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REGULAR ARTICLES 
Examples of Computing Power for Zero-Inflated and Overdispersed Count Data 

 
Suzanne R. Doyle 

University of Washington 
 

 
Examples of zero-inflated Poisson and negative binomial regression models were used to demonstrate 
conditional power estimation, utilizing the method of an expanded data set derived from probability 
weights based on assumed regression parameter values.  SAS code is provided to calculate power for 
models with a binary or continuous covariate associated with zero-inflation. 
 
Key words: Conditional power, Wald statistic, zero-inflation, over-dispersion, Poisson, negative 
binomial. 
 
 

Introduction 
Lyles, Lin and Williamson (2007) presented a 
simple method for estimating conditional power 
(i.e., power given a pre-specified covariate 
design matrix) for nominal, count or ordinal 
outcomes based on a given sample size. Their 
method requires fitting a regression model to an 
expanded data set using weights that represent 
response probabilities, given assumed values of 
covariate regression parameters. It has the 
flexibility to handle multiple binary or 
continuous covariates, requires only standard 
software and does not involve complex 
mathematical calculations. To estimate power, 
the variance-covariance matrix of the fitted 
model is used to derive a non-central chi square 
approximation to the distribution of the Wald 
statistic. This method can also be used to 
approximate power for the likelihood ratio test. 

Lyles, et al. (2007) illustrated the 
method for a variety of outcome types and 
covariate patterns, and generated simulated data 
to demonstrate its accuracy. In addition to the 
proportional odds model and logistic regression, 
they included standard Poisson regression with 
one continuous covariate and negative binomial 
regression with one binary covariate. Both the  
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Poisson and negative binomial regression 
models provide a common framework for the 
analysis of non-negative count data. If the model 
mean and variance values are the same (equi-
dispersion), the one-parameter Poisson 
distribution can be appropriately used to model 
such count data. However, when the sample 
variance exceeds the sample mean (over-
dispersion), the negative binomial distribution 
provides an alternative by using a second 
parameter for adjusting the variance 
independently of the mean. 

Over-dispersion of count data can also 
occur when there is an excess proportion of 
zeros relative to what would be expected with 
the standard Poisson distribution. In this case, 
generalizations of the Poisson model, known as 
zero-inflated Poisson (ZIP) and ZIP( τ ) 
(Lambert, 1992), are more appropriate when 
there is an excess proportion of zeros and equi-
dispersion of the non-zero count data is present. 
These models provide a mixture of regression 
models: a logistic portion that accounts for the 
probability of a count of zero and a Poisson 
portion contributing to the frequency of positive 
counts. The ZIP model permits different 
covariates and coefficient values between the 
logistic and Poisson portions of the model. 
Alternatively, the ZIP( τ ) model is suitable 
when covariates are the same and the logistic 
parameters are functionally related to the 
Poisson parameters. 
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With the ZIP and ZIP( τ ) models, the 
non-zero counts are assumed to demonstrate 
equi-dispersion. However, if there is zero-
inflation and non-zero counts are over-dispersed 
in relation to the Poisson distribution, parameter 
estimates will be biased and an alternative 
distribution, such as the zero-inflated negative 
binomial regression models, ZINB or ZINB( τ ), 
are more appropriate (Greene, 1994). Similar to 
the zero-inflated Poisson models, ZINB allows 
for different covariates and ZINB( τ ) permits 
the same covariates between the logistic portion 
for zero counts and the negative binomial 
distribution for non-zero counts. 

In this study, the use of an expanded 
data set and the method of calculating 
conditional power as presented by Lyles, et al. 
(2007) is extended to include the ZIP, ZIP( τ ), 
ZINB and ZINB( τ ) models. Examples allow for 
the use of a binary or a normally-distributed 
continuous covariate associated with the zero-
inflation. Simulations were conducted to assess 
the accuracy of calculated power estimates and 
example SAS software programs (SAS Institute, 
2004) are provided. 
 

Methodology 
Model and Hypothesis Testing 

Following directly from Lyles, et al. 
(2007), the response variable Y for non-
continuous count data has J possible values (y1, 
y2, … , yJ), a design matrix X, and a regression 
model in the form of 
 

log( iλ ) = i′β x                      (1) 
 
with an assumed Poisson distribution or negative 
binomial distribution, where i indexes 
independent subjects (i = 1, ... , N), ix  is a (1 x 

q) vector of covariates, and β  is a (1 x q) vector 
of regression coefficients. Under the Poisson or 
negative binomial regression model, the 
probabilities can be specified for j = 1, … , J by 
 

ijw  = Pr ( |i i ijyY = =X x ), jy  = 0, 1, … , ∞  

(2) 
 
Interest is in testing the hypothesis 0 0:H =Hβ h
versus 0:AH ≠Hβ h , where H is an (h x q) 

matrix of full row rank and h0 an (h x 1) 
constant vector. The Wald test statistic is  

W = 
1

00
ˆˆ ˆˆ ( )( ) [ var( ) ]

−
′ ′ −− HβHβ H β H hh    (3) 

 
where β̂ contains unrestricted maximum 

likelihood estimates of β . Under H0, (3) is 
asymptotically distributed as central chi square 

with h degrees of freedom ( 2
hχ ). 

For power calculations, under HA, the 
Wald test statistic is asymptotically distributed 

as non-central 2
,( )h ηχ , where the non-centrality 

parameter η  is defined as 
 

η = 
1

00
ˆˆ ( ).( ) [ var( ) ]

−
−′ ′− HβHβ H β H hh   (4) 

 
Creating an Expanded Data Set and Computing 
Conditional Power 

To estimate the conditional power given 
assumed values of N, X andβ , an expanded data 
set is first created by selecting a value of J for 
the number of possible values of Y with non-
negligible probability for any specific xi, such 
that 

1 1
Pr( | ) 1

J J
i i iij i

j j
yw Y

= =
= = = ≈  X x      (5) 

 
for all i. The sum in (5) should be checked for 
each unique value of xi. A reasonable threshold 
for the sum (e.g., > 0.9999) is suggested for 
sufficient accuracy (Lyles et al., 2007). Second, 
for each value of i = 1, ... , N, a data matrix with 
J rows is created with the weights ijw  in (2) 

being computed with the assumed values of β . 
This data matrix with J rows is stacked N times 
vertically from i = 1, ... , N to form an expanded 
data set with NJ records. The resulting expanded 
data set can be based on the same number of J 
records for each value of i. However, J can vary 
with i, as long as the condition in (5) is satisfied. 

When the expanded data set is correctly 
created maximum likelihood estimate β̂  from 
maximizing the weighted log-likelihood should 
equal the assumed value of β , and the matrix 

ˆˆ ( )var β will accurately reflect variability under 
the specific model allowing for power 
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calculations based on the Wald test of (3). For 
more detailed information and examples 
concerning model and hypothesis testing and 
creating an expanded data set with this method, 
see Lyles, et al. (2007). 

Subsequent to fitting the model to the 
expanded data set, the non-centrality parameter 
η  in (4) is derived. Power is then calculated as 
 

Pr 22
( ) ,1( )h hx η −α≥ χ                      (6) 

 

where 2
,1hx −α denotes the 100(1 - α ) percentile 

of the central 2χ distribution with h degrees of 
freedom. For testing a single regression 

coefficient, 2 2ˆ kkη = β σ , where ˆ kσ is the 

associated estimated standard error, with h = 1. 
 
