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Approximate Bayesian Confidence Intervals for 
The Mean of a Gaussian Distribution Versus Bayesian Models 

 
Vincent A. R. Camara 

University of South Florida 
 

 
This study obtained and compared confidence intervals for the mean of a Gaussian distribution. 
Considering the square error and the Higgins-Tsokos loss functions, approximate Bayesian 
confidence intervals for the mean of a normal population are derived. Using normal data and 
SAS software, the obtained approximate Bayesian confidence intervals were compared to a 
published Bayesian model. Whereas the published Bayesian method is sensitive to the choice of 
the hyper-parameters and does not always yield the best confidence intervals, it is shown that the 
proposed approximate Bayesian approach relies only on the observations and often performs 
better. 
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Introduction 
A significant amount of research in Bayesian 
analysis and modeling has been published 
during the last twenty-five years. Bayesian 
analysis implies the exploitation of suitable prior 
information and the choice of a loss function in 
association with Bayes’ Theorem. It rests on the 
notion that a parameter within a model is not 
merely an unknown quantity, but behaves as a 
random variable that follows some distribution. 
In the area of life testing, it is realistic to assume 
that a life parameter is stochastically dynamic. 
This assertion is supported by the fact that the 
complexity of electronic and structural systems 
is likely to cause undetected component 
interactions resulting in an unpredictable 
fluctuation of the life parameter. 
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Although no specific analytical 

procedure exists which identifies the appropriate 
loss function to be used, the most commonly 
used is the square error loss function. One 
reason for selecting this loss function is due to 
its analytical tractability in Bayesian modeling 
and analysis. 

The square error loss function places a 
small weight on estimates near the parameter’s 
true value and proportionately more weight on 
extreme deviations from the true value. The 
square error loss is defined as follows: 
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This study considers a widely used and useful 
underlying model, the normal underlying model, 
which is characterized by 
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Employing the square error loss function along 
with a normal prior, Fogel (1991) obtained the 
following Bayesian confidence interval for the 
mean of the normal probability density function: 
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where the mean and variance of the selected 
normal prior are respectively denoted by 1μ  and 

2.τ  
This study employs the square error and 

the Higgins-Tsokos loss functions to derive 
approximate Bayesian confidence intervals for 
the normal population mean. Obtained 
confidence bounds are then compared with their 
Bayesian counterparts corresponding to (3). 
 

Methodology 
Considering the normal density function (2), to 
derive approximate Bayesian confidence 
intervals for the mean of a normal distribution, 
results obtained on approximate Bayesian 
confidence intervals for the variance of a 
Gaussian distribution are used (Camara, 2003). 
The loss functions used are the square error loss 
function (1), and the Higgins-Tsokos loss 
function. 

The Higgins-Tsokos loss function places 
a heavy penalty on extreme over- or under-
estimation. That is, it places an exponential 
weight on extreme errors. The Higgins-Tsokos 
loss function is defined as follows: 
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1 2, 0.f f                           (4) 

 
The use of these loss functions (1) and (4), along 
with suitable approximations of the Pareto prior, 
led to the following approximate Bayesian 

confidence bounds for the variance of a normal 
population (Camara, 2003). For the square error 
loss function: 
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For the Higgins-Tsokos loss function: 
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Using the above approximate Bayesian 
confidence intervals for a normal population 
variance (5) (6) along with 
 

2 2 2( ) ,E Xσ μ= −                  (8) 
 
the following approximate Bayesian confidence 
intervals for the mean of a normal population 
can easily be derived for a strictly positive mean. 

The approximate Bayesian confidence 
interval for the normal population mean 
corresponding to the square error loss is: 
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The approximate Bayesian confidence interval 
for the normal population mean corresponding 
to the Higgins-Tsokos loss function is: 
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With (9),(10), (11), (12) and  a change of 
variable, approximate Bayesian Confidence 
intervals are easily obtained when 0≤μ . 

