
Journal of Modern Applied Statistical
Methods

Volume 8 | Issue 1 Article 22

5-1-2009

A New Approximate Bayesian Approach for
Decision Making About the Variance of a Gaussian
Distribution Versus the Classical Approach
Vincent A. R. Camara
University of South Florida, gvcamara@ij.net

Follow this and additional works at: http://digitalcommons.wayne.edu/jmasm

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

This Regular Article is brought to you for free and open access by the Open Access Journals at DigitalCommons@WayneState. It has been accepted for
inclusion in Journal of Modern Applied Statistical Methods by an authorized editor of DigitalCommons@WayneState.

Recommended Citation
Camara, Vincent A. R. (2009) "A New Approximate Bayesian Approach for Decision Making About the Variance of a Gaussian
Distribution Versus the Classical Approach," Journal of Modern Applied Statistical Methods: Vol. 8 : Iss. 1 , Article 22.
DOI: 10.22237/jmasm/1241137260
Available at: http://digitalcommons.wayne.edu/jmasm/vol8/iss1/22

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol8%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol8%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol8%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol8%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol8?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol8%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol8/iss1?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol8%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol8/iss1/22?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol8%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol8%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol8%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol8%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol8%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/jmasm/vol8/iss1/22?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol8%2Fiss1%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Modern Applied Statistical Methods   Copyright © 2009 JMASM, Inc. 
May 2009, Vol. 8, No. 1, 237-247                                                                                                                             1538 – 9472/09/$95.00 

237 
 

A New Approximate Bayesian Approach for Decision Making 
About the Variance of a Gaussian Distribution Versus the Classical Approach 

 
Vincent A. R. Camara 

University of South Florida 
 

 
Rules of decision-making about the variance of a Gaussian distribution are obtained and compared. 
Considering the square error loss function, an approximate Bayesian decision rule for the variance of a 
normal population is derived. Using normal data and SAS software, the obtained approximate Bayesian 
test results were compared to their counterparts obtained with the well-known classical decision rule. It is 
shown that the proposed approximate Bayesian decision rule relies only on observations. The classical 
decision rule, which uses the Chi-square statistic, does not always yield the best results: the proposed 
approach often performs better. 
 
Key words: Hypothesis testing, loss function, Type II error, statistical analysis. 
 
 

Introduction 
 
Life testing in reliability has received a 
substantial amount of interest from theorists as 
well as reliability engineers. Their concern was a 
product of the increased complexity and 
sophistication in electronic and structural 
systems, which came into existence very rapidly 
during this time. In the early 1950’s, Epstein and 
Sobel began to explore the field of parametric 
life testing. Under the assumption of an 
exponential time-to-failure distribution, they 
produced a series of papers (1953, 1954, 1955) 
which were to influence future work in 
reliability and life parameter testing. 

Shortly thereafter other failure 
distributions more complex than the exponential 
were used as failure models. For example, Kao 
(1956) brought attention to the Webull 
probability distribution, while Birnhaum and 
Saunders (1958) suggested the gamma 
distribution. In this study, the normal probability 
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distribution - which has been and is still widely 
used in industry and in academia - is considered. 
The normal distribution is defined as follows: 
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A test of hypothesis consists in testing a 

given theory or belief about a population 
parameter based on some sample information. 
Once the underlying model is found to be 
normal or approximately normal, the classical 
approach considers the following decision rule 
for a level of significance of alpha and a sample 
of size n (Mario F. Triola, 2007): 
 
Two-Tailed Test 

Hypotheses: 
2

0 :H cσ =  
2:aH cσ ≠  

 
Non-rejection region: 

2 2
1,1 /2 1, /2( , )n nα αχ χ− − −  

 
Rejection region: 

2 2
1,1 /2 1, /2( , ] [ , )n nα αχ χ− − −−∞ ∪ ∞  
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Right Tailed Test 
Hypotheses: 

2
0 :H cσ =  

2:aH cσ   

 
Non-rejection region: 

2
1,( , )n αχ −−∞  

 
Rejection region: 

2
1,[ , )n αχ − ∞  

 
Left Tailed Test 

Hypotheses: 
2

0 :H cσ =  
2:aH cσ   

 
Non-rejection region: 

2
1,( , )n αχ − ∞  

 
Rejection region: 

2
1,( , ]n αχ −−∞  

 
The Chi-square test statistic that is used to 
conduct the above tests will be denoted by Chi, 
with: 

2

2

( 1)n sChi
σ
−= . 