Zero-Inflated Poisson and Negative Binomial 
Models 

Following Lambert (1992) for the zero-
inflated Poisson (ZIP) regression model and 
Greene (1994) for the zero-inflated negative 
binomial (ZINB) regression model, the response 

iY  is given by 

0iY   with probability iπ , 
 

iY  Poisson( iλ ) for the ZIP model 
or  

iY NegBin( iλ ) for the ZINB model, 
 
with probability 1 i−π , i = 1, ... , n for both 
models. For these models, the probability of zero 
counts is given by 
 

Pr ( 0iY = ) = (1 ) .ii i e−λ+ −π π         (7) 
 
The probability of non-zero counts for the ZIP 
model is 

Pr ( |i i ijyY = =X x ) = (1 )
!

,
ji i

i
j

ye
y

−λ λ− π   (8) 

and for the ZINB model is 
 

Pr ( |i i ijyY = =X x ) = 

1/1

1

( ) 1
(1 )

1 1( ) !
.

j
j i

i
i ij

yy

y

κ−

−

Γ + κκ λ− π
+κ +κΓ λ λκ

   
   
   

    (9) 

 
for jy  = 1, ... , ∞ , where Γ  is the gamma 

function. In contrast to the Poisson model with 
only one parameter, the negative binomial model 
has two parameters: λ  (the mean, or shape 
parameter) and a scale parameter, κ , both of 
which are non-negative for zero-inflated models, 
and not necessarily an integer. Both iπ  of the 

logistic model and iλ of the Poisson model or 
negative binomial model depend on covariates 
through canonical link of the generalized linear 
model 

logit( iπ ) = iz′γ  
and 

log( iλ ) = ix′β                     (10) 
 
with 0 1( , ,..., )rγ = γ γ γ  and 0 1( , ,..., )pβ = β β β . 

Because the covariates that influence iπ  and iλ  
are not necessarily the same, two different sets 
of covariate vectors, 1(1, ,..., )i i irz z z=  and 

1(1, ,..., )i i ipx x x= , are allowed in the model. 

Interpretation of the γ  and β  parameters is the 
same as the interpretation of the parameters from 
standard logistic and Poisson or negative 
binomial models, respectively. 

If the same covariates influence iπ  and 

iλ , and if iπ  can be written as a scalar multiple 

of iλ , such that 
 

logit( iπ ) = ix′−τβ  
and 

log( iλ ) = ix′β                     (11) 
 
then the ZIP and ZINB models described in (10) 
are called ZIP( τ ) or ZINB( τ ) models with an 
unknown scalar shape parameter τ  (Lambert, 
1992). When 0τ >  zero inflation is less likely, 
and as 0τ →  zero inflation increases. Note that 
the number of parameters in the ZIP( τ ) and 
ZINB( τ ) models is reduced, providing a more 
parsimonious model than the ZIP and ZINB 
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models, and it may therefore be advantageous to 
use this model when appropriate. 

With the ZIP and ZIP( τ ) models, the 
weights for the expanded data set are calculated 
as 
 

ijw  = Pr ( |i i ijyY = =X x ) =  

( ) (1
!

)
ji i

i ii
j

yeI y
y

−λ λ+ −π π             (12) 

 
and for the ZINB and ZINB( τ ) models, the 
weights for the expanded data set are 
 

ijw  = Pr ( |i i ijyY = =X x ) = 

1/1

1

( ) 1
( ) ( ) (1

1 1( )
)

!

j
j i

i ii
j i i

yy
I y

y

κ−

−

Γ + κκ λ+ −π π
+κ +κΓ λ λκ

   
   
   

(13) 
 
with jy  = 0, 1, ... , ∞ , and where ( )iI y  is an 

indicator function taking a value of 1 if the 
observed response is zero ( 0)iy = and a value of 

0 if the observed response is positive ( 0)iy > . 

 
Simulating the Negative Binomial Distribution 

In simulating the negative binomial 
distribution, Lyles, et al. (2007) generated 
independent geometric random variates, under 
the constraint of only integer values for1/ κ . In 
contrast, the negative binomial distribution in 
this study was simulated according to the 
framework provided by Lord (2006). This 
algorithm is based on the fact that the negative 
binomial distribution can be characterized as a 
Poisson-gamma mixture model (Cameron & 
Trivedi, 2006), it is consistent with the linear 
modeling approach used with this method of 
power calculation and also allows for non-
integer values of 1/ κ . To calculate an outcome 
variable that is distributed as negative binomial, 
the following steps are taken: 
 

1. Generate a mean value ( iλ ) for 
observation i from a fixed sample 
population mean, iλ  = exp( )ix′β  

2. Generate a value ( iφ ) from a gamma 

distribution with the mean equal to 1 and 
the parameter 1/δ = κ , ( ,1/ )i = Γ δ δφ  

3. Calculate the mean ( iθ ) for observation i, 

i i i= ×φθ λ  

4. Generate a discrete value ( iy ) for 

observation i from a Poisson distribution 
with a mean iθ , Poisson( )iiy θ . 

5. Repeat steps 1 through 4 N times, where 
N is the number of observations or sample 
size. 

 
Examples 

Several examples are presented to 
illustrate the conditional power calculations of 
the ZIP, ZIP( τ ), ZINB and ZINB( τ ) models 
with a binary or continuous covariate related to 
the logistic portion accounting for the zero-
inflation. Models were selected to demonstrate 
the effects of increased zero-inflation and over-
dispersion on power estimates. Each model was 
fit by utilizing a weighted form of the general 
log-likelihood feature in SAS PROC NLMIXED 
(SAS Institute, 2004). Simulations under each 
model and the assumed joint covariate 
distributions were conducted to assess the 
accuracy of the power calculations. In situations 
where a reasonable solution could not be 
obtained with the generated data, the simulation 
data set was excluded from consideration and 
data generation was continued until 1,000 usable 
data sets were obtained for each model. A non-
viable solution was generally due to non-
convergence or extremely large standard errors.  

In particular, the ZIP( τ ) and ZINB( τ ) 
models were the most problematic due to 
obtaining extremely large standard errors and 
parameter estimates of τ . In some situations it 
was obvious that a poor solution resulted, but in 
other instances it was not as clear that an 
unsatisfactory solution occurred. To avoid 
arbitrary decisions on which simulations to 
exclude, all data sets resulting in a value of τ  
outside of the boundaries of a 99% confidence 
interval (based on assumed regression parameter 
values) were deleted. A similar decision rule 
was used for the ZIP and ZINB models, 
eliminating data sets with values of iγ , as 
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defined in (10) beyond their 99% confidence 
boundaries. The selection decision to discard 
data sets from consideration did not depend on 
the values of the regression parameter of interest 
to be statistically tested. 

Simulation values presented are the 
average regression coefficient and the average 
standard error (calculated as the square root of 
the average error variance) out of the 1,000 
generated data sets for the parameter estimates 
of each model. Simulation-based power was 
calculated as the proportion of Wald tests found 
statistically significant at .05α =  out of 1,000 
randomly generated data sets under each specific 
model considered. Appendices A through D 
provide SAS programming code to evaluate a 
large sample simulation for distributional 
characteristics, to construct an expanded data set 
and to calculate power for models with a binary 
covariate or a normally-distributed continuous 
covariate related to the zero-inflation. 

To calculate the expanded data set, it 
was first necessary to choose the initial value of 
J for each value of xi. This was done by 
generating a large simulated data set (N = 
100,000 for each binary or continuous covariate 
in the model) based on the same parameter 
values of the model. To ensure that a reasonable 
threshold for the sum (e.g., > 0.9999) of the 
weights in (12) and (13) would be obtained, the 
initial value of J was increased in one unit 
integer increments until the maximum likelihood 
estimates for the parameters from maximizing 
the weighted log-likelihood equaled the assumed 
parameter values of the regression model. The 
large simulated data set also provided 
approximations to the population distributional 
characteristics of each model (mean, variance, 
and frequencies of each value of the outcome 
variable yi) and estimates of the percents of zero-
inflation. 
 
