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Impact of Rank-Based Normalizing Transformations 
on the Accuracy of Test Scores 

 
Shira R. Solomon Shlomo S. Sawilowsky 

CNA Education Wayne State University 
 

 
The purpose of this article is to provide an empirical comparison of rank-based normalization methods for 
standardized test scores. A series of Monte Carlo simulations were performed to compare the Blom, 
Tukey, Van der Waerden and Rankit approximations in terms of achieving the T score’s specified mean 
and standard deviation and unit normal skewness and kurtosis. All four normalization methods were 
accurate on the mean but were variably inaccurate on the standard deviation. Overall, deviation from the 
target moments was pronounced for the even moments but slight for the odd moments. Rankit emerged as 
the most accurate method among all sample sizes and distributions, thus it should be the default selection 
for score normalization in the social and behavioral sciences. However, small samples and skewed 
distributions degrade the performance of all methods, and practitioners should take these conditions into 
account when making decisions based on standardized test scores. 
 
Key words: Normalization; normalizing transformations; T scores; test scoring; ranking methods; Rankit; Blom; 
Tukey; Van der Waerden; Monte Carlo. 
 
 

Introduction 
Standardization and normalization are two ways 
of defining the frame of reference for a 
distribution of test scores. Both types of score 
conversions, or transformations, mathematically 
modify raw score values (Osborne, 2002). The 
defining feature of standard scores is that they 
use standard deviations to describe scores’ 
distance from the mean, thereby creating equal 
units of measure within a given score 
distribution. Standard scores may be modified to 
change the scale’s number system (Angoff, 
1984), but unless distributions of standard scores 
are normalized, they will retain the shape of the 
original score distribution. Therefore, 
standardization may enable effective analysis of 
individual scores within a single test, but 
normalization is needed for meaningful 
comparisons between tests. 
 
 
 
Shira R. Solomon is a Research Analyst. Email: 
solomons@cna.org. Shlomo S. Sawilowsky is 
Professor of Evaluation and Research. Email: 
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The Problem of Non-continuous Data in 
Educational and Psychological Testing 

Knowledge, intellectual ability, and 
personality are psychological objects that can 
only be measured indirectly, not by direct 
observation (Dunn-Rankin, 1983). The scales 
that describe them are hierarchical—they result 
in higher or lower scores—but these scores do 
not express exact quantities of test-takers’ 
proficiency or attitudes. Ordinal test items such 
as Likert scales result in raw scores that are 
meaningless without purposeful statistical 
interpretation (Nanna & Sawilowsky, 1998). 
Measures with unevenly spaced increments 
interfere with the interpretation of test scores 
against performance benchmarks, the 
longitudinal linking of test editions, and the 
equating of parallel forms of large-scale tests 
(Aiken, 1987). They also threaten the robustness 
and power of the parametric statistical 
procedures that are conventionally used to 
analyze standardized test scores (Friedman, 
1937; Sawilowsky & Blair, 1992). 

Statisticians have been transforming 
ordinal data into a continuous scale since Fisher 
and Yates tabled the normal deviates in 1938. 
Wimberly (1975) favored rank-based 
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transformations to other normalizing 
transformations such as those based on 
logarithms, exponents, or roots for their superior 
accuracy among random scores of different 
variables. Rank-based transformations not only 
attempt to equate the means and homogenize the 
variance of test score distributions, they also aim 
to create conformity in the third and fourth 
moments, skewness and kurtosis. Central 
tendency and variability have clear implications 
for test score distributions. 

The most prominent of the rank-based 
normalization procedures, based on their 
inclusion in widely used statistical software 
(e.g., SPSS, 2006) are those attributed to Van 
der Waerden, Blom, Bliss (the Rankit 
procedure), and Tukey. Van der Waerden’s 
formula (1952, 1953a, 1953b; Lehmann, 1975) 
was thought to improve on percentiles by 
computing quantiles (equal unit portions under 
the normal curve corresponding with the number 
of observations in a sample) not strictly on the 
basis of ranks, but according to the rank of a 
given score value relative to the sample size 
(Conover, 1980). Blom’s formula (1958) 
responds to the curvilinear relationship between 
a score’s rank in a sample and its normal 
deviate. Because “Blom conjectured that α 
always lies in the interval (0·33, 0·50),” 
explained Harter, “he suggested the use of α = 
3/8 as a compromise value” (1961, p.154). Bliss, 
Greenwood, and White (1956) credited Ipsen 
and Jerne (1944) with coining the term “rankit,” 
but Bliss is credited with developing the 
technique as it is now used. Bliss, et al. refined 
this approximation in their study of the effects of 
different insecticides and fungicides on the 
flavor of apples. Its design drew on Scheffé’s 
advancements in paired comparison research, 
which sought to account for magnitude and 
direction of preference, in addition to preference 
itself. Tukey may have proposed his formula, 
which he characterized as “simple and surely an 
adequate approximation to what is claimed to be 
optimum” (1962, p.22), as a refinement of 
Blom’s. 

