,11,12 6,047        1,340         1.0 1,2,4,10,11,12 7,614        1,368         2.2

 20-75 1,2,10,11,12 5,990        2,791         0.0 1,2,4,10,11,12 7,614        3,348         2.2

Method rxM-N,d F* Objective Time(sec.) Gap2(%) F* Objective Time(sec.) Gap2(%)

SBPHA 1x5-10, 0 1,2,4,10,12 6,106        183             1.9 1,2,4,5,11,12 7,447        331             0.0

1x5-10, 1 1,2,10,11,12 5,990        309             0.0 1,2,4,5,11,12 7,447        437             0.0

1x5-10, 2 1,2,10,11,12 5,990        387             0.0 1,2,4,5,11,12 7,447        669             0.0

SBPHA 2x5-10, 0 1,2,10,11,12 5,990        323             0.0 1,2,4,5,11,12 7,447        976             0.0

2x5-10, 1 1,2,10,11,12 5,990        652             0.0 1,2,4,5,11,12 7,447        1,211         0.0

2x5-10, 2 1,2,10,11,12 5,990        810             0.0 1,2,4,5,11,12 7,447        1,713         0.0

SBPHA 3x5-10, 0 1,2,10,11,12 5,990        529             0.0 1,2,4,5,11,12 7,447        1,159         0.0

3x5-10, 1 1,2,10,11,12 5,990        932             0.0 1,2,4,5,11,12 7,447        1,506         0.0

3x5-10, 2 1,2,10,11,12 5,990        1,168         0.0 1,2,4,5,11,12 7,447        2,309         0.0

Exact  - 1,2,10,11,12 5,990        >>10800  - 1,2,4,5,11,12 7,447        >>14400  -

SAA

q=0.1 q=0.2

Static α=0.7,ρ=200, β=1.1Static α=0.7,ρ=200, β=1.1

d -SBPHA

d -SBPHA

d -SBPHA
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Table 8: Solution Quality and CPU Time Performances of the SAA, SBPHA and d-
SBPHA for CRFLP with Facility Failure Probabilities � = 0.3 and � random. 

Method M-N F* Objective Time(sec.) Gap2(%) F* Objective Time(sec.) Gap2(%)

 5-10 1,2,4,7,10,12 11,877     119             32.0 2,4,5,11,12 7,609       52               12.2

 5-25 1,2,4,5,8,10,12 9,798       342             8.9 2,5,8,10,11,12 7,310       116             7.8

 5-40 1,2,7,8,10,11,12, 9,658       815             7.4 1,2,4,10,11,12 6,979       236             2.9

 5-50 1,2,4,5,10,11,12 9,645       1,378         7.2 2,4,5,8,11,12 7,169       291             5.7

 5-75 1,2,8,10,11,12,14 9,083       4,570         1.0 2,3,4,5,10,12 7,016       816             3.5

 10-10 1,2,4,11,12,14 9,839       236             9.4 2,4,5,11,12 7,609       99               12.2

 10-25 1,2,4,7,8,10,12 9,744       708             8.3 1,2,4,10,11,12 6,979       234             2.9

 10-40 1,2,11,12,14,18 9,096       2,044         1.1 1,2,4,5,10,12 6,887       474             1.6

 10-50 1,2,11,12,14,18 9,096       3,468         1.1 1,2,4,5,10,12 6,887       696             1.6

 10-75 1,2,8,10,11,12,14 9,083       7,746         1.0 2,4,5,10,11,12 6,780       1,550         0.0

 20-10 1,2,4,11,12,14 9,839       487             9.4 2,4,5,10,12 7,598       201             12.1

 20-25 1,2,7,8,10,11,12, 9,658       1,509         7.4 1,2,4,10,11,12 6,979       481             2.9

 20-40 1,2,11,12,14,18 9,096       3,960         1.1 2,4,5,10,11,12 6,780       893             0.0

 20-50 1,2,11,12,14,18 9,096       6,367         1.1 2,4,5,10,11,12 6,780       1,359         0.0

 20-75 1,2,4,10,11,12,14 8,995       13,867       0.0 2,4,5,10,11,12 6,780       2,824         0.0

Method rxM-N,d F* Objective Time(sec.) Gap2(%) F* Objective Time(sec.) Gap2(%)

SBPHA 1x5-10, 0 1,2,4,10,11,12,20 9,024       422             0.3 2,4,5,7,10,12 7,263       250             7.1

1x5-10, 1 1,2,4,10,11,12,20 9,024       456             0.3 2,4,5,10,11,12 6,780       467             0.0

1x5-10, 2 1,2,4,10,11,12,20 9,024       490             0.3 2,4,5,10,11,12 6,780       590             0.0

SBPHA 2x5-10, 0 1,2,4,10,11,12,20 9,024       804             0.3 1,2,4,5,10,12 6,887       603             1.5

2x5-10, 1 1,2,4,10,11,12,14 8,995       999             0.0 2,4,5,10,11,12 6,780       901             0.0

2x5-10, 2 1,2,4,10,11,12,14 8,995       1,203         0.0 2,4,5,10,11,12 6,780       1,270         0.0

SBPHA 3x5-10, 0 1,2,4,10,11,12,14 8,995       1,503         0.0 2,4,5,10,11,12 6,780       1,000         0.0

3x5-10, 1 1,2,4,10,11,12,14 8,995       2,093         0.0 2,4,5,10,11,12 6,780       1,470         0.0

3x5-10, 2 1,2,4,10,11,12,14 8,995       2,442         0.0 2,4,5,10,11,12 6,780       1,951         0.0

Exact  - 1,2,4,10,11,12,14 8,995       >>21600  - 2,4,5,10,11,12 6,780       >>10800  -

q=0.3 q random

SAA

Static α=0.7,ρ=200, β=1.1 Static α=0.7,ρ=200, β=1.1

d -SBPHA

d -SBPHA

d -SBPHA

 

Table 7 and 

Table 8 show that with larger sample sizes, the objective function on the 

SAA’s objective function is not always monotonously decreasing while the CPU time 

increases exponentially. The observation about the time is in accordance with those 

in Figure 12. SAA finds optimal solution only when N=75 for � = 0.1 and cannot find 

optimal solution for � = 0.2 with any of M-N configurations. SAA, also finds optimal 

solution for � = 0.3 only when w=20 and x=75 in more than 13,000 seconds and 
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shows relatively good performance for random � when M=20. d-SBPHA finds optimal 

solution in all facility failure probabilities.  
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Figure 12 (a) 

Figure 12 (b) 
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Figure 12: Effect of Sample Size on the Solution quality and CPU Time performance 
of SAA in Comparison with d-SBPHA for CRFLP with Facility Failure Probabilities (a) 
� = 0.1, (b) � = 0.2, (c) � = 0.3, (d) � random. 

Figure 12 (c) 

Figure 12 (d) 
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Results for d-SBPHA (� = 10) in Figure 12 are for all four parameter settings; 

first setting is for static ¤ = 0.6,	b = 200, and £ = 1.1, second is static ¤ = 0.7,	b =
200, and £ = 1.1, third is static ¤ = 0.6,	b = 200, and £ = 1.2, and fourth one is 

dynamic Δ¦ = 0.03,	b = 200, and £ = 1.1. 

In Figure 12, we present the CPU time and solution quality performances of 

the SAA for N=�10,25,40,50,75$ sample sizes and compare with that of the proposed 

d-SBPHA, in which	� = 10, with N=10 in solving CRFLP with failure probabilities	q =
�0.1, 0.2	,0.3, random$. We use M=5 samples in both methods and four different 

parameter configurations in the proposed method. The results indicate that the 

sample size effect on the SAA’s CPU time is high. For instance, the CPU time of the 

SAA is growing exponentially. In none of the failure probability cases, however, the 

solution quality performance of SAA has converged to that of d-SBPHA. The solution 

quality of all four configurations of the proposed d-SBPHA are either optimal or near 

optimal. The Gap in Figure 12 is calculated as in Figure 10 and the CPU time of d-

SBPHA shows the average CPU time when the converged solution is found during 

the discarding iterations. 
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Figure 13: Latitude-Longitude of the Facilities and First Stage Solution of SAA 

Now we are interested in presenting an illustrative example of the first stage 

decisions �F∗� start with SAA decisions, continue with SBPHA and end with d-

SBPHA algorithms. Let’s illustrate solution of one of the replications shown in  

Table 8.  The first stage solution of SAA, when random failure probability is 

selected, is	F∗ = �2,4,5,11,12$. Please see latitude-longitude positions of the facilities 

(these are also demand points) and SAA’ first stage solution in Figure 13. The total 

expected cost of the objective function is $7,609 for the solution that SAA provides. 

SBPHA starts with this solution and improves iteratively. SAA opens 5 facilities while 

SBPHA opens 6 facilities. The solution that SBPHA provides is	F∗ = �2,4,5,7,10,12$. 
SBPHA decide not to open facility	11, instead to open two new facilities	�7,10�. The 

total expected cost of the objective function value is reduced to $7,263. The solution 
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that SBPHA provides offers more than 5% saving in total expected cost. Graphically 

illustration of the SBPHA’s solution is shown in Figure 14. 
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Figure 14: SBPHA's First Stage Solution 

Next we start 1-SBPHA (d-SBPHA algorithm with one discarding iteration). 

The 1-SBPHA algorithm starts with discarding the solution that SBPHA provides and 

analyzes search space to come up with a better solution than that of SBPHA 

provides. 1-SBPHA decides not to open facility 7 and instead to reopen facility 11 

that SAA decides to open at first. Then, the solution that 1-SBPHA provides is  

F∗ = �2,4,5,10,11,12$ with a total expected cost of $6780. In total 1-SBPHA decides to 

open 6 facilities as SBPHA decides, opposed to SAA’s decision. Graphically 

illustration of the 1-SBPHA’s solution is shown in Figure 15. 
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Figure 15: 1-SBPHA's and Optimal Solution of the First Stage 

1-SBPHA improves solution quality of SBPHA while SBPHA improves SAA’s 

solution. 1-SBPHA reduced total expected cost of the objective function value that 

SBPHA provides by $483, which is more than 7% of the optimal objective function 

value. In total more than 12% of the total expected objective function value is 

reduced. The solution and the objective function value that 1-SBPHA provides is the 

optimal solution and objective function value of the problem. For this illustrative 

example, in both SBPHA and 1-SBPHA static	α = 0.7, ρ = 200, β = 1.1, parameters 

configuration is used. 

3.2. Multi-Stage Stochastic Lot-Sizing Problem 

In this section we describe the stochastic lot sizing problem that is used to test 

the SBPHA method proposed for multi-stage SP stochastic programming problems.  
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Production planning’s aim is to employ the resources in order to satisfy 

production goal such as demand, etc. over a time period (Karimi, Ghomi et al. 2003). 

