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Chapter One

Introduction

1.1 Motivations

In recent decades, access to cheap labor and raw materials, better financing
opportunities, larger product markets, arbitrage opportunities, and additional inducements
offered by host governments to attract foreign capital encouraged companies to extend their
supply chains over the globe (Manuj and Mentzer 2008). However, the success of these longer
supply chains highly relies on the performance of the firms’ logistics (Green, Whitten, and
Inman 2008). While logistics includes a wide range of activities, one of its fundamental
elements is transportation (Bookbinder and Matuk 2009).

The nature of supply chains requires efficient short and long-haul shipping of raw
materials, components, and products between manufacturers, retailers and customers. In
recent years, many companies have adopted new manufacturing and inventory management
strategies (e.g., make-to-order and just-in-time) that aim to reduce costs while improving
responsiveness to market demands. However, these approaches demand for fast, and more
importantly reliable, transportation. However, since transportation infrastructure has not kept

pace with business growth, excess demand over the transportation network capacity has led to



growing congestion and uncertainty in transportation lead-times. According to a 2011 Urban
Mobility Report, the US experienced a steady increase in travel time index' since 1982 from
1.09 to a national average of 1.2 in 2011 (Schrank and Lomax 2011). They also reportthe cost of
congestion to be about $101 billion for delay and fuel waste in 2010 alone. Average line-haul
speed on rail freight is about 22 mph (US DoT 2007). Congestion is also an issue in other modes
of transportation (US DoT 2007, 2009). A survey conducted by Golob and Regan (2000) shows
that 82% of the interviewed companies recognize congestion as a problem (somewhat to
critically serious) for their business and over 27% of them often or very often miss their
schedules due to congestion. The aforementioned problem can be recognized as a major factor
in shift of shippers’ demand toward more expensive modes of transportation that provide
faster and more reliable services (US DoT 2006).

Using more expensive modes of transportation translates to increased shipping service
level expectation that demands for more sophisticated decision making that in turn requires
better system-wide information. The advent of the Intelligent Transportations Systems (ITS)
provides opportunity for improvement in transportation performance and quality. The core of
ITS consists of obtaining, processing, and distributing information for better use of the
transportation system, infrastructure and services (Crainic, Gendreau, and Potvin 2009). This

includes Geographical Positioning System (GPS), Automatic Vehicle Location System (AVL), Fleet

! The Travel Time Index (TTI) is the ratio of peak period travel time to free flow travel time. The TTI
expresses the average amount of extra time it takes to travel in the peak relative to free-flow travel. A TTI
of 1.3, for example, indicates a 20-minute free-flow trip will take 26 minutes during the peak travel time
periods, a 6-minute (30 percent) travel time penalty.



Telematics System (FTS), Wireless Communication, Electronic Data Interchange (EDI), along
with internet and other real-time data sharing systems that inform the decision maker about
the location of the vehicles and freight and provide better understanding of the network status,
especially, under congestion.

The importance of logistics and its complexities are motivating companies to outsource
their logistic operations in different levels to third parties known as “freight forwarders” to
reduce cost and increase efficiency (Razzaque and Sheng 1998). Freight forwards generally act
as an intermediary between shippers and carriers and are responsible for transporting goods in
supply chains. Indeed, freight forwarding industry, as part of the broader supply chain
management industry, is undergoing a profound transition with the rise of multinational freight
forwarders based in Europe, the United States, and Japan that perform integrated logistics
services in addition to simple freight forwarding with a range of value-added services (Bowen
and Leinbach 2004). However, despite the major integrators (e.g. FedEx, UPS, DHL, BAX Global
and alike), majority of the freight forwarders are small- to mid-size companies. Due to high
capital investment, schedules and capacities are usually fixed by carriers far in advance and
therefore freight forwarders decide on freight routing and book the capacity based on their
forecasted demand (Chew et al. 2006).

