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INVITED ARTICLE 
Analysis of MultiFactor Experimental Designs 

 
 

 
 

Phillip Good 
Information Research 

Huntington Beach, CA. 
 

 
In the one-factor case, Good and Lunneborg (2006) showed that the permutation test is superior to the 
analysis of variance. In the multi-factor case, simulations reveal the reverse is true. The analysis of 
variance is remarkably robust against departures from normality including instances in which data is 
drawn from mixtures of normal distributions or from Weibull distributions. The traditional permutation 
test based on all rearrangements of the data labels is not exact and is more powerful that the analysis of 
variance only for 2xC designs or when there is only a single significant effect. Permutation tests restricted 
to synchronized permutations are exact, but lack power.  
 
Key words: analysis of variance, permutation tests, synchronized permutations, exact tests, robust tests, 
two-way experimental designs. 
 
 

Introduction 
Tests of hypotheses in a multifactor analysis of 
variance (ANOVA) are not independent of one 
another and may not be most powerful. These 
tests are derived in two steps: First, the between-
cell sum of squares is resolved into orthogonal 
components. Next, to obtain p- values, the 
orthogonal components are divided by the  
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within-cell sum of squares. As they share a 
common denominator, the test statistics of main 
effects and interactions are not independent of 
one another. On the plus side, Jagers (1980) 
showed that if the residual errors in the linear 
model are independent and identically 
distributed, then the distribution of the resultant 
ratios is closely approximated by an F-
distribution even if the residual errors are not 
normally distributed. As a result, ANOVA p-
values are almost exact. 

But are ANOVA tests the most 
powerful? In the one-way design (the one-factor 
case), Good and Lunneborg (2005) found that 
tests whose p-values are based on the 
permutation distribution of the F-statistic rather 
than the F-distribution are both exact and more 
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powerful than the analysis of variance when 
samples are taken from non-normal 
distributions. For example, when the data in a 
four-sample, one-factor comparison are drawn 
from mixtures of normal distributions, 50% N(δ, 
1) and 50% N(1+δ, 1), in an unbalanced design 
with 2, 3, 3, and 4 observations per cell, the 
permutation test was more powerful at the 10% 
level, a power of 86% against a shift in means of 
two units compared to 65% for the analysis of 
variance. 

Unfortunately, the permutation test for 
interaction in a two-factor experimental design 
based on the set of all possible rearrangements 
among the cells is not exact. The residual errors 
are not exchangeable, nor are the p-values of 
such permutation tests for main effects and 
interactions independent of one another. Here is 
why: 

Suppose the observations satisfy a linear 
model, Xijm = μ + si + rj + (sr)ij + εijm where the 
residual errors {εijm} are independent and 
identically distributed. To test the hypothesis of 
no interaction, first eliminate row and column 
effects by subtracting the row and column means 
from the original observations. That is, set  
 

 

 

where by adding the grand mean , ensure the 

overall sum will be zero. Recall that  
 

 

 
or, in terms of the original linear model, that 
  

 

 
However, this means that two residuals in the 
same row such as X’ i11 and X’ i23 will be 
correlated while residuals taken from different 
rows and columns will not be. Thus, the 
residuals are not exchangeable, a necessary 
requirement for tests based on a permutation 
distribution to be exact and independent of one 
another (see, for example, Good, 2002). 

An alternative approach, first advanced 
by Salmaso and later published by Pesarin 
(2001) and Good (2002), is to restrict the 

permutation set to synchronized permutations in 
which, for example, an exchange between rows 
in one column is duplicated by exchanges 
between the same rows in all the other columns 
so as to preserve the exchangeability of the 
residuals.  

The purpose of this article is to compare 
the power of ANOVA tests with those of 
permutation tests (synchronized and 
unsynchronized) when applied to two-factor 
experimental designs. 
 

Methodology 
Observations were drawn from one of the 
following three distributions: 
1. Normal. 
2. Weibull, because such distributions arise in 

reliability and survival analysis and cannot 
be readily transformed to normal 
distributions. A shape parameter of 1.5 was 
specified. 