ZIP( τ ), ZIP, ZINB( τ ) and ZINB Models with a 
Binary Variable for Zero Inflation 

Model A-τ and Model B-τ, where τ = 2 
and 1, are ZIP( τ ) and ZIP models, respectively.  
Model A-τ is defined as 
 
logit( iπ ) = 0 1x− τ−τβ β  and log( iλ ) = 0 1x+β β  

(14) 

where 0β = 0.6931, 1β  = -0.3567, τ  = 2 and 1, 

and x is a binary variable with an equal number 
of cases coded 0 and 1. The regression 
coefficients were based on the rate ratio. That is, 
for the binary covariate x, from the rates of the 
two groups ( 1 2=λ  and 2 1.4=λ ), the regression 

coefficients are 10 log=β λ  and 

2 11 log( ) log( )= −β λ λ . With this model, interest 

is in testing 0 1: 0H =β versus 1: 0AH ≠β . 

Model B-τ is defined as 
 

logit( iπ ) = 0 1z+γ γ   

and 
log( iλ ) = 0 1 2z x+ +β β β             (15) 

 
where 0β = 0.6931, 1β  = -0.3567, 2β  = -0.3567, 

0 0= −τγ β , 1 1= −τγ β , τ  = 2 and 1, and x and z 
are binary covariates with an equal number of 
cases coded 0 and 1. In this particular example 
the regression coefficients for the logistic 
portion of the model ( 0γ  and 1γ ) are both a 

constant multiple of τ , although this is not a 
necessary requirement for the ZIP model. With 
this model, interest is in assessing 0 2: 0H =β
versus 2: 0AH ≠β . 

The ZINB( τ ) and ZINB models 
consisted of the same parameter estimates as the 
ZIP( τ ) and ZIP models (Model A-τ and Model 
B-τ described above), but included two values of 
an extra scale parameter, 0.75κ =  and 

1.50.κ =  Sample sizes were based on obtaining 
conditional power estimates of approximately 
.95 for the regression coefficient tested, with τ = 
2 for the ZIP and ZIP( τ ) models, and for τ = 2 
and 0.75κ =  for the ZINB and ZINB( τ ) 
models. SAS code to evaluate a large sample 
simulation for distributional characteristics, to 
construct an expanded data set and to calculate 
power, for models with a binary covariate 
related to the zero-inflation are presented in 
Appendices A and B, for the Poisson and 
negative binomial regression models, 
respectively. 
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Results 
ZIP( τ ) Models 

The results of the ZIP( τ ) models 
presented at the top of Table 1 indicate that with 
a sample size of N = 212, when τ  = 2, there is 
approximately .95 power and 27.0% zero-
inflation for testing 1: 0AH ≠β . As τ  decreases 

and therefore zero-inflation increases, the 
calculated power is reduced to 0.81 for 
approximately 37.5% estimated zero-inflation. 
In most cases, the simulated parameter and 
power estimates match the calculated values, 
except for a slight tendency for the simulated 
data to result in inflated average parameter 
estimates for the standard error τσ . 

The outcomes for the ZIP models 
presented at the bottom of Table 1 show that 
with a sample size of N = 488, when τ  = 2, 
there is approximately .95 power and 27.0% 
zero-inflation for testing 2: 0AH ≠β . Again, as 

τ  decreases, the calculated power is reduced to 
approximately .90 and 37.5% estimated zero-
inflation. 
 
ZINB( τ ) Models With A Binary Covariate 
Associated With The Zero-Inflation 

The results of the ZINB( τ ) models with 
a binary covariate associated with the zero-
inflation, presented at the top of Table 2, 
indicate that with a sample size of N = 464, 
when 0.75κ =  and τ  = 2, there is 
approximately .95 power and 27.0% zero-
inflation for testing 1: 0AH ≠β . As τ  decreases 

to 1, the calculated power is reduced to 
approximately .80 and 37.5% estimated zero-
inflation. When over-dispersion of the non-zero 
counts increases ( 1.50κ = ), power is reduced to 
approximately .80 when τ  = 2, and .59 when τ  
= 1. 

In most cases, the simulated (Sim.) 
values and power estimates closely match the 
calculated (Cal.) parameters, except for a slight 
tendency for the simulated data to result in an 
inflated average standard error ( τσ ) associated 

with parameter estimates for τ , and slightly 
lower than expected values for the scale or over-
dispersion parameter κ . 

The results of the ZINB models 
presented at the bottom of Table 2 indicate that 
with a sample size of N = 928, when 0.75κ =  
and τ  = 2, there is approximately .95 power and 
27.0% zero-inflation for testing 2: 0AH ≠β . 

Again, as τ  decreases ( τ  = 1), the calculated 
power is reduced to approximately .90 with 
37.5% estimated zero-inflation. Also, when 
over-dispersion of the non-zero counts increases 
( 1.50κ = ), power is reduced to approximately 
.85 when τ  = 2, and .77 when τ  = 1. There is 
also the slight tendency of the simulated data to 
result in average inflated standard errors (

0γσ
and 

1γσ ) for the parameter estimates of the 

logistic portion of the model involving zero-
inflation ( 0γ  and 1γ ), and in decreased values 

for the scale or over-dispersion parameter κ than 
would be expected. 
 
ZIP( τ ), ZIP, ZINB( τ ) and ZINB Models with a 
Continuous Variable for Zero-Inflation 

Model C-τ and Model D-τ, where τ = 2 
and 1, are ZIP( τ ) and ZIP models, respectively.  
Model C-τ is defined as 
 
logit( iπ ) = 0 1z− τ−τβ β  and log( iλ ) = 0 1z+β β  

(16) 
 
where 0β = 0.5000, 1β  = -0.1500, τ  = 2 and 1, 

and z is a continuous variable distributed as 
N(0,1). These are the same parameter estimates 
of 0β and 1β used by Lyles, et al. (2007) with 

their example of standard Poisson regression 
with one continuous covariate. With this ZIP( τ ) 
model, interest is in assessing 0 1: 0H =β  versus 

1: 0AH ≠β . Model D-τ is defined as 

 
logit( iπ ) = 0 1z+γ γ  and log( iλ ) = 0 1 2z x+ +β β β  

(17) 
 
where 0β = 0.5000, 1β  = -0.1500, 2β  = -0.3000, 

0 0= −τγ β , 1 1= −τγ β , τ  = 2 and 1, x is a binary 

variable with an equal number of cases coded 0 
and 1, and z is a continuous variable distributed  
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Table 1: Parameter Estimates with a Binary Covariate for Zero-Inflation and Poisson Regression 

 ZIP( τ ) Models (N = 212) 
 Model A-2 Model A-1 
 Calculated Simulated Calculated Simulated 

τ  2.0000 2.0622 1.0000 1.0390 

τσ  0.6169 0.7034 0.4286 0.4792 

β0  0.6931 0.6962 0.6931 0.6944 

βσ
0
 0.0891 0.0894 0.0990 0.0995 

β1  -0.3567 -0.3565 -0.3567 -0.3535 

βσ
1
 0.0989 0.1005 0.1256 0.1284 

β1Power .9502 .9450 .8106 .8080 

Estimated Zero-Inflation 
x = 0 20.24% 33.70% 
x = 1 33.79% 41.59% 
Total 27.02% 37.65% 

 ZIP Models (N = 488) 
 Model B-2 Model B-1 
 Calculated Simulated Calculated Simulated 

γ0  -1.3863 -1.4075 -0.6931 -0.7109 

γσ
0
 0.2670 0.2828 0.1966 0.2020 

γ1  0.7134 0.7140 0.3567 0.3462 

γσ
1
 0.3707 0.3948 0.3023 0.3179 

β0  0.6931 0.6923 0.6931 0.6893 

βσ
0
 0.0789 0.0793 0.0865 0.0871 

β1  -0.3567 -0.3551 -0.3567 -0.3654 

βσ
1
 0.1237 0.1246 0.1331 0.1348 

β2  -0.3567 -0.3608 -0.3567 -0.3554 

βσ
2
 0.0991 0.0995 0.1105 0.1110 

β2 Power .9494 .9540 .8976 .8980 

Estimated Zero-Inflation 
z = 0 20.08% 33.41% 
z = 1 33.71% 41.58% 
Total 26.90% 37.49% 

 



DOYLE 
 

367 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Parameter Estimates with a Binary Covariate for Zero-Inflation 
and Negative Binomial Regression 

 ZINB( τ ) Models (N = 464) 
 Model A-2 Model A-1 
 κ = 0.75 κ = 1.50 κ = 0.75 κ = 1.50 
 Cal. Sim. Cal. Sim. Cal. Sim. Cal. Sim. 

