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Bayesian Inference on the Variance of Normal Distribution 
Using Moving Extremes Ranked Set Sampling 

 
Said Ali Al-Hadhrami Amer Ibrahim Al-Omari 

College of Applied Sciences, Nizwa, Oman  Al al-Bayt University, Mafraq, Jordan 
 

 
Bayesian inference of the variance of the normal distribution is considered using moving extremes ranked 
set sampling (MERSS) and is compared with the simple random sampling (SRS) method. Generalized 
maximum likelihood estimators (GMLE), confidence intervals (CI), and different testing hypotheses are 
considered using simple hypothesis versus simple hypothesis, simple hypothesis versus composite 
alternative, and composite hypothesis versus composite alternative based on MERSS and compared with 
SRS. It is shown that modified inferences using MERSS are more efficient than their counterparts based 
on SRS. 
 
Key words: Moving extremes ranked set sampling (MERSS), confidence interval, test hypothesis, 
Bayesian approach. 
 
 

Introduction 
 
Ranked set sampling (RSS) for estimating a 
population mean was suggested by McIntyre 
(1952) as a cost efficient alternative to simple 
random sampling (SRS) if the units of a sample 
can be easily ranked according to the variable of 
interest rather than actual measurements. The 

RSS involves randomly selecting 2m  units from 
the population and randomly allocating them 
into m sets, each of size m. The m units of each 
sample are ranked visually (or by any 
inexpensive method) with respect to the variable 
of interest. From the first set of m units, the 
smallest unit is measured. From the second set 
of m units, the second smallest unit is measured, 
the process continues until the largest unit is 
measured from the mth set of m units. Repeating 
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the process r times results in a set of size mr 
from initial m2r units. 

Takahasi and Wakimoto (1968) 
provided the mathematical theory for RSS. 
Muttlak (1996) proposed pair ranked set 
sampling instead of RSS, and Samawi, et al. 
(1996) suggested using extreme ranked set 
sampling to estimate the population mean. 
Muttlak (1997) also suggested using median 
ranked set sampling. Al-Saleh and Al-Kadird 
(2000) considered double ranked set sampling 
(DRSS). Al-Saleh and Al-Omari (2002) 
generalized DRSS to multistage RSS. Muttlak 
(2003) proposed quartile ranked set sampling. 
Weighted modified RSS was put forward by 
Muttlak and Abu-Dayyeh (2004). 

Al-Odat and Al-Saleh (2001) introduced 
the concept of varied set size RSS. They 
investigated this modification non-
parametrically and found that the procedure can 
be more efficient than the simple random 
sampling technique. Al-Saleh and Al-Hadhrami 
(2003a) considered the work of Al-Odat and Al-
Saleh (2001) and investigated parametrically the 
mean of exponential distribution; they coined 
their method of moving extremes ranked set 
sampling (MERSS). Investigation of the mean of 
the normal distribution under MERSS was 
considered by Al-Saleh and Al-Hadhrami 
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(2003b). They showed that the suggested 
estimators of the population mean are unbiased 
and more efficient than those based on SRS. 
Abu-Dayyeh and Al-Sawi (2007) studied the 
scale parameter of exponential distribution based 
on MERSS. (For more about RSS see Chen, et 
al., 2004; Al-Saleh & Al Ananbeh, 2007; Al-
Omari & Jaber, 2008; Al-Nasser, 2007; Tseng & 
Wu, 2007; and Balakrishnan & Li, 2008.) 
 

Methodology 
 
The MERSS General Process 

The MERSS can be described as 
follows: 
 

Step 1: Select m  random samples sized 1, 2, 
3,…, m , respectively. 

 
Step 2: Identify the maximum of each set by 

eye or by some other inexpensive method, 
without actually measuring the 
characteristic of interest. 

 
Step 3: Accurately measure the selected 

judgment identified maxima. 
 
Step 4: Repeat Steps 1, 2, 3 but for the 

minimum. 
 
Step 5: Repeat the above steps r  times until 

the desired sample size, 2n rm=  is 
obtained. The sample of these units is 
called moving extremes ranked set sample 
(MERSS). 

