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Assessing Trends: 
Monte Carlo Trials with Four Different Regression Methods 

 
Daniel R. Thompson 

Florida Department of Health 
 

 
Ordinary Least Squares (OLS), Poisson, Negative Binomial, and Quasi-Poisson Regression methods were 
assessed for testing the statistical significance of a trend by performing 10,000 simulations. The Poisson 
method should be used when data follow a Poisson distribution. The other methods should be used when 
data follow a normal distribution. 
 
Key words: Monte Carlo, simulation, Ordinary least squares regression, Poisson regression, negative 
binomial regression, Quasi-Poisson regression. 
 
 

Introduction 
In the analysis of trend data, the key question is 
whether the trend reflects a true change or, 
alternatively, random variation. Statistical 
methods can be used to assess the probability 
that a trend has occurred due to chance. One 
approach is to use regression techniques to 
calculate the slope of the line that best fits the 
trend. If the slope of the line is significantly 
different from the flat line slope of zero, the 
trend is assumed to be non-random. 

Disease and mortality rates generally 
change exponentially over time and are therefore 
linear in terms of the natural logarithm of the 
rate. Consequently, methods based on the slope 
of a straight line can be used to examine the 
natural logarithm of rates over time. The slope 
of the line that best fits the trend of the 
logarithm of the rates can also be used to 
calculate the estimated annual percent change  
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(EAPC). This is explained in more detail on the 
National Cancer Institute internet web page 
under the Surveillance, Epidemiology and End 
Results program (SEER) (http://seer.cancer.gov/ 
seerstat/WebHelp/Trend_Algorithms.htm). 

Several commonly used methods for 
assessing the statistical significance of trends 
exist. These methods differ in the assumptions 
made about the distribution of the data and in the 
way the slope is calculated. The Poisson 
regression method assumes the numerator and 
denominator data for the rates follow a Poisson 
distribution and the variances are assumed to be 
equal to the means. The dependent variable is 
the natural logarithm of the numerators with the 
natural logarithm of the denominators used as an 
offset (Dunteman & Ho, 2006). This method has 
been used by Liu et al to analyze trends in stroke 
deaths in Japan (Liu, Ikeda & Yamori, 2006); by 
Botha et al to analyze trends in breast cancer 
deaths in Europe (Botha, et al., 2001) and by 
Lieb et al to analyze HIV/AIDS diagnosis trends 
in Florida (Lieb, et al., 2007). 

The Quasi-Poisson and Negative 
Binomial regression methods are similar to the 
Poisson regression method but these methods do 
not assume the variances are equal to the means. 
For more information on the Quasi-Poisson and 
Negative Binomial  methods see Wolfram 
Mathworld (http://mathworld.wolfram.com/ 
NegativeBinomialDistribution.html) and The R 
Stats Package  (http://stat.ethz.ch/R-manual/R-
patched/library/stats/html/family.html). 
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The ordinary least squares (OLS) 
regression method assumes the numerators and 
denominators follow a Gaussian or Normal 
distribution and the dependent variable is the 
natural logarithm of the rates. This method is 
recommended by the National Cancer Institute 
and has been used by Olson, et al. to analyze 
trends in incidence of Primary Central Nervous 
System Non-Hodgkin Lymphoma in the U.S. 
(Olson, et al., 2002). 

When these methods are applied to 
randomly generated data, the probability of 
observing a statistically significant result should 
be close to the alpha level selected for the test. 
This is usually 0.05. The performance of these 
methods can be assessed by repeatedly applying 
them to randomly generated data and calculating 
the proportion of trials that result in statistical 
significance. If the tests are performing well in 
situations where the null hypothesis is true and 
there is no trend, this proportion should be close 
to the alpha level. This is generally known as a 
Monte Carlo experiment. 

Monte Carlo experiments can also be 
used to assess the performance of these methods 
when there is a trend and the null hypothesis of 
no trend is false. Ideally, a method that performs 
well would detect a trend, when the null 
hypothesis of no trend is true, in about 5% of the 
tests; and when the null hypothesis of no trend is 
false, the ideal method would detect a significant 
trend in a relatively high proportion of the tests, 
compared to the other methods. In this analysis, 
Monte Carlo experiments were used to evaluate 
and compare the four methods discussed above. 
The objective is to provide a better 
understanding regarding the choice of the 
appropriate method for a given situation. 
 