These procedures have been explored to 
various degrees in the context of hypothesis 
testing, where the focus is necessarily on their 
properties   in   the   tails  of a distribution. In the 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
context of standardized testing, however, the 
body of the distribution—that is, the 95% of the 
curve that lies between the tails—is the focus. 
Practitioners need to know how accurately each 
method normalizes non-theoretical score 
distributions. Solomon (2008) produced the first 
empirical comparison of the Van der Waerden, 
Blom, Tukey, and Rankit methods as they apply 
to standardized testing. This study sought to 
demonstrate their accuracy under a variety of 
sample size and distributional conditions. 

Blom, Tukey, Van der Waerden, and 
Rankit each contribute a formula that 
approximates a normal distribution, given a set 
of raw scores or non-normalized standard scores. 
However, the formulas themselves had not been 
systematically compared for their first four 
moments’ accuracy in terms of normally 
distributed data. Nor had they been compared in 
the harsher glare of non-normal distributions, 
which are prevalent in the fields of education 
and psychology (Micceri, 1989). Small samples 
are also common in real data and are known to 
have different statistical properties than large 
samples (Conover, 1980). In general, real data 
can be assumed to behave differently than data 
that is based on theoretical distributions, even if 
these are non-normal (Stigler, 1977). 

A series of Monte Carlo simulations 
drew samples of different sizes from eight 
unique, empirically established population 
distributions. These eight distributions, though 
extensive in their representation of real 
achievement and psychometric test scores, do 
not represent all possible distributions that could 
occur in educational and psychological testing or 
in social and behavioral science investigations 

Table 1: Chronology of Rank-Based Normalization 
Procedure Development 

Procedure Year Formula 

Van der Waerden 1952 r* / (n + 1) 

Blom 1954 (r - 3/8) / (n + 1/4) 

Rankit 1956 (r - 1/2) / n 

Tukey 1962 (r - 1/3) / (n + 1/3) 

*where r is the rank, ranging from 1 to n 
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more generally. Nor do the sample sizes 
represent every possible increment. However, 
both the sample size increments and the range of 
distributional types are assumed to be sufficient 
for the purpose of outlining the absolute and 
comparative accuracy of these normalizing 
transformations in real settings. Although the 
interpretation of results need not be restricted to 
educational and psychological data, similar 
distributional types may be most often found in 
these domains. 

For normally distributed variables, the 
standardization process begins with the Z score 
transformation, which produces a mean of 0 and 
a standard deviation of 1 (Walker & Lev, 1969; 
Mehrens & Lehmann, 1980; Hinkle, Wiersma, 
& Jurs, 2003). Z scores are produced by dividing 
the deviation score (the difference between raw 
scores and the mean of their distribution) by the 
standard deviation: Z = (X – μ) / σ . However, Z 
scores can be difficult to interpret due to 
decimals and negative numbers. Because 95% of 
the scores fall between -3 and +3, small changes 
in decimals may imply large changes in 
performance. Also, because half the scores are 
negative, it may appear to the uninitiated that 
half of the examinees obtained an extremely 
poor outcome. 
 
Linear versus Area Transformations 

Linear scaling remedies these problems 
by multiplying standard scores by a number 
large enough to render decimal places trivial, 
then adding a number large enough to eliminate 
negative numbers. Although standard scores 
may be assigned any mean and standard 
deviation through linear scaling, the T score 
scale (ST = 10Z + 50) has dominated the scoring 
systems of social and behavioral science tests for 
a century (Cronbach, 1976; Kline, 2000; 
McCall, 1939). In the case of a normally 
distributed variable, the resulting T-scaled 
standard scores would have a mean of 50 and a 
standard deviation of 10. In the context of 
standardized testing, however, T scores refer not 
to T-scaled standard scores but to T-scaled 
normal scores. In the T score formula, Z refers to 
a score’s location on a unit normal 
distribution—its normal deviate—not its place 
within the testing population. 