 
Results 

To compare the Bayesian model (3) with the 
approximate Bayesian models (9 & 10), samples 
obtained from normally distributed populations 

(Examples 1, 2, 3, 4, 7) as well as approximately 
normal populations (Examples 5, 6) were 
considered. SAS software was employed to 
obtain the normal population parameters 
corresponding to each sample data set. For the 
Higgins-Tsokos loss function, f1 = 1 and f2 = 1 
were considered. 
 
Example 1 

Data Set: 24, 28, 22, 25, 24, 22, 29, 26, 
25, 28, 19, 29 (Mann, 1998, p. 504). 
 
Normal population distribution obtained with 
SAS: 

( 25.083, 3.1176)N μ σ= = , 

25.08333x = , 2 9.719696s = . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1a: Approximate Bayesian 
Confidence Intervals for the Population 

Mean Corresponding Data Set 1 

C.L. 
% 

Approximate 
Bayesian 

Bounds (SE) 

Approximate 
Bayesian 

Bounds (HT) 

80 
25.0683-
25.1311 

25.0730-
25.1158 

90 
25.0661-
25.1437 

25.0683-
25.1311 

95 
25.0650-
25.1543 

25.0661-
25.1437 

99 
25.0641-
25.1734 

25.0643-
25.1660 

Table 1b: Bayesian Confidence Intervals for the 
Population Mean Corresponding Data Set 1 

C.L. 
% 

Bayesian C. I. 
I 

Bayesian C. I. 
II 

Bayesian 
Bounds 
=1μ 2, =τ 1 

Bayesian 
Bounds 
=1μ 25, =τ 10 

80 
13.8971-
15.6097 

23.9353-
26.2300 

90 
13.6496-
15.8572 

23.6037-
26.5617 

95 
13.4422-
16.0646 

23.3258-
26.8395 

99 
13.0275-
16.4793 

22.7701-
27.3953 
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Example 2 
Data Set: 13, 11, 9, 12, 8, 10, 5, 10, 9, 

12, 13 (Mann, 1998, p. 504). 
 
Normal population distribution obtained with 
SAS: 

( 10.182, 2.4008)N μ σ= = , 

10.181812x = , 2 5.763636s = . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 3 

Data Set: 16, 14, 11, 19, 14, 17, 13, 16, 
17, 18, 19, 12 (Mann, 1998, p. 504). 
 
Normal population distribution obtained with 
SAS: 

( 15.5, 2.6799)N μ σ= = , 

15.5x = , 2 7.181818s = . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 4 

Data Set: 27, 31, 25, 33, 21, 35, 30, 26, 
25, 31, 33, 30, 28 (Mann, 1998, p. 504). 
 
Normal population distribution obtained with 
SAS: 

( 28.846, 3.9549)N μ σ= = , 

28.846153x = , 2 15.641025s = . 
 
 
 
 
 

Table 2a: Approximate Bayesian Confidence 
Intervals for the Population Mean 

Corresponding to Data Set 2 

C.L. 
% 

Approximate 
Bayesian 

Bounds (SE) 

Approximate 
Bayesian 

Bounds (HT) 

80 
10.1575-
10.2565 

10.1652-
10.2330 

90 
10.1538-
10.2756 

10.1575-
10.2565 

95 
10.1520-
10.2914 

10.1538-
10.2756 

99 
10.1506-
10.3194 

10.1506-
10.3194 

 

Table 2b: Bayesian Confidence Intervals for the 
Population Mean Corresponding to Data Set 2 

C.L. 
% 

Bayesian C. I. 
I 

Bayesian C. I. 
II 

Bayesian 
Bounds 
=1μ 2, =τ 1 

Bayesian 
Bounds 
=1μ 25, =τ 10 

80 6.6182-8.1193 9.3349-11.1832 

90 6.4013-8.3363 9.0678-11.4503 

95 6.2195-8.5180 8.8440-11.6741 

99 5.8560-8.8816 8.3964-12.1217 
 

Table 3a: Approximate Bayesian Confidence 
Intervals for the Population Mean 

Corresponding to Data Set 3 

C.L. 
% 

Approximate 
Bayesian 

Bounds (SE) 