 
Methodology 

 
Although no specific analytical procedure exists 
that allows identification of the appropriate loss 
function to be used in Bayesian analysis, the 
most commonly used is the square error loss 
function. One of the reasons for selecting this 
loss function is due to its analytical tractability 
in Bayesian analysis. The square error loss 
function places a small weight on estimates near 
the true value and proportionately more weight 
on extreme deviation from the true value of the 
parameter. The square error loss is defined 
 

 
(2) 

 

The use of the square error loss function 
along with a suitable approximation of the 
Pareto prior leads to the following approximate 
Bayesian confidence bounds for the normal 
population variance (Camara, 2003): 
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      (3) 

 
To obtain the approximate Bayesian 

decision rule for the variance of a normal 
population, the close relationship that exists 
between confidence intervals and hypothesis 
testing is used. Considering the above mentioned 
approximate Bayesian confidence intervals 
along with the test statistic Chi, the following 
approximate Bayesian decision rule is derived: 
 
Two-Tailed Test 

Hypotheses: 
2

0 :H cσ =  
2:aH cσ ≠  

 
Non-rejection region: 

2 2 ln(1 / 2) , 2 2ln( / 2)( )n nα α− − − − −  

 
Rejection region:  

( , 2 2 ln(1 / 2)] [ 2 2 ln( / 2), )n nα α−∞ − − − ∪ − − ∞
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Right Tailed Test 
Hypotheses: 

2
0 :H cσ =  

2:aH cσ   

 
Non-rejection region: 

( , 2 2 ln( ))n α−∞ − −  
 

Rejection region: 
[ 2 2 ln( ), )n α− − ∞  

 
Left Tailed Test 

Hypotheses: 
2

0 :H cσ =  
2:aH cσ   

 
Non-rejection region: 

( 2 2 ln( ), )n α− − ∞  
 

Rejection region: 
( , 2 2 ln( )]n α−∞ − −  

 
To compare the classical and 

approximate Bayesian decision rules and 
evaluate their performances, the absolute 
difference, AD, between the parameter and the 
claim is used and is defined by: 
 

AD Parameter Claim= −  

 
From the calculated results of the absolute 
difference between the parameter and the claim, 
the following are able to be concluded: 
 

• For a reasonably large value of AD, the 
test that will perform better than its 
counterpart will be the one that will reject 
the null hypothesis. 

• For a reasonably small value of AD, the 
test that will perform better than its 
counterpart will be the one that will fail to 
reject the null hypothesis. 

• A test and its counterpart will perform 
equally well, if both reject the null 
hypothesis for a reasonably large value of 
AD or both fail to reject the null 

hypothesis for a reasonably small value of 
AD. 

• A test and its counterpart will perform 
poorly if, for a reasonably large value of 
AD, both fail to reject the null hypothesis, 
or both reject the null hypothesis for a 
reasonably small value of AD. 

 
Results 

 
In order to compare the proposed approximate 
Bayesian decision rule with the classical 
approach, samples obtained from normally 
distributed populations (e.g., 1, 2, 3, .4, 7) as 
well as approximately normal populations (e.g., 
5, 6) are considered. SAS software was used to 
obtain the normal population parameters 
corresponding to each sample data set. 

The observed value, which is the value 
of the test statistic Chi under the assumption that 
the null hypothesis is true, will be denoted by 
Chio. If this observed value, Chio, falls into the 
rejection region, the null hypothesis will be 
rejected at a level of significance selected 
beforehand. If the observed value falls into the 
non-rejection region, the null hypothesis will not 
be rejected at the selected level of significance 
 
Data Set #1: 
24, 28, 22, 25, 24, 22, 29, 26, 25, 28, 19, 29 
(Mann, 1998, p. 504). 
 
Normal population distribution obtained with 
SAS: 
 

( 25.083, 3.1176)N μ σ= = . 
 
The population and sample variances are: 

2 9.71943σ = , and 2 9.719696s = . For the 
following test of hypothesis, 
 

2
0 :H cσ = , 

2:aH cσ ≠ , 

 
the classical and approximate Bayesian non-
rejection regions are presented in Table 1. Table 
1 was used to conduct the following five tests of 
hypothesis about the normal population variance 
corresponding to the first data set. 
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Test of Hypothesis #1: 

2
0 : 9.71943H σ = , 

2: 9.71943aH σ ≠ , 

AD = 0. 
The observed value is Chio = 11.0003. 