Lot sizing models determine the best timing and level of production (Jans and 

Degraeve 2007). Lot sizing problems essentially can be categorized as: single or 

multiple products, with fixed cost or without fixed cost, with capacity or without 

capacity, with linear or nonlinear cost function, with bill of materials or without bill of 

materials, single period or multi period, with backlogging or without backlogging and 

stochastic or deterministic. Some solution methodologies that are applied to lot sizing 

problems are Lagrangean relaxation, Benders decomposition and column generation 

as decomposition methods, also Adhoc Heuristics, Meta Heuristics, Dynamic 

Programming and Approximation methods have been utilized to tackle lot sizing 

problems. 

There are several good review papers on lot sizing problems such as,Kuik, 

Salomon et al. (1994) which discusses the production planning and lot sizing 

impacts. A good review on the history of the single item lot sizing is provided in 

(Wolsey 1995). Single item uncapacitated problem is the simplest structure of 

dynamic lot-sizing problem and first discussed by Wagner and Whitin (1958). 

Zangwill (1969) describe the lot sizing problem as a network problem.  

Mathematical formulation of the scenario based stochastic lot-sizing problem 

can be formulated as follows (Haugen, Lokketangen et al. 2001): 

Notation for stochastic lot-sizing:  

��,  : indicator of the production for scenario ^, in period � 
|�,  : amount to be produced in period scenario ^, in period � 
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2�, :  : positive (carried over) ending inventory for scenario ^, in period �  
2�, 9  : negative (backlogged) ending inventory for scenario ^, in period �  
2¬ : initial inventory 

2�, 9  : negative (backlogged) ending inventory for scenario ^, in period �  
É  : set up cost in period �  
�  : production cost per product in period � 
ℎ : : inventory holding cost in period �  
ℎ 9 : shortage cost in period �  
�  : demand in period �  

Scenario Based Stochastic Lot-Sizing Problem: 

Min ∑ ã� ∑ �É ��,  + � |�,  + ℎ :2�, : + ℎ 92�, 9 #� 45�∈�        (3.10) 

Subject to 

|�,  + 2�, 95: − 2�, 959 + 2�, 9 = ��,  ∀^ ∈ ], � ∈ �1,… , �$      (3.11) 

|�,  ≥ 0 ∀^ ∈ ], � ∈ �1, … , �$           (3.12) 

2�, : ≥ 0 ∀^ ∈ ], � ∈ �1, … , �$           (3.13) 

2�, 9 ≥ 0 ∀^ ∈ ], � ∈ �1, … , �$            (3.14) 

��,  = È0	if	|�,  = 0	
1	if	|�,  > 0  ∀	� ∈ �1,… , �$          (3.15) 

|�,  − |�V,  = 0, ��,  − ��V,  = 0, 2�, : − 2�V, : = 0, 2�, 9 − 2�V, 9 = 0,  

∀s, sW ∈ S: �ξ5P , … , ξ3P� = Xξ5PV , … , ξ3PVY, t = 1,2,… , T      (3.16) 

where (3.10) is the objective function which minimizes the total production, carrying 

over and shortage cost; constraints in (3.11) are the flow conservation constraints 

and allow carrying over inventory for the next periods’ demand and backlogging if not 
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all the demand is satisfied, (3.12)-(3.14) are non-negativity constraints. Constraints in 

(3.15) force the set up cost if any production done in the last period. Lastly, 

constraints in (3.16) ensure the non-anticipativity. Production and inventory decision 

variables are continuous and non-negative, while the set up decisions are binary 

type.   

The more practical formulations of the lot sizing problems are those which 

consider capacity restriction and multiple items. The version of the capacitated lot 

sizing without set up cost studied by Karmarkar and Schrage (1985). Miller and 

Wolsey (2003) studied the discrete lot sizing problem with set ups but without 

startups. Mekler (1993) and Denizel, Erengüç et al. (1997) discussed the tradeoff 

between set up cost and benefit in terms of reducing set up time.  

Capacity production tools can be considered as a constraint in production 

plants if company has limited tools and equipment. Jans and Degraeve (2004) model 

a production planning model which limits the production tools. Akturk and Onen 

(2002) combined the tool management problem and lot sizing problem. Machine 

capacity is studied various ways, such as decision on increasing number of machines 

or using different types (Clark and Clark 2000). Another important topic that is studied 

in lot sizing problems is inventory. Backlogging allows the company to satisfy 

demand at a later period. In other words, it is negative inventory which is going to be 

satisfied later. Clearly, backlogging has a cost, since the company cannot satisfy the 

customers’ demands on time. There are two effects of backlogging: earning less than 

planned because of late demand satisfaction, discounts, and loosing customer in the 

future (Aksen, Altinkemer et al. 2003). If demand is not satisfied on time instead of 
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backlogging lost sales occur.  Backlogging case can be considered as single source 

fixed charge network problem (Zangwill 1969).  

In real life production planning (schedules) is always applied according to 

rolling horizon methodology. They apply the plan for the closest period by considering 

1-2 periods further. At the end of each period plans and schedules are updated by 

considering realization of the demand and supply. Baker (1977) indicated that small 

planning horizon plans can be perform optimally by heuristics and with the rolling 

horizon technique Wagner-Whitin algorithm is no longer optimal.  

There are many studies considering stochastic lot sizing problems in the 

literature. In lot sizing problems, uncertainty can stem from many parameters such 

as, demand, capacity, supply, source, set up time, production time etc. Sox (1997) 

have studied static control policies underneath the non-stationary stochastic demand 

supposition in rolling horizon structure. Within this study a mixed integer lot-sizing 

problem with dynamic costs is presented. Alp, Erkip et al. (2003) introduced dynamic 

lot/batch sizing with deterministic demands and stochastic lead times. Ahmed, King 

et al. (2003) study the stochastic lot-sizing problem. In this study, demand follows a 

stochastic process which is described by a scenario tree. Guan, Ahmed et al. (2006) 

to solve the stochastic lot-sizing problem with zero lead times he proposed a branch-

and-cut algorithm.  

Lot-sizing has a wide literature in terms of problem types and many solution 

methodology and techniques have been applied to tackle with, such as, branch and 

bound, cut-generation (Barany, Roy et al. 1984). Other than exact methods (Barany, 

Roy et al. 1984; Belvaux and Wolsey 2002) also heuristic methods (Dogramaci, 
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Panayiotopulos et al. 1982), are applied. These heuristics are; period by period 

heuristics, improvement heuristics, relaxation heuristics, branch and bound 

heuristics, set portioning and column generation heuristics (Karimi, Ghomi et al. 

2003). The ways to obtain good formulations via extensions of basic lot sizing 

problems is discussed by Belvaux and Wolsey (2002). To solve large scale lot-sizing 

problems, some other heuristics methods have been applied by researchers 

(Staggemeier and Clark 2001; Stadtler 2003). 

The problem we implemented the SBPHA is a multi-period stochastic lot sizing 

problem with demand uncertainty and backlogging. The problem is formulated in a 

scenario based formulation.  

3.2.1. Illustrative Example 

The lot sizing problem instance is uncapacitated and has four stages. The 

decision variables are: binary production decision (whether to produce or not at the 

first stage), amount to be produced, carrying over inventory and backlogged demand. 

The objective is to minimize total setup, production, inventory and shortage costs.  

Table 9 illustrates the demand realizations where the first stage has only one 

possible demand realization and other stages have six possible demand realizations 

each. Total number of scenarios is	1x6x6x6 = 216.   

Table 9: Possible Demand for Lot-sizing Problem 
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Realization Demand Probability Demand Probability

1 500 0.15

2 400 0.2

3 300 0.2

4 200 0.2

5 100 0.15

6 0 0.1

1300

Demand

Stage 1 Stages 2-3-4

 

Problem and SBPHA algorithm parameters are shown in Table 10.   

Table 10: Lot-sizing Problem and SBPHA Algorithm Parameters 

Problem Parameters Value Value

Initial pozitif Inventory: 0 Initial 0

Initial Negative Inventory: 0 Start 10

Set Up Cost: 400.0$   Beta(β) Update 1.2

Production Cost: 3.0$       Initial 1

Inventory Carrying Cost: 0.6$       Start 0.8

Shortage Cost: 3.5$       Update 0

Alpha (α)

SBPHA Parameters

Rho(ρ)

 

The production, inventory carrying and shortage costs are per unit values.  

   3.2.2. Results and Comparison of SAA and SBPHA 

The multi-stage lot-sizing problem is solved with SAA and SBPHA, then 

results are compared with optimal solution and objective function value. The samples 

are randomly selected and are identical for both the SAA and the SBPHA. We used 

the conditional sampling to obtain samples (Ruszczynski and Shapiro (2003); 

Shapiro (2003).  

Results in Table 11 are first stage solutions and objective function values of 

multi-stage stochastic lot-sizing problem for SAA, SBPHA and exact method. Last 
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column in the table presents gap of the objective function values from the optimal 

(exact) objective function value. 

Table 11: SAA, SBPHA and Exact Solutions, Comparisons for Multi-stage Stochastic 
Lot-sizing Problem 

Method
Prodction 

Decision

Production 

amount
Inventory Shortage Objective Gap

SAA 1 600.0          300.0       0.0 4547.673 0.2%

SBPHA 1 700.3          400.3       0.0 4539.999 0.0%

Exact 1 700.0          400.0       0.0 4539.903  -

Solution

 

Note that solution of the SAA shows the solution that performed the best in 

the full scenario set. As seen in Table 11, both SAA and SBPHA decide to produce at 

first stage as in the exact solution. SAA decides on producing 600 units, while 

SBPHA produces 700.3 units close to the optimal solution of 700 units. Since there is 

no any backlogged demand to satisfy from previous stage and amount to be 

produced is higher than demand (= 300), shortage is = 0 in all three methods 

The gap for objective function values are calculated via: 
�'((9�∗

�∗  for SAA and 

�')*+(9�∗
�∗  for SBPHA. According to gaps, SAA shows a good performance in terms of 

objective function value, and only 0.2% far from optimal objective function value. 

However, SBPHA improves the solution of SAA and converges to optimal solution 

(with 0.0% gap). Even SAA shows a good performance in terms of objective function 

value, does not show the same performance in decision variables. SAA decides to 

produce 100 units less than optimal which cause a 14.3% gap from the optimal 

solution.  
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CHAPTER IV: FLEXIBILITY to MITIGATE SUPPLY CHAIN DISRUPTIONS 

4.1. Introduction and Related Literature 

In this chapter, we apply the proposed SBPHA to solve a strategic supply 

chain problem which has been becoming more important with the increased 

disruption risks affecting today’s global supply chains. The goal of this chapter is to 

analytically study the plant-product flexibility strategies for stylized problems and then 

perform an experimental study using SBPHA methodology to investigate the effect of 

different flexibility strategies.  