Approximate 
Bayesian 

Bounds (HT) 

80 
15.4820-
15.5570 

15.4877-
15.5388 

90 
15.4794-
15.5721 

15.4820-
15.5570 

95 
15.4781-
15.5847 

15.4794-
15.5721 

99 
15.4770-
15.6075 

15.4773-
15.5986 

 

Table 3b: Bayesian Confidence Intervals for the 
Population Mean Corresponding to Data Set 3 

C.L. 
% 

Bayesian C. I. 
I 

Bayesian C. I. 
II 

Bayesian 
Bounds 
=1μ 2, =τ 1 

Bayesian 
Bounds 
=1μ 25, =τ 10 

80 
9.6623-
11.2287 

14.5692-
16.5438 

90 
9.4359-
11.4551 

14.2839-
16.8292 

95 
9.2462-
11.6448 

14.0447-
17.0683 

99 
8,8668-
12.0242 

13.5665-
17.5465 
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Example 5 

Data Set: 52, 33, 42, 44, 41, 50, 44, 51, 
45, 38,37,40,44, 50, 43 (McClave & Sincich, p. 
301). 
 
Normal population distribution obtained with 
SAS: 
 

( 43.6, 5.4746)N μ σ= = , 

43.6x = , 2 29.971428s = . 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 6 

Data Set: 52, 43, 47, 56, 62, 53, 61, 50, 
56, 52, 53, 60, 50, 48, 60, 5543 (McClave & 
Sincich, p. 301). 
 
Normal population distribution obtained with 
SAS: 
 

( 53.625, 5.4145)N μ σ= =  

53.625x = , 2 29.316666s = . 
 
 
 

Table 4a: Approximate Bayesian Confidence 
Intervals for the Population Mean 

Corresponding to Data Set 4 

C.L. 
% 

Approximate 
Bayesian 

Bounds (SE) 

Approximate 
Bayesian 

Bounds (HT) 

80 
28.8270-
28.9087 

28.8330-
28.8884 

90 
28.8242-
28.9256 

28.8270-
28.9087 

95 
28.8228-
28.9400 

28.8242-
28.9256 

99 
28.8217-
28.9663 

28.8220-
28.9560 

 

Table 4b: Bayesian Confidence Intervals for 
the Population Mean Corresponding to Data 

Set 4 

C.L. 
% 

Bayesian C. I. 
I 

Bayesian C. I. 
II 

Bayesian 
Bounds 
=1μ 2, =τ 1 

Bayesian 
Bounds 
=1μ 25, =τ 10 

80 
13.2394-
15.1312 

27.4048-
30.1961 

90 
12.9659-
15.4047 

27.0014-
30.5995 

95 
12.7369-
15.6337 

26.6634-
30.9375 

99 
12.2787-
16.0919 

25.9873-
31.6135 

 

Table 5a: Approximate Bayesian Confidence 
Intervals for the Population Mean 

Corresponding to Data Set 5 

C.L. 
% 

Approximate 
Bayesian 

Bounds (SE) 

Approximate 
Bayesian 

Bounds (HT) 

80 
43.5794-
43.6703 

43.5858-
43.6169 

90 
43.5764-
43.6902 

43.5794-
43.6703 

95 
43.5749-
43.7074 

43.5764-
43.6902 

99 
43.5738-
43.7395 

43.5741-
43.7268 

 

Table 5b: Bayesian Confidence Intervals for 
the Population Mean Corresponding to Data 

Set 5 

C.L. 
% 

Bayesian C. I. 
I 

Bayesian C. I. 
II 

Bayesian 
Bounds 
=1μ 2, =τ 1 

Bayesian 
Bounds 
=1μ 25, =τ 10 

80 
14.8305-
16.9204 

41.4441-
45.0272 

90 
14.5285-
17.2225 

40.9263-
45.5450 

95 
14.2754-
17.4756 

40.4924-
45.9789 

99 
13.7692-
17.9817 

39.6246-
46.8467 
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Example 7 

Data Set: 50, 65, 100, 45, 111, 32, 45, 
28, 60, 66, 114, 134, 150, 120, 77, 108, 112, 
113, 80, 77, 69, 91, 116, 122, 37, 51, 53, 131, 
49, 69, 66, 46, 131, 103, 84, 78 (SAS Data). 
 