Scaling standard scores of achievement 
and psychometric tests has limited value. Most 
educational and psychological measurements are 
ordinal (Lester & Bishop, 2000), but standard 
scores can only be obtained for continuous data 
because they require computation of the mean. 
Furthermore, linear transformations retain the 
shape of the original distribution. If a variable’s 
original distribution is Gaussian, its transformed 
distribution will also be normal. If an observed 
distribution manifests substantial skew, 
excessive or too little kurtosis, or multimodality, 
these non-Gaussian features will be maintained 
in the transformed distribution. 

This is problematic for a wide range of 
practitioners because it is common practice for 
educators to compare or combine scores on 
separate tests and for testing companies to 
reference new versions of their tests to earlier 
versions. Standard scores such as Z will not 
suffice for these purposes because they do not 
account for differing score distributions between 
tests. Comparing scores from a symmetric 
distribution with those from a negatively skewed 
distribution, for example, will give more weight 
to the scores at the lower range of the skewed 
curve than to those at the lower range of the 
symmetric curve (Horst, 1931). Normalizing 
transformations are used to avoid biasing test 
score interpretation due to heteroscedastic and 
asymmetrical score distributions. 
 
Non-normality Observed 

According to Nunnally (1978), “test 
scores are seldom normally distributed” (p.160). 
Micceri (1989) demonstrated the extent of this 
phenomenon in the social and behavioral 
sciences by evaluating the distributional 
characteristics of 440 real data sets collected 
from the fields of education and psychology. 
Standardized scores from national, statewide, 
and districtwide test scores accounted for 40% 
of them. Sources included the Comprehensive 
Test of Basic Skills (CTBS), the California 
Achievement Tests, the Comprehensive 
Assessment Program, the Stanford Reading 
tests, the Scholastic Aptitude Tests (SATs), the 
College Board subject area tests, the American 
College Tests (ACTs), the Graduate Record 
Examinations (GREs), Florida Teacher 
Certification Examinations for adults, and 
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Florida State Assessment Program test scores for 
3rd, 5th, 8th, 10th, and 11th grades.  

Micceri summarized the tail weights, 
asymmetry, modality, and digit preferences for 
the ability measures, psychometric measures, 
criterion/mastery measures, and gain scores. 
Over the 440 data sets, Micceri found that only 
19 (4.3%) approximated the normal distribution. 
No achievement measure’s scores exhibited 
symmetry, smoothness, unimodality, or tail 
weights that were similar to the Gaussian 
distribution. Underscoring the conclusion that 
normality is virtually nonexistent in educational 
and psychological data, none of the 440 data sets 
passed the Kolmogorov-Smirnov test of 
normality at alpha = .01, including the 19 that 
were relatively symmetric with light tails. The 
data collected from this study highlight the 
prevalence of non-normality in real social and 
behavioral science data sets. 

Furthermore, it is unlikely that the 
central limit theorem will rehabilitate the 
demonstrated prevalence of non-normal data sets 
in applied settings. Although sample means may 
increasingly approximate the normal distribution 
as sample sizes increase (Student, 1908), it is 
wrong to assume that the original population of 
scores is normally distributed. According to 
Friedman (1937), “this is especially apt to be the 
case with social and economic data, where the 
normal distribution is likely to be the exception 
rather than the rule” (p.675). 

There has been considerable empirical 
evidence that raw and standardized test scores 
are non-normally distributed in the social and 
behavioral sciences. In addition to Micceri 
(1989), numerous authors have raised concerns 
regarding the assumption of normally distributed 
data (Pearson, 1895; Wilson & Hilferty, 1929; 
Allport, 1934; Simon, 1955; Tukey & 
McLaughlin, 1963; Andrews et al., 1972; 
Pearson & Please, 1975; Stigler, 1977; Bradley, 
1978; Tapia & Thompson, 1978; Tan, 1982; 
Sawilowsky & Blair, 1992). The prevalence of 
non-normal distributions in education, 
psychology, and related disciplines calls for a 
closer look at transformation procedures in the 
domain of achievement and psychometric test 
scoring. 
 

The Importance of T Scores for the 
Interpretation of Standardized Tests 

Standardized test scores are notoriously 
difficult to interpret (Chang, 2006; Kolen and 
Brennan, 2004; Micceri, 1990; Petersen, Kolen, 
and Hoover, 1989). Most test-takers, parents, 
and even many educators, would be at a loss to 
explain exactly what a score of 39, 73, or 428 
means in conventional terms, such as pass/fail, 
percentage of questions answered correctly, or 
performance relative to other test-takers. Despite 
the opaqueness of T scores relative to these 
conventional criteria, they have the advantage of 
being the most familiar normal score scale, thus 
facilitating score interpretation. Most normal 
score systems are assigned means and standard 
deviations that correspond with the T score. For 
example, the College Entrance Board’s 
Scholastic Aptitude Test (SAT) Verbal and 
Mathematical sections are scaled to a mean of 
500 and a standard deviation of 100. T scores 
fall between 20 and 80 and SAT scores fall 
between 200 and 800. The T score scale 
facilitates the interpretation of test scores from 
any number of different metrics, few of which 
would be familiar to a test taker, teacher, or 
administrator, and gives them a common 
framework. 