Therefore, both, the classical and proposed 
approximate Bayesian approaches, fail to reject 
the null hypothesis at any level of significance 
smaller or equal to 0.2. These are good decisions 
since the normal population variance under 
study is equal to 9.71943 
 
Test of Hypothesis #2: 

2
0 : 8H σ = , 

2: 8aH σ ≠ , 

AD = 1.71943. 
The observed value is Chio = 

13.364582. Therefore, both the classical and our 
proposed approximate Bayesian approaches, fail 
to reject the null hypothesis at any level of 
significance smaller or equal to 0.2. 
 
Test of Hypothesis #3: 

2
0 : 4H σ = , 

2: 4aH σ ≠ , 

AD=5.71943. 
Considering the observed value Chio = 

26.729164, the classical approach fails to reject 
the null hypothesis at a level of significance 
equal to 0,01, while the approximate Bayesian 
approach rejects the null hypothesis at any level 
of significance smaller or equal to 0.2. 
 
 

Test of Hypothesis #4: 
2

0 : 20H σ = , 
2: 20aH σ ≠ , 

AD = 10.28057. 
In this case, considering the observed 

value Chio = 5.345832, the classical approach 
fails to reject the null hypothesis at any level of 
significance smaller or equal to 0.1, while the 
approximate Bayesian approach reject the null 
hypothesis at any level of significance smaller or 
equal to 0.2 
 
Test of Hypothesis #5: 

2
0 : 23H σ ≥ , 

2: 23aH σ  , 

AD greater or equal to 13.28057. 
Considering the observed value Chio = 

4.64855, the classical approach fails to reject the 
null hypothesis at a level of significance smaller 
or equal to equal to 0.05. The approximate 
Bayesian approach rejects the null hypothesis at 
any level of significance smaller or equal to 0.2. 
 
Data Set #2: 
13, 11, 9, 12, 8, 10, 5, 10, 9, 12, 13 (Mann, 1998 
p. 504). 
 
Normal population distribution obtained with 
SAS: 

( 10.182, 2.4008)N μ σ= = . 
 
The population and sample variances are 

2 5.76384σ = , and 2 5.763636s = . For the 
following two tailed test of hypothesis: 
 

2
0 :H cσ = , 

2:aH cσ ≠ , 

 
the classical and approximate Bayesian non-
rejection regions are presented in Table 2. Table 
2 was used to conduct the following five tests of 
hypothesis about the normal population variance 
corresponding to the second data set. 
 
 
 
 

Table1: Classical and Approximate Bayesian 
Non-Rejection Regions 

C. L. 
% 

Non-Rejection Regions 

Classical Method 
Approximate 

Bayesian 
Approach 

80 5.578 – 17.275 10.211 – 14.605 

90 4.575 – 19.675 10.101 – 15.991 

95 3.8159 – 21.92 10.051 – 17.378 

99 2.603 – 26.757 10.010 – 20.597 
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Test of Hypothesis #6: 

2
0 : 5.76384H σ = , 

2: 5.76384aH σ ≠ , 

AD = 0. 
The observed value is Chio = 9.999645. 

Considering Table 2, it is observed that both, the 
classical and the approximate Bayesian 
approaches, fail to reject the null hypothesis at 
any levels of significance smaller of equal to 
0.2. 
 
Test of Hypothesis #7: 

2
0 : 4.5H σ = , 

2: 4.5aH σ ≠ , 

AD = 1.26384. 
The observed value is Chio = 12.80808. 

Therefore both, the classical and proposed 
approximate Bayesian approaches, fail to reject 
the null hypothesis at any level of significance 
smaller or equal to 0.2. 
 
Test of Hypothesis #8: 

2
0 : 10H σ = , 

2: 10aH σ ≠ , 

AD = 4.23616. 
In this case, Chio = 5.763636. Contrary 

to the classical approach, the proposed 
approximate Bayesian approach rejects the null 
hypothesis at levels of significance smaller or 
equal to 0.2. 
 