 
For one cycle, let 
 

: 1: 1 2: 2

1:1 1: 1: 1 1: 2 1:1

, , ,...,

, , , ,...,
m m m m m m

m m m

X X X
X Y Y Y Y

− − − −

− −

  
 
  

 

 
be a MERSS from a normal distribution mean 

μ  and variance 2σ . If judgment ranking is 

perfect, then for 1, 2,..., ,i m=  :i iX  has the same 

density as the ith order statistic of a SRS of size 
i  from ( ; )f x θ , i.e., iiX :  has the density: 

 

[ ] 1

: ( ) ( ; ) ( ; ) .
i

i if x if x F xθ θ −=        (2.1) 

 
In addition, 1:iY  has the same density as the first 

order statistic of a SRS of size i  from ( ; )f y θ , 

i.e., 1:iY  has the density 

 

[ ] 1

1: ( ) ( ; ) 1 ( ; ) ,
i

if y if y F yθ θ −= −   (2.2) 

 
and the likelihood function of θ  is given by 
 

( ) ( )[ ] ( ) ( )[ ]1 1

: : 1: 1:
1

( )

, , , 1 , .
m

i i

i I i i i i
i

L

if x F x if y F y

θ

θ θ θ θ− −

=

=

−∏
(2.3) 

 
Assuming the random variable X  is normally 

distributed with mean μ  and variance 2σ , then 
the probability density function (pdf) of X is 
given by 
 

( )
( )2

221
,

2

1
,

x

Xf x e

x

θ
σθ

σ π
θφ

σ σ

−
−

=

− =  
 

 ,x−∞ < < ∞  

(2.4) 
 
and the cumulative distribution function is 
 

( )
( )2

221
;

2

ux

X
xF x e du

θ
σ θθ

σσ π

−
−

−∞

− = = Φ  
  , 

(2.5) 
 
where φ  and Φ  are the density and cumulative 
distribution of the standard normal distribution, 
respectively. 
 
Generalized Maximum Likelihood Estimator 
(GMLE) 

In the case of estimating the population 
variance, the information number is proportional 

to 21/σ  (see Al-Hadhrami, et al., 2009), 
allowing the Jeffery prior for σ  to be written as 
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( ) 1 /π σ α σ . The posterior distribution for σ  is 
then given by 
 

( )

( )

( ) ( ) ( )

2

1

1 1

| ,

1 1 1
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      Φ − Φ

∏  

(3.1) 
 
The log of both sides of (3.1) is 
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,  (3.2) 

 
where C  is a constant. The first derivative of 
(3.2) is given by 
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Let 0
L
σ

∗∂ =
∂

, then the likelihood equation is 

defined as 
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which may be written as 
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(3.3) 
 
If the second derivative of the likelihood with 
respect to σ  is negative at the solution of 

0
L
σ

∗∂ =
∂

, then this solution is the GMLE of .σ

The second derivative of the log likelihood with 
respect to σ  is 
 

2

1 2 32
L T T T

σ
∗∂ = + +

∂
,               (3.4) 

where 
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The value of 1T  at the solution of Equation (3.3) 

is 

1 2

2 1
2

mT
σ

+ = −  
 

, 

and 
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( )

( )
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2

2 2
1

( 1)
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φ φ
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3 2
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1
1 1

m
i ii

i
i i i

w wwT i w
w w

φ φ
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which are both negative. Therefore,  
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2

2
0

L
σ

∗∂ <
∂

. Thus, the GMLE of σ  is the solution 

of Equation (3.3) and the GMLE of variance is 
the square of this solution. Note that the GMLE 
of σ  using SRS, when μ  is known is given by: 
 

2

1

( )
ˆ

1

n
i

SRS
i

x
n

μσ
=

−=
+ .              (3.5) 

 
As shown in Table (1), the GMLE using 
MERSS is more efficient than its counterparts 
based on SRS, and the efficiency increases as 
the sample size increases. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Confidence Interval 

From the sampling distribution of the 
variance, Table 2 shows the interval width (IW), 
lower bound (LB), upper bound (UB), and the 
approximated two-sided 95% confidence 
intervals (CI) for the variance of the normal 
distribution (3,1)N  using both MERSS and 
SRS methods. Table 3 shows the approximated 
two-sided 95% confidence intervals (CI) for the 
variance of (4,4)N  based on MERSS and SRS. 