3. Contaminated normal, both because such 
mixtures of distributions are common in 
practice and because they cannot be readily 
transformed to normal distributions. In line 
with findings in an earlier article in this 
series, Good and Lunneborg (2006), we 
focused on the worst case distribution, a 
mixture of 70% N(0, 1) and 30% N(2, 2) 
observations. 
Designs with the following effects were 

studied:  
 

a) 

+δ   0 

+δ   0 

b) 

+δ   0 

0 +δ 

c) 

+δ  0  …  -δ  

+δ  0  …  - δ 

d) 

+δ  0 … 0 -δ 

-δ   0 … 0 +δ 
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e) 

0  +δ  0 

0  +δ  0 

0  +δ  0 

f) 

0 +δ  0 

0  0   0 

+δ  0   0 

g) 

+δ  0   0 

0 +δ  0 

0 0  +δ 

h) 

0  +δ  0  0  -δ 

0 +δ  0  0 –δ 

0 +δ  0  0 –δ 

0 +δ  0  0 –δ 

i) 

1  δ  1  1  δ 

1   δ  1  1 δ 

1   δ  1  1 δ 

1  δ  1  1  δ 

 
To compare the results of the three 

methodologies, 1,000 data sets were generated at 
random for each design and each alternative (δ 
=0, 1, or 2). p-values for the permutation tests 
were obtained by Monte Carlo means using a 
minimum of 400 random (synchronized or 
unsynchronized) permutations per data set. The 
alpha level was set at 10%. (The exception being 
the 2x2 designs with 3 observations per cell 
where the highly discrete nature of the 
synchronized permutation distribution forced 
adoption of an 11.2% level.) 

The simulations were programmed in R. 
Test results for the analysis of variance were 
derived using the anres() function. R code for 
the permutation tests and the data generators is 
posted at: http://statcourse.com/AnovPower.txt. 

Results 
Summary 

In line with Jager’s (1980) theoretical 
results, the analysis of variance (ANOV) applied 
to RxC experimental designs was found to yield 
almost exact tests even when data are drawn 
from mixtures of normal populations or from a 
Weibull distribution. This result holds whether 
the design is balanced or unbalanced. Of course, 
because the ANOVA tests for main effects and 
interaction share a common denominator - the 
within sum of squares - the resultant p-values 
are positively correlated. Thus a real non-zero 
main effect may be obscured by the presence of 
a spuriously significant interaction. 

Although tests based on synchronized 
permutations are both exact and independent of 
one another, there are so few synchronized 
permutations with small samples that these tests 
lack power. For example, in a 2x2 design with 3 
observations per cell, there are only 9 distinct 
values of each of the test statistics. 

Fortunately, tests based on the entire set 
of permutations, unsynchronized as well as 
synchronized, prove to be almost exact. 
Moreover, these permutation tests for main 
effects and interaction are negatively correlated. 
The result is an increase in power if only one 
effect is present, but a loss in power if there are 
multiple effects. These permutation tests are 
more powerful than ANOVA tests when the data 
are drawn from mixtures of normal populations 
or from a Weibull distribution. They are as 
powerful, even with data drawn from normal 
distributions, with samples of n ≥ 5 per cell. 
 
2xK Design 

In a 2x2 design with 3 observations per 
cell, restricting the permutation distribution to 
synchronized permutations means there are only 
9 distinct values of each of the test statistics. The 
resultant tests lack power as do the tests based 
on synchronized permutations for 2x5 designs 
with as many as five observations per cell. For 
example, in a 2x4 design with four observations 
per cell, the synchronized permutation test had a 
power of 53% against a shift of two units when 
the data were drawn from a contaminated 
normal, while the power of the equivalent 
ANOVA test was 61%. As a result of these 
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negative findings, synchronized permutation 
tests were eliminated from further consideration. 