Normal population distribution obtained with 
SAS: 
 

( 82.861, 33.226)N μ σ= =  

82.8611x = , 2 1103.951587s =  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

All seven Examples show that the 
proposed approximate Bayesian confidence 
intervals contain the population mean. The 
Bayesian model, however, does not always 
contain the population mean. 
 

Conclusion 
In this study, approximate Bayesian confidence 
intervals for the mean of a normal population 
under two different loss functions were derived 
and compared with a published Bayesian model 
(Fogel, 1991). The loss functions employed 
were the square error and the Higgins-Tsokos 

Table 6a: Approximate Bayesian Confidence 
Intervals for the Population Mean 

Corresponding to Data Set 6 

C.L. 
% 

Approximate 
Bayesian 

Bounds (SE) 

Approximate 
Bayesian 

Bounds (HT) 

80 
53.6098-
53.6779 

53.6145-
53.6602 

90 
53.6076-
53.6932 

53.6098-
53.6779 

95 
53.6065-
53.7064 

53.6076-
53.6932 

99 
53.6056-
53.7315 

53.6058-
53.7216 

 

Table 6b: Bayesian Confidence Intervals for 
the Population Mean Corresponding to Data 

Set 6 

C.L. 
% 

Bayesian C. I. 
I 

Bayesian C. I. 
II 

Bayesian 
Bounds 
=1μ 2, =τ 1 

Bayesian 
Bounds 
=1μ 25, =τ 10 

80 
19.1978-
21.2568 

51.3930-
54.8269 

90 
18.9002-
21.5544 

50.8967-
55.3232 

95 
18.6508-
21.8038 

50.4808-
55.7391 

99 
18.1521-
22.3024 

49.6492-
56.5707 

 

Table 7a: Approximate Bayesian Confidence 
Intervals for the Population Mean 

Corresponding to Data Set 7 

C.L. 
% 

Approximate 
Bayesian 

Bounds (SE) 

Approximate 
Bayesian 

Bounds (HT) 

80 
82.7072-
83.4808 

82.7539-
83.2572 

90 
82.6856-
83.6884 

82.7072-
83.4808 

95 
82.6751-
83.8815 

82.6856-
83.6884 

99 
82.6669-
84.2823 

82.6690-
83.7173 

 

Table 7b: Bayesian Confidence Intervals for 
the Population Mean Corresponding to Data 

Set 7 

C.L. 
% 

Bayesian C. I. 
I 

Bayesian C. I. 
II 

Bayesian 
Bounds 
=1μ 2, =τ 1 

Bayesian 
Bounds 
=1μ 25, =τ 10 

80 
3.2940- 
5.8132 

63.0810-
75.4828 

90 
2.9299-
6.17740 

61.2886-
77.2752 

95 
2.6248- 
6.4824 

59.7868-
78.7770 

99 
2.0147- 
7.0926 

56.7833-
81.7806 
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loss functions. The following conclusions are 
based on results obtained: 
1. The Bayesian model (3) used to construct 

confidence intervals for the mean of a 
normal population does not always yield the 
best coverage accuracy. Each of the 
obtained approximate Bayesian confidence 
intervals contains the population mean and 
performs better than its Bayesian 
counterparts. 

2. Bayesian models are generally sensitive to 
the choice of hyper-parameters. Some values 
arbitrarily assigned to the hyper-parameters 
may lead to a very poor estimation of the 
parameter(s) under study. In this study some 
values assigned to the hyper-parameters led 
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