Methodology 
R software (The R Project for Statistical 
Computing available at: http://www.r-
project.org/) was used to randomly generate 10 
sets of numerators and denominators. These 
were then used to calculate simulated rates. 
Random data were generated based on means 
and standard deviations from four different sets 
of numerators and denominators taken from 
actual statistics for the period 1996 through 2005 
(Florida Community Health Assessment 
Resource Tool Kit (CHARTS) at: 

http://www.floridacharts.com/charts/chart.aspx). 
The four data sets used were: 
 

1) Injury mortality data for Florida;  
2) Infant mortality (death before age 1) data 

for Florida; 
3) Infant low birth weight (birth weight < 

2500 grams) data for a Florida county; and 
4) Infant mortality data for a Florida County. 

 
The means and standard deviations for the 
numerators and denominators in these 4 data sets 
are given in table 1. 

The data were generated to follow either 
a Normal (Gaussian) or a Poisson distribution. 
The 4 methods described in the Introduction 
were applied to the data sets and the results were 
compared. These methods were used to derive 
the equation that best fit the trend. The equation 
slope coefficient and the standard deviation of 
the slope coefficient were used to test for a 
statistically significant trend. The glm 
(generalized linear model) function in R was 
used to generate the equations. 

This process was repeated 10,000 times 
and the proportion of trials that indicated 
statistical significance was compared for the 4 
methods. In general, when statistical tests are 
applied to random data, where the null 
hypothesis is true, statistical significance will be 
observed in a proportion close to the alpha level 
of the test. This follows because the alpha level 
is defined as the probability of rejecting the null 
hypothesis when the null hypothesis is true. 
With trend data, the null hypothesis asserts there 
is no underlying trend and any observed trend is 
due to random variation. The four methods were 
compared in terms of their ability to accept the 
null hypothesis when the null hypothesis of no 
trend is true. 

The four methods were also assessed for 
their ability to reject the null hypothesis of no 
trend when it is false. In this process the random 
data were generated as described above and then 
each succeeding simulated year of cases was 
increased by 1%. The formula for this simulated 
increase was (1.01)(n-1), where n is the year 
numbers 1 through 10. These data were 
generated  for  10,000  simulated 10 year periods  
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and, as described above, the four methods were 
used to test for significant trends. 
 

Results 
The tables below give the results of the Monte 
Carlo trials. In the simulations where the null 
hypothesis of no trend was true, the statistical 
tests using OLS, Quasipoisson and Negative 
Binomial regression methods performed well 
when the data were normally distributed and 
also when the data followed a Poisson 
distribution.  

As expected, with an alpha level of 0.05, 
approximately 2.5% of the trials reached 
statistically high significance and approximately 
2.5% reached statistically low significance 
(Tables 2 through 5). In contrast, the Poisson 
regression method performed well only when 
the numerators and denominators followed the 
Poisson distribution. In simulations where the 
data followed a Normal distribution, and the null 
hypothesis of no trend was true, the Poisson 
regression method indicated statistical 
significance in far more than 5% of the 
simulations (Tables 2 through 5). The results for 
the Poisson method were better for the smaller 
data sets. 

For example, in the test data set with the 
largest numerators and denominators (Table 2) 
the Poisson method indicated a significant trend 
in almost 90% (45.57% significantly low plus 
44.24% significantly high) of the simulations 
where the null hypothesis of no trend was true, 
while the other 3 methods indicated a significant 
trend in a proportion close to the alpha level of 
5%. The Poisson method performed better as the 
size of the numerators and denominators in the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
test data sets became smaller. For the data set 
with the smallest numerators and denominators 
(Table 5) the Poisson method indicated 
significance in 8.24% of the simulations where 
the null hypothesis was true, which is much 
closer to the desired alpha level of 5%. 

