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Chapter 1  

INTRODUCTION 

1.1 Roles of RNA in biology 

According to the central dogma of biology, DNA is transcribed into RNA, 

which is then translated into proteins (Figure 1.1).  For a long time, RNA was 

thought to act only as an intermediate for translation of the genetic code into 

proteins.  However, many important biological roles of RNA have since been 

discovered.  For instance, RNA also can convey genetic information and plays 

important roles in splicing, editing, and regulation and silencing of gene 

expression.  The structure of RNA plays an important part in facilitating these 

multiple functions.  RNA can fold into a wide range of structures from a simple 

hairpin to structures of enormous complexity(2, 3).   

1.1.1 Natural aptamers and riboswitches 

One way that RNA uses structure to perform a function is as a riboswitch.  

Riboswitches are gene-regulatory mRNA domains that directly recognize small 

molecule metabolites and second messengers(4-13).  A riboswitch consists of an 

aptamer domain that specifically recognizes a ligand by folding into a specific 

structure that allows for specific binding of the ligand to the RNA.  This aptamer 

domain is followed downstream by an expression platform, which upon binding of 

the ligand to the aptamer, regulates gene expression by acting as a switch turning 

on or off transcription or translation (Figure 1.2).  Riboswitch-mediated gene 

regulation employs a conformational change, either global or local, upon binding 

of the ligand.  A riboswitch has recently been discovered that recognizes cyclic  
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Figure 1.1 The central dogma of biology. 
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Figure 1.2 A transcriptional-on riboswitch.  In the absence of ligand, the 
terminator stem is formed in the downstream expression platform and 
transcription is prevented from occurring.  When the aptamer domain binds the 
ligand (purple), there is some type of conformational change in which formation of 
the terminator stem is prevented and the anti-terminator is formed, thus turning on 
transcription. 

Aptamer domain Expression platform 
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diguanylate (c-di-GMP)(14).  c-di-GMP is a bacterial second messenger that 

regulates a host of vital cellular functions such as virulence, motility, and biofilm 

formation(15-17).  Here, we have used single molecule FRET to investigate how 

the c-di-GMP riboswitch uses conformational change to regulate the gene 

expression. 

1.2 RNA as a tool 

1.2.1 Artificial aptamers 

Artificial aptamers have also been shown to be an effective analytical tool 

to detect a specific analyte of interest, which in this study is tetramethylrhodamine 

(TAMRA), an organic fluorophore(18-21).  It has been proposed that this method 

could be a useful tool to label endogenous RNA in vivo.  To do this, several of 

these aptamers could be placed in the 5’ untranslated region of an RNA, and 

upon binding of the fluorophore to the aptamer, the RNA would be fluorescently 

labeled.  Here, we used several biophysical techniques to characterize how 

binding to the aptamer affects the fluorescent properties of TAMRA. 

1.2.2 Molecular beacons 

RNA can be used as an analytical tool to detect an assortment of analytes.   

For example, molecular beacons (MB) are hairpin probes that fluoresce upon 

hybridization to their target sequence (Figure 1.3) (22).  This is accomplished with 

the use of a fluorophore conjugated to one end and a quencher on the other.  The 

MB consists of a loop sequence, generally 15 to 20 nucleotides, specific for the 

target of interest and a self-complementary stem sequence ranging from five to 

seven base pairs. When the MB encounters the 
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Figure 1.3 The molecular beacon is a hairpin probe that fluoresces upon 
binding to the target sequence.  The probe consists of a loop sequence that is 
specific for the target and a self-complementary stem sequence.  A 
fluorophore is conjugated to one end of the stem, while a quencher is on the 
other.  The probe is in the hairpin, nonfluorescent, form in the absence of 
target.  Binding to the target unfolds the MB resulting in a fluorescent signal. 
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target sequence, it binds to the target to form a hybrid that is more stable than the 

stem duplex of the hairpin.  As a result of optimized design, the MB has been 

shown to possess the ability to discern single base mismatches.  The MB can be 

designed such that a hybrid with a target sequence containing a single mismatch 

is no longer more stable than the hairpin.  In the absence of target, the hairpin is 

folded bringing the fluorophore into close proximity to the quencher, thus 

quenching the fluorescence.  However with target present, the hairpin unfolds and 

hybridizes to the target sequence increasing the distance between the 

fluorophore and the quencher resulting in a fluorescent signal.  A drawback of 

using these probes in vivo is that RNA is readily degraded by RNases in the 

cell(23-25).  The 2’-OH moiety is often modified to prevent this degradation(26-

32).  Here, we used FRET and single molecule FRET to determine the effects that 

these commonly used 2’ modifications have on the ability of molecular beacons to 

fold and to recognize their target.       

1.3 RNA Tracking 

1.3.1 Techniques 

Current techniques to monitor mRNA expression include fluoresence in situ 

hybridization (FISH), transfection of full-length fluorescent mRNA, transgenic 

models, and molecular beacons (MB).  FISH involves the use of labeled 

oligonucleotide probes to localize a target sequence in a tissue section.  However, 

FISH requires fixed tissues, and any unhybridized probes must be washed away 

to limit background signals(33).  Another approach is to modify the gene encoding 

the mRNA with a sequence with an affinity towards the bacteriophage MS2 coat 
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protein.  The cells are then transfected with a fusion protein of green fluorescent 

protein (GFP) and MS2 coat protein.  The GFP fusion protein then binds to the 

modified mRNA resulting in a fluorescent signal.  This method, however, cannot 

be used to monitor endogenous mRNA and transgenes often do not have the 

same functionality as the endogenous gene(33, 34). 

 Molecular beacons have also been used to track RNA inside cells.  This 

fluorescence will identify the location of the target mRNA.  Since the fluorescence 

is quenched when the MB is unbound to the target, there is no need to wash 

away any unbound probes to decrease background, as was the case with FISH, 

adding to the MBs appropriateness for use in living cells and single molecule 

detection(22, 30, 34-36).  

1.3.2 Delivery  

Numerous nucleic acid delivery methods have been demonstrated 

including microinjection, cell-penetrating peptides, and biolistic delivery by gene 

gun(34, 37).  Microinjection involves the use of a fine needle to directly inject the 

MB into the cell.  The method is, however, ineffective for MB delivery into a large 

number of cells, and the probes have a tendency to accumulate in the 

nucleus(23, 34).  The gene gun has proven effective in the delivery of molecular 

beacons.  In this method, MBs are delivered to the cells along with a cytoplasmic 

dye, to ensure delivery, via small gold particles that penetrate the plasma 

membrane, which then reseals (Figure 1.4) (37).  However, the gene gun shoots a 

random subset of cells.  Delivery by means of cell-penetrating peptides, for 

example HIV-1 Tat peptide, has also shown great promise.  These peptides are  
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Figure 1.4  The biolistic delivery of molecular beacons.  Small gold particles 
are coated with molecular beacons and a cytoplasmic dye and injected via a 
gene gun into cells.  Figure courtesy of Dr. Karen Myhr. 
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generally short and rich in cationic amino acids and are most likely transported 

into the cell via endocytosis.  Molecular beacons may be conjugated to the 

peptide by a biotin/streptavidin interaction, a thiol/maleimide linkage, or a disulfide 

bridge that is cleavable by the reducing environment of the cytoplasm(24, 34, 38). 

1.4 Single molecule and FRET           

Single molecule spectroscopy reveals structural dynamics and functions of 

a system that would otherwise be concealed in ensemble-averaged techniques.  

Fluorescence resonance energy transfer (FRET) is a method often used in 

conjunction with single molecule techniques.  FRET involves the energy transfer 

between two fluorophores, a donor and acceptor.  The fluorophore pair is chosen 

so that the emission peak of the donor overlaps the excitation peak of the 

acceptor (Figure 1.5).  The emission energy of the donor is transferred and 

excites the acceptor, which then emits.  FRET is a distance-dependent 

phenomenon whose efficiency is expressed in the following equation, 

€ 

EFRET (R) =
1

1+
R
R0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

6

€ 

 

where R is the distance between the two fluorophores and R0 is the distance at 

which FRET efficiency is 50% (Figure 1.6).   

Total internal reflection (TIR) was chosen as a means to reduce 

background signals.  This is accomplished by  
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Figure 1.5  Principle of fluorescence resonance energy transfer (FRET). 
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Figure 1.6  Distance dependence of FRET. 
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reducing the detection volume to a small area at the interface between the quartz 

slide and solution.  A 532 nm laser beam was directed towards the interface 

through a prism at an incidence angle greater than the critical angle leading to 

total reflection of the laser beam at the interface.  Although totally reflected, the 

wave properties of the incident light create an evanescent field at the interface.  

The intensity of this evanescent field decreases exponentially as the distance 

from the interface increases.  This field penetrates a distance of a few hundred 

nanometers into the solution exciting those fluorophores that are close to the 

slide/solution interface.  This results in those molecules far away from the 

interface not being excited by the laser, decreasing any background emission 

signal that would otherwise be produced by those molecules (Figure 2.4).     

1.5 Fluorescent labeling of nucleic acids 

Fluorescence-based assays have become increasingly important in 

biophysical studies of the structure, function and dynamics of nucleic acids.  The 

advent of single molecule fluorescence spectroscopy has offered insight into 

many kinetic and mechanistic details previously hidden by ensemble techniques.  

These studies require the site-specific and stable incorporation of fluorescent tags 

into the system of interest.  Ribonucleic acid (RNA) and deoxyribonucleic acid 

(DNA) do not contain naturally occurring fluorophores, therefore, to perform 

fluorescence assays, it is necessary to introduce these groups.  For short nucleic 

acid constructs, a fluorophore may be conjugated to a nucleotide at the 5’ end, 3’ 

end or internally.  For longer nucleic acid constructs, a fluorophore label may be 

added by ligation or hybridization of short fluorescently labeled oligonucleotides. 
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1.5.1 Short Nucleic Acids 

Short nucleic acids (less than 60 nucleotides) can be fluorophore labeled 

by conjugating to the 5’ end, the 3’ end or an internal nucleotide.  The label may 

be added during oligonucleotide synthesis through the incorporation of 

fluorescently nucleotide analogs or by post-synthetic covalent attachment of the 

fluorophore to a modified base.   

1.5.1.1 Labeling during synthesis 

	  

Fluorophores may be incorporated directly to an oligonucleotide during 

solid-phase synthesis by use of fluorescent phosphoramidites.  Drawbacks of 

fluorescent labeling during synthesis include the limited availability of fluorescent 

phosphoramidites and many fluorophores are not stable enough to withstand 

multiple rounds of synthesis. 

1.5.1.2 Post-synthetic labeling 

	  

Post-synthetic fluorescence labeling is the most common method for 

labeling nucleic acids.  To post-synthetically add a fluorescent label to the 5’ end 

or 3’ end of an oligonucleotide, an amino (-NH2) or thiol (-SH) group is added via 

an aliphatic carbon linker that is linked to the terminal phosphate group. 

Succinimidyl ester, isothiocyanate or sulfonyl chloride derivitized fluorophores 

may be then covalently linked to those nucleotides with amino functionalities 

(Figure 1.7a).  Maleimide or iodoacetamide derivitized fluorophores may be 

covalently linked to those nucleotides with thiol functionalities (Figure 1.7b).  
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Figure 1.7  Post-synthetic fluorophore labeling via covalent reaction.  A) Amino 
group on oligonucleotide reacts with succinimidyl ester conjugated to a 
fluorophore.  B) Thiol group on oligonucleotide reacts with maleimide conjugated 
to a fluorophore.   

	  



15 

 

Labeling protocols have previously been published and are provided along with 

the dye from the manufacturer(39-41).  Labeling reactions can typically be carried 

out at room temperature under mild conditions.  To post-synthetically add a 

fluorescent label to an internal nucleotide, an aliphatic carbon linker with an amino 

or thiol group may be linked to the C5 of a modified thymine or cytosine.  The 

amino or thiol moieties may be reacted with the derivitized fluorophores 

mentioned above.  Other less common labeling strategies have been described, 

including conjugation via click chemistry, biotin/avidin, antibody/antigen, 

crosslinking, and caging(39-41).   

1.5.1.3 Labeling during transcription 

	  

The 5’ end of an oligonucleotide may be labeled during transcription by 

introduction of fluorescently labeled nucleotide analogs or by functionalizing the 5’ 

terminus with a thiophosphate, which is then reacted with a derivatized 

fluorescent dye.  In the latter, an excess of guanosine 5’-monothiosphosphate 

(GMPS) over guanosine triphosphate (GTP) is added to the transcription reaction.  

As the excess GMPS can only be incorporated at the 5’ end, the majority of RNA 

transcripts will be primed with 5’ GMPS.  The thiol group at the 5’ end can then be 

conjugated to a maleimide or iodoacetamide derivitized fluorophore.  This method 

has been successfully used to site-specifically label the 5’ end of precursor 

tRNAAsp (42). 
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1.5.2 Long Nucleic Acids 

Longer nucleic acids (greater that 60 nucleotides) present more of a 

challenge for fluorescent labeling, as such RNAs cannot be efficiently synthesized 

by solid phase synthesis and RNA polymerase cannot incorporate dyes site 

specifically during transcription.  Two main strategies, hybridization of short 

fluorescently labeled oligonucleotides and ligation, have been developed to 

introduce a fluorescent label onto these longer nucleic acids. 