 

Test of Hypothesis #9: 
2

0 : 15H σ = , 
2: 15aH σ ≠ , 

AD = 9.23616. 
In this case, Chio = 3.8424.The 

proposed approach rejects the null hypothesis at 
any level of significance smaller than or equal to 
0.2, while the classical approach fails to reject 
the same null hypothesis only at significance 
levels smaller or equal to 0.05. 
 
Test of Hypothesis #10: 

2
0 : 14H σ ≥ , 

2: 14aH σ  , 

AD is greater or equal to 8.23616. 
Here the Chio = 4.11688. The proposed 

approach rejects the null hypothesis at levels of 
significance smaller or equal to 0.2. The 
classical approach fails to reject the null 
hypothesis at a level of significance of 0.05. 
 
Data Set #3: 
16, 14, 11, 19, 14, 17, 13, 16, 17, 18, 19, 12 
(Mann, 1998 p. 504). 
 
Normal population distribution obtained 
with SAS: 

( 15.5, 2.6799)N μ σ= = . 
 
The population and sample variances are 

2 7.18186σ = , and 2 7.181818s = . For the 
following test of hypothesis: 
 

2
0 :H cσ = , 

2:aH cσ ≠ , 

 
the classical and approximate Bayesian non-
rejection regions are presented in Table 3. Table 
3 was used to conduct the following five tests of 
hypothesis about the normal population variance 
corresponding to the third data set. 
 
Test of Hypothesis #11: 

2
0 : 7.18186H σ = , 

2: 7.18186aH σ ≠ , 

AD = 0, Chio=10.999935. 

Table 2: Classical and Approximate Bayesian 
Non-Rejection Regions 

C. L. 
% 

Non-Rejection Regions 

Classical Method 
Approximate 

Bayesian 
Approach 

80 4.865 – 15.987 9.211 – 13.605 

90 3.94 – 18.307 9.102 – 14.991 

95 3.247 – 20.483 9.051 – 16.378 

99 2.156 – 25.188 9.010 – 19.597 
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Both, the classical and proposed 
approximate Bayesian approaches, fail to reject 
the null hypothesis at any level of significance 
smaller or equal to 0.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Test of Hypothesis #12: 

2
0 : 6H σ = , 

2: 6aH σ ≠ , 

AD = 1.18186. 
The observed value is Chio = 

13.166666. Therefore both, the classical and 
proposed approximate Bayesian approaches, fail 
to reject the null hypothesis at any level of 
significance smaller or equal to 0.2 
 
Test of Hypothesis #13: 

2
0 : 14H σ = , 

2: 14aH σ ≠ , 

AD = 6.81814, Chio = 5.64285. 
Contrary the classical approach, the 

proposed approximate Bayesian approach rejects 
the null hypothesis at levels of significance 
respectively small or equal to 0.2. 
 
Test of Hypothesis #14: 

2
0 : 18H σ = , 

2: 18aH σ ≠ , 

AD=10.81814, Chio=4.388888. 
The proposed approximate Bayesian 

approach rejects the null hypothesis at any 
significance level smaller or equal to 0.2. The 
classical approach fails to reject the null 
hypothesis at levels of significance respectively 
smaller or equal to 0.05. 

Test of Hypothesis #15: 
2

0 : 17H σ ≥ , 
2: 17aH σ  , 

AD is greater or equal to 9.81814. 
The observed value Chio = 4.647058. 

Based on Table 3, the proposed decision rule 
rejects the null hypothesis at any level of 
significance smaller or equal to 0.1. The 
classical approach fails to reject the null 
hypothesis at levels of significance smaller or 
equal 0.05. 
 
Data Set #4: 
27, 31, 25, 33, 21, 35, 30, 26, 25, 31, 33, 30, 28 
(Mann, 1998 p. 504). 
 