Based on Tables 2 and 3, it may be 
noted that the intervals using MERSS are shorter 
than that those based on SRS. Also, the width of 
the intervals becomes shorter as the set size 
increases. The width also depends on the 
population variance; the smaller the variance, 
the smaller the width. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Testing Hypothesis 

Once a confidence interval about the 
parameter is obtained, a test hypothesis about 
this parameter can be constructed. For a two-
sided hypothesis the two-sided confidence 
interval may be used and the upper or lower 

Table 1: The Efficiency of
/SRS MERSSeff MSE MSE= , ~ ( ) 1/σ π σ σ∝ , 

and ~ (0,1)X N 

m SRSMSE  MERSSM  eff 

3 0.2721 0.2405 1.1313 

5 0.1740 0.1230 1.4150 

7 0.1304 0.0769 1.6951 

11 0.0820 0.0375 2.1848 

14 0.0661 0.0251 2.6261 
 

Table 2: 95% Confidence Intervals for 2σ  of 

the Normal Distribution, (3,1)N , Using 
MERSS and SRS 

CI for 2σ  using SRS 

m IW LB UB 

3 2.3216 0.1676 2.4892 

7 1.5719 0.3810 1.9530 

10 1.2898 0.4701 1.7599 

15 1.0330 0.5456 1.5787 

CI for 2σ  using MERSS 

m IW LB UB 

3 1.8525 0.3952 2.2477 

7 1.1120 0.4939 1.6059 

10 0.8358 0.6188 1.4546 

15 0.5628 0.7352 1.2981 
 

Table 3: 90% Confidence Intervals for the 
Variance of the Normal Distribution, 

(4,4)N , Using MERSS and SRS with MLE 

CI for 2σ  using SRS 

m IW LB UB 

3 8.0225 0.9010 8.9235 
7 4.4965 2.0174 6.5139 

10 3.9709 2.2040 6.1749 
15 3.2805 2.4799 5.7605 

CI for 2σ  using MERSS 

m IW LB UB 

3 6.3062 1.9864 8.2926 
7 3.2390 2.5284 5.7675 

10 2.3814 2.8574 5.2388 
15 1.8909 3.1147 5.0056 



AL-HADHRAMI & AL-OMARI 
 

277 
 

bound confidence interval is for one-sided 
hypotheses with same significance level. 

Consider the test hypothesis about the 
variance 2σ  of the normal distribution with 
known mean based on Bayesian paradigm when 
the sample is drawn using MERSS. The decision 
is based on the Bayes factor which is of the form 
 

0 1 0 1

0 1 1 0

/

/

p p pB
p

π
π π π

= = ,               (4.1) 

where 
 

0 0( )pπ θ= ∈Θ : Prior probability for 

0θ ∈Θ . 

1 1( )pπ θ= ∈Θ : Prior probability for 

1θ ∈Θ . 

( )0 0 |P P xθ= ∈Θ : Posterior probability 

for 0θ ∈Θ . 

( )1 1 |P P xθ= ∈Θ : Posterior probability 

for 1θ ∈Θ . 

0 1/π π : Prior odds on 0H  versus 1H . 

0 1/p p : Posterior odds on 0H  versus 1H . 

 
Two Simple Hypotheses 

Consider testing 2 2
0 0:H σ σ=  against 

2 2
1 1:H σ σ= , where 2σ  is the variance of a 

normal distribution with known mean, μ . The 
Bayes factor in this case is 

( ) ( )2 2
0 1, | / , |B p x y p x yσ σ=  which can be 

written for a sample from a normal distribution 
using MERSS as 
 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 1 2
0 0

2
1

2 2
1

0 0

2 1 2
1 1

2
1

2 2
1

1 1

; , ; ,

; , 1 ; ,

; , ; ,

; , 1 ; ,

i
m i i

i
i i i

i
m i i

i
i i i
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f x F x
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f x F x
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f y F y
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μ σ μ σ

−
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=

−

−
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   −  
 
 
   −  

∏

∏

 

(4.2) 

To test the null hypothesis, 1,000 
numerical comparisons were made between 
MERSS and SRS. Results for tests of rejection 
of the true null hypothesis are summarized in 
Tables 4 and 5 for two normal distributions 

(4,1)N  and ( 6,3)N − , respectively, using SRS 
and MERSS methods.  

Tables 4 and 5 show that the error in 
rejecting the null hypothesis using MERSS is 
less than the error when using SRS; the error in 
rejecting the true hypothesis also becomes 
smaller as the sample size increases. In addition, 
the error becomes smaller as the alternative 
moves farther from the value assumed for the 
null hypothesis. 
 
Simple Null Hypothesis versus Composite 
Hypothesis 

Next a simple hypothesis was tested 
against a composite hypothesis about the 
variance of normal distribution using MERSS. 