1.5.2.1 Labeling via hybridization 

	  

A fluorescent label may be introduced to a longer oligonucleotide via 

hybridization, in which a short fluorescently labeled oligonucleotide is designed to 

selectively hybridize to an appropriate single-stranded stretch of the RNA or DNA.  

A specific loop sequence may be engineered to afford hybridization of the labeled 

oligonucleotide. A group II intron was fluorescently labeled via hybridization 

(Figure 1.8a) in order to investigate the conformational changes of this large, 

catalytic RNA(43).  The ribosome was also site-specifically labeled (Figure 1.8b) 

by hybridizing fluorescently labeled oligonucleotides to extensions in ribosomal 

RNA hairpins(44).  Thirdly, a long RNA derived from the catalytic domain of 

RNase P was fluorescently labeled (Figure 1.8c) by replacing a functionally 

unimportant hairpin loop with one complementary to a short fluorescently labeled 

oligonucleotide(45). 
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Figure 1.8 Fluorophore labeling via hybridization with fluorescently labeled 
oligonucleotide.  A) Fluorescence labeling of a group II intron from Saccharomyces 
cerevisiae (Steiner 2008).  B) Site-specific fluorescence labeling of the ribosomal 30S 
subunit from Thermus thermophilus by introducing helix extensions for hybridization 
with fluorescently labeled oligonucleotides (Dorywalska 2005).  Red boxes indicate 
helices that were extended for labeling. C) Fluorescence labeling of the catalytic 
domain of RNase P from Bacillus subtilis (Smith 2005).  Labeled oligonucleotides 
(red and blue) hybridized to the extended loops L15 and L18m. All figures were 
reproduced with permission.  
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1.5.2.2 Labeling via ligation 

	  

A fluorescent label may also be introduced to a longer oligonucleotide via 

ligation of a fluorescently labeled oligonucleotide.  In short, a fluorescently labeled 

oligonucleotide is ligated to the long unlabeled RNA strand via a short DNA splint 

oligonucleotide that is complementary to the ends of the two oligonucleotides to 

be connected.  T4 DNA ligase is then added to connect the two oligonucleotides 

and DNase may be added to degrade the splint (Figure 1.9).  T4 DNA ligase has 

been shown to be effective at ligation as long as either the splint or the 

oligonucleotides to be ligated is DNA.  T4 RNA ligase has been shown to be more 

efficient at ligating two RNA oligonucleotides.  pre-mRNA was fluorescently 

labeled via ligation in order to monitor splicing by single molecule spectroscopy 

(46). 

Labeling via hybridization and ligation both offer advantages and 

disadvantages.  Labeling via ligation allows site-specific labeling anywhere in the 

RNA but the structure of the RNA competes with hybridization of the DNA splint 

leading to a large variation in labeling efficiency.  Labeling via hybridization of 

fluorescently labeled oligonucleotides offers a more efficient labeling reaction as 

well as high specificity; however, the complimentary oligonucleotide may 

dissociate limiting the duration of experiments as well it may be difficult to find a 

loop in the native sequence that is sufficient for hybridization so it is often 

necessary to introduce a non-native sequence for successful hybridization of the 
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labeled oligonucleotide. 
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Figure 1.9  Fluorophore labeling via ligation with fluorescently labeled 
oligonucleotide.  Step 1: T4 DNA ligase or T4 RNA ligase II ligates unlabeled 
oligonucleotide with labeled oligonucleotide.  Step 2:  DNase degrades DNA splint.   
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Chapter 2  

Allosteric tertiary interactions pre-organize the c-di-GMP riboswitch and 
accelerate ligand binding (47) 

Adapted from Wood S., Ferre-d’Amare A., and Rueda D. Allosteric Tertiary 
Interactions Preorganize the c-di-GMP Riboswitch and Accelerate Ligand 

Binding. ACS Chemical Biology, 2012, 7(5): 920-927. 

2.1 Introduction 

Riboswitches are gene-regulatory mRNA domains that directly recognize 

small molecule metabolites and second messengers(4, 8-10, 12, 13, 48, 49).  

With the exception of the catalytic glmS ribozyme-riboswitch(50, 51), these 

genetic regulators function by adopting ligand occupancy-dependent 

conformations that modulate transcription, translation or alternative splicing.  The 

substructure of a riboswitch that suffices for specific ligand binding in vitro is 

known as its "aptamer" domain.  Biophysical characterization of the aptamer 

domains of different riboswitch classes shows that their global structural 

response to ligand binding is idiosyncratic(52).  For instance, the aptamer 

domain of the flavin-mononucleotide (FMN) riboswitch from Bacillus subtilis is 

largely pre-organized in the absence of FMN at physiologic Mg2+ concentrations, 

while that of the class I S-adenosylmethionine (SAM) riboswitch from the same 

organism is only partly ordered in the absence of its cognate metabolite, and 

adopts its most compact form upon SAM binding(52).  Moreover, the degree of 

compaction induced by ligand binding or by a particular Mg2+ concentration 

varies even between the aptamer domains of members of the same class of 

riboswitch [e.g. the thiamine-pyrophosphate (TPP) riboswitches from Escherichia  
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Figure 2.1 Structure of cyclic diguanylate (c-di-GMP). 



23 

 

coli and Arabidopsis thaliana](53).  Although it has been suggested that this 

variation may reflect the distinct regulatory requirements of each genetic 

locus(53), the functional significance of ligand binding-induced global folding of 

riboswitch aptamer domains remains to be established. 

Cyclic diguanylate (c-di-GMP) is a bacterial second messenger involved in 

the regulation of a variety of complex physiological adaptations including motility, 

virulence, biofilm formation, and cell cycle progression (Figure 2.1) (15-17, 54, 

55).  Two structurally distinct classes of riboswitches that recognize c-di-GMP 

have been described(14, 56).  Of these, the class-I riboswitches (c-di-GMP-I) are 

the most widespread.  Over 500 different c-di-GMP-I riboswitches have been 

identified in a wide range of bacterial species.  This riboswitch is often found in 

multiple copies in bacterial genomes.  For instance, as many as 30 different 

genetic loci in Geobacter uraniumreducens appear to be under c-di-GMP-I 

riboswitch regulation(57).  Crystallographic structure determinations of the 

aptamer domain of the c-di-GMP-I riboswitch associated with the tfoX gene of 

Vibrio cholerae bound to the second messenger revealed that the RNA consists 

of three helices, paired regions P1a, P1b, and P2, joined in a three-way junction 

by joining regions J1a/b, J1b/2, and J2/1a (Figure 2.2) (1, 58).  c-di-GMP binds at 

the junction, participating in a network of interactions between P1a, P1b, and the 

three joining regions.  The conserved A47 from J1b/2 intercalates between the 

two guanine bases of the second messenger (Figure 2.2, purple).  The bound c-

di-GMP and A47 mediate continuous coaxial stacking between P1b and P1a.  P2 

docks side-by-side with P1b.  This arrangement appears to be stabilized by two  
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Figure 2.2 Secondary structure of the c-di-GMP-I riboswitch aptamer domain 
from Vibrio cholerae with c-di-GMP bound.  For smFRET, a two-piece 
construct was used with the strands highlighted in red and blue.  The red 
strand was covalently labeled with a Cy3 fluorophore on the 5’ end and a 
biotin on the 3’ end for immobilization to the quartz slide for smFRET 
experiments.  The blue strand was internally labeled with a Cy5 fluorophore.  
Bound c-di-GMP is highlighted in purple and G83C, C44A, and A33U 
mutations are highlighted in green, orange, and cyan, respectively. 
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sets of phylogenetically conserved tertiary interactions distal to the junction, in 

addition to the c-di-GMP-bound junction itself.  First, the GNRA tetraloop (GT) 

that caps P1b docks against a tetraloop receptor (TR) in P2(59).  Second, an 

interhelical Watson-Crick pair is formed between C44 of P1b and G83 of P2 

(Figure 2.2, green and orange) (1, 58).   

Small-angle X-ray scattering (SAXS) experiments revealed a dramatic 

compaction of the class-I riboswitch aptamer domain induced by c-di-GMP 

binding in the presence of physiologic concentrations of Mg2+ ion(1, 53).  Low-

resolution molecular envelopes calculated from the SAXS data suggest that in 

the absence of the second messenger, the RNA adopts an extended 

conformation in which P1b and P2 are splayed apart, and neither the GT/TR 

interaction nor the C44•G83 base pairing takes place.  Nuclease protection and 

in-line probing experiments are consistent with disruption of both sets of tertiary 

interactions in the absence of c-di-GMP, and also suggest that P1a becomes 

disordered under these conditions(1, 14).  Previous studies of large catalytic 

RNAs have shown that tertiary interactions promote RNA folding within compact 

intermediates resulting from an early divalent-cation induced collapse, in which 

the helices interact but are not yet stably docked (reviewed in (60)).  For 

instance, in the case of the Azoarcus group I ribozyme, a GT/TR interaction has 

been shown cooperatively to promote tertiary structure throughout the RNA, 

increasing the speed and accuracy of its folding(61).  Unlike these catalytic 

RNAs, which require only divalent cations to achieve their native state, riboswitch  
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Figure 2.3 Three-dimensional structure of the c-di-GMP-I riboswitch aptamer 
domain(1), color-coded as in Figure 2.2.   
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aptamer domains have evolved to recognize small molecules concomitant with 

folding.   

In order to dissect the interplay of cations, second-messenger ligand and 

tertiary interactions in riboswitch folding, we have now analyzed the c-di-GMP-I 

aptamer domain using single molecule fluorescence resonance energy transfer 

(smFRET)(39, 62-68).  These studies confirm that this RNA samples extended 

and compact conformations.  However, the smFRET analysis, which can uncover 

structural dynamics of individual molecules that would otherwise be hidden in 

ensemble-averaged experiments, reveal that the aptamer domain is kinetically 

partitioned into four distinct populations: two that in the timeframe of the 

experiment remain statically docked or undocked (compact or extended, 

respectively), one that fluctuates between docked and undocked but is 

preferentially in the docked state, and another that fluctuates but is preferentially 

undocked.  The population structure shifts in response to Mg2+ and c-di-GMP 

concentration, such that at saturating second messenger and physiologic Mg2+ 

concentration, the majority of the molecules are statically docked.  smFRET 

analysis of site-directed mutants that disrupt the GT/TR or C44•G83 tertiary 

interactions indicates that these are required not only for binding of c-di-GMP, but 

also profoundly impact the population structure of the RNA in the absence of 

ligand.  Thus, we find that these tertiary interactions, which are distant from the c-

di-GMP binding site, serve to pre-organize the aptamer domain.  In vivo, this 

would allow the nascent riboswitch transcript to fold and recognize its ligand 
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rapidly and thus respond effectively to varying intracellular levels of the second 

messenger. 

2.2 Results 

2.2.1 Single molecule FRET reveals four distinct populations  

We incorporated a Cy3 (donor) and a Cy5 (acceptor) fluorophores near 

the distal tips of P2 and P1b, respectively, of an RNA construct based on the 

Vibrio cholerae tfoX c-di-GMP riboswitch (Figure 2.2) (39).  With this labeling 

scheme, the extended conformation is expected to result in a low FRET ratio, 

while the compact conformation is expected to result in a high FRET ratio(1).  

Characteristic smFRET time trajectories in standard conditions (which contain 

2.5 mM Mg2+) are shown in Figure 2.5.  The aptamer domain RNA exhibits FRET 

ratios of 0.2 and 0.8, which may correspond to the extended and docked 

conformations, respectively, deduced from the SAXS reconstructions(1).  States 

with intermediate FRET efficiencies were not observed with a time resolution of 

33 ms.  In the absence of c-di-GMP, most molecules (49 ± 4% of 282, Table 2.1) 

remain in a low FRET state over the time of the experiment (a few minutes).  We 

refer to this population as static undocked.  A smaller population (27 ± 5%) 

resides primarily in the high FRET state with brief excursions into the low FRET 

state.  We refer to this population as dynamic docked.  Two other minor 

populations are also observed: one in which molecules exhibit high FRET for the 

duration of the experiment (7 ± 2%), and another in which molecules display 

primarily low FRET with brief excursions into a high FRET state (17 ± 8%).  We 

refer to these populations as static docked and dynamic undocked, respectively.   
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Figure 2.4 Single molecule FRET reveals four populations. Schematic 
diagram of single molecule experiments.  The RNA complex is immobilized to 
the quartz slide surface through a biotin-streptavidin bridge.  The fluorophores 
are excited in a prism-based total internal reflection microscope.  
Fluorescence is collected through the objective and monitored with a CCD 
camera.   
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Figure 2.5 Single molecule FRET reveals four populations. smFRET time 
trajectories.  The static undocked population is identified by a static 0.2 FRET 
ratio.  The dynamic docked population is identified by a mostly 0.8 FRET ratio 
with brief excursions to low FRET.  The dynamic undocked population is 
identified by a mostly 0.2 FRET ratio with brief excursion to high FRET.  The 
static docked population is identified by a static 0.8 FRET ratio. 
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c-di-GMP [Mg 2+] 

(mM) N 
Static 

Undocked 
(%) 

Dynamic 
Undocked 

(%) 

Dynamic 
Docked 

(%) 

Static 
Docked 

(%) 

- 0 75 96 ± 6 4 ± 4 0 0 

+ 0 98 95 ± 4 4 ± 4 0 1 ± 1 

- 0* 107 100 ± 0 0 0 0 

+ 0* 144 100 ± 0 0 0 0 

- 2.5 282 49 ± 4 17 ± 8 27 ± 5 7 ± 2 

+ 2.5 250 29 ± 6 8 ± 6 2 ± 2 61 ± 4 

c-di-AMP 2.5 149 54 ± 8 14 ± 2 29 ± 13 3 ± 2 

- 50 118 29 ± 1 27 ± 7 34 ± 1 10 ± 5 

WT 

+ 50 97 19 ± 10 7 ± 7 4 ± 4 70 ± 10 

- 2.5 108 95 ± 9 5 ± 1 0 0 
G83C 

+ 2.5 164 80 ± 6 17 ± 1 1 ± 1  2 ± 2 

- 2.5 99 93 ± 3 7 ± 4 0 0 
C44A 

+ 2.5 166 68 ± 5 7 ± 4 0 25 ± 7 

- 2.5 99 68 ± 6 29 ± 8 4 ± 2 1 ± 1 

+ 2.5 101 49 ± 5 12 ± 1 2 ± 1 37 ± 3 A33U 

- 20 102 60 ± 9 23 ± 9 17 ± 9 1 ± 1 

 

Table 2.1 Percentage of molecules residing in the static undocked, dynamic 
docked, dynamic undocked, and static docked populations for wild-type (WT) and 
mutant c-di-GMP-I riboswitch aptamers as a function of [Mg2+] and the presence 
of 1 µM c-di-GMP or c-di-AMP, as indicated.  N is the number of molecules.  
Percentages were calculated as the number of molecules residing in each 
population out of the total number of molecules analyzed.  Confidence intervals 
stem from the standard deviation between at least two replicate experiments. 