τ  2.0000 2.0357 2.0000 1.9844 1.0000 0.9932 1.0000 1.0301 

τσ  1.1833 1.7476 1.8512 2.5505 0.7365 0.9743 1.1022 1.8936 

β0  0.6931 0.6997 0.6931 0.7429 0.6932 0.7081 0.6932 0.7246 

βσ
0
 0.1394 0.1390 0.2089 0.1944 0.1507 0.1525 0.2192 0.2184 

β1  -0.3567 -0.3546 -0.3567 -0.3696 -0.3567 -0.3624 -0.3567 -0.3755 

βσ
1
 0.0991 0.1015 0.1282 0.1334 0.1266 0.1319 0.1636 0.1690 

κ  0.7500 0.7257 1.5000 1.3386 0.7500 0.7203 1.5000 1.4175 
κσ  0.2545 0.2625 0.5440 0.5055 0.2635 0.2792 0.5405 0.5746 

β1Power .9494 .9520 .7946 .8182 .8044 .8120 .5872 .6030 

Estimated Zero-Inflation 
x = 0 20.24% 20.14% 33.42% 33.43% 
x = 1 33.48% 34.06% 41.54% 41.90% 
Total 26.86% 27.10% 37.48% 37.66% 

 ZINB Models (N = 928) 
 Model A-2 Model A-1 
 κ = 0.75 κ = 1.50 κ = 0.75 κ = 1.50 
 Cal. Sim. Cal. Sim. Cal. Sim. Cal. Sim. 

γ0  -1.3864 -1.4394 -1.3858 -1.3223 -0.6931 -0.7373 -0.6930 -0.6546 

γσ
0
 0.4858 0.9712 0.7643 1.1975 0.3241 0.4062 0.5034 0.6438 

γ1  0.7134 0.7361 0.7128 0.6702 0.3568 0.3714 -0.3566 0.3405 

γσ
1
 0.3703 0.7984 0.4691 0.8262 0.2702 0.3187 0.3102 0.3877 

β0  0.6931 0.6940 0.6932 0.7235 0.6932 0.6960 0.6932 0.7210 

βσ
0
 0.1199 0.1212 0.1773 0.1745 0.1307 0.1328 0.1931 0.1919 

β1  -0.3567 -0.3566 -0.3567 -0.3678 -0.3566 -0.3635 -0.3567 -0.3624 

βσ
1
 0.1250 0.1249 0.1501 0.1482 0.1347 0.1344 0.1618 0.1596 

β2  -0.3567 -0.3584 -0.3567 -0.3545 -0.3567 -0.3584 -0.3567 -0.3538 

βσ
2
 0.0992 0.0991 0.1198 0.1193 0.1096 0.1092 0.1318 0.1308 

κ  0.7500 0.7380 1.4999 1.4080 0.7500 0.7417 1.4999 1.4173 
κσ  0.2216 0.2333 0.4897 0.4968 0.2508 0.2611 0.5321 0.5606 

β2 Power .9491 .9379 .8455 .8460 .9023 .9050 .7723 .7730 

Estimated Zero-Inflation 
z = 0 20.22% 20.14% 33.51% 33.36% 
z = 1 33.74% 33.82% 41.70% 41.73% 
Total 26.98% 27.00% 37.60% 37.54% 

Note: Cal. indicates calculated values, and Sim. indicates simulated values.
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Table 3: Parameter Estimates with a Continuous Covariate for Zero-Inflation 
and Poisson Regression 

 ZIP( τ ) Models (N = 302) 
 Model C-2 Model C-1 
 Calculated Simulated Calculated Simulated 

τ  2.0000 2.0411 1.0000 1.0566 

τσ  0.5460 0.6017 0.3848 0.4254 

β0  0.5000 0.5004 0.5000 0.4963 

βσ
0
 0.0625 0.0628 0.0685 0.0688 

β1  -0.1500 -0.1501 -0.1500 -0.1519 

βσ
1
 0.0416 0.0421 0.0525 0.0529 

β1Power .9501 .9500 .8152 .8120 

Estimated Zero-Inflation 
Total 27.39% 37.99% 

 ZIP Models (N = 694) 
 Model D-2 Model D-1 
 Calculated Simulated Calculated Simulated 

γ0  -1.0000 -1.0154 -0.5000 -0.5060 

γσ
0
 0.1521 0.1581 0.1253 0.1283 

γ1  0.3000 0.3057 0.1500 0.1492 

γσ
1
 0.1513 0.1563 0.1241 0.1271 

β0  0.5000 0.4979 0.5000 0.4953 

βσ
0
 0.0610 0.0613 0.0662 0.0667 

β1  -0.1500 -0.1517 -0.1500 -0.1496 

βσ
1
 0.0493 0.0494 0.0532 0.0536 

β2  -0.3000 -0.2992 -0.3000 -0.2987 

βσ
2
 0.0832 0.0834 0.0925 0.0930 

β2 Power .9501 .9510 .9003 .9010 

Estimated Zero-Inflation 
Total 27.32% 37.83% 
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Table 4: Parameter Estimates with a Continuous Covariate for Zero-Inflation 
and Negative Binomial Regression 

 ZINB( τ ) Models (N = 648) 
 Model C-2 Model C-1 
 κ = 0.75 κ = 1.50 κ = 0.75 κ = 1.50 
 Cal. Sim. Cal. Sim. Cal. Sim. Cal. Sim. 

τ  2.0000 1.9793 2.0000 2.0477 1.0000 1.0284 1.0000 1.0499 

τσ  1.0565 1.3623 1.6377 2.3039 0.6816 0.9086 1.0280 1.7596 

β0  0.5000 0.5179 0.5000 0.5217 0.5000 0.5111 0.5000 0.5185 

βσ
0
 0.0991 0.0984 0.1475 0.1460 0.1040 0.1059 0.1509 0.1571 

β1  -0.1500 -0.1537 -0.1500 -0.1527 -0.1500 -0.1504 -0.1500 -0.1562 

βσ
1
 0.0416 0.0429 0.0533 0.0556 0.0530 0.0541 0.0680 0.0712 

κ  0.7500 0.7390 1.5000 1.4247 0.7500 0.7297 1.5000 1.4372 
κσ  0.2224 0.2335 0.4733 0.4763 0.2331 0.2436 0.4832 0.5209 

β1Power .9501 .9470 .8035 .8110 .8079 .8130 .5972 .5980 

Estimated Zero-Inflation 
Total 27.27% 27.46% 37.67% 37.90% 

 ZINB Models (N = 1324) 
 Model D-2 Model D-1 
 κ = 0.75 κ = 1.50 κ = 0.75 κ = 1.50 
 Cal. Sim. Cal. Sim. Cal. Sim. Cal. Sim. 