Normal population distribution obtained with 
SAS: 

( 28.846, 3.9549)N μ σ= =  
 
The population and sample variances are 

2 15.64123σ = , and 2 15.641025s = . For the 
following test of hypothesis: 
 

2
0 :H cσ = , 

2:aH cσ ≠ , 

 
the classical and approximate Bayesian non-
rejection regions are presented in Table 4. Table 
4 was used to conduct the following five tests of 
hypothesis about the normal population variance 
corresponding to the fourth data set. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Classical and Approximate Bayesian 
Non-Rejection Regions 

C. L. 
% 

Non-Rejection Regions 

Classical Method 
Approximate 

Bayesian 
Approach 

80 5.578 – 17.275 10.211 – 14.605 

90 4.575 – 19.675 10.103 – 15.991 

95 3.8159 – 21.92 10.051 – 17.378 

99 2.603 – 26.757 10.010 – 20.597 

Table 4: Classical and Approximate Bayesian 
Non-Rejection Regions 

C. L. 
% 

Non-Rejection Regions 

Classical Method 
Approximate 

Bayesian 
Approach 

80 6.304 – 18.549 11.211 – 15.605 

90 5.226 – 21.026 11.103 – 16.991 

95 4.404 - 23.337 11.051 – 18.378 

99 3.074 – 28.300 11.010 – 21.597 
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Test of Hypothesis #16: 
2

0 : 15.64123H σ = , 
2: 15.64123aH σ ≠ , 

AD = 0, Chio=11.999842.  
Both, the classical and proposed 

approximate Bayesian approaches, fail to reject 
the null hypothesis at any level of significance 
smaller or equal to 0.2. 
 
Test of Hypothesis #17: 

2
0 : 16.5H σ = , 

2: 16.5aH σ ≠ , 

AD = 0.85877. 
The observed value is Chio = 

11.3752909. Therefore both, the classical and 
proposed approximate Bayesian approaches, fail 
to reject the null hypothesis at any level of 
significance smaller or equal to 0.2. 
 
Test of Hypothesis #18: 

2
0 : 30H σ = , 

2: 30aH σ ≠ , 

AD = 14.35877, Chio = 6.2564 
The classical approach fails to rejects 

the null hypothesis at a level of significance 
smaller or equal to 0.1. The proposed decision 
rule rejects the null hypothesis for any level of 
significance smaller or equal to 0.2. 
 
Test of Hypothesis #19: 

2
0 : 8H σ = , 

2: 8aH σ ≠ , 

AD = 7.64123, Chio = 23.461536. 
The proposed approximate Bayesian 

approach rejects the null hypothesis at levels of 
significance smaller or equal to 0.2. The 
classical approach fails to reject the null 
hypothesis at a level of significance of 0.01. 
 
Test of Hypothesis #20: 

2
0 : 25H σ ≥ , 

2: 25aH σ  , 

AD=9.35877, Chio=7.50779. 
Based on Table 4, the classical approach 

fails to reject the null hypothesis at any 
significance level smaller or equal to 0.1. The 

proposed approximate Bayesian decision rule 
rejects the null hypothesis for any level of 
significance smaller or equal to 0.1. 
 
Data Set #5: 
52, 33, 42, 44, 41, 50, 44, 51, 45, 38, 37, 40, 44, 
50, 43 (McClave & Sincich, 1997 p. 301). 
 
Normal population distribution obtained with 
SAS: 

( 43.6, 5.4746)N μ σ= =  
 
The population and sample variances are 

2 29.97124σ = , and 2 29.971428s = . For 
the following test of hypothesis: 
 

2:aH cσ ≠ , 
2

0 :H cσ = , 
 
the classical and approximate Bayesian non-
rejection regions are presented in Table 5. Table 
5 was used to conduct the following five tests of 
hypothesis about the normal population variance 
corresponding to the fifth data set. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Test of Hypothesis #21: 

2
0 : 29.97124H σ = , 

2: 29.97124aH σ ≠ , 

AD = 0, Chio = 14.000882. 
Both, the classical and the proposed 

approximate Bayesian approaches, fail to reject 
the null hypothesis at any level of significance 
smaller or equal to 0.2. 

Table 5: Classical and Approximate Bayesian 
Non-Rejection Regions 

C. L. 
% 

Non-Rejection Regions 

Classical Method 
Approximate 

Bayesian 
Approach 

80 7.790–21.064 13.211–17.605 

90 6.571–23.685 13.103–18.991 

95 5.629–26.119 13.051–20.378 

99 4.075–31.319 13.010–23.597 
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Test of Hypothesis #22: 
2

0 : 31.5H σ = , 
2: 31.5aH σ ≠ , 

AD = 1.52876. 
The observed value is Chio = 

13.32063467. Therefore both, the classical and 
proposed approximate Bayesian approaches, fail 
to reject the null hypothesis at any level of 
significance smaller or equal to 0.2 
 
Test of Hypothesis #23: 

2
0 : 60H σ = , 

2: 60aH σ ≠ , 

AD = 30.02876, Chio = 6.99333. 
The proposed approximate Bayesian 

approach rejects the null hypothesis at levels of 
significance smaller or equal to 0.2. The 
classical approach fails to reject the null 
hypothesis at any level of significance smaller or 
equal to 0.1. 
 