*Conditions with no Mg2+ and high monovalent (150 mM K+ and 30 mM Na+). 
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 [Mg 2+] 
(mM) 

KD  

(nM) 
ΔH 

(kcal/mol) 
-TΔS 

(kcal/mol) 
ΔG 

(kcal/mol) n 

0.5 12000 -56.3 49.4 -6.9 0.9 

2.5 13.8 ± 1.6 -42.2 ± 1 31.2 ± 1 -10.9 ± 0.2 1.0 ± 0.1 WT 

10 5.9 ± 1.4 -38.4 ± 1.5 27.1 ± 1.8 -11.3 ± 0.3 0.9 ± 0.1 

G83C 10	   7250 ± 353 -37.8 ± 4.6 30.7 ± 4.5 -7.1 ± 0.1 1.0 ± 0.1 

C44A 10	   496 ± 53 -41.7 ± 2.1 32.9 ± 1.9 -8.8 ± 0.1 0.9 ± 0.1 

G83U 10	   1500 -41.6 33.6 -8.0 0.8 

A33U 10	   12.5 ± 3.5 -37.7 ± 0.1 26.8 ± 0.2 -10.9 ± 0.1 1.1 ± 0.1 

A34U 10	   23 ± 2.8 -45.8 ± 1.3 35.1 ± 1.3 -10.6 ± 0.1 0.9 ± 0.1 

A34G 10	   16.5 ± 2.1 -35.2 ± 0 24.2 ± 0 -10.9 ± 0 1.1 ± 0.1 

A34C 10	   26 ± 7 -47.3 ± 0.3 36.7 ± 0 -10.6 ± 0.3 1.0 ± 0.1 

 

Table 2.2 Isothermal titration calorimetry analysis of c-di-GMP binding by wild-
type (WT) and mutant c-di-GMP-I riboswitch aptamers.  n denotes the 
stoichiometry indicated by the non-linear least-squares fit.  Results are reported 
as the mean ± standard deviation.  WT titrations at 2.5 mM and 10 mM Mg2+ 
were carried out in triplicate and a single titration at 0.5 mM Mg2+.  Mutant 
titrations were carried out in duplicate, except for the G83U titration, which was 
carried out once.  T = 303.15 K for all experiments.  For –TΔS values, error was 
propagated by multiplying the error of ΔS by T. 
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We used dwell time analysis to determine the rate constants of docking and 

undocking for the two dynamic populations (Figures 2.6 and 2.7) (39).  In the 

absence of c-di-GMP, kdock and kundock for the dynamic docked population are 6.6 

± 0.2 s-1 and 1.0 ± 0.1 s-1, respectively, while kdock and kundock for the dynamic 

undocked population are 1.6 ± 0.1 s-1 and 6.7 ± 0.1 s-1, respectively.  Thus, the 

dynamic docked molecules spend most of the time in the docked conformation 

and the dynamic undocked molecules spend most of the time in the undocked 

conformation.  The distinct kinetic properties of these two populations become 

readily apparent by scatter analysis (Figure 2.7b).    

In the presence of saturating c-di-GMP (1 µM, standard conditions 

containing 2.5 mM Mg2+), the static docked population becomes predominant (61 

± 4% of 250 molecules, Table 2.1), suggesting that this population is ligand-

bound.  Both the static undocked and dynamic docked populations decrease 

significantly in the presence of ligand (to 29 ± 6% and 2 ± 2%, respectively).  The 

rate constants for docking and undocking for the dynamic populations in the 

presence of 100 nM c-di-GMP were similar to those in the absence of c-di-GMP 

(Figures 2.6 and 2.7), suggesting that these dynamic populations do not have c-

di-GMP bound.  Upon inspection of >100 single molecule time trajectories, we 

found that the static docked population can form from any of the other three 

populations, static undocked, dynamic undocked, and dynamic docked (Figure 

2.8), providing further evidence that the static docked population is ligand-bound 

and indicating that any of these populations are able to bind c-di-GMP and form 

the stable docked conformation.  Experiments with lower laser power and longer 
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exposure showed the static docked conformation has a lifetime longer than 30 

min (Figure 2.8b), consistent with a previously reported slow bulk koff(58). 

To determine the second messenger binding affinity, we measured the 

fraction of c-di-GMP bound-riboswitch (static docked population) as a function of 

c-di-GMP concentration under standard conditions.  In the absence of c-di-GMP, 

7 ± 2% of riboswitches fold into the static docked conformation.  The fraction of 

static docked RNA molecules increases with the concentration of c-di-GMP and 

saturates at 68 ± 9% total bound with the remaining molecules persisting in the 

undocked conformation.  A fit to the Langmuir equation results in a KD = 90 ± 20 

nM (Figure 2.9), comparable with that determined by bulk isothermal titration 

calorimetry (ITC) experiments (Table 2.2).  This demonstrates the surface 

immobilization of the RNA construct does not adversely affect the folding and 

ligand binding of the aptamer.  However, the affinity determined by smFRET and 

ITC is several orders of magnitude weaker than those based on electrophoretic 

gel mobility-shift analyses reported previously(58), suggesting that the aptamer 

domain behaves differently in the polyacrylamide gel matrix. 

To test the selectivity of the c-di-GMP-I riboswitch, we performed similar 

experiments using c-di-AMP, a structural analog of c-di-GMP and recently 

discovered putative bacterial second messenger(1, 58, 69).  In bulk experiments, 

c-di-AMP does not bind to the c-di-GMP-I riboswitch(1, 58).  Consistent with this, 

in our smFRET experiments, the aptamer displays similar behavior in the 

presence of 1 µM c-di-AMP as in the absence of c-di-GMP, with comparable  
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Figure 2.6 The dynamic populations are not bound to c-di-GMP. Dwell time 
distributions were plotted for the dynamic undocked and dynamic docked 
populations (left and right, respectively) in the absence of and presence of 100 
nM c-di-GMP and presence of 1 µM c-di-AMP (top to bottom).  The 
distributions were fit to single exponential decays to obtain kdock and kundock. 
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Figure 2.7 The dynamic populations do not have c-di-GMP bound.  (a) Rate 
constants kdock (black) and kundock (white) for the dynamic docked and dynamic 
undocked populations in the absence of and presence of 100 nM c-di-GMP or 
presence of 1 µM c-di-AMP.  The dwell time distributions were fit to single 
exponential decays to obtain kdock and kundock. (b) Scatter plot of the rate 
constants for both dynamic docked (purple) and dynamic undocked (red) 
populations in the absence of c-di-GMP demonstrates the existence of two 
distinct dynamic populations.  The dynamic docked molecules lie above the 
diagonal, while the dynamic undocked lie below. 
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Figure 2.8 All aptamer domain populations can bind c-di-GMP.  (a) smFRET 
time trajectories of the c-di-GMP-I riboswitch in the presence of 1 µM c-di-
GMP showing formation of the static docked population from static undocked, 
dynamic undocked, and dynamic docked populations (top to bottom).  Arrow 
indicates transition to the static docked population.  (b) Single molecule FRET 
time trajectory showing the long-lived (at least 30 min) static docked 
population in the presence of 1 µM c-di-GMP.   
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Figure 2.9 Formation of a stable docked conformation requires c-di-GMP. (a) 
smFRET histograms for >100 single molecule trajectories from all four 
populations combined as a function of the concentration of c-di-GMP, as 
indicated.  In the absence of ligand, the low FRET (0.2) state predominates.  
As the concentration of c-di-GMP increases, the high FRET (0.8) state 
becomes more populated.  (b) The fraction of static docked molecules (fD) 
increases as a function of the conentration of c-di-GMP.  The line is a fit to a 
modified Langmuir equation.  Error bars are calculated based on the number 
of molecules.   
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population distributions (Table 2.1).  This similarity extends to the docking and 

undocking rate constants for the dynamic molecules (Figures 2.6 and 2.7), 

supporting our interpretation that the dynamic molecules are not bound to the 

second messenger.  

Overall, these data show the c-di-GMP-I riboswitch aptamer domain 

adopts docked and undocked conformations similar to those deduced from SAXS 

analysis(1).  The RNA is kinetically partitioned into four distinct populations that 

do not readily interconvert in the timeframe of our experiments (several minutes) 

under steady-state conditions: static undocked and docked as well as dynamic 

undocked and docked.  The RNA binds c-di-GMP tightly and selectively to fold 

into the stable docked conformation, and this results in a shift in the population 

structure, since the aptamer domains in the three other populations are 

competent for second messenger binding. 

2.2.2 Stable docked conformation requires both Mg2+ and c-di-GMP 

Previous SAXS analysis of the V. cholerae c-di-GMP-I riboswitch aptamer 

domain indicates that the RNA undergoes global compaction as the 

concentration of Mg2+ is raised from 2.5 mM to 10 mM (ref (1)).  This is 

reminiscent of the behavior of other RNAs with complex structure, such as the 

group I intron and RNase P, which undergo Mg2+ ion-induced folding(70-72).  

Those large ribozymes attain their native conformations upon Mg2+ ion-induced 

folding, as judged by their full catalytic activity(73, 74).  In contrast, Kratky 

analysis of the SAXS data on the c-di-GMP-I aptamer domain implies that, unlike 

the group I intron and RNase P, the riboswitch remains locally disordered even at 
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high Mg2+ concentration until c-di-GMP is bound(1).  Divalent cations can 

facilitate RNA folding non-specifically, as part of a diffusely condensed ionic 

atmosphere, or by making specific, direct interactions with the RNA(75).  Our 

smFRET experiments indicate that both modes of action are operative in the c-di-

GMP-I riboswitch. 

To analyze the role of Mg2+ in c-di-GMP riboswitch folding, we measured 

the fraction of each RNA population as a function of Mg2+ concentration.  In the 

absence of both, Mg2+ and c-di-GMP, almost all of the molecules (96 ± 6% of 75 

molecules) reside in the static undocked population (Table 2.1).  In the absence 

of Mg2+ ion, addition of saturating c-di-GMP does not alter the percentage of 

static undocked molecules.  In very high Mg2+ ion concentration (50 mM), but in 

the absence of c-di-GMP, the majority of molecules reside in the dynamic docked 

and undocked populations, as a consequence of a substantial decrease in the 

static undocked population.  Fitting the fraction of dynamic molecules (including 

both dynamic docked and undocked) as a function of Mg2+ ion concentration to 

the Langmuir equation yields K1/2 = 1.2 ± 0.2 mM  (Figure 2.11).  Even under 

these elevated Mg2+ concentration conditions, only a small fraction of the 

molecules (10 ± 5%) are statically docked (Table 2.1).  These results indicate 

that both c-di-GMP and Mg2+ are necessary to drive a majority of the molecules 

into the static docked state, and further supports our assignment of this 

population to the ligand bound, highly structured conformation characterized 

crystallographically and by SAXS(1).  
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Figure 2.10 Formation of a stable docked conformation requires Mg2+. (top) 
smFRET histograms for >100 single molecule trajectories from all four 
populations combined in the presence of 1 µM c-di-GMP as a function of the 
concentration of Mg2+, as indicated.  At low Mg2+, the low FRET state 
predominates.  As the concentration of Mg2+ increases, the high FRET state 
becomes more populated.  (bottom) The fraction of static docked molecules 
(fD) increases as a function of the concentration of Mg2+ in the presence of 1 
µM c-di-GMP (circles).  The line is a fit to a modified Langmuir equation 
resulting in K1/2 = 0.5 ± 0.1 mM.  However, the fraction of static docked 
molecules (fD) does not change significantly as a function of the concentration 
of Mg2+ in the absence of c-di-GMP (triangles).  Error bars are calculated 
based on the number of molecules. 
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Figure 2.11 The fraction of dynamic molecules (fDynamic) increases as a 
function of Mg2+ concentration in the absence of c-di-GMP.  The line is a fit to 
a modified Langmuir equation.  Error bars are calculated based on the number 
of molecules. 
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          To determine the interplay of Mg2+ ion and second messenger binding, we 

measured the fraction of c-di-GMP bound-riboswitch (the statically docked 

population) as a function of the concentration of the cation.  In the presence of 

saturating c-di-GMP, the static docked population increases concomitant with 

increasing Mg2+ concentration (Figure 2.10).  Fitting the data to the Langmuir 

equation yields a K1/2 = 0.5 ± 0.1 mM (Figure 2.10, circles), a value near the 

physiological range of concentration for the cation(76).  In the absence of c-di-

GMP, there is no increase in the static docked population (Figure 2.10 triangles), 

indicating that Mg2+ and c-di-GMP binding are strongly cooperative.  Experiments 

in the presence of higher monovalent ion concentrations but no Mg2+ (50 mM 

Tris-HCl, pH 8.0, 150 mM KCl, and 30 mM NaCl) show that the aptamer domain 

cannot fold into the docked conformation and remains entirely in the static 

undocked conformation even in the presence of saturating c-di-GMP (Table 2.1).  