The importance of transforming normal 
scores to a scale that preserves a mean of 50 and 
a standard deviation of 10 calls for an empirical 
comparison of normalizing transformations. This 
study experimentally demonstrates the relative 
accuracy of the Blom, Tukey, Van der Waerden, 
and Rankit approximations for the purpose of 
normalizing test scores. It compares their 
accuracy in terms of achieving the T score’s 
specified mean and standard deviation and unit 
normal skewness and kurtosis, among small and 
large sample sizes in an array of real, non-
normal distributions. 
 

Methodology 
A Fortran program was written to compute 
normal scores using the four rank-based 
normalization formulas under investigation. 
Fortran was chosen for its large processing 
capacity and speed of execution. This is 
important for Monte Carlo simulations, which 
typically require from thousands to millions of 
iterations. 
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Normal scores were computed for each 
successive iteration of randomly sampled raw 
scores drawn from various real data sets. The 
resulting normal scores were then scaled to the 
T. The first four moments of the distribution 
were calculated from these T scores for each of 
the 14 sample sizes in each of the eight 
populations. Absolute values were computed by 
subtracting T score means from 50, standard 
deviations from 10, skewness values from 0, and 
kurtosis values from 3. These absolute values 
were sorted into like bins and ranked in order of 
proximity to the target moments. The values and 
ranks were averaged over the results from 
10,000 simulations and reported in complete 
tables (Solomon, 2008). Average root mean 
square (RMS) values and ranks were also 
computed and reported for the target moments. 
This paper summarizes the values and ranks for 
absolute deviation values and RMS, or 
magnitude of deviation. Together, deviation 
values and magnitude of deviation describe the 
accuracy and stability of the Blom, Tukey, Van 
der Waerden, and Rankit approximations in 
attaining the first four moments of the normal 
distribution. 
 
Sample Sizes and Iterations 

Simulations were conducted on samples 
of size n = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 
100, 200, 500, and 1,000 that were randomly 
selected from each of the eight Micceri (1989) 
data sets. Ten-thousand (10,000) iterations were 
performed to break any ties up to three decimal 
places. 
 
Achievement and Psychometric Distributions 

Micceri (1989) computed three indices 
of symmetry/asymmetry and two indices of tail 
weight for each of the 440 large data sets he 
examined (for 70% of which, n ≥ 1,000), 
grouped by data type: achievement/ability 
(accounting for 231 of the measures), 
psychometric (125), criterion/mastery (35), and 
gain scores (49). Eight distributions were 
identified based on symmetry, tail weight 
contamination, propensity scores, and modality. 
Sawilowsky, Blair, and Micceri (1990) 
translated these results into a Fortran subroutine 
using achievement and psychometric measures 

that best represented the distributional 
characteristics described by Micceri (1989). 

The following five distributions were 
drawn from achievement measures: Smooth 
Symmetric, Discrete Mass at Zero, Extreme 
Asymmetric – Growth, Digit Preference, and 
Multimodal Lumpy. Mass at Zero with Gap, 
Extreme Asymmetric – Decay, and Extreme 
Bimodal were drawn from psychometric 
measures. All eight achievement and 
psychometric distributions are nonnormal. These 
distributions are described in Table 2 and 
graphically depicted in Figure 1. 
 

Results 
The purpose of this study was to compare the 
accuracy of the Blom, Tukey, Van der Waerden, 
and Rankit approximations in attaining the target 
moments of the normal distribution. Tables 3, 4, 
and 5 present these results. Table 3 summarizes 
the major findings according to moment, sample 
size, and distribution. It presents values and 
simplified ranks for the accuracy of the four 
normalizing methods on the first measure, 
deviation from target moment. For example, the 
T score’s target standard deviation is 10. 
Therefore, two methods that produce a standard 
deviation of 9.8 or 10.2 would have the same 
absolute deviation value: 0.2. The highest 
ranked method for each condition is the most 
accurate, having the smallest absolute deviation 
value over 10,000 Monte Carlo repetitions. It is 
possible to assign ranks on the mean despite the 
accuracy of all four normalization methods 
because differences begin to appear at six 
decimal places. However, all numbers are 
rounded to the third decimal place in the tables. 