Test of Hypothesis #24: 

2
0 : 17H σ = , 

2: 17aH σ ≠ , 

AD = 12.97124, Chio = 24.682352. 
The classical approach fails to reject the 

null hypothesis at any level of significance 
smaller or equal to 0.05, while the proposed 
approximate Bayesian approach rejects the null 
hypothesis at levels of significance smaller or 
equal to 0.2. 
 
Test of Hypothesis #25: 

2
0 : 18H σ = , 

2: 18aH σ ≠ , 

AD = 11.97124, Chio = 23.31111. 
The classical approach fails to reject the 

null hypothesis at any level of significance 
smaller or equal to 0.1, while the proposed 
approximate Bayesian approach only fails to 
reject the null hypothesis at levels of 
significance r equal to 0.01. 
 
Data Set #6: 
52, 43, 47, 56, 62, 53, 61, 50, 56, 52, 53, 60, 50, 
48, 60, 55 (McClave & Sincich, 1997 p. 301). 
 

Normal population distribution obtained with 
SAS: 

( 53.625, 5.4145)N μ σ= =  
 
The population and sample variances are 

2 29.31681σ = , and 2 29.316666s = . For the 
following test of hypothesis: 
 

2
0 :H cσ = , 

2:aH cσ ≠ , 

 
the classical and approximate Bayesian non-
rejection regions are presented in Table 6. Table 
6 was used to conduct the following five tests of 
hypothesis about the normal population variance 
corresponding to the sixth data set. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Test of Hypothesis #26: 

2
0 : 29.31681H σ = , 

2: 29.31681aH σ ≠ , 

AD = 0, Chio = 14.99992. 
Both, the classical and proposed 

approximate Bayesian approaches, fail to reject 
the null hypothesis at any level of significance 
smaller or equal to 0.2. 
 
Test of Hypothesis #27: 

2
0 : 26H σ = , 

2: 26aH σ ≠ , 

AD = 3.31681. 
The observed value is Chio = 

16.91346115. Therefore both, the classical and 

Table 6: Classical and Approximate Bayesian 
Non-Rejection Regions 

C. L. 
% 

Non-Rejection Regions 

Classical Method 
Approximate 

Bayesian 
Approach 

80 8.547–22.307 14.211–18.605 

90 7.261–24.996 14.103–19.991 

95 6.262–27.488 14.051–21.378 

99 4.601–32.801 14.010–24.597 
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proposed approximate Bayesian approaches, fail 
to reject the null hypothesis at any level of 
significance smaller or equal to 0.2. 
 
Test of Hypothesis #28: 

2
0 : 60H σ = , 

2: 60aH σ ≠ , 

AD = 30.68319, Chio=7.329166.  
The classical approach fails to reject the 

null hypothesis at any level of significance 
smaller or equal to 0.1. The proposed 
approximate Bayesian approach rejects the null 
hypothesis at any level of significance smaller or 
equal to 0.2. 
 
Test of Hypothesis #29: 

2
0 : 17H σ = , 

2: 17aH σ ≠ , 

AD=12.31681, Chio=25.867646. 
The classical approach fails to reject the 

null hypothesis at any level of significance 
smaller or equal to 0.05. On the other hand, the 
proposed approximate Bayesian approach rejects 
the null hypothesis at any level of significance 
smaller equal to 0.2. 
 
Test of Hypothesis #30: 

2
0 : 50H σ ≥ , 

2: 50aH σ  , 

AD is greater or equal to 20.68319. 
Using Table 6 it can be inferred that the 

classical approach fails to reject the null 
hypothesis at any level of significance smaller or 
equal to 0.1, while the proposed approximate 
Bayesian approach o reject the null hypothesis at 
levels of significance smaller or equal to 0.1. 
 
Data Set #7: 
 
The following observations have been obtained 
from the collection of SAS data sets: 50, 65, 
100, 45, 111, 32, 45, 28, 60, 66, 114, 134, 150, 
120, 77, 108, 112, 113, 80, 77, 69, 91, 116, 122, 
37, 51, 53, 131, 49, 69, 66, 46, 131, 103, 84, 78. 
 