A freight forwarder generates its profit from the difference between the price that a
customer is obliged to pay for the execution of the requested service and the costs of the
fulfillment of the request. Moreover, the nature of the freight forwarding industry, especially

for small forwarders, is based on personal relations and long-term trust-building that requires



meeting service level expectations and consistence in the quality of service (Agnes 2000).
Accordingly, forwarders are challenged to conduct their business with the minimum possible
cost while satisfying the shippers’ expectation in a competitive market. Achieving this goal
requires a sophisticated decision making process that integrates all the related information to
produce high quality decisions for freight routing to satisfy the demand in a reasonable time
window with minimum cost to generate profit. The goal of this research is to address this need
in freight forwarding industry. We, however, limit the scope of the research to consider only
multimodal air-cargo transportation as the fastest growing mode of transportation in the U.S.
The freight forwarders constitute more than 90% of air-cargo shipments (Hellermann, 2006)
and play a critical role in the air mode of transportation.

Air is arguably the most competitive mode of transportation in providing the fastest and
most reliable transportation service that is required in today’s global supply chains. Over the
past decade, there has been a consistent growth in demand for air-cargo deliveries. According
to the Bureau of Transportation Statistics (BTS), in 2007, the value of air-cargo shipment goods
in the US was over $1.8 trillion, a 31% increase in just five years from a survey in 2002
(Margreta et al., 2009). Futher, despite the financial crises, annual forecast reports by both
Airbus (2010) and Boeing (2010) predict a 5.9% annual growth rate for global air-cargo tonnage
over the next 20 years.

In response to the demand growth, the air transportation network has been steadily
expanding its capacity over the past two decades through establishing new airports, offering

more flights options, and investing in road connectivity. One consequence of these



developments is the expansion of service zones of airports and the overlaping of their market
catchment regions. This has resulted in the creation of Multi-Airport Regions (MARs) where
several airports accessible in a region substitute and supplement each other in meeting the
region's demand for air transportation (Loo, 2008). These MARs provide alternative access
options for passengers as well as air-cargo shippers and forwarders. Accessibility of multiple
airports and expansion of transportation options introduce new opportunities and challenges
for forwarders that in turn reemphasizes the importance of effective operational decision
making for competitiveness.

On the other hand, along with the increasing trend of demand for air transportation, the
time variavility measure of the air mode has steadily declined. For example, in July 2007, 28% of
the flights in the U.S. domestic market arrived late, up from 19% in July 2003 (BTS, 2010). The
impact of these delays is as severe for the time-sensitive air-cargo shipments (common in JIT
logistics) as it is for passengers. In fact, when the International Air Transport Association (IATA)
asked major shippers for their main issues in February 2008, efficiency (reducing costs) and

reliability were identified as the top two issues.’

1.2 Research Objectives

In this dissertation, the objective is to provide an operational decision support system

for air freight-forwarders for time-sensitive cargo transportation. The goal is to enable them to

! Bisignani, G., Plenary speech, IATA World Air Cargo Symposium, 2008.



better and predict the network variability based on historical and real-time information and
respond through effective operational planning and scheduling of cargo transportation. The
performance measures for the forwarders in this research are the operational costs and service
level cost that is measured by the delivery tardiness penalties.

Accordingly, the objectives of this research are,

e Develop a methodology to analyze the historical flight performance, airport
congestion state, and announced real-time information to estimate the air-
network state at a given time in near future and how it is affecting the air-cargo
shipment

e Develop stochastic dynamic as well as deterministic routing models to assist
forwarders in the operational planning of air-cargo transportation on a
stochastic time-dependent air-road network and enable them to plan for the
variability in the stochastic and time-dependent air network.

e Design algorithms for solving the models developed. Specifically, these
algorithms identify optimal (near optimal) solutions for the scheduling and

routing of air-cargo on the stochastic and time dependent air and road networks.

1.3 Research Scope

In this study, we focus on middle-size freight forwarders that handle freight shipping for
different shippers. The freight forwarder is responsible for collecting, sorting, consolidating and
delivering time-sensitive goods from different origins to different destinations. The forwarder in

this research does not provide extra services usually offered by major integrators such as



warehousing or vendor-managed inventory system. The objective of the forwarder is to deliver
the freight before the deadline agreed with shipper while minimizing the operational cost;
deviation from the delivery deadline is penalized.