These results suggest that the role of Mg2+ ion is not solely electrostatic 

screening required to fold the riboswitch into an ligand binding-competent 

conformation, but that it specifically mediates binding to the second messenger.  

Indeed, crystal structures reveal a hydrated Mg2+ ion at the second messenger-

binding pocket(77) where it bridges a phosphate of c-di-GMP with those of 

residues G19 and G20 of the RNA, and our smFRET titration may be reporting 

on this tightly bound cation. 

2.2.3 Tertiary interactions are required for the stably docked conformation 

To characterize the role of the GT/TR and C44•G83 tertiary interactions 

(Figure 2.2) (1),(58) in the formation and stability of the docked structure, we 
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introduced point mutations to prevent their formation.  First, we examined the 

C44•G83 base pair by mutating G83 to C.  smFRET analyses of this G83C 

mutant show that both in the absence or presence of 1 µM c-di-GMP, most 

molecules (95 ± 9% and 80 ± 6 %, respectively) reside in the static undocked 

population (Figure 2.12 and Table 2.1).  The G83C mutant RNA is therefore 

unable to attain neither the dynamic nor static docked state, even with c-di-GMP 

present.  These results are consistent with the results of bulk ITC experiments 

that show that the G83C mutant RNA is severely disrupted in c-di-GMP binding, 

and exhibits a 1200-fold increase in the apparent KD for c-di-GMP even at 

elevated Mg2+ concentration (10 mM) relative to wild-type RNA (Table 2.2).  

Mutation of G83 to U also severely disrupts affinity for c-di-GMP with a 250-fold 

increase in KD at 10 mM Mg2+ (Table 2.2). 

We also mutated C44 to A, which should prevent its interhelical base 

pairing with G83.  smFRET experiments show that in the absence of c-di-GMP 

(Figure 2.12), the majority of the molecules (93 ± 3%) reside in the static 

undocked population.  However, in the presence of 1 µM c-di-GMP this mutant 

exhibits a 25 ± 7% population in the static docked conformation (Figure 2.12 and 

Table 2.1), indicating that the C44A mutation does not destabilize the docked 

state as much as the G83C mutation.  This result is also consistent with the 

binding affinity measured by bulk ITC, which shows an 80-fold increase in KD at 

10 mM Mg2+ (Table 2.2) relative to wild-type.  A possible explanation for this 

result is that the C44A mutant is capable of forming a non-canonical base pair 

with G83.  Overall, these data show that the tertiary C44•G83 base pair is  
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Figure 2.12 Tertiary interactions are necessary for the formation of the docked 
conformation.  Single molecule FRET histograms are shown for >100 single 
molecule trajectories from riboswitch mutations with and without 1 µM c-di-
GMP, as indicated.  Colors correspond to the mutations shown in Figure 2.2. 
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essential for the aptamer domain to attain either the dynamic or static docked 

states.  

Next, we examined the role of the GT/TR interaction between P1b and P2 

by mutating A33 to U (Figure 2.2).  The crystal structures show that A33 flips out 

of the GAAA tetraloop to stack with A62 of the TR(1).  Mutating A33 to U should 

prevent this stacking, and therefore, impair the GT/TR interaction.  smFRET 

experiments using the A33U mutant in the absence of c-di-GMP show that the 

majority of molecules (68 ± 6%) reside in the static undocked population but 29 ± 

8% of the molecules reside in the dynamic undocked population (Table 2.1).  

This result shows that, unlike mutations that affect the C44•G83 base pair, 

mutational destabilization of the GT/TR does not prevent the riboswitch from 

transiently populating the docked conformation.  However, the addition of 20 mM 

Mg2+ was not able to recover the dynamic docked population.  In the presence of 

1 µM c-di-GMP, the fraction of the molecules in the static undocked population 

decreases to 49 ± 5% while the static docked population increases to 37 ± 3%, 

indicating that this mutant can still bind c-di-GMP and form the static docked 

conformation.  This result is in agreement with gel shift experiments, which show 

a 200-fold increase in apparent KD for this mutant(77).  These mutational data 

indicate that the C44•G83 base pair between P1b and P2 is essential for the 

formation of the stable docked conformation, while the GT/TR tertiary interaction 

assists in stabilizing the aptamer in the docked conformation.  Overall, our 

smFRET analyses of riboswitch mutants indicate that docking of P1b and P2 
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mediated by long-range tertiary interactions is required for formation of a c-di-

GMP binding-competent aptamer domain conformation.  

2.3 Discussion 

Single molecule methods have previously been employed to examine 

several riboswitches.  The adenine and guanine riboswitches are closely related 

RNAs organized around a three-helix junction, where the purine base binds.  In 

the crystal structures of their ligand-bound aptamer domains(78, 79), the loops 

that close the distal ends of two of the constituent helices of the riboswitch 

associate through a series of tertiary interactions.  smFRET and force 

spectroscopy experiments imply that some of these long-range interactions can 

take place in the presence of Mg2+ ions alone, prior to purine binding(63, 64, 67, 

80, 81).  smFRET analyses of the class I and II SAM riboswitches suggest that 

these structurally unrelated RNAs can both transiently sample conformations 

similar to their respective ligand-bound states in the presence solely of Mg2, and 

that SAM binding occurs by conformational capture(65, 66).  The Mg2+-induced, 

partially folded states of these riboswitches appear to be kinetic intermediates in 

pathways leading to their ligand-bound (native) states(64, 66, 67).  This supports 

the inference that the partially folded states of these RNAs have structural 

similarity to their native fold.  

Like the purine and SAM riboswitches, the c-di-GMP riboswitch can 

transiently adopt a global fold similar to that of its second messenger-bound form 

in the presence of Mg2+ alone.  However, the results of our smFRET analysis 

reveal that this RNA folds in a complex landscape, populated by four classes of 
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molecules that interconvert very slowly in the timeframe of the experiment.  Such 

kinetic partitioning has been previously documented in bulk(82) and at the single-

molecule level(83-86) for catalytic RNAs.  The shift in the population structure of 

the RNA upon addition, first of physiologic concentrations of Mg2+, and then c-di-

GMP, as well as the cooperativity exhibited by Mg2+ and c-di-GMP in formation of 

the stably docked population suggest that the high FRET state sampled by the 

dynamic undocked and dynamic docked populations has structural similarity to 

the native, second-messenger bound conformation.  To provide support for this 

hypothesis, we generated RNAs with site-directed mutations targeting tertiary 

interactions that are present in the crystal structures of the ligand-bound aptamer 

domain.  We first show calorimetrically that these mutant aptamer domains are 

impaired, to varying extents, in c-di-GMP binding. smFRET analysis reveals that 

the mutations perturb the folding landscape of the RNAs, such that decrease in 

the dynamic populations correlates directly with the deleterious impact of each 

mutation in ligand binding.  This indicates that native-like tertiary interactions are 

indeed responsible for stabilizing the transiently folded states of the dynamic 

molecules, thereby demonstrating experimentally that the c-di-GMP riboswitch is 

pre-organized, rather than simply collapsed.  Since the dynamic populations shift 

to the static docked, ligand-bound conformation in the presence of c-di-GMP, the 

pre-organization of the riboswitch enables rapid second messenger binding.  Our 

findings parallel those of folding studies on large ribozymes, which have 

established the importance of forming native-like tertiary interactions early in the  
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Figure 2.13 Proposed folding pathway of the c-di-GMP-I riboswitch.  In the 
absence of c-di-GMP, the riboswitch adopts a stable undocked conformation, 
in which P1a is unpaired, allowing formation of the downstream terminator 
stem-loop and preventing gene expression.  In the presence of Mg2+, a 
population of dynamic riboswitches switch from a docked conformation with 
brief excursions into the undocked conformation.  P1a, however, is not yet 
formed; therefore, the terminator stem-loop remains, preventing gene 
expression.  This Mg2+-dependent dynamic behavior offers a pre-organized, 
ligand binding-competent structure that allows efficient cotranscriptional 
folding and c-di-GMP binding.  Binding of c-di-GMP completes the formation of 
a continuous helical stack between P1a and P1b, which stabilizes the docked 
conformation, including the P1a helix; the anti-terminator stem forms, 
preventing formation of the terminator stem-loop, allowing transcription of the 
downstream gene to proceed.  
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Mg2+ induced collapse of an RNA in order to achieve overall rapid folding 

(reviewed in (60)). 

The proposed folding pathway for the c-di-GMP riboswitch is shown in 

Figure 2.13.  In the absence of c-di-GMP, the riboswitch adopts an undocked 

conformation.  In-line and nuclease probing experiments(1, 14, 58) indicate that, 

in the absence of ligand, P1a is unpaired, thus allowing the formation of the 

downstream terminator stem-loop and preventing gene expression.  A Mg2+-

dependent population of riboswitches exhibits dynamic switching from this 

undocked conformation to a docked conformation with brief excursions into the 

undocked conformation at transcription relevant time scales (~150 ms).  This 

unstable docked conformation is stabilized by the GT/TR and C44•G83 tertiary 

interactions.  The cocrystal structures of the riboswitch(1, 58) show that the 

nucleobase of A49 stacks underneath the C44•G83 base pair.  This stacking may 

help propagate order from the interhelical base pair to the c-di-GMP binding site, 

in which A47 plays a central role (Figure 2.2).  The Mg2+-dependent dynamic 

population offers a pre-organized structure that allows efficient cotranscriptional 

folding and ligand binding.  Upon binding to the junction region, c-di-GMP 

completes the formation of a continuous helical stack between P1a and P1b, 

leading to stabilization of the docked conformation, including the P1a helix.  

Although we did not directly determine formation of the P1a helix in our 

experiments, in-line and nuclease probing experiments and crystal structures 

indicate that this helix is formed in the folded aptamer domain structure(1, 14, 58, 

77).  This helix is the molecular switch controlling gene expression(14): the anti-
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terminator stem would form, preventing formation of the terminator stem, allowing 

transcription of the downstream gene to proceed.  

The biological significance of the large-scale, ligand-induced folding 

transition documented by SAXS for the c-di-GMP-I riboswitch has been unclear 

for two reasons.  First, not every riboswitch class examined undergoes such a 

collapse concomitant with ligand binding(52, 53).  Second, such large-scale 

reorganization of the aptamer domain couples the cost of the loss of 

conformational entropy to ligand recognition, thereby lowering the maximum 

achievable affinity.  Our discovery that the c-di-GMP-I riboswitch aptamer domain 

transiently folds into a collapsed conformation that has a structure similar to that 

of the ligand-bound form suggests a role of the global folding transition in a 

process akin to kinetic proofreading: only molecules in which the P1b and P2 

stems have folded correctly (i.e. in conformations compatible with making the 

allosteric GT/TR and C44•G83 tertiary interactions) will present a ligand binding 

site to the second messenger.  It is noteworthy that of the various riboswitches 

whose Mg2+ and ligand induced collapse has been studied by SAXS(1, 52, 87, 

88), the TPP riboswitch is the RNA that most closely mimics the behavior of the 

c-di-GMP-I riboswitch.  Although their specific sequences are unrelated, the 

aptamer domains of the c-di-GMP and TPP riboswitches share a similar 

architecture comprised of a three-helix junction where the ligands bind, and 

tertiary interactions distal to the ligand binding site stabilizing the side-by-side 

packing of two helical stems.  Biophysical experiments have shown the 

importance of the allosteric loop-loop interactions in ligand binding by the TPP 
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riboswitch(89, 90).  These distal interactions were found to form before the TPP 

binding site is fully organized(54), paralleling the results of our studies of the c-di-

GMP-I riboswitch.  Taken together, these studies suggest that large-scale pre-

organization coupled to ligand binding may be a strategy to increase structural 

specificity, and hence accelerate ligand binding, by several riboswitch classes.   

