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Bias in Stabilized Sieve Sampling 
 

Liming Guan  John P. Wendell 
University of Hawaii at Manoa 

 
 
The stabilized sieve sample selection method (SSM) is considered to be a probability proportional to size 
(PPS) sampling method with an unbiased estimator (Horgan 1997, 1998). This article demonstrates that 
SSM does not select items with PPS and that the point estimator is biased. 
 
Key words: Sampling with probability proportional to size; Hansen-Hurwitz estimator; Horvitz-
Thompson estimator. 
 
 

Introduction 
 
Consider a situation where it is desired to make 
an inference about an unknown population 
parameter, Y, such that 
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where N is the population size, I = (1, 2, …N), 
and yI is unknown but can be determined exactly 
by applying some procedure. An unbiased 
estimate of Y can be obtained when sampling 
with replacement using the Hansen-Hurwitz 
estimator (Brewer & Hanif 1983, p. 5) 
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where n is the sample size, yi is the value yI that 
is determined for the ith item in the sample, pI is 
the probability of inclusion as the ith item in the 
sample of the population item I and pi is the 
value of pI for the ith item selected for the 
sample. Note that under sampling with 
replacement an individual population item, I, 
can be included in the sample more than once. 
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When sampling without replacement, an 
unbiased estimate of Y can be obtained using the 
Horvitz-Thompson estimator (Brewer & Hanif 
1983, p. 6)  
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where πI is the probability of inclusion in the 
sample of the population item I and yi is the 
value of yI for the ith item in the sample. 

Equations (2) and (3) are general and 
allow for an unbiased estimate of Y regardless of 
how pI or πI are determined. For sampling with 
equal probabilities pI = 1/N and πI = n/N. 
Sampling with unequal probabilities is often a 
good choice and may be the only possible 
method given the sampling frame. Examples of 
sampling with unequal probabilities are stratified 
sampling and cluster sampling. Another method 
for sampling with unequal probabilities is 
probability proportional to size (PPS) sampling. 
The size variable can be any variable x for which 
every xI satisfies 
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The right side of the inequality is a requirement 
only when sampling without replacement. If 
these conditions are met then a PPS sample can 
be drawn by setting 

I
I
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when sampling with replacement and 



GUAN & WENDELL 
 

249 
 

I
I

xn
X

π =                           (6) 

 
when sampling without replacement. 

PPS sampling methods are generally 
applicable to any population where it is desired 
to estimate Y using either (2) or (3) and there is a 
size variable available conforming to (4). This 
article examines the properties of two such 
methods, the sieve method and the stabilized 
sieve method (SSM). 
 
Sieve Sampling 

The sieve method is a PPS sampling 
without replacement method that was developed 
by Rietveld (1978, 1979a,b). The presentation of 
the method given here is based on Horgan 
(1998). A population item is selected for 
inclusion in the sample if it satisfies the 
inequality 
 

I Ir x≤                              (7) 

 
where rI is a random variable uniformly 
distributed on the interval (0, X/n) and each rI is 
independently generated. It is important to note 
that the realized sample size, nr, is a random 
variable that will not always be the same as n. 
Equation (3) with the sum over nr and πI defined 
as in (6) will yield an unbiased estimate of Y. 
The properties of the sieve method and the SSM 
will be illustrated by sampling from a 
hypothetical population with N = 5 and n = 2 
used by Wright (1991) to demonstrate that 
systematic PPS samples lose their PPS property 
when augmented by systematically sampling the 
remaining population. The details of this 
population are given in Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Test Population. N = 5, n = 2, X = 20. 

I xI πI 1 - πI pI 

1 2 0.2 0.8 0.10 

2 3 0.3 0.7 0.15 

3 4 0.4 0.6 0.20 

4 5 0.5 0.5 0.25 

5 6 0.6 0.4 0.30 

Table 2: Probabilities of sample outcomes for 
the test population in Table 1 for sieve 

sampling. Column j is an identification variable 
for each of the 32 outcomes. The second 

column indicates which population items were 
included in a particular sample outcome and p 