Table 3 shows that rank-based 
normalizing methods are less accurate on the 
standard deviation than on the mean, skewness, 
or kurtosis. Furthermore, the standard deviation 
has more immediate relevance to the 
interpretation of test scores than the higher 
moments. For these reasons, Tables 4 and 5 and 
Figures 2 and 3 restrict their focus to the 
methods’ performance on the standard deviation. 
Table 4 summarizes the methods’ proximity to 
the target standard deviation by distribution 
type. Table 5 reports proximity for all eight 
distributions. 
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Table 2: Basic Characteristics of Eight Non-normal Distributions 

 Achievement 

 Range Mean Median Variance Skewness Kurtosis

1. Smooth Symmetric 0 ≤ x ≤ 27 13.19 13.00 24.11 0.01 2.66 

2. Discrete Mass at Zero 0 ≤ x ≤ 27 12.92 13.00 19.54 -0.03 3.31 

3. Extreme Asymmetric 
– Growth 

4 ≤ x ≤ 30 24.50 27.00 33.52 -1.33 4.11 

4. Digit Preference 420 ≤ x ≤ 635 536.95 535.00 1416.77 -0.07 2.76 

5. Multimodal Lumpy 0 ≤ x ≤ 43 21.15 18.00 141.61 0.19 1.80 

 Psychometric 

 Range Mean Median Variance Skewness Kurtosis

6. Mass at Zero w/Gap 0 ≤ x ≤ 16 1.85 0 14.44 1.65 3.98 

7. Extreme Asymmetric 
– Decay 

10 ≤ x ≤ 30 13.67 11.00 33.06 1.64 4.52 

8. Extreme Bimodal 0 ≤ x ≤ 5 2.97 4.00 2.86 -0.80 1.30 

 

Figure 1: Appearance of Five Achievement and Three Psychometric Distributions 
(Sawilowsky & Fahoome, 2003) 

 

 

 

  

 

Distribution 6, Psychometric:  
Mass at Zero with Gap

Distribution 5, Achievement:  
Multimodal Lumpy 

Distribution 1, Achievement:  
Smooth Symmetric 

Distribution 2, Achievement:  
Discrete Mass at Zero 
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Figure 1 (Continued): Appearance of Five Achievement and Three Psychometric Distributions 
(Sawilowsky & Fahoome, 2003) 

 

 

  

Distribution 8, Psychometric:  
Extreme Bimodal

Distribution 7, Psychometric:  
Extreme Asymmetric – Decay  

 

Distribution 4, Achievement:  
Digit Preference  

Distribution 3, Achievement:  
Extreme Asymmetric – Growth 

Table 3: Deviation from Target, Summarized by Moment, Sample Size and Distribution 

 Moment 

 Blom Tukey Van der W. Rankit 
 Rank Value Rank Value Rank Value Rank Value 

Mean 4 0.000 1 0.000 2 0.000 3 0.000 
Standard Dev 2 1.142 3 1.186 4 1.603 1 1.119 

Skewness 2 0.192 2 0.192 1 0.191 2 0.192 
Kurtosis 2 0.947 3 0.941 4 0.952 1 0.930 

 Sample Size 
 Blom Tukey Van der W. Rankit 
 Rank Value Rank Value Rank Value Rank Value 

5 ≤ 50 2 0.609 3 0.628 4 0.769 1 0.603 
100 ≤ 1000 2 0.435 3 0.423 4 0.447 1 0.416 

 Distribution 
 Blom Tukey Van der W. Rankit 
 Rank Value Rank Value Rank Value Rank Value 

Smooth Sym 2 0.393 3 0.411 4 0.531 1 0.391 
Discr Mass Zero 2 0.404 3 0.421 4 0.539 1 0.403 
Asym – Growth 2 0.453 3 0.470 4 0.583 1 0.452 
Digit Preference 2 0.390 3 0.408 4 0.527 1 0.370 

MM Lumpy 2 0.412 3 0.396 4 0.510 1 0.376 
MZ w/Gap 2 1.129 3 1.126 4 1.204 1 1.113 

Asym – Decay 2 0.726 3 0.739 4 0.835 1 0.725 
Extr Bimodal 2 0.655 3 0.669 4 0.765 1 0.654 
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Proximity to target includes deviation 
values, at the top of the Tables 4 and 5, and 
RMS values, at the bottom. RMS is an important 
second measure of accuracy because it indicates 
how consistently the methods perform. By 
standardizing the linear distance of each 
observed moment from its target, RMS denotes 
within-method magnitude of deviation. 
Respectively, the two accuracy measures, 
deviation value and magnitude of deviation, 
describe each method’s average distance from 
the target value and how much its performance 
varies over the course of 10,000 random events. 
 