2.4 Future Directions 

A47 is a conserved residue in junction region J1b/2 of the c-di-GMP 

riboswitch (Figure 2.14).  Upon binding of c-di-GMP, the residue flips out and 

intercalates between the two guanine bases of the ligand mediating continuous 

coaxial stacking between helices P1b and P1a.  The correct residue is essential 

for ligand binding and riboswitch activity.  Mutation of this residue to C, G, or U 

severely decreases affinity for c-di-GMP resulting in a decrease of affinity of 

770,000-, 380,000-, and 320,000-fold, respectively(1, 58, 77, 91).  To date, there 

is no crystal structure of the aptamer in the absence of c-di-GMP and no studies 

have been done to explore what this residue looks like when the riboswitch is 

undocked.  Does A47 flip out to stack in between the guanine residues upon c-di-

GMP binding?  Understanding how A47 is involved in ligand binding is important 

to understand how this riboswitch recognizes its target ligand. 

2-aminopurine (Figure 2.15) is a fluorescent purine analog that is a useful 

tool to probe local changes in nucleic acid conformation(65, 92-94).  The 

fluorescence of 2-aminopurine is quenched when the analog is stacked in among 

other bases and becomes fluorescent when flipped out of the stack or free.  A47  
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Figure 2.14  In this view from the minor groove, the conserved A47 from J1b/2 
intercalates between the two guanine bases (gI and gII) of c-di-GMP to mediate 
continuous coaxial stacking between P1b and P1a.  Figure from (1).	  
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Figure 2.15  Structure of 2-aminopurine. 
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could be replaced with a 2-aminopurine to investigate the dynamics of this 

nucleotide both at the bulk and single molecule level.  This label could be used in 

conjunction with the Cy3 and Cy5 labels already present at the distal ends of P2 

and P1b that were used to probe the global conformational changes of this 

riboswitch.  Using these three fluorescent labels and single molecule could 

provide insight into how and at what time point in the folding pathway does this 

possible conformation change take place. 

Further studies into the folding pathway would be interesting to 

determine the order in which tertiary structures, including the G-C pair and 

tetraloop/tetraloop receptor interaction, form to ultimately shape the 

docked structure and what factors, such as Mg2+ and c-di-GMP, are 

required for which structures.   Also, are there any transient intermediates?  

Because the rates of switching between the docked and undocked 

conformation are so fast, a faster frame rate will be useful in determining if 

there are any short-lived intermediate structures hidden in the dynamic 

undocked and dynamic docked populations.  Are they in fact switching 

between a docked and undocked structure or are these populations 

sampling a variety of intermediate structures? 

To date, several studies of various riboswitches, including purine, 

SAM, and c-di-GMP, have offered a wealth of information concerning the 

aptamer domain, including both structure and dynamics(1, 6, 13, 49, 64, 

65, 67, 95, 96).  However, there is a lack of data relating the structural 
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dynamics of the aptamer domain to the way in which it relays information 

to the downstream expression platform.  This could be addressed with the 

c-di-GMP system by placing FRET labels or a fluorophore-quencher pair at 

the base of the downstream transcription terminator, which is commonly a 

hairpin structure.  Monitoring how the fluorescence at this expression 

platform corresponds to the fluorescent dynamics of the aptamer domain 

could answer various questions such as at what point along the folding 

pathway of the aptamer domain is the decision made to modulate gene 

expression downstream. 

2.5 Materials and Methods 

2.5.1 RNA purification and labeling 

The 88-nt c-di-GMP-I aptamer domain previously described(1) was used 

for ITC studies.  Mutants were generated using the QuikChange site-directed 

mutagenesis kit (Stratagene).  In vitro transcription and purification was as 

described(1).  For smFRET experiments, a two-piece construct was used to 

assemble the aptamer domain of the c-di-GMP riboswitch (Fig. 1a):  RED (5’-

Cy3-UUG GUA GGU AGC GGG GUU ACC GAU GGC AAU A-Biotin-3’) and 

BLUE (5’-UGU CAC GCA CAG GGC AAA CCA X UCG AAA GAG UGG GAC 

GCA AAG CCU CCG GCC UAA ACC AA-3’, where X is an internal dT with C7 

amino linker for Cy5 labeling).  RNAs were purchased from the Keck Foundation 

Resource Laboratory at the Yale University School of Medicine and purified and 

labeled as described(41).  The 2’-hydroxyl protection groups were deprotected 
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according to the manufacturer’s protocol.  The RNAs were purified by denaturing 

gel electrophoresis (20% wt/vol polyacrylamide and 8 M urea) and diffusion 

elution against elution buffer (0.5 M NH4OAc and 0.1 mM EDTA) overnight at 

4°C, followed by chloroform extraction, ethanol precipitation and C8 reverse-

phase HPLC.  The internal dT C7 amino linker was labeled with Cy5 (GE 

Healthcare) in labeling buffer (100 mM Na2CO3, pH 8.5) overnight at room 

temperature.  The doubly labeled RNA was purified by ethanol precipitation and 

C8 reverse-phase HPLC.  RNA concentrations were measured by UV-Vis 

absorbance at 260 nm.  c-di-GMP was purchased from Axxora LLC, and used 

without further purification. 

2.5.2 Single molecule FRET 

Single molecule experiments were performed as described (Figure 2.4) 

(39, 68).  We annealed the two RNA strands (Figure 2.2) at 0.5 µM RED and 1 

µM BLUE in standard buffer (50 mM Tris-HCl pH 8.0, 30 mM NaCl, 30 mM KCl, 

and 2.5 mM MgCl2 in saturating trolox).  The standard buffer is the same as used 

in previous SAXS experiments(1).  We heated a 10 µL solution at 90°C for 45 s 

before cooling to room temperature over 20 min.  We diluted the annealed, 

biotinylated and fluorophore-labeled complex to 12.5 pM and immobilized the 

RNA to a streptavidin-coated quartz slide surface via a biotin-streptavidin bridge 

to generate a surface density of ~0.1 molecules/µm2.  We then excited the donor 

fluorophore in a home-built total internal reflection microscope with a laser (532 

nm, 3 mW, Spectra-Physics Excelsior).  We separated the donor and acceptor 

emission using appropriate dichroic mirrors (610DCXR, Chroma) and detected 
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them as two side-by-side images on a back-illuminated electron-multiplied CCD 

camera (Andor I-Xon).  We obtained measurements under variable [Mg2+] and [c-

di-GMP] (0.001 – 100 mM and 0.1 – 5000 nM, respectively) at room temperature 

with an oxygen-scavenging system (OSS) consisting of 10% wt/vol dextrose, 750 

µg/mL glucose oxidase, and 90 µg/mL catalase to reduce photobleaching.  For 

experiments with c-di-GMP or c-di-AMP (BioLog), a solution of ligand and OSS 

was injected onto the quartz slide and incubated for 15 min at room temperature 

before imaging.  We then constructed histograms and calculated dwell times for 

each folding event to determine the folding rate constants, as described.  A cutoff 

of 0.5 FRET was used to distinguish between docked and undocked states.  The 

dwell time histograms were fit to a single exponential to determine kdock and 

kundock.  To determine dissociation constants for c-di-GMP and Mg2+, the fraction 

of molecules in the static docked population (fD) was plotted as a function of the 

concentration of c-di-GMP or Mg2+ and fit to a modified Langmuir equation: 

€ 

fD = f0 + fmax − f0( ) x
KD + x

 

where f0 is the initial percentage of molecules in the static docked population, fmax 

is the final percentage of molecules in the static docked population, and x is the 

concentration of c-di-GMP or Mg2+. 

2.5.3 Isothermal titration calorimetry 

ITC was performed essentially as described(52).  Briefly, RNA was 

prepared for ITC by exhaustive dialysis at 298 K against a solution comprised of 

50 mM HEPES-KOH (pH 7.5), 100 mM NaCl, 0.5-10 mM MgCl. Concentrated c-
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di-GMP stock (5 or 10mM) was diluted in the actual dialysis buffer. The final 

concentration of c-di-GMP was ~10-15 fold higher than that of the RNA.  RNA 

concentrations were ~5 µM and ~15-25 µM for high affinity and low affinity 

binders, respectively.  ITC was carried out with an ITC200 calorimeter (MicroCal) 

at 303 K, using a reference power of 11 µcal s-1, an initial delay of 60 s, and 24 

1.67 µl injections at an injection rate of 0.5 µl s-1 with injections spaced 180 s.  

Data were fit to a single-site binding model using Origin ITC software (MicroCal 

software Inc.). 
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Chapter 3  

Fluorescence enhancement of TAMRA upon binding to an aptamer 

3.1 Introduction 

Subcellular localization and trafficking of mRNAs play an important role in 

essential cellular processes such as memory, morphogenesis, and cell migration.  

The localization and tracking of endogenous mRNAs inside living cells are 

necessary tools in studying these various processes.  A major hurdle in studying 

endogenous mRNA in live cells is that no RNA is intrinsically fluorescent, 

compared to proteins such as green fluorescent protein.  Techniques, such as 

molecular beacons and the MS2 system, in which a fluorescent protein is fused 

to an RNA binding protein, have been used in the past(23-25, 33).  Drawbacks of 

these methods include difficulty in designing molecular beacons that are specific 

enough for the RNA being studied, while the addition of large proteins to the RNA 

in the MS2 system adds extra bulk to the RNA, which may affect its movements 

in the cell.  One proposed tool to fluorescently label RNA is through the use of 

fluorophore-binding aptamers(18, 19, 21).  An aptamer is an oligonucleotide 

sequence that specifically binds a ligand, in this case, a fluorophore(20).  An 

aptamer (SRB2) was developed by Holeman, et.al.(21) to specifically bind 

sulphorhodamine B (Figure 3.1).  From previous work in the Rueda lab, this 

aptamer was also found to bind tetramethylrhodamine (TAMRA) (Figure 3.2).  

We sought to characterize how binding to this aptamer would affect the 

fluorescence properties of TAMRA.   
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Figure 3.1  Secondary structure of the SRB2 aptamer.  Purple indicates the 
sites of ligand binding.   
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Figure 3.2  Structure of tetramethylrhodamine (TAMRA). 
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3.2 Results 

3.2.1 SRB2 aptamer binds TAMRA 

In order to determine if the SRB2 aptamer binds TAMRA and with what 

affinity, we titrated increasing amounts of aptamer to TAMRA and measured the 

anisotropy.  Anistropy can provide information concerning the size and shape of 

molecules by measuring the rotational diffusion of a molecule based on 

fluorescence polarization. As the rotational diffusion changes as the shape and 

size of a molecule changes, anisotropy is a useful technique to measure the 

binding interactions of two molecules allowing the determination of binding 

affinity of said interaction.  As the concentration of aptamer increased, the 

anisotropy of the TAMRA increased indicating binding of TAMRA to the aptamer.  

When this was fit to the quadratic equation, the resulting binding affinity was 77.1 

± 5.7 nM (Figure 3.3). 

3.2.2 Binding to SRB2 increases the quantum yield of TAMRA 

Once we confirmed binding of TAMRA to the aptamer, we sought to 

characterize whether binding to the aptamer changed the quantum yield of 

TAMRA.  The standard quantum yield of TAMRA as measured in methanol is 

0.28.  Because the studies described here were conducted in buffer (10 mM Tris-

HCl, pH 7.5, 100 mM KCl, 5 mM MgCl2), we determined the quantum yield of 

TAMRA in this buffer using the following equation 

€ 

Qunk =
η2unk
η2k
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Figure 3.3  Titration curve as increasing amounts of SRB aptamer are added 
to TAMRA.  The curve is fit to the quadratic equation. 
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Figure 3.4 (left) Absorbance and (right) fluorescence spectra of TAMRA 
alone (red), TAMRA-DNA (green), and TAMRA-SRB2 (purple). 
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where Qunk and Qk are the quantum yields of the unknown and the reference, 

respectively, nunk and nk are the refractive indices of the respective solvents, Aunk 

and Ak are the absorbances for the unknown and reference, and Iunk and Ik are 

the fluorescence intensities of the unknown and reference.  The quantum yield of 

TAMRA in buffer is 0.16 and was used as the reference quantum yield in all 

further calculations.  The quantum yield of TAMRA bound to the end of a DNA 

increased to 0.20 ± 0.02 with a red-shift in absorbance of 10 nm and when bound 

to SRB2, increased to 0.30 ± 0.03 with a red-shift in absorbance of 12 nm (Figure 

3.4).  

3.2.3 Binding to SRB2 increases the fluorescence lifetime of TAMRA 

To determine the fluorescence lifetime of TAMRA, we used Time 

Correlated Single Photon Counting.  The results are shown in Table 3.1.  The 

fluorescence lifetime of TAMRA increases from 2.1 ns to 2.6 ns when attached to 

a DNA and to 3.6 ns upon binding to SRB2. 