γ0  -1.0000 -1.0242 -1.0001 -0.9989 -0.5000 -0.5025 -0.5001 -0.5026 

γσ
0
 0.3105 0.3867 0.4902 0.5990 0.2386 0.2635 0.3751 0.4525 

γ1  0.3000 0.3066 0.3001 0.3136 0.1500 0.1554 0.1500 0.1554 

γσ
1
 0.1466 0.1757 0.1794 0.2260 0.1118 0.1197 0.1282 0.1528 

β0  0.5000 0.5024 0.5000 0.5176 0.5000 0.5034 0.5000 0.5090 

βσ
0
 0.0967 0.0964 0.1442 0.1402 0.1049 0.1062 0.1570 0.1581 

β1  -0.1500 -0.1516 -0.1500 -0.1485 -0.1500 -0.1497 -0.1500 -0.1524 

βσ
1
 0.0512 0.0508 0.0620 0.0615 0.0555 0.0555 0.0672 0.0670 

β2  -0.3000 -0.3050 -0.3000 -0.3020 -0.3000 -0.3012 -0.3000 -0.2988 

βσ
2
 0.0832 0.0831 0.1005 0.1001 0.0918 0.0917 0.1104 0.1101 

κ  0.7500 0.7370 1.5000 1.4476 0.7500 0.7392 1.5001 1.4665 
κσ  0.1868 0.1900 0.4101 0.4042 0.2032 0.2129 0.4479 0.4739 

β2 Power .9501 .9530 .8473 .8420 .9046 .8980 .7756 .7710 

Estimated Zero-Inflation 
Total 27.32% 27.37% 37.82% 37.79% 

Note: Cal. indicates calculated values, and Sim. indicates simulated values. 
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as N(0,1). With this ZIP model, interest is in 
testing 0 2: 0H =β  versus 2: 0AH ≠β . 

The ZINB( τ ) and ZINB models 
consisted of the same parameter estimates as the 
ZIP( τ ) and ZIP models (Model C-τ and Model 
D-τ), but included an extra scale parameter, 

0.75κ =  and 1.50κ = . SAS programming code 
to evaluate a large sample simulation for 
distributional characteristics, to construct an 
expanded data set, and to calculate power, for 
models with a continuous covariate related to the 
zero-inflation are presented in Appendices C and 
D, for the Poisson and negative binomial 
regression models, respectively. 

The results of the ZIP( τ ) and ZIP 
models with a continuous covariate for zero- 
inflation are presented in Table 3. As before, 
when τ  decreases, based on the same sample 
size and value of the regression coefficient 
tested, the calculated power is reduced, and there 
is also a slight tendency for the simulated data to 
result in inflated average parameter estimates for 
the standard error ( τσ ) with the ZIP( τ ) models, 
and with inflated average parameter estimates of 
the standard errors for the logistic portion 
involving zero-inflation (

0γσ and 
1γσ ) with the 

ZIP models. 
The results of the ZINB( τ ) and ZINB 

models with a continuous covariate for zero-
inflation are presented in Table 4. Similar to the 
results previously presented, based on the same 
sample size and value of the regression 
coefficient tested, when τ decreases and/or when 
overdispersion of the non-zero counts increases, 
the calculated power is reduced There is a slight 
tendency for simulated data to result in inflated 
average standard errors ( τσ ) for the parameter 

estimates of τ with the ZINB( τ ) models, and 
with inflated average standard errors (

0γσ and 

1γσ ) for the logistic portion involving zero-

inflation ( 0γ  and 1γ ) with the ZINB models. 

 
Conclusion 

Examples of ZIP, ZIP( τ ), ZINB and ZINB( τ ) 
models were used to extend the method of 
estimating conditional power presented by 
Lyles, et al. (2007) to zero-inflated count data. 
Utilizing the variance-covariance matrix of the 

model fitted to an expanded data set, power was 
estimated for the Wald statistic. Although not 
presented here, this method can also be used to 
approximate power based on the likelihood ratio 
test. Overall, with the same sample size and 
parameter value of the estimate of interest to be 
tested with the Wald test statistic, results 
indicated a decrease in power as the percent of 
zero-inflation and/or over-dispersion increased. 
This trend was particularly more noticeable for 
the ZIP( τ ) and ZINB( τ ) models. Calculated 
power estimates indicate if the percent of zero-
inflation or over-dispersion is underestimated, a 
loss of assumed power in the statistical test will 
result. 

To estimate power for zero-inflated 
count data it is necessary to select a value of τ 
for the ZIP( τ ) and ZINB( τ ) models or values 
of the regression coefficients associated with the 
logistic portion in the ZIP and ZINB models 
(i.e., 0γ and 1γ ) to produce the correct assumed 

proportion of zero-inflation. But in practice, 
these parameter values may be unknown or 
difficult to estimate. Generating a large 
simulated data set iteratively until the expected 
percent of zero-inflation occurs can aid the 
researcher in obtaining approximations to the 
population distributional characteristics of 
model and estimation of the parameter values 
associated with zero-inflation can be improved. 
 

References 
 Cameron, A. C., & Trivedi, P. K. (2006). 
Regression analysis of count data. New York: 
Cambridge University Press. 
 Greene, W. H. (1994). Accounting for excess 
zeros and sample selection in Poisson and negative 
binomial regression models. Stern School of 
Business, New York University, Dept. of Economics 
Working Paper, No. EC-94-10. 
 Lambert, D. (1992). Zero-inflated Poisson 
regression, with an application to defects in 
manufacturing. Technometrics, 34, 1-14. 
 Lord, D. (2006). Modeling motor vehicle 
crashes using Poisson-gamma models: Examining the 
effects of low sample mean values and small sample 
size on the estimation of the fixed dispersion 
parameter. Accident Analysis and Prevention, 38, 
751-766. 
 
 



DOYLE 
 

371 
 

 Lyles, R. H., Lin, H-M., & Williamson J. M. 
(2007). A practical approach to computing power for 
generalized linear models with nominal, count, or 
ordinal responses. Statistics in Medicine, 26, 1632-
1648. 
 SAS Institute, Inc. (2004). SAS/STAT 9.1 
User’s Guide. SAS Institute Inc: Cary, NC. 
 

Appendix A: 
SAS Code with a Binary Covariate for Zero-

Inflation and Poisson Regression 
 
Step 1: Evaluate a large sample simulation for 
distributional characteristics. 
 
ZIP( τ ) 
data ziptau1; seed = 12345;     
lambda1 = 2; lambda2 = 1.4; tau = 2;   
n = 100000;   
beta0 = log(lambda1);  
beta1 = log(lambda2) - log(lambda1);   
do x = 0 to 1; do i = 1 to n;   
lambda = exp(beta0 + beta1*x);   
prob_0 = exp(-tau*beta0 - tau*beta1*x)/  
(1 + exp(-tau*beta0 - tau*beta1*x));  
zero_inflate = ranbin(seed,1,prob_0);  
if zero_inflate = 1 then y = 0;  
else y = ranpoi(seed,lambda);  
if zero_inflate = 0 then yPoisson = y;   
else yPoisson = .;   
output; end; end;   
proc sort; by x;  
proc freq; tables y zero_inflate; by x; run;  
proc freq; tables zero_inflate; run;   
proc means mean var n; var y yPoisson;  
by x; run;   
 
ZIP 
data zip1; seed = 12345;  
lambda1 = 2; lambda2 = 1.4; tau = 2;  
n = 100000;  
beta0 = log(lambda1);  
beta1 = log(lambda2) - log(lambda1);  
beta2 = beta1;  
gamma0 = -tau*beta0;  
gamma1 = -tau*beta1;  
do x = 0 to 1; do z = 0 to 1; do i = 1 to n;  
lambda = exp(beta0 + beta1*z + beta2*x);   
prob_0 = exp(gamma0 + gamma1*z)/  
(1 + exp(gamma0 + gamma1*z));  
zero_inflate = ranbin(seed,1,prob_0);  

if zero_inflate = 1 then y=0;  
else y = ranpoi(seed,lambda);   
if zero_inflate = 0 then yPoisson = y;  
else yPoisson=.;   
output; end; end; end;  
proc sort; by x z;   
proc freq; tables y zero_inflate; by x z; run; 
proc means mean var n; var y yPoisson;  
by x z; run;  
proc sort; by z; 
proc freq; tables zero_inflate; by z; run;   
proc freq; tables zero_inflate; run; 
 
Step 2: Construct an expanded data set to 
approximate conditional power. 
 