Facility location and flexibility decisions (i.e., process, volume, product-mix 

flexibility etc.) are strategic supply chain decisions and require considerable 

investment affecting the firms’ long term profitability. An important category of such 

uncertain events is the disruption of facilities which are critical for the ability to 

efficiently serve the customer demand (Schütz, Tomasgard et al. 2009). These 

disruptions can be natural disasters or man-made (such as terrorist attacks, labor 

strikes, etc.). Sheffi (2005) classifies disruption causes as direct (disruptions in 

supplies, problems in facility, and breakdowns in information system) and indirect 

reasons that can cause disruptions in supply chain. In numerous cases, the 

disruption at a region may extend or migrate through the network and affect other 

parts of the supply chain network (Masihtehrani 2011). Recent examples of such 

disruptions are the 2011 earthquake in Japan affecting Toyota’s ability to ship parts 

and finished vehicles (Brennan 2011; TheGuardian 2011), hurricanes Katrina and 
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Rita in 2005 disrupting the nation’s oil refineries, and the 2011 fire at the Philips plant 

halting the production of Ericsson and Nokia (Snyder, Scaparra et al. 2006). 

In practice, capacity decisions are considered jointly with the location 

decisions. Further, the capacity of facilities often cannot be changed in the event of a 

disruption. Following a facility failure, customers can be assigned to other facilities 

only if these facilities have sufficient available capacity and are designed (i.e. process 

flexibility) to be able to produce the products. Flexibility permits management to shift 

production among different facilities and suppliers to be able to cope with internal and 

external fluctuations (Chen, Egbelu et al. 1994). Thus, adding flexibility to the 

facilities becomes another strategy in managing disruptions (Elabassi, Benjaafar et 

al. 2010).  

In order to develop a robust supply chain, managers need to consider not only 

which candidate facilities to open and their capacity levels but also the flexibility level 

of the facilities. Flexibility and the advantages can be obtained from flexibility have 

received significant attention from both the researchers and practitioners for decades. 

As Chou, Chua et al. (2010) state, the consumer markets show a switch toward more 

customized products and faster renovations in technology. This enforces companies 

to design more flexible facilities that are capable of producing variety of products in a 

facility to satisfy customer demand in case of any change in market or disruption in 

any of the manufacturing facilities or supplies.  

Iravani, Oyen et al. (2005) motivating from “structural flexibility” concept, they 

proposed new flexibility measures and the applicability of the new methodology to 

manufacturing and service systems. In a recent study Chod, Rudi et al. (2009) 
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focused on three types of flexibility, “mix”, “volume” and “time” flexibility, to respond 

changes in market conditions. Bish, Muriel et al. (2005) studied the impact of 

flexibility on the supply chain. They showed that a certain flexibility level (partial 

flexibility) might seem reasonable but may end up in higher costs in terms of higher 

inventory levels what increases operational costs and decreases profitability. Muriel, 

Somasundaram et al. (2006) applied this concept to larger systems. In another 

research, Aksin and Karaesmen (2007) analyzed a network flow model to show 

interaction between flexibility and capacity and they analytically demonstrated that 

the expected throughput is concave in the degree of flexibility.  

One of the most common flexibility types that are studied by researchers and 

the practitioners is process flexibility. The process flexibility concerns the number of 

product types that can be manufactured in each production facility (Sethi and Sethi 

1990; Jordan and Graves 1995; Garavelli 2003; Chou, Chua et al. 2010). As 

Garavelli (2003) pointed, the costs associated to the facility capability of producing 

different types of products increase with the number of products. In most cases due 

to high flexibility investments producing all types of products in all facilities are not 

economic, so called “total flexibility” in Jordan and Graves (1995) and Garavelli 

(2003) and “full flexibility” in Chou, Chua et al. (2010) and Elabassi, Benjaafar et al. 

(2010). On the other hand, designing each facility to be capable of producing a few 

types of products is not efficient as well, because of higher transportation costs 

(Garavelli 2003), called “limited flexibility” in Jordan and Graves (1995) and Garavelli 

(2003). 



91 
 

 
 

Jordan and Graves (1995) introduced “chaining” concept as an intermediate 

level of process flexibility, where company gains most of the advantages of full 

flexibility only having limited flexibility,  by creating the longest close loop between 

facilities and products so that all facilities and products are connected directly or 

indirectly. They called this form “1-chain” flexibility and showed that “1-chain” 

flexibility provides almost all the benefits of full flexibility when concern lost sales.  

Also Graves (2008) showed that when chaining form is set up right, provides the 

same benefits as full flexibility provides. Jordan and Graves (1995) compared the “1-

chain” flexibility and full flexibility performances under uncertain demand 

environment. They also show some results on different flexibility level performance 

for different capacity levels. Garavelli (2003) proposed a simulation model to evaluate 

the performances of no flexibility, process flexibility and full flexibility levels in supply 

chain.  

Chou, Chua et al. (2010) analytically studied the flexibility levels (process 

flexibility, full flexibility) for both symmetrical and asymmetrical demand (i.e., demand 

is not symmetrical around its mean) cases. Their model also can be applied to 

unbalanced cases (i.e., capacity is not equal to mean demand). To the best of our 

knowledge, the only work that considers facility disruptions when comparing flexibility 

level performances is Elabassi, Benjaafar et al. (2010). However, Elabassi, Benjaafar 

et al. (2010) focused only on balanced (i.e., capacity is equal or little higher than total 

demand) cases. In this study, we present different flexibility levels (i.e., no flexibility, 

process flexibility with chaining and without chaining, full flexibility) performances for 
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both balanced and unbalanced capacity-demand cases. Our work is not limited to 

numerical studies; we also study analytically both balanced and unbalanced cases. 

4.2. Problem Formulation 

In this section, we first present Capacitated Reliable Facility Location and 

Product Allocation Problem (CRFLPAP) with assignment decisions. Next, we show 

flexibility configurations in location-allocation problems.  

   4.2.1. Capacitated Reliable Facility Location and Product Allocation Problem 

We now introduce the notation used throughout this chapter. Let F denote the 

set of possible facility sites including the emergency facility and � denote the set of 

products (i.e., type of products).  Let fÛ be the fixed cost for facility	å ∈ F, which is 

incurred if the facility is opened, and ãØ be the product	} ∈ �. The	{ØÛ denotes the cost 

of designing the facility å in order to be capable of producing product	}. The �34 
denotes costs of satisfying each demand unit of product }  from facility å and includes 

such variable cost drivers as transportation, production, and inventory. Whenever a 

demand unit of product } cannot be served by any of the opened facilities that can 

produce product	}, then the demand for product } is assigned to the emergency 

facility and a large penalty cost ℎØ is incurred for each unit of unsatisfied demand. 

This penalty can be incurred due to finding an alternative source or due to the lost 

sale. Furthermore, the facility å has limited capacity and can serve at most bÛ 	units of 

demand, and the total demand for product } is	�Ø. The	5ØÛ denotes the usage rate 

from capacity of facility å for each demand unit of product	}. 
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We formulate the CRFLPAP as a two-stage stochastic programming problem. 

In the first stage, the location and design decisions are made before random failures 

of the located facilities. In the second stage, following the facility failures, the product-

facility assignment decisions are made for every product given the facilities that have 

not failed. The goal is to identify the set of facilities to be opened while minimizing the 

total cost of open facilities and the expected cost of meeting demand of products 

from the lasting facilities and the emergency facility. In the scenario based 

formulation of CRFLPAP, let s denote a failure scenario and the set of all failure 

scenarios is	S, where	s ∈ S. Let pP be the probability that scenario s occurs 

and	∑ pP = 1P∈Q . Further let	kÛP denote whether the facility å survives (i.e.,kÛP = 1) and 

kÛP = 0 otherwise. For instance, in case of independent facility failures, we have 

|S| = 2|6|95 possible failure scenarios for |F| − 1 facilities and the last facility is the 

emergency facility which is perfectly reliable. Note that our proposed method does 

not require any assumption on independence and distribution of each facility’s failure.  

The binary decision variable	zÛ specifies whether facility å  is opened or not, 

and the binary variable �ØÛ  specifies whether facility j designed to be capable of 

producing product	i. Integer variable |ØÛ�  denotes the number of product } assigned to 

facility å in scenario	s. Lastly, the scenario based formulation of the CRFLPAP (with 

assignment decisions) as a two-stage stochastic program is as follows. 

minïÉÛ
Û∈� 7Û +ïï{ØÛ�ØÛ

Û∈�Ø∈©
+ïã�ïï�ØÛ|ØÛ�

Û∈�Ø∈©
		

�∈�
																																		�4.1� 

subject to 

	ï|34P
Û∈� = �Ø , ∀} ∈ �, s ∈ S																																																																																	�4.2�	 
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�ØÛ ≤ zÛ, ∀å ∈ ü, } ∈ �																																																																															�4.3� 
ï 7Û
Û∈� ≤ nHÐ�, ∀å ∈ ü																																																																																�4.4� 

|ØÛ� ≤ àÛ5ØÛ �ØÛ 		, ∀} ∈ �, å ∈ ü, ^ ∈ ]																																																										�4.5� 

	ï5ØÛ
Ø∈©

|ØÛ� ≤ sÛ�àÛ7Û , ∀å ∈ F, s ∈ S																																																																�4.6� 
|ØÛP ≥ 0,∀} ∈ �, å ∈ ü, ^ ∈ ]																																																																										�4.7� 
	7Û ∈ �0,1$, ∀å ∈ ü																																																																																													�4.8� 
�ØÛ ∈ �0,1$, ∀} ∈ �, å ∈ ü																																																																																�4.9� 

The objective function in formulation (4.1) minimizes the total fixed cost of 

opening facilities, designing facilities to produce different types of products and the 

expected second stage cost of satisfying demand through lasting and emergency 

facility. Constraints (4.2) ensure that demand for each product is satisfied. 

Constraints (4.3) prevent designing a facility to produce any product if it is not an 

opened facility. Constraints (4.4) assure the total number of opened facilities is not 

exceeding the number of facilities that applicant wants to open�nHÐ��. Constraints 

(4.5) prevent the assignment of any demand to a facility if it is not designed to 

produce that product and ensure that assigned amount does not exceed its capacity 

in every failure scenario. Constraints (4.6) prevent assignments to a failed or not 

opened facility and prevent total assignment does not exceed its capacity if it is 

survived and opened facility. Constraints (4.7), (4.8) and (4.9) are integrality 

constraints. 
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4.3. Analytical Analysis 

4.3.1. Flexibility Configurations 

The level of flexibility and the allocation strategy directly affect the rate of 

benefit that can be gained from process flexibility.  In case of facility disruptions, 

product assignment decisions (can be at plant level or line level), the level of process 

flexibility (number of links between a product and facilities), play important role to 

mitigate supply chain disruptions. 