3.2.4 Binding to SRB2 does not affect blinking rates of TAMRA 

An intrinsic property of fluorophores that make them problematic to use in 

assays is blinking in which the molecule enters a dark, non-emissive state.  We 

used single molecule spectroscopy to determine whether binding to the aptamer 

would change the blinking rate of TAMRA.  To do this we immobilized the SRB2 

aptamer to a quartz slide via a biotin-streptavidin bridge and excited TAMRA with 

a 532 nm laser.  We then monitored the fluorescence intensity of  
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Figure 3.5  Fluorescence lifetime spectra of TAMRA alone (red), TAMRA-DNA 
(green), and TAMRA-SRB2 (purple).	  
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  TAMRA only TAMRA DNA TAMRA with SRB2 

  
Lifetime 

(ns) Percentage 
Lifetime 

(ns) Percentage 
Lifetime 

(ns) Percentage 

Component 1  2.3 ± 0.1 0.9 ± 0.1 3.9 ± 0.1 0.5 ± 0.1 4.6 ± 0.1 0.7 ± 0.1 

Component 2 0.9 ± 0.1 0.1 ± 0.1 1.6 ± 0.1 0.3 ± 0.1 2.0 ± 0.1 0.3 ± 0.1 

Component 3 0.2 ± 0.1 0.1 ± 0.1 0.4 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.1 ± 0.1 

Avg Lifetime 
(ns) 2.1 ± 0.1 2.6 ± 0.1 3.6 ± 0.1 

Fit (χ2) 1.3 1.1 1.1 

 

Table 3.1 Lifetime measurements of TAMRA, TAMRA-DNA, and TAMRA-SRB2. 
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Figure 3.6  Characteristic trace of TAMRA blinking when bound to the SRB2 
aptamer.  Black line indicates the cutoff to determine on and off events.  
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Figure 3.7  Blinking rates for TAMRA-DNA (top) and TAMRA-SRB2 (bottom) 
where N is the number of molecules used for the analysis. 
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TAMRA over time.  A characteristic trace is shown in Figure 3.6.  A DNA with 

TAMRA linked to the 5’end was used for comparison.  The blinking rates of 

TAMRA did not change upon binding to the aptamer (Figure 3.7). 

3.3 Conclusions 

Fluorophore-binding aptamers may be a useful tool in studying the 

localization and trafficking of endogenous mRNAs inside living cells.  We sought 

to characterize how the fluorescence properties of tetramethylrhodamine are 

affected upon binding to the SRB2 aptamer.  Upon binding to the aptamer, the 

quantum yield and fluorescence lifetime of the fluorophore both increase with a 

red-shift in absorbance; however the blinking rates of TAMRA are not affected.  

This change is properties may result from the increase in rigidity of TAMRA upon 

binding to the aptamer. By itself, TAMRA is a rather flexible molecule but binding 

to the aptamer restricts its movements. Suppressing these motions in turn 

suppresses non-radiative decay processes including vibrational and rotational 

relaxation.  This would then make radiative processes, i.e. fluorescence, the 

principal decay process and increase both quantum yield and lifetime of TAMRA. 

3.4 Materials and Methods 

3.4.1 RNA purification and labeling 

The 54-nt aptamer domain previously described(21) was in vitro 

transcribed using T7 DNA polymerase resulting in the sequence of GGA ACC 

UCG CUU CGG CGA UGA UGG AGA GGC GCA AGG UUA ACC GCC UCA 

GGU UCC.  The RNA was purified by denaturing gel electrophoresis (20% wt/vol 

polyacrylamide and 8 M urea) and diffusion elution against elution buffer (0.5 M 
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NH4OAc and 0.1 mM EDTA) overnight at 4°C, followed by chloroform extraction, 

ethanol precipitation and C8 reverse-phase HPLC.  RNA concentrations were 

measured by UV-Vis absorbance at 260 nm.  The 3’ end of the RNA was then 

biotinylated by 2’-3’ oxidation followed by nucleophilic addition of biotin.  Briefly, 

the 2 mmol of RNA was dried and dissolved in 100 µL of oxidation buffer 

consisting of 10 mM HEPES-KOH pH 7.5 and 1 mM MgCl2.  Next, 14 µL of a 50 

mM solution of KIO4 was added to the solution and incubated for 20 min at 0°C 

then ethanol precipitated.  The pellet was then dissolved in 100 µL of 50 mM 

NaOAc pH 5 followed by the addition of 1 µL of a saturated biotin hydrazide.  The 

reaction was incubated overnight at 4°C and then ethanol precipitated. The 

biotinylated RNA was purified via C8 reverse-phase HPLC.  RNA concentrations 

were measured by UV-Vis absorbance at 260 nm.  Tetramethylrhodamine 

(TAMRA) was purchased from Invitrogen, and used without further purification.  

DNA with 5’ TAMRA and 3’ biotin (CCC ATT GAC CGT TCC CCU CCT ACT 

CCC was purchased from Keck.  The DNA was desalted using a Nap10 column.  

The DNA was then purified by denaturing gel electrophoresis (20% wt/vol 

polyacrylamide and 8 M urea) and diffusion elution against elution buffer (0.5 M 

NH4OAc and 0.1 mM EDTA) overnight at 4°C, followed by chloroform extraction, 

ethanol precipitation and C8 reverse-phase HPLC.  DNA concentrations were 

measured by UV-Vis absorbance at 260 nm(41).   

3.4.2 Anisotropy 

Anisotropy measurements of TAMRA both alone and in the presence of 

aptamer and TAMRA DNA were conducted using a Cary Eclipse (Varian, Inc.) 
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spectrometer.  A 25 nM TAMRA or TAMRA DNA solution in reaction buffer (10 

mM Tris-HCl, pH 7.5, 100 mM KCl, 5 mM MgCl2) was heated to 90°C for 2 

minutes and slowly cooled to room temperature for 20 minutes.  TAMRA was 

excited at 555 nm (5 nm slit width), and emission was recorded at 585 nm (5 nm 

slit width).  The G factor was measured once and held constant throughout the 

measurement.  During titrations with aptamer, the reaction was equilibrated at 

each aptamer concentration for five minutes before measurement.  To determine 

the binding affinity (KD), the anisotropy value (r) which was determined by 

€ 
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r =
IV − IH
IV − 2IH

 

where Iv and IH are the fluorescence intensities in the vertical and horizontal 

direction was plotted as a function of aptamer concentration and then fitted to a 

quadratic equation. 

3.4.3 Quantum Yield 

Quantum yield measurements of TAMRA both alone and in the presence 

of aptamer and TAMRA DNA were conducted using a Cary Eclipse spectrometer 

and Varian spectrofluorometer.  A solution of TAMRA in reaction buffer (10 mM 

Tris-HCl, pH 7.5, 100 mM KCl, 5 mM MgCl2) at a concentration to result in an 

absorbance of 0.1 to 0.15 was scanned to determine the maximum absorbance 

wavelength.  This wavelength was then used to excite the same solution of 

TAMRA; emission was recorded at the maximum wavelength of emission.  The 

quantum yield of TAMRA in buffer was calculated using the previously measured 

quantum yield of TAMRA in methanol using the following equation.   
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where Qunk and Qk are the quantum yields of the unknown and the reference, 

respectively, nunk and nk are the refractive indices of the respective solvents, Aunk 

and Ak are the absorbances for the unknown and reference, and Iunk and Ik are 

the fluorescence intensities of the unknown and reference.  This value was used 

as the reference in all further quantum yield calculations.  The same procedure 

was repeated for TAMRA in the presence of a saturating amount of aptamer and 

for TAMRA DNA.  These solutions were heated to 90°C for 2 min and slowly 

cooled to room temperature for 20 minutes. 

3.4.4 Fluorescence lifetime measurements 

To determine the fluorescence lifetime of TAMRA in varying conditions, 

time-correlated single-photon counting (TCSPC) was performed as previously 

described(42, 97, 98) using a home built time resolved FRET setup in 

combination with an ISS TCSPC module.  Solutions of 250 nM TAMRA in the 

absence and presence of 500 nM aptamer or 250 nM TAMRA DNA in reaction 

buffer (100 mM KCl, 10 mM Tris-HCl pH 7.5, 5 mM MgCl2) were annealed by 

heating to 90 °C for two minutes followed by slow cooling at room temperature 

for 20 minutes.  TAMRA was excited at 520 nm (20 nm band-pass dichroic filter) 

with a class 4 high power Yb-doped fiber laser with 5 ps pulses at 40 MHz.  

Donor emission was collected at 580 nm (20 nm band-pass dichroic filter). The 

magic angle of 54.7° was used to detect isotropic emission to a photon count of 
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at least 40000. Collection of fluorescence decays for TAMRA alone and in the 

presence of aptamer as well as TAMRA DNA was done in 4816 channels with a 

time increment of 12.2 ps/channel using a micro-channel photomultiplier tube 

(Hamamatsu R3890U-52) and a time correlated single photon counting device 

(SPC-630, Becker & Hickl).  The fluorescence intensity of the fluorophore decays 

exponentially with the following equation 

€ 

ID t( ) = I0 exp −
t
τD

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

where τD is the fluorescence lifetime of the fluorophore and I0 is the initial 

intensity dependent upon the concentration of the fluorophore.  A dilute solution 

of non-dairy coffee creamer was used to measure instrument response function.  

The fluorescence emission decay was fit to a sum of three exponential decays 

characterized by their lifetimes with fractional contributions.  A weighted average 

was calculated to result in the average lifetime of the fluorophore.  The quality of 

the fit was judged by the χ2 value. 

3.4.5 Single molecule spectroscopy 

Single molecule experiments were performed as described(39, 68) in 

order to determine how binding to an aptamer effects the blinking of TAMRA.  As 

surface immobilization is a requirement for our single molecule experiments, a 

short DNA with a 3’ biotin for immobilization and a TAMRA label at the 5’ end 

was used to represent unbound TAMRA.  We heated a 10 µL solution of 1 µM 

TAMRA DNA or aptamer with 0.5 µM TAMRA at 90°C for 45 s before cooling to 

room temperature over 20 min.  We diluted the solutions to 12.5 pM and 
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immobilized the DNA or RNA aptamer to a streptavidin-coated quartz slide 

surface via a biotin-streptavidin bridge to generate a surface density of ~0.1 

molecules/µm2.  We then excited the TAMRA in a home-built total internal 

reflection microscope with a laser (532 nm, 3 mW, Spectra-Physics Excelsior).  

We detected TAMRA emission on a back-illuminated electron-multiplied CCD 

camera (Andor I-Xon).  In order to observe blinking events unhindered, we did 

not use any oxygen scavenger system.  We then constructed histograms and 

calculated dwell times for each blinking event to determine the blinking rate 

constants, as described.  The dwell time histograms were fit to a single 

exponential to determine kon and koff for blinking events.   



77 

 

Chapter 4  

Analysis of the effects of 2’ modifications on molecular beacons 

4.1 Introduction 

Molecular beacons (MB) are hairpin probes that fluoresce upon 

hybridization to their target sequence (Figure 4.1).  This is accomplished with the 

use of a fluorophore conjugated to one end of the hairpin and a quencher on the 

other.  The MB consists of a loop sequence, generally 15 to 20 nucleotides, 

specific for the target of interest, and a self-complementary stem sequence 

ranging from five to seven base pairs.  In the absence of target, the molecular 

beacon is in the hairpin conformation bringing the fluorophore into close proximity 

to the quencher, thus quenching the fluorescence.  However, when the MB 

encounters the target sequence, it binds to the target to form a hybrid that is 

more stable than the stem duplex of the hairpin.  Therefore, the hairpin unfolds, 

thus increasing the distance between the fluorophore and the quencher resulting 

in a fluorescent signal(22, 34-36, 99).  

Molecular beacons are advantageous for live cell assays because they 

only fluoresce in the presence of the target molecule.  This negates the need to 

wash away unbound probes, which is often a problem in other nucleic acid 

detection methods.  An obstacle for their use ex vivo, a molecular beacon with an 

RNA backbone is subject to degradation by nucleases at its 2’OH moiety(23-25, 

100-102).  Nuclease degradation of the molecular beacon would result in non-

specific opening of the hairpin probe by breaking the phosphodiester bond and 

separation of the fluorophore and quencher leading to false-positive signals.  To  
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Figure 4.1  (a) Molecular beacons are hairpin probes that fluoresce upon 
hybridization to their target sequence (red).  (b) In the absence of the target 
(red trace), the donor fluorophore is in close proximity to the acceptor 
fluorophore resulting in FRET and acceptor fluorescence.  In the presence of 
the target (green trace), the hairpin opens moving the donor and acceptor 
from each other resulting in less efficient FRET.  Therefore, the donor 
fluorescence increases as the acceptor fluorescence decreases.	  
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Figure 4.2 Modification of the 2’OH (circled) of the RNA backbone to a 2’F, 
2’OMe, and 2’H has been shown to prevent RNase degradation. 
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prevent enzymatic degradation, several modifications of the oligonucleotide 

backbone at the 2’ position have been used including 2’-fluoro (2’F), 2’-O-methyl 

(2’OMe), and 2’-deoxy (2’H) (Figure 4.2) (26-32).  It is not yet fully clear as to the 

effects that these backbone modifications have on the actions of the molecular 

beacon, which lends to the need for a comparative study to determine whether or 

not these modifications hamper and/or alter the behaviors of the probe. 

In this study, we have characterized the effects that 2’F, 2’OMe, and 2’H 

backbone modifications have on the actions of the molecular beacon both in the 

absence and presence of the target sequence by bulk and single molecule 

fluorescence techniques.  The modified MBs were found to act similarly to the 

parent 2’OH MB.  All of the molecular beacons used in this study bound to the 

RNA target with similar, tight nanomolar affinity.  All of the 2’ modified molecular 

beacons exhibited a large conformational change upon target binding. 