is the probability of that outcome. 
j Is p 
1 Null 0.0672 

2 1 0.0168 

3 2 0.0288 

4 3 0.0448 

5 4 0.0672 

6 5 0.1008 

7 1,2 0.0072 

8 1,3 0.0112 

9 1,4 0.0168 

10 1,5 0.0252 

11 2,3 0.0192 

12 2,4 0.0288 

13 2,5 0.0432 

14 3,4 0.0448 

15 3,5 0.0672 

16 4,5 0.1008 

17 1,2,3 0.0048 

18 1,2,4 0.0072 

19 1,2,5 0.0108 

20 1,3,4 0.0112 

21 1,3,5 0.0168 

22 1,4,5 0.0252 

23 2,3,4 0.0192 

24 2,3,5 0.0288 

25 2,4,5 0.0432 

26 3,4,5 0.0672 

27 1,2,3,4 0.0048 

28 1,2,3,5 0.0072 

29 1,2,4,5 0.0108 

30 1,3,4,5 0.0168 

31 2,3,4,5 0.0288 

32 1,2,3,4,5 0.0072 
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These sample outcome probabilities are 
calculated as 
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j j
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where sj is the jth sample outcome in Table 2. 
For example, the probability of getting sample 
outcome 11, item 2 and 3, is 0.3 × 0.4 × 0.8 × 
0.5 × 0.4 = 0.0192. That the sieve method is 
indeed PPS for this population can be checked 
by summing the probabilities for each sample 
outcome containing a particular population item, 
I, and verifying that it is equal to the value for πI 
in Table 1. 

Table 3 shows the probability of 
achieving a particular nr. These probabilities can 
be calculated from Table 2 by summing all 
probabilities for outcomes of a given size. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4 shows the probabilities of inclusion in nr 
for each combination of population item and 
realized sample size for the test population in 
Table 1. These conditional probabilities are not 
proportional to xI. 
 
 
 
 
 
 
 
 
 
 
Stabilized Sieve Sampling 

The stabilized sieve method (SSM) 
(Horgan 1997, 1998) is a modification of the 
sieve method that ensures that the final sample 
size is always equal to n. This section details 
how the method selects items for a sample and 
then considers the properties of point estimators 
of Y for samples selected using the SSM. 

The SSM is selected in two stages. First 
an initial sample, S1, is selected using (7). In the 
second stage the sampling process is conditioned 
upon the number of items in S1 (Horgan 1998) 
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where S2 is the final sample and A(m) and R(m) 
are defined as follows: A(m) selects m items one 
at a time (with replacement) by taking a simple 
random sample of one from the entire population 
(including items in S1) and this item is selected 
for inclusion in the sample if 
 

Ir x≤                          (10) 

 
where r is a uniformly distributed random 
number in the interval (0, max(xI)]. The process 
is repeated, generating a new value for r each 
time, until m items are selected. All items 
selected using A(m) satisfy (5). R(m) selects m 
items to remove from S1 by taking a simple 
random sample of size m from S1. 

Table 5 gives the probabilities for each 
sample outcome and nr for the population in 
Table 1 sampled using SSM. Because of the 
complexity of (9) some explanation of how 
individual cells in this table were calculated may 
be useful. The simplest case is when nr = 2 
where the values are taken directly from Table 2. 
Outcome 9 (2,5) with nr = 4 will be used to 
illustrate the cases when nr > 2. First, the 
probabilities of all the outcomes where nr = 4 
and both item 2 and 5 are present (outcomes 28, 
29, and 31) are summed and then divided by the 
number of combinations of two items that can be 
drawn from a population of four items. This 
gives (0.0072 + 0.0108 + 0.0288)/6 = 0.0078. 
When nr < 2, there may be more than one path to 
a sample outcome. For example, outcome 7 (2,3) 

Table 3: Probabilities of a realized sample 
size for the test population in Table 1. 

nr p 

0 0.0672 

1 0.2584 

2 0.3644 

3 0.2344 

4 0.0684 

5 0.0072 

Table 4:. Conditional probabilities of inclusion. 

 nr 

I 0 1 2 3 4 5 

1 0 0.0650 0.1658 0.3242 0.5789 1 

2 0 0.1115 0.2700 0.4863 0.7544 1 

3 0 0.1734 0.3908 0.6314 0.8421 1 

4 0 0.2601 0.5247 0.7389 0.8947 1 

5 0 0.3901 0.6487 0.8191 0.9298 1 
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with nr = 1 can occur when the initial sieve 
sample contains only item 2 or only item 3. 
Outcome 3 in Table 2 gives the probability of S1 
containing only item 2 and Table 1 gives the 
value of pI for selecting item 3 in the second 
stage. The probabilities that S1 contains only 
item 3 and that item 2 is selected in the second 
stage can be determined in the same manner. 
Thus, the probability for outcome 7 when nr = 1 
is 0.0288 × 0.20 + 0.0448 × 0.15 = 0.01248. 

Table 5 shows probabilities for sample 
outcomes for the test population in Table 1 for 
stabilized sieve sampling. Column j is an 
identification variable for each of the 15 
outcomes. The second column indicates which 
population items were included in a particular 
sample outcome, nr is the realized sample size in 
stage one and the cells contain the joint 
probability of the sample outcome and nr. Table 
6 provides pI for the population in Table 1 when 
sampling with SSM and demonstrates that these 
probabilities are not PPS. These probabilities are 
derived from Table 5 by summing the 
probabilities for each sample outcome that 
contains a particular I divided by n, which is 2 in 
this case. For outcomes where I is included 
twice it is counted twice. 