In order to make the right decision on where to add flexibility, the concept of 

“chaining” is very important (Jordan and Graves 1995). A "chain" can be explained 

as: a group of products and plants which are all connected. This connection can be 

either directly or indirectly, by product assignment decisions (Elabassi, Benjaafar et 

al. 2010). Within a chain, all products or plants are connected via links between them. 

All products are produced only by the plants that are members of the chain and these 

plants only can produce the products that are members of the chain.  

4.3.1.1 No Disruption Case   

In order to demonstrate and compare the value of flexibility levels we consider 

the assignment of 
-products to �–facilities (where	� = 
). The bipartite graph 

representation of flexibility structure is shown in Figure 16 for	� = 
 = 3. Flexibility 

levels will be expressed by total number of links between products and facilities. A 

link between product } and facility å shows that the facility å is designed to be capable 

of producing product	}, e.g., �ØÛ = 1.  
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Figure 16: Different Flexibility Levels for	
 = 3 Products and	� = 3 Facilities 

In Figure 16, a) dedicated case; each facility is capable of producing only one 

product, and each product is assigned to a different facility. In b), one product is 

produced in more than one facility while others are produced in only one facility. This 

configuration is considered as low flexibility level. The configuration in c) one chain; 

each facility is able to produce two products and a long single chain created to be 

able to switch capacity from lower demand products to higher demand products 

(Jordan and Graves 1995). In e) full flexibility; all facilities are designed to be capable 

of produce all types of products. 

4.3.1.2 Disruption Case 

Let �v represent the total number of products that can be satisfied if there were 

sufficient capacity; in the example (a) below, the �v = 3 since all three products can 

be served from F2 and	F3. In contrast, in example (b) below, the product 1 cannot be 
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served (due to elimination of all assignment links) hence only P2 and P3 can be 

served, e.g., �v = 2. 

 

Figure 17: Examples of Failure Configurations in 1-chain flexibility for � = 
 = 3 

If number of failed facilities (�) is less than number of total facilities (�),	1 ≤ � < �,: 

i. In general: 1 ≤ �v ≤ � 

ii. 1-chain:	� − � + 1 ≤ �v ≤ �, 

iii. Full Flexibility:	�v = � 

iv. Dedicated:	nv = n − r 
We next compare the performance of different flexibility levels to the full 

flexibility level performance both analytically and numerically under different capacity 

levels of facilities. All facilities are subject to fail with a given failure probability. In the 

next subsection, we compare “1-chain” flexibility with full flexibility analytically both for 

balanced and unbalanced demand-capacity cases. 

4.3.2. Analytical Analysis – Homogenous Products and Plants 

In this section, we first demonstrate comparison of 1-chain flexibility and full 

flexibility for balanced demand-capacity case when capacity of a facility is equal or 

higher than demand of a product up to a certain point. Then we compare these two 

levels of flexibility for unbalanced case when capacity of a facility is much higher than 

the demand of a product. 
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We consider “symmetric” cases where products and facilities are identical as 

discussed in Elabassi, Benjaafar et al. (2010) for facility disruption case and Chou, 

Chua et al. (2010) for uncertain demand case. 

Assumptions: 

Demand satisfying cost (service): �34 = c		∀å ∈ ü, } ∈ �. 
Design cost: {34 = {		∀å ∈ ü, } ∈ �. 
Capacity: àÛ = à		∀å ∈ ü.  
Demand: �Ø = �		∀	} ∈ �. 
Penalty/Outsourcing cost: ℎØ = ℎ		∀	} ∈ �. 
Failure probability for facilities: �Û = �		∀å ∈ ü. 
Number of products, facilities: 
 = � > 2. 
Capacity, demand relation: à > �. 

4.3.2.1 Demand-Capacity Balanced Case   

Under the assumption that capacity,	à, is always greater than the demand, �, 

and they are balanced, then we can easily express following  equation: �� ≥
�� − 1�à	. 
Proposition 1: 1-chain flexibility always satisfy as the same amount of demand 

as full flexibility and is superior to full flexibility in terms of total cost (TC) 

because of high designing cost in full the flexibility case. 

Proof: Total Cost (TC) function of CRFLPAP as shown above in (4.1): 

Minimize																				ïÉÛ
Û∈� 7Û +ïï{ØÛ�ØÛ

Û∈�Ø∈©
+ïã�ïï�ØÛ|ØÛ�

Û∈�Ø∈©
	

�∈�
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There are three terms in the cost function. First term is total open cost, second 

term is total designing cost, and the third term is the expected total demand satisfying 

cost. Total open cost is equal for both 1-chain and full flexibility since we open all 

facilities in both cases. 

	:;���59<=�Ø� = :;���	>áá =ïÉÛ
Û∈� = �É																																																						�4.10� 

In 1-chain flexibility case each facility is capable of producing 2 products, in 

other word each product is assigned to two facilities. Since there are	
	�= �� 
products, total designing cost for 1-chain flexibility is: 

:Þ��Ø?�59<=�Ø� =ïï{ØÛ�ØÛ
Û∈�Ø∈©

= 2�{																																																				�4.11� 

In full flexibility case, all facilities are deigned to produce all products, then 

total designing cost for full flexibility case is: 

:Þ��Ø?�	>áá =ïï{ØÛ�ØÛ
Û∈�Ø∈©

= �>{																																														�4.12� 

Let us now calculate demand satisfying service cost for 1-chain flexibility case. 

Let	� facilities are failed in the system, then available capacity is	�� − ��à, and 

number of products that can be served is	�� − � + 1�, then total demand that can be 

served is�� − � + 1��.                 

In any failure scenario,	min	��� + ��1 − ��, �à − �à� of demand can be 

satisfied (see Proposition 2). As it is proved above	�� + ��1 − �� ≥ �à − �à, total 

satisfied demand is �� − ��à, and unsatisfied demand is �� − �� − ��à. 
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Since facility failures are independent, the occurrence probability of a scenario 

with � failures is ���1 − ���9�. Demand satisfying service cost can be expressed as 

follows: 

:����Ø<�59<=�Ø� = ����1 − ��� +ïl��p���1 − ���9�
�

�45 ��� − �� − ��à�ℎ																																								

+ïl��p���1 − ���9�
�

�45 �� − ��à�																																																																			�4.14� 

In full flexibility case, all facilities can serve all products. Total satisfied 

demand, under � failed facilities scenario, is determined via min	���, �� − ��à�. 
Because of the assumption in balanced case:	�� ≥ �� − 1�à and � ≥ 1, total satisfied 

demand is �� − ��à and unsatisfied demand is �� − �� − ��à. Then total demand 

satisfying service cost for full flexibility can be expressed as: 

:����Ø<�	>áá = ����1 − ��� +ïl��p���1 − ���9��

�45 ��� − �� − ��à�ℎ																																															

+ïl��p���1 − ���9�
�

�45 �� − ��à�																																																																				�4.15� 

Let us compare 1-chain and full flexibilities performances in terms of Total 

Cost (TC) by subtracting TCs. 
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�:	>áá − �:59<=�Ø� = :;���	>áá + :Þ��Ø?�	>áá + :����Ø<�	>áá − :;���59<=�Ø� − :Þ��Ø?�59<=�Ø� − :����Ø<�59<=�Ø� 	
= �É + �>{ + 			����1 − ��� +ïl��p���1 − ���9�

�

�45 ��� − �� − ��à�ℎ

+ïl��p���1 − ���9�
�

�45 �� − ��à� − �É − 2�{

− @����1 − ��� +ïl��p���1 − ���9��

�45 ��� − �� − ��à�ℎ

+ïl��p���1 − ���9�
�

�45 �� − ��à�A
=	�>{ − 2�{																																																																																																									�4.16� 

If { = 0   ��:	>áá = �:59<=�Ø� 

If { > 0   ��:	>áá > �:59<=�Ø� , since	� > 2.           □ 

 

Proposition 2: Because of the balanced assumption (9ä ≥ �9− ò�B	C9ä, ä < B, 

then it can be proved that total available capacity is less than total demand: 

�� − � + 1�� > �� − ��à																																																							�4.13� 
Proof: Given that	�� ≥ �� − 1�à	and, � < à, 

�� + à ≥ �à 

When �à is subtracted from both sides of equation:  

�� + à − �à ≥ �à − �à or �� + �1 − ��à ≥ �à − �à 

Since	� ≥ 1, and		�1 − ��à ≤ �1 − ��� (both sides of equation is “0” or negative) 

When �1 − ��à	is replaced by 	�1 − ���, then we conclude that �� + �1 − ��� ≥ �à −
�à .                    □ 
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Please note that proofs above are modified from Elabassi, Benjaafar et al. 

(2010). We want to use proofs above for the clarity of the concept and the proof for 

unbalanced case. 

4.3.2.2 Demand-Capacity Unbalanced Case  

In this subsection, we compare 1-chain and full flexibility level performances in 

terms of TC for unbalanced demand and capacity case. 

Proposition-3: The assumption (9ä ≥ �9 − ò�B� is made in balanced case, but 

this assumption is not valid for the unbalanced case. Let us reverse the 

assumption that is made in balanced case as:	9ä ≤ �9− ò�B. Then it can be 

argued that 9ä + ä�ò − D� ≥ 9B − DB is not always true. 

Proof: Given that	�� ≤ �� − 1�à	and, � < à 

�� + à ≤ �à 

If	�à is subtracted from both sides of the equation 

�� + à − �à ≤ �à − �à 

Since	� ≥ 1, and		�1 − ��à ≤ �1 − ��� (both sides of equation is “0” or negative) 

When à − �à	is replaced by 	� − ��,	then it can be concluded that �� + ��1 − �� ⋛
�à − �à.                   □ 

The proof above shows that the total satisfied demand varies and is 

dependent on the capacity of facilities and the demand for products. Thus we cannot 

conclude 1-chain or full flexibilities are superior to one another.  

In order to compare total satisfied demand and Total Cost	��:� for 1-chain and 

full flexibilities, we introduce block failure concept. Let us consider a system for 1-
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chain flexibility with 6 facilities and products. Some failure scenarios are shown in 

Figure 18. 