Predictive Patterns of the Deviation Range 

Figure 2 plots the range of deviation 
values for each distribution against a power 
curve   among   small   samples.   Curve fitting is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

only possible for the deviation range on the 
second and fourth moments, standard deviation 
and kurtosis. The first and third moments, mean 
and skewness, either contain zeros, which make 
transformations impossible, or lack sufficient 
variability to make curve fitting worthwhile.  

To evaluate trends at larger sample 
sizes, the small-sample regression models are 
fitted a second time with the addition of four 
sample sizes: n = 100, n = 200, n = 500, and n = 
1000. To whatever extent predictive patterns are 
established when n ≤ 50, those regression slopes 
either improve in fit or continue to hold when 
sample sizes increase. Figure 3 shows that 
inclusion of larger sample sizes causes the 
Smooth Symmetric power curve to remain intact 
and the Digit Preference power curve to improve 
in fit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4: Proximity to Target Standard Deviation for Achievement and Psychometric Distributions 
 

 Deviation Value 

 Blom Tukey Van der Waerden Rankit 

 5 ≤ 50 
100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

Achievement 0.736 0.205 0.824 0.122 1.413 0.231 0.735 0.089 

Psychometric 2.263 1.382 2.332 1.390 2.802 1.455 2.260 1.374 

 Magnitude of Deviation (RMS) 

 Blom Tukey Van der Waerden Rankit 

 5 ≤ 50 
100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

Achievement 0.018 0.001 0.017 0.001 0.017 0.001 0.009 0.001 

Psychometric 0.542 0.096 0.540 0.096 0.536 0.096 0.497 0.088 
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Table 5: Proximity to Target Standard Deviation for Small and Large Samples 

 Deviation Value 

 Blom Tukey Van der Waerden Rankit 

 
5 ≤ 50 

100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

Smooth Sym 0.720 0.077 0.808 0.089 1.401 0.202 0.719 0.047 

Discr  MZ 0.736 0.082 0.823 0.094 1.414 0.208 0.734 0.073 

Asym – Gro 0.829 0.247 0.914 0.260 1.489 0.356 0.827 0.237 

Digit Pref 0.702 0.072 0.790 0.084 1.385 0.195 0.700 0.043 

MM Lumpy 0.696 0.547 0.785 0.085 1.378 0.196 0.695 0.044 

MZ w/Gap 3.651 2.804 3.711 2.815 4.117 2.896 3.647 2.795 

Asym – Dec 1.668 0.420 1.743 0.425 2.244 0.458 1.666 0.417 

Extr Bimod 1.469 0.921 1.543 0.931 2.045 1.011 1.467 0.912 

 Magnitude of Deviation (RMS) 

 Blom Tukey Van der Waerden Rankit 

 
5 ≤ 50 

100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

5 ≤ 50 
100 ≤ 
1000 

Smooth Sym 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.000 

Discr  MZ 0.015 0.000 0.015 0.000 0.014 0.000 0.003 0.000 

Asym – Gro 0.043 0.003 0.042 0.003 0.042 0.003 0.035 0.003 

Digit Pref 0.013 0.000 0.014 0.000 0.013 0.000 0.003 0.000 

MM Lumpy 0.013 0.000 0.013 0.000 0.013 0.000 0.002 0.000 

MZ w/Gap 1.081 0.225 1.077 0.225 1.069 0.225 0.993 0.226 

Asym – Dec 0.310 0.031 0.309 0.031 0.307 0.031 0.290 0.031 

Extr Bimod 0.236 0.031 0.235 0.031 0.232 0.031 0.208 0.007 
 

Figure 2: Power Curves Fitted to the Deviation Range of the Standard Deviation at 10 Small Sample Sizes 

 
Smooth Symmetric 

 
Multimodal Lumpy 
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Figure 3: Power Curves Fitted to the Deviation Range of the Standard Deviation with Inclusion of Four 
Large Sample Sizes 

 
Smooth Symmetric 

 
Digit Preference 

Figure 2 (Continued): Power Curves Fitted to the Deviation Range of the Standard Deviation at 10 Small 
Sample Sizes 
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Conclusion 
Table 3 shows that Rankit outperforms the other 
methods across moments at small and large 
sample sizes and with all eight distributions. 
Blom and Tukey consistently place second and 
third, and Van der Waerden performs the worst. 
 