ZIP( τ ) 
data ziptau2;   
lambda1 = 2; lambda2 = 1.4; tau = 2;   
totaln = 212; numgroups = 2;  
n = totaln/numgroups;   
increment = 10;  
beta0 = log(lambda1);   
beta1 = log(lambda2) - log(lambda1); 
do x = 0 to 1;   
if x = 0 then j = 13; if x = 1 then j = 9;  
do i = 1 to n;  
lambda = exp(beta0 + beta1*x);  
prob_0 = exp(-tau*beta0 - tau*beta1*x)/  
(1 + exp(-tau*beta0 - tau*beta1*x));  
do y = 0 to j + increment;   
if y = 0 then w = prob_0 + (1-prob_0) *(exp(-
lambda)*lambda**y)/gamma(y + 1);  
if y > 0 then w = (1-prob_0)*(exp 
(-lambda)*lambda**y)/gamma(y + 1);  
output; end; end; end;  
proc nlmixed tech=dbldog cov;  
parameters t=3 b0=0 b1=0;  
p0 = exp(-t*b0 - t*b1*x)/(1 + exp(-t*b0 -
t*b1*x)); mu = exp(b0 + b1*x); 
if y = 0 then do;  
ll = (log(p0 + (1 - p0)*exp(-mu))); end;  
if y > 0 then do;  
ll = (log(1 - p0) + y*log(mu) - lgamma(y + 1) -
mu); end; loglike = w*ll;  
model y ~ general(loglike); run; 
 
ZIP 
data zip2;  
lambda1 = 2; lambda2 = 1.4; tau = 2;  
totaln = 488; numgroups = 4;  
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n = totaln/numgroups;   
increment = 10; 
beta0 = log(lambda1);  
beta1 = log(lambda2) - log(lambda1);  
beta2 = beta1;  
gamma0 = -tau*beta0;  
gamma1 = -tau*beta1;   
do x = 0 to 1; do z =0 to 1;  
if x = 0 and z = 0 then j = 13;   
if x = 0 and z = 1 then j = 9;  
if x = 1 and z = 0 then j = 8;  
if x = 1 and z = 1 then j = 7;  
do I = 1 to n;  
lambda = exp(beta0 + beta1*z + beta2*x);  
prob_0 = exp(gamma0 + gamma1*z)/ 
(1 + exp(gamma0 + gamma1*z));  
do y = 0 to j + increment ;  
if y = 0 then w = prob_0 + (1-prob_0)*  
(exp(-lambda)*lambda**y)/gamma(y + 1); 
if y > 0 then w = (1-prob_0)*(exp(-lambda) 
*lambda**y)/gamma(y + 1);  
output; end; end; end; end;  
proc nlmixed tech=dbldog cov;  
parameters g0=0 g1=0 b0=0 b1=0 b2=0;  
p0 = exp(g0 + g1*z)/(1 + exp(g0 + g1*z));  
mu = exp(b0 + b1*z + b2*x);  
if y = 0 then do;  
ll = (log(p0 + (1 - p0)*exp(-mu))); end;  
if y > 0 then do;  
ll = (log(1 - p0) + y*log(mu) - lgamma(y + 1) - 
mu); end; loglike = w*ll;  
model y ~ general(loglike); run; 
 
Step 3: Calculate power. 
 
data power; estimate = -0.3567; standerr = 
0.0989;  
eta = (estimate**2)/(standerr**2); critvalue = 
cinv(.95,1);  
power = 1-probchi(critvalue,1,eta); proc print; 
var eta power; run; 

 
Appendix B: 

SAS Programming Code with a Binary 
Covariate for Zero-Inflation and Negative 

Binomial Regression 
Step 1: Evaluate a large sample simulation for 
distributional characteristics. 
 
ZINB( τ ) 
data zinbtau1; seed = 12345;  

lambda1 = 2; lambda2 = 1.4; tau = 2;  
n = 100000;  
beta0 = log(lambda1);  
beta1 = log(lambda2) - log(lambda1);  
kappa = .75; delta = 1/kappa;   
do x = 0 to 1; do i = 1 to n;  
lambda = exp(beta0 + beta1*x);  
phi = 1/delta*rangam(seed,delta);   
theta = lambda*phi;  
prob_0 = exp(-tau*beta0 - tau*beta1*x)/  
(1 + exp(-tau*beta0 - tau*beta1*x));   
zero_inflate = ranbin(seed,1,prob_0);  
if zero_inflate = 1 then y = 0;  
else y = ranpoi(seed,theta);  
if zero_inflate = 0 then yPoisson = y;  
else yPoisson = .; output; end; end;  
proc sort; by x;  
proc freq; tables y zero_inflate; by x; run;  
proc freq; tables zero_inflate; run;   
proc means mean var max; var y yPoisson; 
by x; run;  
proc means mean var n; var y yPoisson; run; 
 
ZINB 
data zinb1; seed = 12345; 
lambda1 = 2; lambda2 = 1.4; tau = 2; 
n = 100000; kappa = .75; delta = 1/kappa; 
beta0 = log(lambda1); 
beta1 = log(lambda2) - log(lambda1); 
beta2 = beta1; 
gamma0 = -tau*beta0; 
gamma1 = -tau*beta1; 
do x = 0 to 1; do z = 0 to 1; do i = 1 to n; 
lambda = exp(beta0 + beta1*z + beta2*x); 
phi = 1/delta*rangam(seed,delta); 
theta = lambda*phi; 
prob_0 =exp(gamma0 + gamma1*z)/ 
(1 + exp(gamma0 + gamma1*z)); 
zero_inflate = ranbin(seed,1,prob_0); 
if zero_inflate = 1 then y = 0; 
else y = ranpoi(seed, theta); 
if zero_inflate = 0 then yPoisson = y;  
else yPoisson = .; output; end; end; end; 
proc sort; by x z; 
proc freq; tables y zero_inflate; by x z; run; 
proc means mean var max n;  
var y yPoisson; by x z; run; 
proc sort; by z; 
proc freq; tables y zero_inflate; by z; run; 
proc freq; tables y zero_inflate; run; 
 



DOYLE 
 

373 
 

Step 2: Construct an expanded data set to 
approximate conditional power. 
 