 

P1 

P2 

P3 

F1 

F2 

F3 

PRODUCTS FACILITIES 

a) 1 block 2 failed 

P4 F4 

P5 F5 

P6 F6 

P1 

P2 

P3 

F1 

F2 

F3 

PRODUCTS FACILITIES 

c) 2 blocks 2 failed each 

 

P4 F4 

P5 

P6 F6 

P1 

P2 

P3 

F1 

F2 

F3 

PRODUCTS FACILITIES 

b) 1 block 3 failed 

P4 F4 

P5 F5 

P6 F6 

F5 

 

Figure 18: Examples of Failure Configurations for 1-Chain Flexibility 

 

 

 P1 

 P2 

 P3 

   F1 

   F2 

   F3 

PRODUCTS FACILITIES 

d) 1 block 1 failed 

 P4    F4 

 P5    F5 

 P6    F6 

 P1 

 P2 

 P3 

   F1 

   F2 

   F3 

PRODUCTS FACILITIES 

e) 3 blocks 1 failed each 

 P4    F4 

 P5    F5 

 P6    F6 
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In Figure 18, a) Fá,� = 1, and �Ê�� → �Ê�5 = 2, in b)	Fá,� = 1, and �Ê�� →
�Ê�5 = 3, in c) Fá,� = 2, and �Ê�� → �Ê�5 = 2, �Ê�> = 2, in d) Fá,� = 1, and �Ê�� →
�Ê�5 = 1 and in d) Fá,� = 3, and �Ê�� → �Ê�5 = 1, �Ê�> = 1, �Ê�@ = 1.  

 

Notation and description that is used in this subsection is as follows:  

Block: A set of chained facilities that failed. Single failed facility can also be a block. 

Any two facilities are chained if production capacity in one facility can be used to 

increase the available capacity in another facility by shifting production levels of 

several products. Jordan and Graves (1995) have a similar description. Also, any two 

facilities are chained if they share at least one product. If facility pairs �F1,F2� and 

�F2,F3� are chained, then facility pair �F1,F3� are also chained. 

Notation: 

]�: set of failure scenarios 

]��: set of failure scenarios with � failed facilities, i.e., ]� = ⋃ ]���  

ß: index for failure configuration 

Fá,�: number of blocks in ß =  failure scenario of � failures 

�Ê��á�: number of consecutive failed facilities in � =  block of ß = failure scenario of � 
failures 

Total number of failures: 

� = ï�Ê��á�
¨G,�
�45

																																																																					�4.17� 

1-chain flexibility 

��Ê��á� − 1�: number of products that cannot be served due to failures in block � 
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No flexibility  

��Ê��á��: number of products that cannot be served due to facility failures in block � 

Full flexibility 

��Ê��á� − �Ê��á��: number of products that cannot be served due to facility failures in 

block � 

For instance, ∑ ��Ê��á� − 1��¨G,��45 : total demand that cannot be served due to 

facility failures in all blocks of failure scenario ß of � facility failures in 1-chain flexibility 

case. 

]á,�	>áá : Total satisfied demand for full flexibility level when � facilities are failed as 

configuration ß 
]á,�59<=�Ø�: Total satisfied demand for 1-chain flexibility level when � facilities are failed 

as configuration ß 
Total open cost and designing cost in unbalanced case will be identical to one 

in balanced case for both 1-chain and full flexibility levels as shown in (4.10)-(4.12). 

Since all facilities are opened (7Û = 1, å = 1, 2, … , ü).  

:;���59<=�Ø� = :;���	>áá =ïÉÛ
Û∈� = �É																																																															 

:Þ��Ø?�59<=�Ø� =ïï{ØÛ�ØÛ
Û∈�Ø∈©

= 2�{																																																															 

:Þ��Ø?�	>áá =ïï{ØÛ�ØÛ
Û∈�Ø∈©

= �>{																																																																		 

Given a failure scenario, where � out of � facilities are failed; the total demand 

that can be served as a percentage of the total demand 
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b��, �� ≤ min��v�, �� − ��à$
�� 																																																							�4.18� 

Recall that	�v represents the total number of products that can be satisfied if 

there were sufficient capacity. 

�v = � −ï��Ê��á� − 1�
¨G,�
�45

																																																															�4.19� 

Total satisfied demand when � facilities are failed in 1-chain flexibility is  

]á,�59<=�Ø� ≤ 
}�	 ��� − ��à, l� − ∑ ��Ê��á� − 1�¨G,��45 p��							�4.20�  
, and total satisfied demand when � facilities are failed in full flexibility is 

]�á,�	>áá = 
}���� − ��à, ��$																																																									�4.21� 
Since	�� ≥ �� − ∑ ��Ê��á� − 1��¨G,��45 , it can be concluded that total satisfied demand in 

full flexibility is more than 1-chain flexibility in some failure scenarios, what may 

cause 1-chain flexibility be more costly than full flexibility: 

 ]á,�59<=�Ø� ≤ ]á,�	>áá 																																																																												�4.22� 
Let us now calculate demand satisfying cost for 1-chain and full flexibility levels. 

:����Ø<�59<=�Ø� 				= ����1 − ��� + �ï���1 − ���9�ï]á,�59<=�Ø�
XH�Y
á45

																																		
�

�45
+ ℎï���1 − ���9�ï��� − ]á,�59<=�Ø��

XH�Y
á45

�

�45 																																																�4.23� 
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:����Ø<�	>áá 								= ����1 − ��� + �ï���1 − ���9�ï]á,�	>áá
XH�Y
á45

�

�45 			

+ ℎï���1 − ���9�ïX�� − ]á,�	>ááY
XH�Y
á45

�

�45 																																																									 �4.24� 

Let us now compare 1-chain and full flexibilities performances in terms of Total 

Cost (TC).  

�:	>áá − �:59<=�Ø� = :;���	>áá + :Þ��Ø?�	>áá + :����Ø<�	>áá − :;���59<=�Ø� − :Þ��Ø?�59<=�Ø� − :����Ø<�59<=�Ø�			�4.25� 

= �É + �>{ + ����1 − ��� + �ï���1 − ���9�ï]á,�	>áá
XH�Y
á45

�

�45
+ ℎï���1 − ���9�ïX�� − ]á,�	>ááY

XH�Y
á45

�

�45 − �É − 2�{ − ����1 − ���

− �ï���1 − ���9�ï]á,�59<=�Ø�
XH�Y
á45

�

�45 − ℎï���1 − ���9�ïX�� − ]á,�59<=�Ø�Y
XH�Y
á45

�

�45  

=	�>{ − 2�{ + �ï���1 − ���9�ïX]á,�	>áá − ]á,�59<=�Ø�Y
XH�Y
á45

�

�45
− ℎï���1 − ���9�ïX]á,�	>áá − ]á,�59<=�Ø�Y

XH�Y
á45

�

�45  

 

= �>{ − 2�{ + �� − ℎ�Iï���1 − ���9�ïX]á,�	>áá − ]á,�59<=�Ø�Y
XH�Y
á45

�

�45 J 

 

 

Term1 Term2 Term3 
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If	{ = 0 

�Ì�
1 = 0, 

Since	ℎ > � ,�Ì�
2 < 0, 

Since 

	ï]á,�	>áá
XH�Y
á45

≥ï]á,�59<=�Ø�
XH�Y
á45

 

, �Ì�
3 ≥ 0 

Then, it can be easily concluded that	:	>áá − :5<=�Ø� ≤ 0; 

	�:	>áá ≤ �:59<=�Ø� 

If	{ > 	0: Possible Outcomes: 

i. If	�:	>áá − �:59<=�Ø� = 0, both full flexibility and 1-chain flexibility show the 

same performance, 

ii. If	�:	>áá − �:59<=�Ø� > 0, 1-chain flexibility shows better performance than full 

flexibility, 

iii. If	�:	>áá − �:59<=�Ø� < 0, full flexibility shows better performance than 1-chain 

flexibility, 

We can argue that the performance of full flexibility and 1-chain flexibility 

depends on value of	{, failure probability���, capacity�à�, demand���, service 

cost���, and lost sale cost�ℎ�. Put in another way, there will be some situations that 

full flexibility performs better, while in others 1-chain flexibility performs better. 

An example for ì facilities, and ì products case: 

There will be four situations; no fail, 1, 2, or 3 failed facilities. 
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No Failure: � = 0		,K = 1. In this situation there will be only one configuration, 

�ß = 1�. Writing the equations (4.20) and (4.21):	
]5,¬	>áá = minX�� − 0�à, ��Y = min��à, ���, since b > �, �à > ��, ]5,¬	>áá = ��	 
]5,¬59<=�Ø� = minX�� − 0�à, ��Y = min��à, ���, since b > �, �à > ��, ]5,¬59<=�Ø� = ��	 

1 Failure:	� = 1		, K = 3. In this situation there will be three configurations, 

�ß = 3�.   
a� Facility 1 fails, 2 and 3 survive 	
b� Facility 2 fails, 1 and 3 survive 	
c� Facility 3 fails, 1	and 2 survive 	

]5,5	>áá = ]>,5	>áá = ]@,5	>áá = minX�� − 1�à, ��Y = min�2à, 3��	 
]5,559<=�Ø� = ]>,559<=�Ø� = ]@,559<=�Ø� ≤ minX�� − 1�à, �� − 0Y = min�2à, 3��	 
Since there is no failures other than one block with 1 failed facility,   

]5,559<=�Ø� = ]>,559<=�Ø� = ]@,559<=�Ø� = minX�� − 1�à, �� − 0Y = min�2à, 3�� 
2 Failure:	� = 2		, K = 3:In this situation there will be three configurations, 

�ß = 3�.   
a� Facility 1 and 2 fails, 3 survives 	
b� Facility 1 and 3 fails, 2 survives 	
c� Facility 2 and 3 fails, 1 survives 	

]5,>	>áá = ]>,>	>áá = ]@,>	>áá = minX�� − 2�à, ��Y = min�à, 3��	 
]5,>59<=�Ø� = ]>,>59<=�Ø� = ]@,>59<=�Ø� ≤ minX�� − 2�à, �� − �2 − 1��Y = min�à, 2��	 
Since there is no failures other than one block (with 2 failed facilities),  

]5,>59<=�Ø� = ]>,>59<=�Ø� = ]@,>59<=�Ø� = minX�� − 2�à, �� − �2 − 1��Y = min�à, 2�� 
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3 Failure:	� = 3		, K = 1:In this situation there will be three configuration, 

�ß = 3�.   
]5,@	>áá = minX�� − 3�à, ��Y = min�0, 3�� = 0	 
]5,@59<=�Ø� = minX�� − 3�à, �� − �3 − 1��Y ≤ min�0, �� = 0 

Total Cost Difference: 

�:	>áá − �:59<=�Ø� = 	3É + 9{ + ���1 − ��@�� + 3��1 − ��>min�2à, 3��																														 
+3�>�1 − ��min�à, 3�� + �@0# + ℎ� �1 − ��@0 + 3��1 − ��> �3d − min�2à, 3��� 
+3�>�1 − ���3� − min�à, 3�� + �@3�# − 3É − 6{ − ���1 − ��@��																												 
+3��1 − ��>min�2à, 3�� + 3�>�1 − ��min�à, 2�� + �@0# − ℎ� �1 − ��@0														 
+3��1 − ��> �3d −min�2à, 3��� + 3�>�1 − ���3� − min�à, 2�� + �@3�#														 

= 3{ + 3�>�1 − ���� − ℎ�	�min�à, 3�� −min�à, 2��# 
 

If à < 2� 

�:	>áá − �:59<=�Ø� = 3{, 1-chain flexibility is superior to full flexibility 

If 2� < à < 3� , then 

�:	>áá − �:59<=�Ø� = 3{ + 3�>�1 − ���� − ℎ�	�à − 2��, their performances depend on 

the value of	{, à, �, �, ℎ, and	�.  