In a balanced 2x2 design with 5 
observations per cell, the powers of the ANOVA 
test and the traditional permutation test against a 
normal are equivalent. Against a contaminated 
normal or Weibull alternative, the permutation 
test is fractionally better. With only 3 
observations per cell and a Weibull alternative 
with a doubling of scale, the permutation test is 
again fractionally superior.  

In an unbalanced 2x2 design with 5 
observations in each cell of the first column, and 
3 observations in each cell of the second 
column, against a normal with a column effect 
of one unit (design a), ANOVA is markedly 
inferior with a power of 60% versus a power of 
70% for the permutation test. Against a Weibull 
alternative with a doubling of the scale factor, 
the power of the ANOVA is 56%, while that of 
the permutation test is 71%. Noteworthy in this 
latter instance is that although there is no 
interaction term in design a, spurious interaction 
was recorded 18% of the time by the analysis of 
variance and 13% by permutation methods. 

In a 2x5 design of form c with 3 
observations per cell, the permutation test is 
several percentage points more powerful than 
ANOVA against both normal and contaminated 
normal alternatives. 
 
3x3 Designs 

When row, column, and interactions are 
all present as in design f, ANOVA is more 
powerful than the permutation test by several 
percentage points for all effects against both 
normal and contaminated normal alternatives. 
(See Table 1a, b.) 

 
 

Table1a: Normal Alternative δ = 1, 3 
Observations Per Cell, Design f 

 
Row-Column Interaction 

ANOVA Permutation 
187  139 
178  138 
344  316 

 
 

Table 1b: Contaminated Normal Alternative 
δ = 2, 3 Observations Per Cell, Design f 

 
Row-Column Interaction 

ANOVA Permutation 
150  114 
169  137 
336  318 

 
However, when a pure column effect 

(design e) or a pure interaction (design g) exists, 
the permutation test is superior to the analysis of 
variance by several percentage points. See, for 
example, Table 2. 
 

Table 2: Contaminated Normal Alternative 
δ = 2, 3 Observations Per Cell, Design g 

 
Row-Column Interaction 

ANOVA Permutation 
115   70 
108   70 
461  529 

 
4x5 Designs 

The power against balanced designs of 
type h with four observations per cell of 
permutation and ANOVA tests are equivalent 
when the data is drawn from a normal 
distribution. The power of the permutation test is 
fractionally superior when the data is drawn 
from a mixed-normal distribution. Likewise, 
with a design of type i, the permutation test is 
several percentage points superior when the data 
is drawn from a Weibull distribution and the 
design is balanced. Synchronized permutations 
fared worst of all, their power being several 
percentage points below that provided by the 
analysis of variance. 

When the design is unbalanced as in 
 

4 4 4 4 4 
4 4 4 4 4 
2 3 4 5 3 
2 3 4 5 3 

 
the analysis of variance has the advantage in 
power over the permutation tests by several 
percentage points. 
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Discussion 
Apart from 2xC designs, there appears to be 
little advantage to performing alternatives to the 
standard analysis of variance. The permutation 
tests are more powerful if only a single effect is 
present, but how often can this be guaranteed? 
Even with 2xC designs, the results reported here 
will be of little practical value until and unless 
permutation methods are incorporated in 
standard commercial packages. Wheeler 
suggests in a personal communication that if a 
package possesses a macro-language, a vector 
permutation command and an ANOVA routine, 
a permutation test for the multi-factor design can 
be readily assembled as follows: 
 
1. Use the ANOVA command applied to the 

original data set to generate the sums of 
squares used in the denominators of the tests 
of the various effects. 

2. Set up a loop and perform the following 
steps repeatedly: 

a. Rearrange the data. 
b. Use the ANOVA command applied to 

the rearranged data set to generate the 
sums of squares used in the 
denominators of the tests of the 
various effects. 

c. Compare these sums with the sums for 
the original data set. 

3. Record the p-values as the percentage of 
rearrangements in which the new sum 
equaled or exceeded the value of the 
original. 
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