Horgan (1998, equations 8, 17, and 19) 
provides an estimator for Y that is conditional 
upon nr: 
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Although (11) conditions on nr, it does 
not take into consideration that the probabilities 
of inclusion in the sample given nr are not 
proportional to xI (see Table 4). Consequently, 
Ŷs is a biased estimator. The expected value of Ŷs 
for the test population can be calculated by 
determining Ŷs for every cell in Table 5, 
multiplying the result by the probability in the 
cell and then taking the sum of those products. 
The result is 1.0917 y1 + 1.0877 y2 + 1.0824 y3 + 
1.0749 y4 + 1.0637 y5. 

Because the SSM method is a sampling 
with replacement method based on the sieve 
method, and the sieve method is a PPS method 
without replacement it seems reasonable to use 
ŶHH with pI calculated according to (5). This will 
also give a biased estimate of Y, the expected 
value of which is 0.9491 y1 + 0.9693 y2 + 1.0029 
y3 + 1.0111 y4 + 0.9791 y5 for the Table 1 
population. 

It is possible to construct an unbiased 
estimator of Y when using the SSM with the 
population in Table 1. This is done by first 
setting each pI to the corresponding value in 
Table 6 and then calculating ŶHH accordingly. 
Unfortunately, the use of this estimator is 
limited to very small populations because it 
requires an enumeration of all 2N possible 
sample outcomes for the stage 1 sieve sample. 
 

Conclusion 
 
The stabilized sieve method does not sample 
with PPS and that both Ŷs and ŶHH with pI 
calculated according to (5) are biased estimators 
of Y. Further, the calculation of the unbiased 
estimator is prohibitively expensive to compute 
for any but the smallest populations. 
Nonetheless, the SSM performed well in the 
simulations in Horgan (1997 and 1998) in 
comparison to the sieve method and the 
probability proportionate to size with 
replacement method (PPR). 

All three of these methods have 
drawbacks, either the possibility of items 
showing up more than once in the sample (SSM, 
PPR) or variable sample size (sieve), or bias 
(SSM). Systematic PPS sampling methods 
utilizing a random sort of the population before 
application have none of these drawbacks 
because they select fixed size samples without 
replacement with probabilities that are exactly 
proportional to xI (see Brewer & Hanif 1983, 
procedures 2 and 3). These selection methods 
are easily applied with modern computers if both 
I and xI are available in a computer accessible 
file. Consequently, with these sampling frames 
the systematic procedures should be preferred 
over either the sieve, SSM, or PPR methods. 
However, not all sampling frames make the 
entire population xI conveniently accessible by 
computer and the sieve, SSM, and PPR methods 
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may have some practical advantages with these 
sampling frames that offset their disadvantages. 
With such challenging sampling frames, the 
SSM method should not be ruled out simply 
because of the difficulty in achieving a 
completely unbiased estimate of Y, particularly 
if the population characteristics and sample sizes 
are similar to those used for the simulations in 
Horgan (1997 and 1998). 
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Table 5: Probabilities of sample outcomes for the test 
population in Table 1 for stabilized sieve sampling. 

  nr 
j Is 0 1 2 3 4 5 

1 1,1 0.00067 0.00168 0 0 0 0 

2 1,2 0.00202 0.00540 0.00720 0.00760 0.00380 0.00072 

3 1,3 0.00269 0.00784 0.01120 0.01093 0.00480 0.00072 

4 1,4 0.00336 0.01092 0.01680 0.01453 0.00540 0.00072 

5 1,5 0.00403 0.01512 0.02520 0.01760 0.00580 0.00072 

6 2,2 0.00151 0.00432 0 0 0 0 

7 2,3 0.00403 0.01248 0.01920 0.01760 0.00680 0.00072 

8 2,4 0.00504 0.01728 0.02880 0.02320 0.00740 0.00072 

9 2,5 0.00605 0.02376 0.04320 0.02760 0.00780 0.00072 

10 3,3 0.00269 0.00896 0 0 0 0 

11 3,4 0.00672 0.02464 0.04480 0.03253 0.00840 0.00072 

12 3,5 0.00806 0.03360 0.06720 0.03760 0.00880 0.00072 

13 4,4 0.00420 0.01680 0 0 0 0 

14 4,5 0.01008 0.04536 0.10080 0.04520 0.00940 0.00072 

15 5,5 0.00605 0.03024 0 0 0 0 
 

Table 6. Probabilities of 
inclusion in a sample 
draw for each item in 
the test population in 

Table 1 compared to the 
probability under PPS. 

I 
pI 

actual PPS 

1 0.09491 0.10 

2 0.14540 0.15 

3 0.19805 0.20 

4 0.25277 0.25 

5 0.30886 0.30 
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