If	{ = |�>�1 − ���� − ℎ�	�b − 2��|, 1-chain and full flexibility show the same 

performances 

If { > |�>�1 − ���� − ℎ�	�b − 2��|, 1-chain flexibility is superior to full flexibility 

If { < |�>�1 − ���� − ℎ�	�b − 2��|, full flexibility is superior to 1chain flexibility 

If 3� < à , then 
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:	>áá − :5<=�Ø� = 3{ + 3�>�1 − ���� − ℎ��3� − 2��, their performances depend on the 

value of	{, à, �, �, ℎ, and	�.   

If	{ = |�>�1 − ���� − ℎ�	�|, 1-chain and full flexibility show the same performances 

If	{ > |�>�1 − ���� − ℎ�	�|, 1-chain flexibility is superior to full flexibility 

If	{ < |�>�1 − ���� − ℎ�	�|, full flexibility is superior to 1chain flexibility 

According to the proofs and analysis above, it can be concluded that 

performances of 1-chain and full flexibility depend on the parameters of the problem 

in unbalanced demand-capacity case.   

4.4 Experimental Tests 

In this section, we have performed an experimental study to understand the 

impact of various problem parameters on the total cost, service rate (demand 

satisfaction level), degree of plant-product assignment, and average number of 

products assigned per plant. All the problem instances are solved using SBPHA 

algorithm. Note that while SBPHA is not guaranteed to be exact for any given 

problem, we have extensively tested the degree of optimality in calibrating the 

SBPHA’s parameters. 

4.4.1. Experimental setting 

In these experiments, we have considered 7 plant locations (including the 

emergency facility) and 6 customers. In total there are 64 plant failure scenarios. The 

assignment cost is taken as 100; each customer has 850 units of demand; unit cost 

is 1; cost of unit unmet demand is 10; cost of operating a plant is 1000. We have 

varied the remainder of the problem parameters, e.g., plant failure probability, plant 
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capacity, utilization threshold and loss of capacity due to increased set ups with 

additional product assignments. In all instances, we consider the homogenous plants 

and customers, e.g. plants all have identical capacity and failure probability. 

Figure 15 illustrates the effect failure probability and plant capacity level on the 

total cost and the service rate when there are no minimum utilization requirements 

and no loss of capacity due to assigning more than one product. Total cost results 

indicate that the effect of capacity increase is most apparent when the failure 

probabilities are between 0.5 and 0.8. At the extreme failure probabilities, the effect 

of capacity on total cost is not as significant. When the capacity levels are tight (with 

respect to demand), the total cost increases linearly with the increasing failure rate. 

However, the total cost increases at an increasing rate when there is excess 

capacity. The same is also true for the service rate. As in total cost results, the 

service rate decreases linearly with tighter capacity and nonlinearly with excess 

capacity configuration. 

 
 

.  

(a)           (b) 

Figure 19: Total cost and service rate for no utilization requirement and no loss of 
capacity case. 
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Figure 16 illustrates the effect on the number of facilities and total number of 

plant-product assignments. Clearly, increasing failure probability leads to increased 

number of facilities. This increase is most discernable when there is excess capacity. 

The total number of plant-product assignments first increases and then decreases 

with the increasing failure rate.  

 

(a)           (b) 

Figure 20 Number of open facilities and product-plant assignments for no utilization 
requirement and no loss of capacity case. 

Figure 17 illustrates the effect on the average number of product assignments 

per plant. Again, this statistic is first increasing and then decreasing with the 

increasing failure rate. This indicates that there is no single dominating flexibility level 

(e.g., 1-chain or full-flexibility) that provides the best performance. Further, the 

optimal flexibility configuration depends on the failure probability which supports the 

analytical results in the preceding section. 
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Figure 21: Average number of products plant assignments for no utilization 

requirement and no loss of capacity case. 

The figures 18 to 20 shows the similar observation as above when we 

incorporate the capacity loss with additional product assignments. One visible effect 

is the dampening of the capacity effect.  

 
 

  
. 

(a)           (b) 

Figure 22: Total cost and service rate for no utilization requirement and 10% loss of 
capacity per additional product. 
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(a)           (b) 

Figure 23: Number of open facilities and product-plant assignments for no utilization 
requirement and 10% loss of capacity per additional product. 

 

 

Figure 24: Average number of products plant assignments for no utilization 
requirement and 10% loss of capacity per additional product. 

Figure 21 shows the effect of capacity utilization requirement on the total cost. 

Clearly, total cost differences among different capacity levels decrease with 

tightening utilization requirements. 
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(a)           (b) 

 

(c)           (d) 

Figure 25: Effect of plant utilization requirement on total cost (a) no utilization, (b) 
20% utilization, (c) 40% utilization, and (d) 60% utilization requirement. 

Figure 22 shows the effect of capacity utilization requirement on the service rate. 

Interestingly, the total demand met is no longer monotone with the capacity level 

under restrictive utilization requirements. 
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(a)           (b) 

 

(c)           (d) 

Figure 26: Effect of plant utilization requirement on total cost (a) no utilization, (b) 
20% utilization, (c) 40% utilization, and (d) 60% utilization requirement. 

Figure 23 shows the effect of capacity utilization requirement on the number of 

plants.  
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(a)           (b) 

 

(c)           (d) 

Figure 27: Effect of plant utilization requirement on number of plants open (a) no 
utilization, (b) 20% utilization, (c) 40% utilization, and (d) 60% utilization requirement. 

Figure 24 shows the effect of capacity utilization requirement on the average 

product assignment per plant.  

 

(a)           (b) 
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(c)           (d) 

Figure 28: Effect of plant utilization requirement on average number of product 
assignment per plant (a) no utilization, (b) 20% utilization, (c) 40% utilization, and (d) 
60% utilization requirement. 
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CHAPTER V: CONCLUSIONS and FUTURE STUDIES 

In this dissertation, we have developed hybrid algorithms for stochastic 

programming problems. The proposed algorithm is a hybridization of two existing 

methods. The first one is the Monte Carlo sampling based algorithm, which is called 

Sample Average Approximation (SAA). Sample Average Approximation method 

provides an attractive approximation for stochastic programming problems when the 

number of uncertain parameters increases. The second algorithm is Progressive 

Hedging Algorithm (PHA) which is an exact solution methodology for stochastic 

programming problems. The research presented in this dissertation mainly addresses 

two issues that arise when using SAA and PHA methods individually; lack of 

effectiveness in solution quality of SAA and lack of efficiency in computational time of 

PHA. 

 5.1 Summary of Study and Contributions 

The first proposed algorithm is called Sampling Based Progressive Hedging 

Algorithm (SBPHA), which is the integration of SAA and PHA. This integration 

considers each sample as a small deterministic problem and employs the SAA 

algorithm iteratively. In each iteration, the non-anticipativity constraints is injected into 

the solution process by introducing penalty terms in the objective that guides the 

solution of each sample to the samples' balanced solution and to ensure that non-

anticipativity constraints are satisfied. The two key parameters of SBPHA are the 

weight of the best incumbent solution and the penalty factor.  
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The weight for the best incumbent solution adjusts the importance given to 

samples’ best found solution and to the most recent average sample solution in 

calculating the balanced solution. The penalty factor modulates the rate at which the 

sample solutions converge to the samples’ balanced solution. Given that the best 

found solution improves over time, we propose two strategies for the weight of the 

best incumbent solution: static versus dynamic strategy.  

We first conducted experiments for sensitivity analysis of the algorithm with 

respect to the parameters. The results show that the SBPHA's solution quality 

performance is relatively insensitive to the choice of strategy for the weight of the 

best incumbent solution, i.e., both the static and dynamic strategies are able to 

converge to the optimum solution. SBPHA is able to converge to the optimal solution 

even with small number of samples and small sample sizes.  

In addition to the sensitivity experiments, we compared the performances of 

SBPHA and d-SBPHA with SAA's. These results show that the SBPHA and d-

SBPHA are able to improve the solution quality noticeably with reasonable 

computational effort compared to SAA. Further, increasing SAA's sample size to 

match the solution quality performance of SBPHA requires significant computational 

effort which is not affordable in many practical instances.  

The contributions of this research are as follows: 

Contribution 1: Developed SBPHA which provides a configurable solution method 

that improves the sampling based methods’ accuracy and PHA’s efficiency for two-

stage and multi-stage stochastic programming problems. 
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Contribution 2: Enhanced the SBPHA for SPs with binary first stage decision 

variables. The improved algorithm is called Discarding-SBPHA (d-SBPHA). It is 

analytically proved that SBPHA guarantee optimal solution to the mentioned 

problems when the number of discarding iterations approaches to infinity.  

There are three possible avenues of future research on SBPHA.  

First opportunity is to investigate the integration of alternative solution 

methodologies in order to improve the convergence rate and solution quality, such as 

Stochastic Decomposition (SD), Stochastic Dual Dynamic Programming (SDDP), L-

Shaped decomposition. 

Second extension is the research on the application of the d-SBPHA to the 

Stochastic Programs that have linear first stage decision variables.    

Another extension is the investigations on the development of a general 

strategy for the SBPHA and d-SBPHA specific parameters in order reduce the 

computational effort spent on the parameter sensitivity steps.  