In the results for the simulations where 
the null hypothesis of no trend was false (Tables 
2 through 5), three of the four methods 
performed about equally, when the data were 
normally distributed. In contrast, the Poisson 
regression method detected the trend in larger 
proportions of the trails. For example, in Table 2 
for the simulations with the normally distributed 
data, where the null hypothesis was false, the 
Poisson method detected a significant trend in 
68.66% of the simulations. The other 3 methods 
all detected a significant trend in about 8% of 
the simulations. 

Based on these data, it appears the 
Poisson method is more likely to detect a trend 
when the null hypothesis of no trend is false, 
but, as shown in tables 2 through 5, the Poisson 
method is also more likely to detect a trend 
when the null hypothesis of no trend is true. In 
short, with normally distributed data, the 
Poisson method is more likely to detect a trend 
when a trend is present and also when a trend is 
not present. 

When the data followed a Poisson 
distribution, and the null hypothesis of no trend 
was false, the Poisson method was more likely 
to detect a significant tend compared to the other 
3 methods. For example, in Table 3, in the 
simulations where the null hypothesis is false, 
the Poisson method detected a trend in 94.04% 
of the Poisson simulations, while the other 3 

Table 1: Means and Standard Deviations from Four Different Sets of Numerators and Denominators 
Taken From Florida Community Health Statistics 1996-2005 

 

 

Means and Standard Deviations Used to Generate Simulated Data Sets 

Numerator Numerator Denominator Denominator
Data Set Mean Stand. Dev. Mean Stand. Dev.

Florida Injury Mortality 10,293.00           1,311.00             16,275,762.00      1,119,822.00       
Florida Infant Mortality 1,483.00             87.80                  205,609.00           11,707.00            
Florida single county LBW 274.10                27.12                  2,983.60               117.04                 
Florida single county infant mortality 27.50                  5.82                    2,983.60               117.04                 
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methods detected a significant trend in about 
86% of the Poisson simulations.  In contrast to 
the simulations of normally distributed data, the 
Poisson method was not more likely to detect a 
trend, when the null hypothesis of no trend was 
true, when the simulated data followed a Poisson 
distribution. In summary, the Poisson method 
performed as well as the other 3 methods when 
the data followed a Poisson distribution, and the 
null hypothesis of no trend was true. And the 
Poisson method was more likely to detect a 
trend when the null hypothesis of no trend was 
false and the simulated data followed a Poisson 
distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
These results indicate the Poisson regression 
method, for testing the statistical significance of 
rate trends, performs well only when the 
numerator and denominator data follow a 
Poisson distribution. The Ordinary Least 
Squares, Quasi-Poisson and Negative Binomial 
regression methods were more robust and 
performed well when the data were either 
Normally distributed or when they followed a 
Poisson distribution.  When the simulation data 
followed a Poisson distribution and the null 
hypothesis of no trend was false, the Poisson 
regression method detected the trend more often 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Results of 10,000 Simulations of Florida Injury Mortality Rate Trends by Statistical Method and 
Distribution* Characteristics  

 

Test Percent Percent Percent
Data Null Hypothesis: Significantly Not Significantly

Method Distribution No Trend** Low Significant High

OLS Regression Normal TRUE 2.25% 95.20% 2.55%
Poisson Regression Normal TRUE 45.57% 10.19% 44.24%
Negative Binomial Normal TRUE 2.29% 95.11% 2.60%
Quasipoisson Normal TRUE 2.28% 95.17% 2.55%

OLS Regression Poisson TRUE 2.25% 95.27% 2.48%
Poisson Regression Poisson TRUE 2.33% 95.19% 2.48%
Negative Binomial Poisson TRUE 2.26% 95.26% 2.48%
Quasipoisson Poisson TRUE 2.27% 95.25% 2.48%

OLS Regression Normal FALSE 0.53% 91.60% 7.87%
Poisson Regression Normal FALSE 22.89% 8.45% 68.66%
Negative Binomial Normal FALSE 0.49% 91.71% 7.80%
Quasipoisson Normal FALSE 0.52% 91.73% 7.75%

OLS Regression Poisson FALSE 0.00% 0.00% 100.00%
Poisson Regression Poisson FALSE 0.00% 0.00% 100.00%
Negative Binomial Poisson FALSE 0.00% 0.00% 100.00%
Quasipoisson Poisson FALSE 0.00% 0.00% 100.00%

* Simulated 10 years of Florida injury mortaltiy rates with randomly generated numerators
at mean 10,293 and denominators at mean 16,275,762.  For the random normal data,
the standard deviations were 1,311 for the numerators and 1,119,822 for the denominators.  
For the random Poisson data, the standard deviations were the square roots of the means.