Normal population distribution obtained with 
SAS: 

( 82.861, 33.226)N μ σ= =  

 
The population and sample variances are 

2 1103.96716σ = , and 2 1103.951587s = . 
 
For the following test of hypothesis: 
 

2
0 :H cσ = , 

2:aH cσ ≠ , 

 
the classical and approximate Bayesian non-
rejection regions are presented in Table 7. Table 
7 was used to conduct the following five tests of 
hypothesis about the normal population variance 
corresponding to the seventh data set. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Test of Hypothesis #31: 

2 1103.96716σ = , 
2 1103.96716σ ≠ , 

Chio = 34.9995. 
Both, the classical and the proposed 

approximate Bayesian approaches, fail to reject 
the null hypothesis at any level of significance 
smaller or equal to 0.2. 
 
Test of Hypothesis #32: 

2
0 : 1110H σ = , 

2: 1110aH σ ≠ , 

The observed value is Chio = 4.809284. 
Therefore both, the classical and proposed 
approximate Bayesian approaches, fail to reject 
the null hypothesis at any level of significance 
smaller or equal to 0.2. 
 

Table 7: Classical and Approximate Bayesian 
Non-Rejection Regions 

C. L. 
% 

Non-Rejection Regions 

Classical Method 
Approximate 

Bayesian 
Approach 

80 24.825–46.031 34.211–38.605 

90 22.501–49.765 34.103–39.991 

95 20.612–53.160 34.051–41.378 

99 17.247–60.219 34.010–44.597 
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Test of Hypothesis #33: 
2

0 : 1800H σ = , 
2: 1800aH σ ≠ , 

AD = 0, Chio = 21.46572. 
The classical approach fails to reject the 

null hypothesis at any level of significance 
smaller or equal to 0.0.5, The proposed 
approximate Bayesian approach rejects the null 
hypothesis at levels of significance smaller or 
equal to 0.2 
 
Test of Hypothesis #34: 

2
0 : 800H σ = , 

2: 800aH σ ≠ , 

AD = 1000, Chio = 48.297879. 
The classical approach fails to reject the 

null hypothesis at any level of significance 
smaller or equal to 0.1. The proposed 
approximate Bayesian approach rejects the null 
hypothesis at levels of significance smaller or 
equal to 0.2. 
 
Test of Hypothesis #35: 

2
0 : 800H σ ≤ , 

2: 800aH σ  , 

AD is greater or equal to1000, Chio = 
48.297879.  

Using Table 7 it is inferred that the 
classical approach fails to reject the null 
hypothesis at any level of significance smaller or 
equal to 0.05. On the other hand the proposed 
approximate Bayesian approach o reject the null 
hypothesis at levels of significance smaller or 
equal to 0.1. 
 

Conclusion 
 
All randomly selected thirty-five tests of 
hypothesis show that the proposed approximate 
Bayesian decision rule performs well: The 
approximate Bayesian approach yields a non-
rejection region that is strictly included in its 
classical counterpart. 

In the present study, a new approximate 
Bayesian decision rule for the variance of a 
normal population has been derived with the use 
of the square error loss function.  Based on the 

above numerical results we can conclude the 
following: 
 
1. The classical decision rule for the variance 

of a normal population does not always 
yield the best results. In fact, contrary to  our 
proposed Bayesian decision rule, the 
classical  approach fails, at times , to reject  
claims that are far from being good 
estimates of the population variance 

 
2. The classical decision rule does not always 

yield a smaller Type II error than the 
approximate Bayesian decision rule. In fact 
the numerical simulation shows that the 
Bayesian approach performs better when it 
comes to rejecting a wrong null hypothesis. 

 
3. Contrary to the classical rejection and non-

rejection regions  that are defined with the 
use the Chi-square table, their  approximate 
Bayesian counterparts rely only on the 
observations 

 
4. The approximate Bayesian decision rule can 

be easily applied to any normal or 
approximately normal data, irrespective of 
the size of the sample that is used for the 
study. 

 
5. With the approximate Bayesian decision 

rule, tests of hypothesis about a normal 
population variance are easily conducted at 
any level of significance.  

 
Bayesian analysis contributes to 

reinforcing well-known statistical theories such 
as the Decision Theory. 
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