 



 
 

 
 

APPENDIX A: RESULTS for SBPHA and d-SBPHA 

Table 12: Objective Function Values of Test Samples 

Alpha(α)

Strategy/ 

Parameter

Start 

(ρ)

Update 

Parameter 

(β)

1 2 3 4 5 6 7 8 9 10 Average Gap Min Max

1 1.8 9,362 9,167 9,254 9,703    9,490 9,713 9,024 9,254 9,161 9,287 9,341     3.9% 9024 9713

20 1.2 9,825 9,167 9,124 9,083    9,448 9,713 8,995 9,083 9,167 9,254 9,286     3.2% 8995 9713

20 1.5 9,319 9,167 9,266 9,344    9,545 9,183 8,995 9,266 9,161 9,167 9,241     2.7% 8995 9545

40 1.3 9,528 9,024 8,995 9,547    9,478 9,362 8,995 9,083 9,161 9,138 9,231     2.6% 8995 9547

40 1.4 9,319 9,167 9,266 9,828    9,490 9,347 8,995 9,271 9,161 9,839 9,368     4.1% 8995 9839

80 1.1 9,825 9,032 8,995 9,208    9,478 9,221 9,024 9,083 9,124 9,287 9,228     2.6% 8995 9478

80 1.2 9,825 9,167 8,995 9,345    9,478 9,221 8,995 9,083 9,161 9,096 9,236     2.7% 8995 9478

200 1.1 9,345 9,167 8,995 9,398    9,448 9,333 8,995 9,083 9,161 9,316 9,224     2.5% 8995 9448

1 1.8 9,528 8,995 9,024 9,637    9,490 9,713 9,024 9,288 9,471 9,287 9,346     3.9% 8995 9713

20 1.2 9,362 9,024 8,995 9,528    9,412 9,370 9,024 9,288 9,221 9,280 9,250     2.8% 8995 9528

20 1.5 9,825 9,292 9,266 9,467    9,490 9,713 8,995 9,254 9,161 9,138 9,360     4.1% 8995 9713

40 1.3 9,528 9,167 9,032 9,112    9,490 9,383 8,995 9,254 9,161 9,287 9,241     2.7% 8995 9490

40 1.4 9,825 9,292 9,032 9,467    9,478 9,713 8,995 9,254 9,221 9,326 9,360     4.1% 8995 9713

80 1.1 9,825 9,024 8,995 9,362    9,448 9,369 8,995 9,083 9,083 9,167 9,235     2.7% 8995 9448

80 1.2 9,528 9,104 8,995 9,944    9,478 9,221 8,995 9,112 9,161 9,287 9,283     3.2% 8995 9944

200 1.1 9,825 9,167 8,995 9,112    9,448 8,995 9,024 9,083 9,161 9,138 9,195     2.2% 8995 9448

1 1.8 9,825 9,347 9,083 10,006 9,700 9,362 9,024 9,715 9,292 9,693 9,505     5.7% 9024 10006

20 1.2 9,362 9,104 9,210 9,715    9,539 9,515 9,024 9,161 9,292 9,183 9,310     3.5% 9024 9715

20 1.5 9,825 9,032 9,288 10,006 9,562 9,362 8,995 9,838 9,167 9,136 9,421     4.7% 8995 10006

40 1.3 9,679 9,266 9,210 10,006 9,490 9,183 8,995 9,838 9,471 9,167 9,430     4.8% 8995 10006

40 1.4 9,825 9,266 9,271 9,788    9,562 9,221 8,995 9,254 9,221 9,136 9,354     4.0% 8995 9788

80 1.1 9,825 8,995 8,995 9,362    9,292 9,221 8,995 9,838 9,221 9,287 9,303     3.4% 8995 9838

80 1.2 9,362 9,104 8,995 10,006 9,545 9,498 9,024 9,838 9,161 9,167 9,370     4.2% 8995 10006

200 1.1 9,825 9,167 8,995 9,658    9,490 9,221 9,024 9,254 9,167 9,083 9,288     3.3% 8995 9658

Objective

Dynamic/ 

Δα=0.05

Rho

Dynamic/ 

Δα=0.02

Dynamic/ 

Δα=0.03

Replication (r=1,…,Rep)
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 Table 12  continues… 

1 1.8 9,825    9,032    9,266    10,006   9,208    9,362    8,995    9,083    9,292    9,515    9,358      4.0% 8995 10006

20 1.2 9,751    9,104    8,995    10,006   9,161    9,362    8,995    9,083    9,221    9,483    9,316      3.6% 8995 10006

20 1.5 9,547    9,271    9,203    10,006   9,208    9,713    9,024    9,083    9,221    9,332    9,361      4.1% 9024 10006

40 1.3 9,547    8,995    9,124    10,006   9,161    9,713    9,024    9,083    9,292    9,404    9,335      3.8% 8995 10006

40 1.4 9,528    9,271    9,124    10,006   9,161    9,362    9,024    9,083    9,221    9,586    9,337      3.8% 9024 10006

80 1.1 9,362    8,995    8,995    9,528      9,161    9,319    9,024    9,254    9,024    9,112    9,177      2.0% 8995 9528

80 1.2 9,547    9,032    8,995    8,995      9,161    9,167    9,024    9,083    9,167    9,167    9,134      1.5% 8995 9547

200 1.1 9,362    9,287    8,995    10,006   9,124    9,221    8,995    9,254    9,167    9,096    9,251      2.8% 8995 10006

1 1.8 9,528    9,326    8,995    9,775      9,490    9,516    8,995    9,083    9,471    9,287    9,347      3.9% 8995 9775

20 1.2 9,751    9,024    9,024    9,344      9,161    9,221    8,995    9,083    9,161    8,995    9,176      2.0% 8995 9751

20 1.5 9,825    9,032    9,254    9,344      9,448    9,713    9,024    9,254    9,221    9,341    9,346      3.9% 9024 9825

40 1.3 9,825    9,024    9,104    10,006   9,161    9,713    9,024    9,083    9,161    9,124    9,322      3.6% 9024 10006

40 1.4 9,825    8,995    9,266    9,513      9,161    9,691    8,995    9,254    9,167    9,024    9,289      3.3% 8995 9825

80 1.1 9,547    8,995    8,995    9,528      9,161    9,221    9,024    9,083    9,221    9,083    9,186      2.1% 8995 9547

80 1.2 9,825    8,995    9,203    10,006   9,161    9,370    9,024    9,254    9,161    9,024    9,302      3.4% 8995 10006

200 1.1 9,024    9,167    8,995    10,006   9,083    9,713    8,995    9,254    9,083    9,104    9,242      2.7% 8995 10006

1 1.8 9,825    9,167    9,254    9,765      9,833    9,320    9,024    9,254    9,471    9,713    9,463      5.2% 9024 9833

20 1.2 9,825    8,995    9,124    9,344      9,448    9,221    8,995    9,083    9,161    9,254    9,245      2.8% 8995 9825

20 1.5 9,825    9,167    9,254    9,645      9,545    9,221    8,995    9,254    9,161    9,326    9,339      3.8% 8995 9825

40 1.3 9,319    9,167    9,254    9,485      9,448    9,713    8,995    9,254    9,161    9,138    9,293      3.3% 8995 9713

40 1.4 9,319    8,995    9,254    9,645      9,490    9,353    8,995    9,254    9,221    9,287    9,281      3.2% 8995 9645

80 1.1 9,319    8,995    8,995    9,319      9,161    9,326    8,995    9,254    9,161    9,096    9,162      1.9% 8995 9326

80 1.2 9,825    9,167    9,254    9,456      9,448    9,353    8,995    9,254    9,161    9,167    9,308      3.5% 8995 9825

200 1.1 9,345    9,032    8,995    9,370      9,448    9,221    8,995    9,254    9,161    9,138    9,196      2.2% 8995 9448

Static/ α=0.7

Static/ α=0.8

Static/ α=0.6
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Table 13: Computational Time of Test Samples 

Alpha(α) Time (s)

Strategy/ 

Parameter
Start

Update 

Parameter(β)
1 2 3 4 5 6 7 8 9 10 Average

1 1.8 371        518        641        546         445        534        663        448        360        394        492.04        

20 1.2 568        777        1,183    823         753        907        992        738        654        833        822.79        

20 1.5 346        428        620        472         447        590        547        596        376        440        486.06        

40 1.3 395        517        761        580         566        630        505        592        467        549        556.10        

40 1.4 370        452        624        495         464        556        505        579        384        450        487.83        

80 1.1 551        746        1,090    895         815        952        959        827        779        795        840.79        

80 1.2 386        518        799        657         574        695        625        604        484        577        591.98        

200 1.1 435        458        720        613         581        742        503        667        488        588        579.48        

1 1.8 379        468        629        489         415        512        664        426        349        421        475.14        

20 1.2 575        782        1,135    696         767        914        995        653        680        742        794.04        

20 1.5 319        447        613        411         424        512        555        468        346        431        452.71        

40 1.3 391        484        715        552         515        706        616        502        446        484        541.12        

40 1.4 337        447        629        394         426        508        505        459        382        466        455.29        

80 1.1 515        729        1,115    823         771        1,089    863        726        768        710        810.94        

80 1.2 388        546        767        531         501        649        612        568        479        568        560.92        

200 1.1 346        401        696        579         537        777        449        556        515        595        544.99        

1 1.8 393        439        646        356         387        499        648        384        329        381        446.36        

20 1.2 641        688        1,026    784         653        876        914        704        568        656        751.03        

20 1.5 348        398        586        405         385        469        531        372        354        418        426.60        

40 1.3 409        524        702        458         451        581        584        427        415        471        502.21        

40 1.4 340        466        613        523         366        523        497        391        379        423        452.01        

80 1.1 477        660        1,051    836         630        794        814        520        649        652        708.24        

80 1.2 398        491        701        478         467        603        577        402        499        488        510.43        

200 1.1 304        376        639        483         439        509        403        472        398        508        453.18        

Rho (ρ) Replication (r=1,…,Rep)

Dynamic/ 

Δα=0.02

Dynamic/ 

Δα=0.03

Dynamic/ 

Δα=0.05

 

125 



 
 

 
 

Table 13  Continues… 

1 1.8 399        533        638        385         390        519        627        444        349        419        470.38        

20 1.2 649        740        1,229    554         709        797        967        710        675        837        786.60        

20 1.5 391        462        632        315         408        426        508        410        876        410        483.75        

40 1.3 439        475        754        346         463        518        588        485        425        491        498.48        

40 1.4 379        424        633        306         366        456        457        410        369        945        474.61        

80 1.1 670        665        1,206    741         720        413        692        688        816        1,402    801.07        

80 1.2 450        430        789        410         438        599        508        1,023    449        554        564.96        

200 1.1 421        390        698        269         370        499        373        400        427        582        442.95        

1 1.8 393        452        658        451         440        562        634        456        349        441        483.58        

20 1.2 641        726        1,209    706         762        1,046    976        681        721        768        823.52        

20 1.5 355        407        625        373         435        510        525        386        364        404        438.48        

40 1.3 442        476        780        412         464        531        578        481        441        571        517.60        

40 1.4 385        403        631        432         389        449        510        364        383        436        438.24        

80 1.1 683        673        1,235    804         704        903        802        795        764        976        833.96        

80 1.2 415        473        832        375         458        618        535        447        508        563        522.35        