That is 2 2
0 0:H σ σ=  was tested against 

2 2
1 1:H σ σ≠  when the population mean was 

known. The following Bayes factor was used 
 

( )
( ) ( )

2 2
0

2
0

2 2 2

, |

, |

p x y
B

p x y d
σ σ

σ

σ π σ σ
≠
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m
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i i i i

G x y i k

F x F y f x f y

σ

σ σ σ σ−=
 
and 

( ) ( )2 1, ( 1) i

i

k i
i ka i k i −= −  , 0,1,2,...., 1ik i= − . 
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Also, 

( ) ( )
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therefore, the Bayes factor can be written as: 
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(4.4)

 

Table 4: Comparison Between MERSS and SRS When a Simple Hypothesis 
about the Variance of the Normal Distribution, (4,1)N  was Tested 1,000 Times 

Number of Rejections of the Null Hypothesis 

1H  
3m =  6m =  15m =  

MERSS SRS MERSS SRS MERSS SRS 

1.2 287 302 252 284 111 218 

1.4 223 237 123 163 14 85 

1.6 151 154 62 92 0 40 

1.8 88 131 28 75 0 7 

2 67 79 16 40 0 6 

2.2 43 69 6 18 0 2 

2.4 37 47 5 15 0 0 
 

Table 5: Comparison Between MERSS and SRS When a Simple Hypothesis about 
the Variance of the Normal Distribution, ( 6,3)N −  was Tested 1,000 Times 

Number of Rejections of the Null Hypothesis 

1H  
6m =  10m =  15m =  

MERSS SRS MERSS SRS MERSS SRS 

3.2 378 396 363 380 327 346 

3.4 317 321 243 307 167 290 

3.6 245 271 172 231 107 228 

3.8 213 251 122 186 54 159 

4 173 205 83 172 23 109 

4.2 119 141 59 129 8 79 

4.4 99 127 32 95 2 52 

4.6 82 120 22 71 1 32 

4.8 53 91 6 63 0 31 
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Using Monte Carlo methods, an approximation 
for the denominator of the Bayes factor is given 
by 
 

( ) ( )

( ) ( )

2 2
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1 2
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0 1 1
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(4.5) 
 

If the underlying distribution is ( )2,1N , 

assuming that 0 1 0.5π π= = , the test is 

executed 1,000 times using computer simulation 
using SRS and MERSS for m = 5, 10, 15; results 
are presented in Table 6 based on the constant 
prior. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From Table 6, it is observed that the error in 
testing the hypothesis using MERSS is less than 
the error when using SRS, also the error 
becomes smaller as sample size increases. 
 
Composite Null Hypothesis versus Composite 
Alternative Hypothesis 

If the null and alternative hypotheses are 
composite, the Bayes factor 
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( ) ( )2 1, ( 1) i

i

k i
i ka i k i −= −  , 0,1,2,...., 1ik i= − . 

 
Suppose that the hypothesis to be tested is a one-

sided hypothesis 2 2
0 0:H σ σ≤  versus 

2 2
1 0:H σ σ> . For example, let 0 1 0.5π π= = , 

5,10,15m = , 2
0 : 9H σ ≤  versus 2

1 : 9H σ > , 

and assume that the hypothesis is tested 1,000 
times. Table 7 shows the simulation comparison 
between MERSS and SRS based on Bayes 
factors. 

Table 7 indicates that the error in 
rejecting the null hypothesis using MERSS is 
less than using SRS based on the same sample 
size. Also, the error decreases as the sample size 

increases. Furthermore, because 2
0 : 9H σ ≤ , 

the error decreases as the true value moves 
farther from 9. 
 

Table 6: Numerical Comparison Between 
MERSS and SRS when Testing Hypothesis 

about the Variance of the Normal Distribution 

Method 

Number of rejections the null 
hypothesis while it is true 

5m =  10m =  15m =  

MERSS 300 168 119 

SRSS 384 278 206 
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Conclusion 
 
Bayesian inferences regarding the population 
variance of the normal distribution were 
considered based on the MERSS method. 
Results indicate that the confidence intervals 
based on MERSS are shorter than those from 
SRS. These intervals will be shorter as the set 
size and the width increases, and they depend on 
the population variance. For the hypothesis 
testing considered in this study, it was shown 
that the error in rejecting the null hypothesis 
using MERSS is less than the error observed 
when using SRS. 
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