4.2 Results and Discussion 

4.2.1 The 2’ modified molecular beacons bind the complementary RNA 
target specifically  

	  

A native FRET gel assay was performed to evaluate binding of each of the 

molecular beacons used in this study to the complementary RNA target.  Binding 

to the complementary RNA target results in both a gel shift and a change in 

FRET.  In the closed conformation (unbound to complementary RNA target), the 

MB appears as a red band.  Conversely, in the open conformation (bound to 

complementary RNA target), the MB appears as a yellow band.  A clear red band  
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Figure 4.3  Native gel confirms binding and specificity of the molecular 
beacons.  In the absence of target, the MB is in a closed conformation and 
FRET occurs between fluorescein and rhodamine resulting in the emission of 
rhodamine and a red band.  When the target is present, the MB is in an open 
conformation resulting in greater emission of fluorescein and a yellow band.  A 
gel shift indicates binding of the MB to the target RNA.  Using a non-
complementary RNA target, no gel shift was observed indicating that the 
beacon was specific for its target. 

	  



82 

 

was observed for all MBs with 2’ modifications in the absence of complementary 

RNA target as well as in the presence of the non-complementary target indicating 

that the MB is in the closed (high FRET), hairpin conformation. (Figure 4.3)  

However, a yellow band was observed in the presence of the complementary 

target indicating the open (low FRET) conformation as a result of binding to the 

complementary RNA target. (Figure 4.3)  This change in conformation also 

results in a gel shift signifying that the MB has bound to the complementary RNA 

target.  However, no gel shift was observed in the presence of the non-

complementary RNA target demonstrating specificity of the MB for the 

complementary RNA target sequence.  All four 2’ modified molecular beacons 

used in this study were equally effective in specifically binding the 

complementary RNA target.  Differences in the helical conformations and/or 

effective charge of the modified MB/RNA duplexes resulted in slight differences 

in migration. 

4.2.2 The 2’OMe modified MB binds the complementary RNA target with 
the tightest affinity  
 

Steady state fluorescence measurements were used to examine the 

effects that the 2’ modifications exhibited on the binding affinity of each of the 

MBs for the complementary RNA target.  In the absence of complementary RNA 

target, the molecular beacons exhibited a FRET ratio ranging from 0.5 to 0.6; this 

range of initial FRET ratios may be a result of differences in the populations of 

the open conformation or differences in structure; however, the latter is not 
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Figure 4.4  The molecular beacons bind with similar affinity to the 
complementary RNA target.   The FRET ratio decreased with increasing target 
concentration, indicating that the beacon had opened in response to binding 
the target (circle).  The curves were fit to the Hill equation with n fixed to value 
of 1.  Initial and final FRET values did not show much variation indicating that 
the modifications did not alter the binding of the MB to the RNA target.  
Apparent KDs showed slight variation with the 2’OMe MB binding with slightly 
better affinity than the 2’OH MB, while the 2’F and 2’H MBs bound with slightly 
lower affinity.  Titration with the non-complement showed no change in FRET 
values demonstrating that the MB is specific for its target (square). 
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consistent with gel data (Figure 4.4).  As the complementary RNA target 

concentration increased, the FRET ratio decreased until the MB was saturated 

with complementary RNA target to give a final FRET ratio of 0.3 for all 2’ 

modified MBs.  The decrease in FRET is a result of the MB changing from the 

closed to the open conformation by binding the complementary RNA target. As 

expected, the FRET ratios at saturation were similar for all 2’ modified MBs.  

Fitting the resulting titration curves to the Hill equation resulted in an apparent KD 

value of 7.0 ± 0.6 nM for the typical 2’OH MB.  All MBs bound with tight nM 

affinity to the complementary RNA target.  Apparent KD values varied slightly 

among the 2’ modified MBs; the 2’OMe MB 3-fold tighter (3.4 ± 0.3 nM) to the 

complementary RNA target, while the 2’F MB bound with similar affinity (10.0 ± 

0.6 nM) and the 2’H MB bound 3-fold weaker (27.9 ± 0.3 nM) (Figure 4.4).  This 

is consistent with prior results(27, 28, 30).  A ten-fold difference in binding affinity 

was found between the 2’OMe MB and the 2’H MB.  Upon addition of the non-

complementary RNA target, no change in FRET efficiency was found, indicating 

that all 2’ modified MBs maintain specificity (Figure 4.4). 

4.2.3 The molecular beacon demonstrates a large conformational change 
upon target binding 
 

Time resolved FRET revealed the distance between the fluorescein and 

rhodamine fluorophores positioned on the stem of the molecular beacon (Figure 

4.5 and Table 4.1).  Similar single distance distributions were observed for all of 

the molecular beacons indicating a single population at an average distance.  

Distances were similar for the MBs ranging from 18 to 21 Å in the absence of  
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Table 4.1  Time resolved FRET results for the molecular beacons in the absence 
and presence of complementary and non-complementary RNA target.  RC and 
RO are the average distance between fluorophores in the closed and open 
conformation, respectively.  FWHMC and FWHMO are the full width at half 
maximum of the distance distributions for the MB in the closed and open 
conformation, respectively.  F is the fraction of molecular beacon that is single-
labeled.  χ2 is the chi-squared value that indicates the goodness of the fit. 
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Figure 4.5  The molecular beacon demonstrates a large dynamic range.  Time 
resolved FRET measurements resulted in similar distances between 
fluorophores for all of the MBs in the absence of target (black), in the presence 
of target (green) and in the presence of a non-complementary target (red).  
The distances were also similar for the same beacon in the absence of target 
and in the presence of the non-complement indicating that the MB is specific 
for the target sequence. 
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complementary RNA target, which is expected when taking into account the 

distance between the complementary nucleotides in the stem as well as the C7 

amino linker used to attach the fluorophores, and 78 Å in the presence of 

complementary RNA target.  The distances in the presence of non-

complementary RNA target ranged from 15 to 21 Å for all 2’ modified MBs and 

were similar to that of the MB in the absence of complementary RNA target, once 

again indicating specificity of the MB for its complementary RNA target. 

4.2.4 Single molecule FRET reveals an equilibrium between the open and 
closed MB 
 

Single molecule FRET measurements were used to uncover information, 

such as possible conformational dynamics, that would otherwise be hidden in 

ensemble-averaged measurements (Figure 4.6).  Time trajectories similar to 

those in Figure 4.7 were analyzed for 2’OH, 2’F, 2’OMe, and 2’H molecular 

beacons.  The traces were all background subtracted to account for bleed-

through of donor fluorescence into the acceptor channel.  Time trajectories with a 

low donor intensity and high acceptor intensity result in a high FRET efficiency 

(0.9) and are indicative of the MB in the closed, hairpin conformation (Figure 4.7 

and 4.8).  Alternatively, time trajectories with a high donor intensity and low 

acceptor intensity result in a low FRET efficiency (0.2) and are indicative of the 

MB in the open conformation (Figure 4.7 and 4.8).  No dynamics were observed 

in the minute timescale.  It is possible that dynamics are present but cannot be 

resolved either because any conformational changes are faster than the time  
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Figure 4.6  Single molecule setup.  The molecular beacon is immobilized to a 
quartz slide via a biotin/streptavidin linkage.  The 532 nm laser excites the 
donor fluorophore (Cy3, D) and the emission of Cy3 and the acceptor 
fluorophore (Cy5, A) are recorded. 	  



89 

 

                 

 

Figure 4.7  Representative single molecule time trajectories of surface-
immobilized molecular beacon.  A closed MB resulted in a low donor 
fluorophore intensity (Cy3, blue), high acceptor fluorophore intensity (Cy5, 
red), and a high FRET ratio of 0.9 (black).  An open MB resulted in a high 
donor fluorophore intensity, a low acceptor fluorophore intensity, and a low 
FRET ratio of 0.2.   
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Figure 4.8  The FRET ratio decreases from 0.9 to 0.2 as the MB binds the 
complementary RNA target as indicated by the arrow.	  
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Figure 4.9  Single molecule FRET histograms of both closed and open 
molecular beacons in the absence and presence of the complementary RNA 
target.  The percentages of closed MBs in the absence of target (MB only) 
were similar with narrow distributions indicating little conformational variation 
of the hairpin stem.  The presence of the RNA target offered a wider 
distribution of MBs closed possibly due to the flexibility of the open 
conformation duplex.  A large dynamic range from a FRET ratio of 0.9 to 0.2 
was observed for all MBs.  
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Figure 4.10  Single molecule complementary target titration.  As the 
concentration of complementary target increases (top to bottom), the closed 
(0.9 FRET) population decreases as the open (0.2 FRET) population 
increases.  The molecular beacon is specific for its complementary RNA 
target.  In the presence of a non-complementary oligonucleotide, the closed 
conformation (0.9 FRET peak) remains the predominant population. 
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Figure 4.11  Single molecule complementary RNA target titration.   For the 
2’OH, 2’OMe, 2’F and 2’H molecular beacons, as the concentration of 
complementary target increased, the percent of molecular beacon in the 
closed conformation decreased.  In the presence of a non-complementary 
RNA oligonucleotide, the percent of closed molecular beacon remained the 
same as in the absence of complementary target, illustrating the specificity of 
the molecular beacon.   The line is a fit to a modified Langmuir equation.  Error 
bars are calculated based on the number of molecules. 
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resolution used or are longer than the life of the fluorophore and the 

photobleaching of the fluorophore precedes the conformational switch.  FRET 

histograms calculated from greater than 100 single molecule traces for 2’OH, 2’F, 

2’OMe, and 2’H MBs in the absence and presence of the complementary RNA 

target were integrated to yield the percentage of time each molecular beacon 

spent in the open and closed conformations (Figure 4.9).  The percentage of 

2’OH, 2’F, 2’OMe, and 2’H MBs in the closed, hairpin conformation (high FRET, 

0.9) in the absence of complementary RNA target were 97%, 98%, 94%, and 

96%, respectively.  Percentages in the closed conformation in the absence of 

complementary RNA target were similar for the 2’OH, 2’OMe, and 2’H MBs with 

narrow distributions indicating little conformational variation of the hairpin. The 

presence of the complementary RNA target resulted in an open conformation 

upon binding of the loop to the complementary RNA target. The percentage of 

2’OH, 2’F, 2’OMe, and 2’H MBs remaining in the closed conformation in the 

presence of the complementary RNA target were 0%, 1%, 0%, and 3%, 

respectively.  Percentages of MBs remaining in the closed conformation were 

similar for all MBs in this study.  The presence of the complementary RNA target 

offered wider distributions for the open conformation (low FRET, 0.2) when 

compared to the closed conformation distribution possibly due to higher flexibility 

of the longer duplex conformation as opposed to the hairpin.  In this experiment, 

the target oligonucleotide was not preannealed to the molecular beacon, 

mimicking ex vivo experimental conditions in which the molecular beacon could 

not be preannealed with the target but would have to search for the target 
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sequence within the cell.  Presence of a closed beacon in the presence of an 

excess of target would result in false negatives when used in a biomedical 

detection assay suggesting a not fully efficient MB.  A large dynamic range from 

a FRET efficiency of 0.9 (closed conformation) in the absence of target to a 

FRET efficiency of 0.2 (open conformation) in the presence of target was 

observed for all MBs used in this study.   

An advantage of single molecule FRET over bulk FRET techniques is the 

ability to distinguish singly-labeled and doubly-labeled constructs.  Although 

HPLC purified, some singly-labeled molecular beacons remained in solution.  

This mixture of singly- and doubly-labeled molecular beacons is responsible for 

the lower initial FRET ratios seen in the bulk titrations (Figure 4.4) and may 

introduce error in the binding affinity calculations.  To determine a more accurate 

binding affinity of the molecular beacons and complementary RNA, a single 

molecule titration was performed.  Increasing amounts of complementary RNA 

was incubated with the various molecular beacons as in the aforementioned 

single molecule FRET experiments.  The percentage of closed (hairpin) 

molecular beacons was plotted as a function of target concentration (Figure 4.10 

and 4.11).  As the concentration of complementary RNA target increased, the 

percentage of closed hairpin decreased to saturation as more molecular beacons 

opened upon binding the complementary RNA target.  Fitting the resulting 

titration curves to the Langmuir equation resulted in a KD value of 39 ± 5 nM for 

the typical 2’OH MB.  All MBs bound with tight nM affinity to the complementary 

RNA target.  As in the bulk titrations, KD values varied slightly among the 2’ 



96 

 

modified MBs; the 2’OMe MB bound with the tightest affinity to the 

complementary RNA target consistent with the bulk titrations binding 4-fold 

tighter (9 ± 2 nM), while the 2’F MB bound with a little more that 2-fold tighter 

affinity (16 ± 1 nM) and the 2’H MB bound almost 2-fold tighter (23 ± 3 nM) 

(Figure 4.11).  Upon addition of the non-complementary RNA target, the 

percentage of closed molecular beacons was the same as in the absence of a 

complementary target, indicating that all 2’ modified MBs maintain specificity 

(Figure 4.10 and 4.11). 