** Where Null Hypothesis of no trend = FALSE, average trend = 0.01 increase per year
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Table 3: Results of 10,000 Simulations of Florida Infant Mortality Rate Trends by Statistical 
Method and Distribution* Characteristics 

 

Test Percent Percent Percent
Data Null Hypothesis: Significantly Not Significantly

Method Distribution No Trend** Low Significant High

OLS Regression Normal TRUE 2.51% 94.88% 2.61%
Poisson Regression Normal TRUE 26.23% 46.62% 27.15%
Negative Binomial Normal TRUE 2.51% 94.88% 2.61%
Quasipoisson Normal TRUE 2.47% 94.89% 2.64%

OLS Regression Poisson TRUE 2.44% 94.92% 2.64%
Poisson Regression Poisson TRUE 2.26% 95.23% 2.51%
Negative Binomial Poisson TRUE 2.42% 94.93% 2.65%
Quasipoisson Poisson TRUE 2.43% 94.93% 2.64%

OLS Regression Normal FALSE 0.11% 83.87% 16.02%
Poisson Regression Normal FALSE 3.91% 26.50% 69.59%
Negative Binomial Normal FALSE 0.11% 83.87% 16.02%
Quasipoisson Normal FALSE 0.10% 83.98% 15.92%

OLS Regression Poisson FALSE 0.00% 14.48% 85.52%
Poisson Regression Poisson FALSE 0.00% 5.96% 94.04%
Negative Binomial Poisson FALSE 0.00% 14.44% 85.56%
Quasipoisson Poisson FALSE 0.00% 14.50% 85.50%

* Simulated 10 years of Florida infant death rates with randomly generated numerators
at mean 1,483 and denominators at mean 204,609.  For the random normal data, 
the standard deviations were 87.8 for the numerators and 11,707 for the denominators.  
For the random Poisson data, the standard deviations were the square roots of the means

** Where Null Hypothesis of no trend = FALSE, average trend = 0.01 increase per year

Table 4: Results of 10,000 Simulations of Low Birth Weight Rate Trends for a Florida County 
by Statistical Method and Distribution* Characteristics  

 

Test Percent Percent Percent
Data Null Hypothesis: Significantly Not Significantly

Method Distribution No Trend** Low Significant High

OLS Regression Normal TRUE 2.76% 95.09% 2.15%
Poisson Regression Normal TRUE 13.76% 73.39% 12.85%
Negative Binomial Normal TRUE 2.82% 95.01% 2.17%
Quasipoisson Normal TRUE 2.85% 94.95% 2.20%

OLS Regression Poisson TRUE 2.53% 95.02% 2.45%
Poisson Regression Poisson TRUE 2.92% 94.27% 2.81%
Negative Binomial Poisson TRUE 2.53% 95.02% 2.45%
Quasipoisson Poisson TRUE 2.53% 94.99% 2.48%

OLS Regression Normal FALSE 0.38% 88.83% 10.79%
Poisson Regression Normal FALSE 2.86% 57.22% 39.92%
Negative Binomial Normal FALSE 0.35% 88.68% 10.97%
Quasipoisson Normal FALSE 0.35% 88.74% 10.91%

OLS Regression Poisson FALSE 0.10% 75.72% 24.18%
Poisson Regression Poisson FALSE 0.05% 66.03% 33.92%
Negative Binomial Poisson FALSE 0.10% 75.71% 24.19%
Quasipoisson Poisson FALSE 0.11% 75.74% 24.15%

* Simulated 10 years of one Florida county low birth weight rates with randomly generated numerators
at mean 274.1 and denominators at mean 2983.6.  For the random normal data,
the standard deviations were 27.12 for the numerators and 117.04 for the denominators.  
For the random Poisson data, the standard deviations were the square roots of the means.