Mean, Skewness, and Kurtosis 

All four rank-based normalization 
methods attain the target value of 50 for the 
mean. Differences appear in the numerical 
results only after the third decimal place, and are 
therefore meaningless in terms of practical 
application. These differences are reflected in 
the deviation ranks in Table 3. The four 
methods’ average deviation from the target 
skewness value of the normal distribution is 
0.192 (Table 3). Normalization methods should 
not be selected on the basis of their deviation 
from target skewness values because the 
deviation quantities are small and the differences 
between them are negligible. 

Deviation values for kurtosis show 
greater deviation from target than those for 
skewness but less than those for standard 
deviation. The average deviation value for 
kurtosis across all sample sizes and distributions 
is 0.943 (Table 3). Moderate flatness or 
peakedness might reflect something about the 
test instrument or the population, but it is not 
clear how kurtosis could affect decisions made 
about test scores. 
 
Standard Deviation: Deviation from Target 
Standard Deviation. 

None of the Normalization methods 
attains the target standard deviation on either 
accuracy measure. Rankit is the most accurate 
method, averaging a distance of 1.119 from the 
target T score standard deviation of 10 (Table 3). 
This means that the practitioner who uses Rankit 
to normalize test scores without reference to 
sample size or distribution can expect to obtain 
an estimated standard deviation between 8.881 
and 11.119. If Z = 2, the T score would fall 
between 67.762 or 72.238, for a range of 4.476. 
Adding in the test instrument’s standard error 
compounds the problem. An instrument with a 
standard error of three (± 3) would expand the 
true score range by six points, to 10.476. 
Rounding to the nearest whole number, this 

means that the test-taker’s standardized test 
score falls somewhere between 65 and 75. Even 
a standard error half this size would lead to a 
true score range of 7.476. Thus, a standard 
deviation that is off target by 1.119 would 
combine with a standard error of ± 1.5 to 
increase the true score range by 249%, from a 
theorized range of three to an actual range of 
seven and a half. As the standard error increases, 
the estimated difference between the theorized 
and actual score range diminishes. At a standard 
error of three, Rankit produces a standard 
deviation that causes the true score range to be 
175% greater than the presumed score range. 

Van der Waerden is the least accurate 
method, averaging a distance of 1.603 from the 
target T score standard deviation (Table 3). 
Using Van der Waerden to normalize a test 
score (Z = 2) without reference to sample size or 
distribution produces a rounded true score range 
of 64 to 76 at a standard error of ± 3. At a 
standard error of ± 1.5, the test-taker’s T score 
would fall between 65 and 75, the same range 
that Rankit produced at twice the standard error. 
Van der Waerden’s inaccuracy on the standard 
deviation causes the true score range to increase 
over the expected score range by 207% at a 
standard error of ± 3 and 314% at a standard 
error of ± 1.5. 

As with Rankit, smaller standard errors 
correspond with greater relative inaccuracy of 
the true score range. The more reliable a test 
instrument is, the less precise are the T scores, 
regardless of the normalization method used. 
This is illustrated in Table 6, which presents the 
percentage increase to the true score range based 
on each method’s overall distance from the 
standard deviation across all sample sizes and 
distributions. 

The inaccuracy of the rank-based 
normalization methods on the standard deviation 
becomes more pronounced in the context of 
sample size and distribution type (Table 4). All 
four methods are more accurate among large 
samples and achievement distributions and less 
accurate among small samples and psychometric 
distributions. Rankit’s worst average deviation 
value, among psychometric distributions at 
small sample sizes, is 25 times higher than its 
best among achievement distributions at large 
sample sizes. 
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Van der Waerden’s worst deviation 
value — again, among psychometric 
distributions at small sample sizes — is 12 times 
higher than its best. Normalization performance 
is so heavily influenced by sample size and 
distribution type that Van der Waerden, which is 
the worst overall performer, produces much 
more accurate standard deviations under the best 
sample size and distributional conditions than 
Rankit does under the worst distributional 
conditions. Under these circumstances, Rankit’s 
worst deviation value is 10 times higher than 
Van der Waerden’s best deviation value. 

Table 5 illustrates this phenomenon 
even more starkly. The overall best method, 
Rankit, has its least accurate deviation value, 
3.647, among small samples of the psychometric 
distribution, Mass at Zero with Gap. Van der 
Waerden attains its most accurate deviation 
value, 0.195, among large samples of the Digit 
Preference achievement distribution. The best 
method’s worst deviation value on any 
distribution is 19 times higher than the worst 
method’s best value. This pattern holds 
independently for sample size and distribution. 
Van der Waerden’s best deviation values are 
superior to Rankit’s worst among small and 
large samples. Sample size exerts a strong 
enough influence to reverse the standing of the 
best- and worst-performing methods on every 
distribution. All four methods perform best with 
Digit Preference and Multimodal Lumpy and 
worst with Mass at Zero with Gap. 