4.3 Conclusions 

FRET and single molecule FRET were used to examine the effects that 2’ 

modifications, including 2’F, 2’OMe, and 2’H, have on the actions of the 

molecular beacon.  The 2’ modified MBs were found to act similarly to the 2’OH 

parent MB.  All MBs had similar binding affinity to a complementary RNA target; 

the 2’OMe MB bound the complementary RNA target with 3-fold tighter affinity 

than the typical 2’OH MB, while the 2’F MB bound with similar affinity and 2’H MB 

bound with 3-fold weaker affinity.  Time resolved and single molecule FRET both 

demonstrated a large conformational range upon complementary RNA target 

binding that was similar for all 2’ modified MBs.  Similar distances between the 5’ 

and 3’ ends of the molecular beacons were found in the absence and presence 

of the complementary RNA target as well as in the presence of a non-

complementary RNA target.  Single molecule FRET eluded to an equilibrium, 

although static, between open and closed conformations.  The 2’ modifications in 
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this study do not appear to affect, to any great extent, the actions of the 

molecular beacon. 

4.4 Materials and Methods 

4.4.1 Molecular beacon purification and labeling 

Molecular beacons were purchased from the Keck Foundation Resource 

Laboratory at the Yale University School of Medicine (New Haven, CT).  

Oligonucleotides were purchased with 5’-Cy3 or fluorescein, 3’-biotin, and an 

internal dT C7 amino linker for fluorophore labeling The MB sequences had 2’-

hydroxyl, 2’-fluoro, 2’-O-methyl, or 2’-deoxy backbones.  The molecular beacon 

sequence used in this study was UUC GUU AAC UUC AGG GUC AGC UUG 

AAC GAA where the nucleotides indicated in bold formed the stem of the hairpin 

probe.  The complementary RNA target sequence was UUC GUU CAA GCU 

GAC CCU GAA GUU AAC GAA, and the non-complementary RNA target 

sequence was AUC UCU UUG CCU UUU GGC UUA GAU CAA GUG UAG 

UAU.  The RNA targets were purchased from Integrated DNA Technologies 

(IDT) and Keck. The 2’OH MB containing 2’-hydroxyl protection groups was 

deprotected according to the manufacturer’s protocol.  The molecular beacons 

were purified and fluorophore-labeled as previously described(41). Briefly, the 

MBs were purified by denaturing gel electrophoresis (20% polyacrylamide and 

8M urea) and diffusion elution against elution buffer (0.4 M NH4OAc and 0.1 mM 

EDTA) overnight at 4°C, followed by chloroform extraction and ethanol 

precipitation.  The internal dT C7 amino linker was labeled with Cy5 in labeling 

buffer (100 mM Na2CO3, pH 8.5) or rhodamine in labeling buffer (100 mM sodium 
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tetraborate, pH 8.5) overnight at room temperature, followed by ethanol 

precipitation and C8 reverse-phase HPLC purification. A donor and acceptor 

FRET pair was chosen over the more commonly found fluorophore/quencher pair 

for ease of single molecule analysis.  The doubly-labeled MB concentration was 

measured by UV-Vis absorbance at 260 nm. 

4.4.2 Native gel assay  

A native gel assay was performed, as previously described, using 15% 

non-denaturing polyacrylamide gel electrophoresis using low-fluorescence glass 

plates with a running buffer consisting of 10 mM Tris-acetic acid, pH 7.3, 20 mM 

KOAc, 1 mM Ca(OAc)2, and 2 mM Mg(OAc)2.(103)  Solutions of 

fluorescein/rhodamine doubly-labeled MB only (10 pmol) with and without 5x 

complementary RNA target (50 pmol) or non-complementary RNA target (50 

pmol) were annealed by heating to 90°C for 45 seconds and slow cooling to 

room temperature at near-physiological conditions (10 mM Tris-HCl, pH 7.3, 120 

mM KCl, 1 mM CaCl2, and 2 mM MgCl2).  An equal volume of 40% glycerol was 

added to each sample after annealing.  Solutions were also made of fluorescein 

only labeled oligonucleotide and a rhodamine only labeled oligonucleotide to be 

used for color calibration purposes.  The acrylamide gel was equilibrated for 15 

min before loading.  The gel was loaded and run for 8 hours at 4°C at 130 mV 

and then scanned with a Typhoon 9210 Variable Model Imager (GE Healthcare) 

and analyzed with ImageQuant software (Amershan Bioscience).  Fluorescein 

and rhodamine were excited at 532 nm and emission was monitored at 526 nm 

and 580 nm, respectively.  Fluorsep software (Amershan Bioscience) was used 
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to overlay the fluorescein and rhodamine gel images, and the bands were 

calibrated based on the fluorescein and rhodamine color controls. 

4.4.3 Steady state FRET   

Steady state FRET measurements of each of the fluorescein/rhodamine 

doubly-labeled molecular beacons were conducted using a Cary Eclipse (Varian, 

Inc.) spectrofluorometer as previously described(41, 98, 104).  A 25 nM MB 

solution in reaction buffer (10 mM Tris-HCl, pH 7.3, 120 mM KCl, 2 mM MgCl2, 

and 1 mM CaCl2) was heated at 90°C for 2 minutes to denature any secondary 

structures and then cooled to room temperature to form the proper hairpin 

conformation.  Fluorescein was excited at 490 nm (10 nm slit width), and the 

fluorescein and rhodamine emission spectra were measured from 505 to 650 nm 

(5 nm slit width).  Relative FRET efficiency was calculated as 

€ 

FRET =
IA

ID + IA
 

where ID and IA are the donor (fluorescein) and acceptor (rhodamine) emission 

intensities, respectively.  During titrations with target RNA, the MB was 

equilibrated at each target RNA concentration for five minutes before scanning.  

To determine the dissociation constant (KD,app), the FRET efficiency was plotted 

as a function of RNA target concentration and then fitted to a modified Hill 

equation  

€ 

FRET = FRET0 + (FRETmax − FRET0) *
[t arget]

KD + [t arget]
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where FRETo is the initial FRET efficiency of the MB in the absence of RNA 

target, FRETmax is the FRET efficiency at saturation, and [target] is the 

concentration of the complementary or non-complementary RNA target. 

4.4.4 Time resolved FRET  

To determine the distance between the fluorophores on each molecular 

beacon in the absence and presence of complementary or non-complementary 

RNA target, time resolved FRET was used, as previously described(42, 97, 98).  

Solutions of 250 nM fluorescein/rhodamine singly or doubly-labeled molecular 

beacon in the absence and presence of either 750 nM complementary RNA 

target or 750 nM non-complementary RNA target in reaction buffer were 

annealed by heating to 90 °C for two minutes slow cooling at room temperature 

for 20 minutes.  The fluorescein was excited at 490 nm and donor emission was 

collected at 520 nm as previously described. Fluorescence decays were 

collected for both singly and doubly-labeled MB solutions.  These decays were 

used to determine the donor-acceptor distance distributions as described.  

4.4.5 Single molecule FRET 

To visualize, at the single molecule level, the conformational changes of 

the molecular beacons with and without the complementary target RNA, single 

molecule FRET total internal reflection spectroscopy was used(68, 98, 102, 104, 

105).  A 25 pM molecular beacon solution was injected into a home-built 

microchannel between a quartz slide and coverslip.  The MB was immobilized at 

the slide/solution interface via a biotin/streptavidin interaction between.  The 
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donor (Cy3) fluorophore was excited at 532 nm laser as previously described 

(Figure 4.6).  The emission from Cy3 and the acceptor (Cy5) was collected 

through an inverted microscope objective onto a CCD detector (IXon, Andor, 

South Windsor, CT).  Time trajectories of the relative FRET efficiencies were 

calculated and histograms were generated and integrated to reflect the amount 

of time a molecule was in each FRET state.  An unfolded (open) MB would result 

in a high ID and low IA, resulting in a low FRET efficiency, while a folded (closed) 

beacon would bring the donor fluorophore into close proximity of the acceptor 

resulting in low ID and high IA and therefore a high FRET efficiency.  To analyze 

the MB in the absence of the RNA target, a solution containing 25 pM MB in 

reaction buffer was heated to 90°C for two minutes to denature the 

oligonucleotide and placed directly on ice to anneal.  All solutions contained 2 µM 

BME to prevent photobleaching.  In addition, an oxygen scavenger solution 

consisting of glucose oxidase and catalase was injected onto the slide to inhibit 

photobleaching of the fluorophores.  Once the MB only solution was imaged, a 

solution containing various concentrations of complementary RNA target/OSS 

solution was injected onto the same slide and incubated for 10 minutes at room 

temperature to allow the MB and RNA target to hybridize, then imaged. 
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Chapter 5  

CONCLUSIONS 

We have used FRET, single molecule spectroscopy, and several other 

biophysical techniques to study how the folding of RNA allows it to perform its 

various functions by accurately recognizing and binding a target ligand.  RNA can 

fold into structures ranging from the simplest of hairpins to intricate tertiary 

complexes.  These structures are directly linked to how RNA performs its native 

biological functions as well as its usefulness in analytical methods.   

We first investigated how a natural RNA folds in order to recognize a 

ligand and regulate gene expression.  We found the c-di-GMP riboswitch 

undergoes a large, global conformational change upon binding of its ligand, c-di-

GMP. The folding dynamics of the c-di-GMP riboswitch upon Mg2+ binding help 

to pre-organize the aptamer for efficient ligand binding and ultimately efficient 

gene expression.  The riboswitch is capable of transiently folding into a structure 

similar to its ligand bound form in the absence of ligand, a process that is aided 

by the presence of Mg2+ ions.  This pre-organization of the aptamer prepares the 

riboswitch to quickly and efficiently bind its ligand allowing it to make the decision 

to turn gene expression on or off in a timely manner.  Ligand recognition is also 

accurate and specific, as the binding pocket is designed to recognize only c-di-

GMP and not a structurally similar compound such as c-di-AMP.  The aptamer 

contains a fail-safe measure in that only in the presence of the correct ligand and 

Mg2+ ions can the aptamer stably fold into the final docked conformation, a 

structure stabilized by tertiary interactions far from the binding site.  In sum, the 
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c-di-GMP riboswitch aptamer domain displays a large-scale pre-organization 

coupled to ligand binding that increases structural specificity, accelerating ligand 

binding. 

We then investigated two cases in which RNA was used as a tool to 

detect an analyte.  We have demonstrated that binding of the fluorophore, 

tetramethylrhodamine (TAMRA), to an aptamer enhances the fluorescent 

properties of the fluorophore.  Similar to the c-di-GMP riboswitch, the aptamer is 

designed to specifically and accurately recognize its ligand.  Interestingly, binding 

to the aptamer resulted in an alteration the photophysical properties of its ligand.  

Specifically, it increased both the quantum yield and fluorescence lifetime of 

TAMRA.  This is most likely a result of the stabilization and rigidifying of the 

normally flexible structure of TAMRA.  By suppressing these motions, non-

radiative decay processes decrease in chance, increasing the likelihood of 

radiative decay. This side effect of binding can prove useful when utilizing 

fluorophore-binding aptamers in assays to track the movements of RNA in vivo.  

Multiple copies of this aptamer could be introduced into the RNA in question; 

fluorescent enhancement of the fluorophore upon binding to the aptamers along 

the RNA would light up the RNA in the cell allowing for detection and tracking of 

the RNA.  

We also investigated molecular beacons, another example of RNA being 

used as a tool.  Molecular beacons are nucleic acids designed to specifically 

recognize a target via base pairing.  We sought to determine how common 

modifications to the 2’ position influence the effectiveness of molecular beacons 
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in recognizing and binding an RNA target.  Modification of the 2’OH moiety to 

2’H, 2’F, and 2’OMe have all been used to allow the use of molecular beacons in 

assays in which the medium contains enzymes that would degrade it, including in 

vivo assays.  We have shown through several biophysical studies that 2’ 

modifications do not affect the folding and binding of a molecular beacon to its 

target.  Therefore, the common use of these 2’ modifications does not hamper 

their use for in vivo studies.   

A common thread in all the RNA complexes investigated here is the 

usefulness of RNA’s ability to accurately and specifically recognize a target 

through various modalities.  These structures have been designed, whether by 

biology or man, to use a diverse array of recognition motifs including sequence 

and overall shape both at the site of target binding as well as locations distant 

from the site of target recognition.  Target specificity is often a challenge in the 

development of an analytical method, but biology has been effective in designing 

complexes that are reliable and specific in the way in which they recognize and 

bind their respective targets.  Studying how naturally found RNA complexes 

achieve this task can be useful in crafting and improving analytical techniques 

using biological compounds to detect a variety of analytes. 
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We have used FRET, single molecule spectroscopy, and several other 

biophysical techniques to study how the folding of RNA allows it to perform its 

various functions by recognizing and binding a target ligand.  We have shown 

that the c-di-GMP riboswitch undergoes a large, global conformational change 

upon binding of the ligand. The folding dynamics of the c-di-GMP riboswitch upon 

Mg2+ binding help to pre-organize the aptamer for efficient ligand binding and 

ultimately efficient gene expression.  We have also investigated two instances, a 

fluorophore-binding aptamer and molecular beacon, where the folding of RNA 

can be used to detect an analyte.  We have demonstrated that binding of the 

fluorophore, TAMRA, to an aptamer enhances the fluorescent properties of the 

fluorophore.  Specifically, it increases both its quantum yield and fluorescent 

lifetime.  This will provide an added advantage to the use of these aptamers in 

labeling an mRNA in vivo. We have shown that 2’ modifications do not affect the 

folding and binding of a molecular beacon to its target.  The common use of 

these 2’ modifications does not hamper their use for in vivo studies.  Whether 
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natural or artificial, the folding of RNA to specifically recognize a target can be 

employed by both cells and scientists to perform a wide array of functions. 
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