200 1.1 491        385        730        311         536        482        390        420        558        601        490.37        

1 1.8 384        461        654        458         469        540        671        433        356        416        484.20        

20 1.2 623        816        1,251    746         838        996        1,017    732        695        885        859.79        

20 1.5 459        414        642        503         462        596        565        410        405        417        487.37        

40 1.3 405        506        737        580         558        582        623        464        460        555        546.96        

40 1.4 459        411        630        517         458        561        510        417        376        412        475.13        

80 1.1 744        682        1,302    891         929        1,210    910        661        796        1,046    917.22        

80 1.2 452        523        750        615         590        726        618        461        490        623        584.84        

200 1.1 458        421        753        600         546        601        452        471        477        589        536.55        

Static/ α=0.6

Static/ α=0.7

Static/ α=0.8
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Table 14: Average Objective Function Value of 10 Replications for Each Parameter 
Configuration over Discarding 

Dynamic α Dynamic α

Replications

α=0.6 

ρ=200 

β=1.1

α=0.7 

ρ=200 

β=1.1

α=0.6 

ρ=80 

β=1.2

Δα=0.03 

ρ=200 

β=1.1

α=0.6 

ρ=200 

β=1.1

α=0.7 

ρ=200 

β=1.1

α=0.6 

ρ=80 

β=1.2

Δα=0.03 

ρ=200 

β=1.1

No Dicard 6,002       6,007       6,002       6,015        7,554       7,511       7,557       7,541        

1-Discard 5,990       5,996       5,990       6,008        7,540       7,502       7,520       7,487        

2-Discard 5,990       5,993       5,990       5,990        7,520       7,451       7,484       7,476        

3-Discard 5,990       5,993       5,990       5,990        7,463       7,447       7,464       7,476        

4-Discard 5,990       5,990       5,990       5,990        7,458       7,447       7,447       7,476        

5-Discard 5,990       5,990       5,990       5,990        7,458       7,447       7,447       7,476        

6-Discard 5,990       5,990       5,990       5,990        7,447       7,447       7,447       7,470        

7-Discard 5,990       5,990       5,990       5,990        7,447       7,447       7,447       7,470        

8-Discard 5,990       5,990       5,990       5,990        7,447       7,447       7,447       7,470        

9-Discard 5,990       5,990       5,990       5,990        7,447       7,447       7,447       7,470        

10-Discard 5,990       5,990       5,990       5,990        7,447       7,447       7,447       7,459        

Exact Solution 5,990       7,447       

Dynamic α Dynamic α

Replications

α=0.6 

ρ=200 

β=1.1

α=0.7 

ρ=200 

β=1.1

α=0.6 

ρ=80 

β=1.2

Δα=0.03 

ρ=200 

β=1.1

α=0.6 

ρ=200 

β=1.1

α=0.7 

ρ=200 

β=1.1

α=0.6 

ρ=80 

β=1.2

Δα=0.03 

ρ=200 

β=1.1

No Dicard 9,251       9,242       9,134       9,195        6,851       6,938       6,862       6,987        

1-Discard 9,220       9,059       9,109       9,116        6,842       6,859       6,861       6,927        

2-Discard 9,137       9,057       9,081       9,113        6,822       6,859       6,861       6,801        

3-Discard 9,100       9,057       9,081       9,110        6,801       6,812       6,820       6,790        

4-Discard 9,067       9,033       9,076       9,081        6,790       6,801       6,810       6,790        

5-Discard 9,057       9,033       9,067       9,081        6,790       6,801       6,800       6,790        

6-Discard 9,057       9,033       9,067       9,065        6,790       6,790       6,800       6,790        

7-Discard 9,057       9,033       9,067       9,065        6,790       6,790       6,800       6,790        

8-Discard 9,057       9,033       9,059       9,065        6,790       6,780       6,800       6,790        

9-Discard 9,057       9,033       9,059       9,065        6,780       6,780       6,800       6,780        

10-Discard 9,057       9,024       9,056       9,065        6,780       6,780       6,800       6,780        

Exact Solution 8,995       6,780       

q random

Static α

Static α Static α

q=0.1 q=0.2

q=0.3

Static α
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Table 15: Average CPU Time of 10 Replications for Each Parameter Configuration 
over Discarding 

Dynamic α Dynamic α

Replications

α=0.6 

ρ=200 

β=1.1

α=0.7 

ρ=200 

β=1.1

α=0.6 

ρ=80 

β=1.2

Δα=0.03 

ρ=200 

β=1.1

α=0.6 

ρ=200 

β=1.1

α=0.7 

ρ=200 

β=1.1

α=0.6 

ρ=80 

β=1.2

Δα=0.03 

ρ=200 

β=1.1

No Dicard 248          250          288          268            333          366          366          380            

1-Discard 108          121          106          146            98             101          128          149            

2-Discard 124          130          137          143            110          164          108          107            

3-Discard 97             116          97             108            131          102          60             77              

4-Discard 131          143          114          143            85             106          122          102            

5-Discard 88             93             94             109            117          126          114          133            

6-Discard 101          146          85             125            103          80             81             110            

7-Discard 106          105          98             93              106          106          63             85              

8-Discard 75             78             64             103            103          102          88             47              

9-Discard 82             86             84             87              89             116          89             93              

10-Discard 122          117          97             108            86             76             79             71              

Total Time 1,282       1,386       1,263       1,434        1,360       1,444       1,297       1,354        

Time (Best 

Solution found)
114          160          165          165            515          458          521          523            

Dynamic α Dynamic α

Replications

α=0.6 

ρ=200 

β=1.1

α=0.7 

ρ=200 

β=1.1

α=0.6 

ρ=80 

β=1.2

Δα=0.03 

ρ=200 

β=1.1

α=0.6 

ρ=200 

β=1.1

α=0.7 

ρ=200 

β=1.1

α=0.6 

ρ=80 

β=1.2

Δα=0.03 

ρ=200 

β=1.1

No Dicard 430          476          503          533            279          308          302          329            

1-Discard 172          210          100          204            133          173          155          157            

2-Discard 138          132          78             139            126          148          119          163            

3-Discard 107          122          75             137            124          147          109          130            

4-Discard 96             116          72             106            78             91             85             88              

5-Discard 110          136          76             66              89             100          82             80              

6-Discard 117          119          57             68              106          79             73             76              

7-Discard 110          102          50             62              108          98             57             95              

8-Discard 89             72             50             78              98             120          64             101            

9-Discard 97             67             50             52              97             147          65             78              

10-Discard 73             65             47             35              83             75             52             88              

Total Time 1,540       1,618       1,159       1,479        1,320       1,485       1,162       1,384        

Time (Best 

Solution found)
648          686          727          692            423          499          373          614            

Static α Static α

q=0.1 q=0.2

Static α Static α

q=0.3 q random
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APPENDIX B: DATA SET USED in CHAPTER III for CRFLP 

First column of Table 16 shows whether the possible facility site is reliable or 

not. Second column shows the facility no. Third and fourth columns show the location 

(lat-long) of the facility sites. Fifth column presents the demand of the location and 

sixth column presents the fix opening cost that is going to be applied if a facility is 

opened on the specified location. Lastly the seventh column presents the failure 

probability if it is a random failure case otherwise all values in this column (only rows 

1-12) are equal, e.g., � = �Ø = 0.1. Emergency cost (demand satisfying cost if the 

demand is not satisfied from an opened facility but from emergency, e.g., dummy, 

facility) is 20 and is equal for all facility sites. Capacity for all facilities is taken 2000.     

Table 16: Data set for CRFLP 

Type No

1 0.82 0.18 957 938           0.24
2 0.54 0.70 202 642           0.12
3 0.91 0.72 186 1,230        0.13
4 0.15 0.31 635 1,008        0.11
5 0.74 0.16 737 1,279        0.08
6 0.58 0.92 953 1,431        0.25
7 0.60 0.09 450 1,187        0.29
8 0.37 0.19 188 1,044        0.30
9 0.70 0.52 206 1,466        0.26

10 0.22 0.40 995 989           0.17
11 0.50 0.45 429 948           0.17
12 0.30 0.52 528 585           0.24
13 0.95 0.20 570 2,000        0.00
14 0.65 0.07 938 2,000        0.00
15 0.53 0.11 726 2,000        0.00
16 0.95 0.95 533 2,000        0.00
17 0.15 0.13 565 2,000        0.00
18 0.31 0.40 322 2,000        0.00
19 0.98 0.73 326 2,000        0.00
20 0.59 0.04 663 2,000        0.00

Facility

U
n

re
li

a
b

le
R

e
li

a
b

le

Failure 

Probability

Fixed 

Open Cost
Demandlonglat
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Many real-world optimization problems have parameter uncertainty. For 

instances where the uncertainties can be estimated to a certain degree, stochastic 

programming (SP) methodologies are used to identify robust plans. Despite 

advances in SP, it is still a challenge to solve real world stochastic programming 

problems, in part due to the exponentially increasing number of scenarios. For two-

stage and multi-stage problems, the number of scenarios increases exponentially 

with the number of uncertain parameters, and for multi-stage problems also with the 

number of decision stages.  

In the case of large scale mixed integer stochastic problem instances, there 

are usually two common approaches: approximation methods and decomposition 

methods. Most common sampling-based approximation (SAA) SP technique is the 

Monte Carlo sampling-based method. The Progressive Hedging Algorithm (PHA) on 

the other hand can optimally solve large problems through the decomposition into 

smaller problem instances. The SAA, while effectively used in many applications, can 
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lead to poor solution quality if the selected sample sizes are not sufficiently large. 

With larger sample sizes and multi-stage SPs, however, the SAA method is not 

practical due to the significant computational effort required. In contrast, PHA suffers 

from the need to solve many sub-problems iteratively which is computationally 

expensive. 

In this dissertation, we develop novel SP algorithms integrating sampling 

based SAA and decomposition based PHA SP methods. The proposed integrated 

methods are novel in that they marry the complementary aspects of PHA and SAA in 

terms of exactness and computational efficiency. Further, the developed methods are 

practical in that they allow the analyst to calibrate the tradeoff between the exactness 

and speed of attaining a solution.  

We demonstrate the effectiveness of the developed integrated approaches, 

Sampling Based Progressive Hedging Algorithm (SBPHA) and Discarding SBPHA (d-

SBPHA), over the pure strategies (i.e. SAA or PHA) as well as other commonly used 

SP methods through extensive experimentation. In addition, we develop alternative 

hybridization strategies and present results of extensive experiments for these 

strategies under different uncertainty models. The validation of the methods is 

demonstrated through Capacitated Reliable facility Location Problem (CRFLP) and 

Multi-stage stochastic lot-sizing problems. 
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