ZINB( τ ) 
data zinbtau2; 
lambda1 = 2; lambda2 = 1.4; tau = 2; 
totaln = 464; numgroups = 2; kappa = .75; 
n = totaln/numgroups; increment = 8; 
beta0 = log(lambda1); 
beta1 = log(lambda2) - log(lambda1); 
do x = 0 to 1; 
if x = 0 then j = 29; if x = 1 then j = 20; 
do i = 1 to n; 
lambda = exp(beta0 + beta1*x); 
prob_0 = exp(-tau*beta0 - tau*beta1*x)/ 
(1 + exp(-tau*beta0 - tau*beta1*x)); 
do y = 0 to j + increment; 
if y = 0 then w = prob_0 + (1-prob_0) *  
gamma(kappa**-1 + y)/ 
(gamma(kappa**-1)*gamma(y+1))* 
((kappa*lambda/(1 + kappa*lambda))**y) 
*((1/(1 + kappa*lambda))**(1/kappa)); 
if y > 0 then w = (1-prob_0)* gamma(kappa**-1 
+ y)/(gamma(kappa**-1)*gamma(y+1))* 
((kappa*lambda/(1 + kappa*lambda))**y) 
*((1/(1 + kappa*lambda))**(1/kappa)); 
output; end; end; end; 
proc nlmixed tech=dbldog cov; 
parameters t=3 b0=0 b1=0 k=1; 
p0 = exp(-t*b0 - t*b1*x)/(1 + exp(-t*b0 
- t*b1*x)); mu = exp(b0 + b1*x); 
if y = 0 then do; 
ll = p0 + (1-p0)*exp(-(y+(1/k))* log(1+k*mu)); 
end; 
if y > 0 then do; 
ll = (1-p0)*exp(lgamma(y+(1/k)) - lgamma(y+1) 
- lgamma(1/k) + y*log(k*mu) - (y + (1/k)) * 
log(1 + k*mu)); end; 
loglike = w * log(ll); 
model y ~ general(loglike); run; 
 
ZINB 
data zinb2; 
lambda1 = 2; lambda2 = 1.4; tau = 2; 
totaln = 928; numgroups=4; kappa = .75; 
n = totaln/numgroups; increment = 5; 
beta0 = log(lambda1); 
beta1 = log(lambda2) - log(lambda1); 
beta2 = beta1; 
gamma0 = -tau*beta0; 
gamma1 = -tau*beta1; 

do x = 0 to 1; do z = 0 to 1; 
if x = 0 and z = 0 then j = 29; 
if x = 0 and z = 1 then j = 20; 
if x = 1 and z = 0 then j = 21; 
if x = 1 and z = 1 then j = 14; 
do i = 1 to n; 
lambda = exp(beta0 + beta1*z + beta2*x); 
prob_0 = exp(gamma0 + gamma1*z)/ 
(1 + exp(gamma0 + gamma1*z)); 
do y = 0 to j + increment; 
if y = 0 then w = prob_0 + (1-prob_0) * 
gamma(kappa**-1 + y)/(gamma(kappa**-
1)*gamma(y+1))* 
((kappa*lambda/(1 + kappa*lambda))**y) 
*((1/(1 + kappa*lambda))**(1/kappa)); 
if y > 0 then w = (1-prob_0)* gamma(kappa**-1 
+ y)/(gamma(kappa**-1)*gamma(y+1))* 
((kappa*lambda/(1 + kappa*lambda))**y) 
*((1/(1 + kappa*lambda))**(1/kappa)); 
output; end; end; end; end; 
proc nlmixed tech=dbldog cov; 
parameters g0=0 g1=0 b0=0 b1=0 b2=0 k=1; 
p0 = exp(g0 + g1*z) / (1 + exp(g0 
+ g1*z)); mu = exp(b0 + b1*z + b2*x); 
if y = 0 then do; 
ll = p0 + (1-p0)*exp(-(y+(1/k))* log(1+k*mu)); 
end; 
if y > 0 then do; 
ll = (1-p0)*exp(lgamma(y+(1/k)) - lgamma(y+1) 
- lgamma(1/k) + y*log(k*mu) - (y + (1/k)) * 
log(1 + k*mu)); end; 
loglike = w * log(ll); 
model y ~ general(loglike); run; 
 
Step 3: Calculate power. 
 
data power; estimate = -0.3567; standerr = 
0.0991; 
eta = (estimate**2)/(standerr**2); critvalue = 
cinv(.95,1);  
power = 1 - probchi(critvalue,1,eta); proc print; 
var eta power; run; 

 
Appendix C: 

SAS Code with a Continuous Covariate for 
Zero-Inflation and Poisson Regression 

 
Step 1: Evaluate a large sample simulation for 
distributional characteristics. 
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ZIP( τ ) 
data ziptau3; seed = 12345;   
tau = 2; n = 100000;  
beta0 = .50; beta1 = -.15;   
do i = 1 to n;  
z = rannor(seed);  
lambda = exp(beta0 + beta1*z);  
prob_0 = exp(-tau*beta0 - tau*beta1*z)/  
(1 + exp(-tau*beta0 - tau*beta1*z));  
zero_inflate = ranbin(seed,1,prob_0);  
if zero_inflate = 1 then y = 0;   
else y = ranpoi(seed, lambda);   
if zero_inflate = 0 then yPoisson=y;  
else yPoisson = .;  
output; end;  
proc freq; tables y zero_inflate; run;  
proc means mean var n; var y yPoisson; run; 
 
ZIP 
data zip3; seed = 12345;   
tau = 2; n = 100000;   
beta0 = .50; beta1 = -.15;   
beta2 = 2 * beta1;  
gamma0 = -tau*beta0;  
gamma1 = -tau*beta1;  
do x = 0 to 1; do i = 1 to n;   
z = rannor(seed);    
lambda = exp(beta0 + beta1*z + beta2*x);  
prob_0 = exp(gamma0 + gamma1*z)/  
(1 + exp(gamma0 + gamma1*z));  
zero_inflate = ranbin(seed,1,prob_0);  
if zero_inflate = 1 then y = 0;   
else y = ranpoi(seed, lambda);   
if zero_inflate = 0 then yPoisson=y;  
else yPoisson = .;   
output; end; end;  
proc freq; tables y zero_inflate; run; 
proc sort; by x; 
proc freq; tables y; by x; run; 
proc means mean var n; var y yPoisson;  
by x; run; 
 
Step 2: Construct an expanded data set to 
approximate conditional power. 
 
ZIP( τ ) 
data ziptau4;  
tau = 2; n = 302; j = 11;  
beta0 = .50; beta1 = -.15;  
increment = 10;  
do i = 1 to n; 

z = probit((i - 0.375)/( n + 0.25));   
lambda = exp(beta0 + beta1*z);   
prob_0 = exp(-tau*beta0 - tau*beta1*z)/  
(1 + exp(-tau*beta0 - tau*beta1*z));   
do y = 0 to j + increment;    
if y = 0 then w = prob_0 + (1-prob_0) *(exp(-
lambda)*lambda**y)/gamma(y+1);  
if y > 0 then w = (1-prob_0)*(exp  
(-lambda)*lambda**y)/gamma(y+1);  
output; end; end;  
proc nlmixed tech=dbldog cov;  
parameters t=3 b0=0 b1=0;   
p0 = exp(-t*b0 - t*b1*z)/(1 + exp(-t*b0  
- t*b1*z)); mu = exp(b0 + b1*z);  
if y = 0 then do;   
ll = (log(p0 + (1-p0)*exp(-mu))); end;  
if y > 0 then do;  
ll = (log(1-p0) + y*log(mu) - lgamma(y+1) - 
mu); end; loglike = w * ll;   
model y ~ general(loglike); run; 
 