** Where Null Hypothesis of no trend = FALSE, average trend = 0.01 increase per year
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than the other three methods. When the test data 
followed a Poisson distribution and the null 
hypothesis of no trend was true, the Poisson 
regression method performed as well as the 
other three methods. However, in the 
simulations where the null hypothesis of no 
trend was true and the data followed a normal 
distribution, the Poisson regression method was 
far too likely to result in statistical significance, 
while the other three methods resulted in 
statistical significance in proportions close to the 
alpha level of 0.05. In summary, the Poisson 
method performed as well or better than the 
other methods when the simulated data followed 
a Poisson distribution but did not perform as 
well as the other methods when the simulated 
data followed a normal distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

One of the defining characteristics of the 
Poisson distribution is the mean is equal to the 
variance. In situations where the variance 
exceeds the mean (this is referred to as over-
dispersion), Poisson regression will tend to 
underestimate the variance and thereby increase 
the probability that random results are deemed 
statistically significant. 

Based on the results of this analysis, one 
recommendation is data should be examined to 
assess whether it follows a Poisson distribution, 
and the Poisson regression method should be 
used only when this condition is met. In 
practical terms, when using the Poisson 
regression method, the mean should be 
approximately equal to the variance. When this 
is not the case, it would probably be better to use  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Results of 10,000 Simulations of Infant Mortality Trends for a Florida County by 
Statistical Method and Distribution* Characteristics  

 

Test Percent Percent Percent
Data Null Hypothesis: Significantly Not Significantly

Method Distribution No Trend** Low Significant High

OLS Regression Normal TRUE 2.53% 95.17% 2.30%
Poisson Regression Normal TRUE 3.93% 91.76% 4.31%
Negative Binomial Normal TRUE 2.63% 95.05% 2.32%
Quasipoisson Normal TRUE 2.55% 95.14% 2.31%

OLS Regression Poisson TRUE 2.54% 95.31% 2.15%
Poisson Regression Poisson TRUE 2.67% 95.16% 2.17%
Negative Binomial Poisson TRUE 2.53% 95.34% 2.13%
Quasipoisson Poisson TRUE 2.57% 95.36% 2.07%

OLS Regression Normal FALSE 1.02% 93.54% 5.44%
Poisson Regression Normal FALSE 1.63% 88.25% 10.12%
Negative Binomial Normal FALSE 0.97% 93.60% 5.43%
Quasipoisson Normal FALSE 0.94% 93.69% 5.37%

OLS Regression Poisson FALSE 1.00% 93.39% 5.61%
Poisson Regression Poisson FALSE 0.88% 92.19% 6.93%
Negative Binomial Poisson FALSE 0.98% 93.45% 5.57%
Quasipoisson Poisson FALSE 0.92% 93.57% 5.51%

* Simulated 10 years of one Florida county infant mortaltiy rates with randomly generated numerators
at mean 27.5 and denominators at mean 2983.6.  For the random normal data,
the standard deviations were 5.82 for the numerators and 117.04 for the denominators.  
For the random Poisson data, the standard deviations were the square roots of the means.

** Where Null Hypothesis of no trend = FALSE, average trend = 0.01 increase per year
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the OLS, Quasi-Poisson, or Negative Binomial, 
regression methods or a nonparametric method 

This analysis addressed only trends with 
10 discrete points and the test data were 
generated with characteristics specific to Florida 
infant death, Low birth weight and injury 
mortality data.  Using more or less points and 
data with different distribution characteristics 
could, and probably would, lead to different 
results   and     conclusions.    The    results    and 
conclusions from this analysis apply only to 
Florida low birth weight, infant death and injury 
mortality data or data that are very similar. A 
general conclusion might be that different 
methods perform differently depending at least 
in part on the characteristics of the data to which 
they are applied. Further research is needed to 
reach a better understanding of the strengths and 
weaknesses of these methods in various 
situations. 
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