Separately, the influence of sample size 
and distribution can make the worst 
normalization method outperform the best one. 
Together, their influence can distort the standard 
deviation enough to render the T score 
distribution, and the test results, meaningless. In 
the best case scenario, Rankit would be used 
among large samples of the Digit Preference 
distribution, where it is off target by 0.043 
(Table 5). With a Z score of 2 and a standard 
error of  ± 2, this leads to a true score range of 
4.172, only 4% greater than the expected score 
range.  In the worst case scenario, Van der 
Waerden could be used among small samples of 
the Mass at Zero with Gap distribution, where it 
is off target by 4.117. With the same Z score and 
standard error, this combination produces a true 
score range of 20.468, or 512% greater than the 
expected score range. Clearly, a true score range 
of 20 is psychometrically unacceptable.Telling a 
parent that her child scored somewhere between 
a 60 and an 80 is equally pointless. 
 
Magnitude of Deviation on the Standard 
Deviation 

Returning to the second accuracy 
measure, magnitude of deviation, Table 4 shows 
how consistently the methods perform on the 
standard deviation.1 Among achievement 
distributions, they exhibit virtually no variability 
with large samples (RMS = 0.001) and slight 
variability with small samples (average RMS = 
0.015). Among psychometric distributions, the 
pattern is the same but the magnitude of 
deviation is greater for both large and small 
samples (average RMS = 0.094 and 0.529, 
respectively). As expected, small samples and 
psychometric distributions aggravate the 
instability of each method’s performance and 
exacerbate the differences between them. 
Average magnitude of deviation for small 
samples is nearly six times greater than larger 
samples. Average magnitude of deviation for 
psychometric distributions is 39 times greater 
than achievement distributions. Table 5 provides 
RMS values for all eight distributions. It is 
notable that Extreme Asymmetric – Growth, 
which is highly skewed, presents the highest 
RMS value among achievement distributions, 
although it is still lower than the psychometric 
distributions. 

Table 6: Increase of True Score Range over Expected 
Score Range by Standard Error 

Standard 
Error 

% Increase 

Rankit Blom Tukey 
Van der 
Waerden 

± 0.5 548% 557% 574% 741% 

± 1.0 324% 328% 337% 421% 

± 1.5 249% 252% 258% 314% 

± 2.0 212% 214% 219% 260% 

± 2.5 190% 191% 195% 228% 

± 3.0 175% 176% 179% 207% 
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The Blom, Tukey, Van der Waerden, 
and Rankit approximations display considerable 
inaccuracy on the standard deviation, which has 
practical implications for test scoring and 
interpretation. Overestimation or 
underestimation of the standard deviation can 
bias comparisons of test-takers and tests. 
Therefore, practitioners should consider both 
sample size and distribution when selecting a 
normalizing procedure. 

Small samples and skewed distributions 
aggravate the inaccuracy of all ranking methods, 
and these conditions are common in 
achievement and psychometric test data. 
However, substantial differences between 
methods are found among large samples and 
relatively symmetrical distributions as well. 
Therefore, scores from large samples should be 
plotted to observe population variance, in 
addition to propensity scores, tail weight, 
modality, and symmetry. Practitioners including 
analysts, educators, and administrators should 
also be advised that most test scores are less 
accurate than they appear. Caution should be 
exercised when making decisions based on 
standardized test performance. 

This experiment demonstrates that 
Rankit is the most accurate method on the 
standard deviation when sample size and 
distribution are not taken into account; it is the 
most accurate method among both small and 
large samples; and it is the most accurate 
method among both achievement and 
psychometric distributions. Van der Waerden’s 
approximation consistently performs the worst 
across sample sizes and distributions. In most 
cases, Blom’s method comes in second place 
and Tukey’s, third. 

It would be useful to perform a more 
exhaustive empirical study of these ranking 
methods to better describe their patterns. It 
would also be of theoretical value to analyze the 
mathematical properties of their differences. 
More research can be done in both theoretical 
and applied domains. However, these results 
identify clear patterns that should guide the 
normalization of test scores in the social and 
behavioral sciences. 
 
 
 

Note 
1Curiously, the worst RMS values belong to 
Blom (Table 4), yet Blom achieves the second 
place deviation value on three out of four 
moments, among small and large samples and 
all eight distributions (Table 3). This suggests 
that Blom’s approximation may achieve some 
technical precision at the expense of stability. 
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