ZIP 
data zip4;  
tau = 2; totaln = 694; numgroups=2; 
n = totaln/numgroups; increment = 10;  
beta0 = .50; beta1 = -.15;  
beta2 = 2* beta1;  
gamma0 = -tau*beta0;  
gamma1 = -tau*beta1;  
do x = 0 to 1;  
if x = 0 then j = 11; if x = 1 then j = 9;  
do i = 1 to n;  
z = probit((i -0.375)/(n + 0.25));   
lambda = exp(beta0 + beta1*z + beta2*x); 
prob_0 = exp(gamma0 + gamma1*z)/  
(1 + exp(gamma0 + gamma1*z));  
do y = 0 to j + increment ;  
if y = 0 then w = prob_0 + (1-prob_0) *(exp(-
lambda)*lambda**y)/gamma(y+1);  
if y > 0 then w = (1-prob_0)*(exp 
(-lambda)*lambda**y)/gamma(y+1);   
output; end; end; end;   
proc nlmixed tech=dbldog cov;   
parameters g0=0 g1=0 b0=0 b1=0 b2=0;  
p0 = exp(g0 + g1*z)/(1 + exp(g0 + g1*z)); 
mu = exp(b0 + b1*z + b2*x);  
if y = 0 then do;  
ll = (log(p0 + (1-p0)*exp(-mu))); end;  
if y > 0 then do;  
ll = (log(1-p0) + y*log(mu) - lgamma(y+1)- 
mu); end; loglike = w * ll;   
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model y ~ general(loglike); run; 
Step 3: Calculate power. 
 
data power; estimate = -0.1500; standerr = 
0.0416;  
eta = (estimate**2)/(standerr**2); 
critvalue=cinv(.95,1);  
power=1-probchi(critvalue,1,eta); proc print; var 
eta power; run; 
 

Appendix D: 
SAS Programming Code with a Continuous 
Covariate for Zero-Inflation and Negative 

Binomial Regression 
Step 1: Evaluate a large sample simulation for 
distributional characteristics. 
 
ZINB( τ ) 
data zinbtau3; seed = 12345; 
tau = 2; n = 100000; 
beta0 = .50; beta1 = -.15; 
kappa = .75; delta = 1/kappa; 
do i = 1 to n; 
z = rannor(seed); 
lambda = exp(beta0 + beta1*z); 
phi = 1/delta*rangam(seed,delta); 
theta = lambda*phi; 
prob_0 = exp(-tau*beta0 - tau*beta1*z)/ 
(1 + exp(-tau*beta0 - tau*beta1*z)); 
zero_inflate = ranbin(seed,1,prob_0); 
if zero_inflate = 1 then y = 0; 
else y = ranpoi(seed,theta); 
if zero_inflate=0 then yPoisson=y;    
else yPoisson=.; output; end; 
proc freq; tables y zero_inflate; run; 
proc means mean var max n; var y yPoisson; 
run; 
 
ZINB 
data zinb3; seed = 12345; 
tau = 2; n = 100000; 
beta0 = .50; beta1 = -.15; 
beta2 = 2 * beta1; 
gamma0 = -tau*beta0; 
gamma1 = -tau*beta1; 
kappa = .75; delta = 1/kappa; 
do x = 0 to 1; 
do i = 1 to n; 
z = rannor(seed); 
lambda = exp(beta0 + beta1*z + beta2*x); 
phi = 1/delta*rangam(seed,delta); 

theta = lambda*phi; 
prob_0 = exp(gamma0 + gamma1*z)/ 
(1 + exp(gamma0 + gamma1*z)); 
zero_inflate = ranbin(seed,1,prob_0); 
if zero_inflate = 1 then y = 0; 
else y = ranpoi(seed,theta); 
if zero_inflate=0 then yPoisson=y;   
else yPoisson=.; output; end; end; 
proc sort; by x; 
proc freq; tables y zero_inflate; by x; run; 
proc freq; tables y zero_inflate; run; 
proc means mean var max n; var y yPoisson; by 
x; run; 
proc means mean var n; var y yPoisson; run; 
 
Step 2: Construct an expanded data set to 
approximate conditional power. 
 
ZINB( τ ) 
data zinbtau4; 
tau = 2; n = 648; 
beta0 = .5; beta1 = -.15; 
kappa = .75; j = 23; increment = 7; 
do i = 1 to n; 
z = probit((i - 0.375)/( n + 0.25)); 
lambda = exp(beta0 + beta1*z); 
prob_0 = exp(-tau*beta0 - tau*beta1*z)/ 
(1 + exp(-tau*beta0 - tau*beta1*z)); 
do y = 0 to j + increment; 
if y = 0 then w = prob_0 + (1-prob_0) * 
gamma(kappa**-1 + y)/(gamma(kappa**-
1)*gamma(y+1))* 
((kappa*lambda/(1 + kappa*lambda))**y) 
*((1/(1 + kappa*lambda))**(1/kappa)); 
if y > 0 then w = (1-prob_0)*  
gamma(kappa**-1 + y)/(gamma(kappa**-1) 
*gamma(y+1))* 
((kappa*lambda/(1 + kappa*lambda))**y) 
*((1/(1 + kappa*lambda))**(1/kappa)); 
output; end; end; 
proc nlmixed tech=dbldog cov; 
parameters t=3 b0=0 b1=0 k=1; 
p0 = exp(-t*b0 - t*b1*z)/(1 + exp(-t*b0 
- t*b1*z)); mu = exp(b0 + b1*z); 
if y = 0 then do; 
ll = p0 + (1-p0)*exp(-(y+(1/k))* log(1+k*mu)); 
end; 
if y > 0 then do; 
ll = (1-p0)*exp(lgamma(y+(1/k)) - lgamma(y+1) 
- lgamma(1/k) + y*log(k*mu)- (y + (1/k)) * 
log(1 + k*mu)); end;  
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loglike = w * log(ll); 
model y ~ general(loglike); run; 
 
ZINB 
data zinb4; 
totaln = 1324; numgroups = 2; 
n = totaln/numgroups; tau = 2; 
beta0 = .5; beta1 = -.15; beta2 = 2*beta1; 
gamma0 = -tau*beta0; gamma1 = -tau*beta1; 
kappa = .75; increment = 5; 
do x = 0 to 1; 
if x = 0 then j = 23; if x = 1 then j = 19; 
do i = 1 to n; 
z = probit((i - 0.375)/( n + 0.25)); 
lambda = exp(beta0 + beta1*z + beta2*x); 
prob_0 = exp(gamma0 + gamma1*z)/ 
(1 + exp(gamma0 + gamma1*z)); 
do y = 0 to j + increment; 
if y = 0 then w = prob_0 + (1-prob_0) * 
gamma(kappa**-1 + y)/ 
(gamma(kappa**-1) *gamma(y+1))* 
((kappa*lambda/(1 + kappa*lambda))**y) 
*((1/(1 + kappa*lambda))**(1/kappa)); 
if y > 0 then w = (1-prob_0)* gamma(kappa**-1 
+ y)/(gamma(kappa**-1)*gamma(y+1))* 
((kappa*lambda/(1 + kappa*lambda))**y) 
*((1/(1 + kappa*lambda))**(1/kappa)); 
output; end; end; end; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

proc nlmixed tech=dbldog cov; 
parameters g0=0 g1=0 b0=0 b1=0 b2=0; 
p0 = exp(g0 + g1*z)/(1 + exp(g0 + g1*z)); 
mu = exp(b0 + b1*z + b2*x); 
if y = 0 then do; 
ll = p0 + (1-p0)*exp(-(y+(1/k))* log(1+k*mu)); 
end; 
if y > 0 then do; 
ll = (1-p0)*exp(lgamma(y+(1/k)) - lgamma(y+1) 
- lgamma(1/k) + y*log(k*mu)- (y + (1/k)) * 
log(1 + k*mu)); end;  
loglike = w * log(ll); 
model y ~ general(loglike); run; 
 
Step 3: Calculate power. 
 
data power; estimate = -0.1500; standerr = 
0.0416;  
eta = (estimate**2)/(standerr**2); 
critvalue=cinv(.95,1);  
power=1-probchi(critvalue,1,eta); proc print; var 
eta power; run; 
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