Customer orders are received in advance (before the beginning of each day) and
forwarder is responsible to collect and transport the air-cargo shipment orders. Orders are
available at customer sites for pickup and they have individual destination delivery airports. The
customer orders are time-sensitive with specific delivery deadline at destination airport. We
assume that, due to the nature of the orders, there are no economies of scale, e.g., no air-cargo
consolidation benefits.

For the long-haul transportation, forwarder relies on contracted air-carriers and is thus
obligated to their schedules and capacity limitations. It is assumed that, if needed, further
capacity is available to forwarder but with a price that is based on the contract between the
forwarder and carrier. In this setting, the air network is stochastic, carriers’ on-time
performance is not guaranteed, and network disruption is possible. In other words, flights may
depart later than the announced schedule or may even get canceled. Moreover, travel time for
any flight arc can be different from the expected time. Accordingly, the forwarder needs to
prepare to deal with the connectivity problem in intermediate ports and consider these factors
in estimating the delivery time and transportation cost. It is assumed that forwarder can
implement a dynamic routing policy by altering the freight path on the air network en route;
however, there are capacity availability restrictions with this option and re-routing might

introduce additional costs. The aforementioned dynamic routing is based on the realization of



the network status (e.g. level of congestion, incidents, and network disruptions). Therefore, in
this research we study the value of the information based on the time of realization and fidelity
of data.

On the road network, it is assumed that the network is deterministic. Consequently, the
connectivity of the network and arc travel times are fixed and known in advance. The freight
forwarder is assumed to operate a fleet of identical vehicles to perform the transportation on
the road. A fixed cost is imposed for each vehicle’s allocation to the pickup and delivery task

and variable cost is based on arc travel by each vehicle, e.g. total traveled miles.

1.4 Novelty and Contribution of the Research

This research contributes to the existing literature of air-cargo transportation and
operations research. A comprehensive literature review and detailed contributions are
presented in each chapter individually. In this section, however, we provide a brief review of
the highlights of the research and its contributions.

In the realm of air-cargo transportation, this research is the first work that introduces
dynamic cargo routing based on real-time information availability. Considering the stochasticity
of air-network, we provide a novel approach to analyze the publicly available historical data to
perform a static routing to reduce the expected operational and service cost. We further
enhance this approach to incorporate the real-time information, while accounting for its
fidelity, to dynamically re route the cargo en route. Through a set of experimental studies and
real world based case studies, we demonstrate the performance of this approach in terms of

reducing total cost including service level costs.



In addition, this is the first study that provides operational algorithm to implement the
concept of alternative access airport policy. This algorithm enables forwarders to increase their
competitiveness and reduce their cost by providing a decision support system to expand their
options in a multiple airport region.

In terms of contribution to the vehicle routing literature, we introduce a new class of
pickup and delivery problem that generalize a many-to-many pickup and delivery problems by
considering time dependence and pickup-delivery pairing dependence of the delivery costs. In
terms of methodological contribution, we introduce the approach of successive subproblem
solving to address the common issues of homogeneous subproblems which result from
(Lagrangian) problem decomposition of many vehicle routing problems with identical vehicles.
This approach is demonstrated to be very competitive in solving large scale problem instances

in reasonable time and with optimality (or near optimality) compared with alternative methods.

1.5 Organization of the Dissertation

In addressing the freight forwarders problem, this dissertation is organized as follows. In
Chapter 2, we study the dynamic routing of air-cargo on the air network. In Chapter 3, we
consider the short-haul transportation of air-cargo by studying its routing on the road network.
The dissertation summary and conclusion are presented in the last chapter.

In Chapter 2, we address the problem of dynamic routing of time-sensitive air-cargo
using real-time information on stochastic air-network. We present a procedure to estimate the
network parameters including flight departure delays and travel times from historical data

based on a origin and destination airport for a given operation day. A static routing policy is
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developed through stochastic dynamic programming to minimize the expected operational and
delivery tardiness costs. Next, we provide an approach to analyze the real-time information
(accounting for their fidelity) to estimate the network parameters and respond by dynamic re
routing of the cargo if necessary to minimize the objectives. The performance of the algorithm
is evaluated through a set of real-world based case studies.

In Chapter 3, the problem of air-cargo pickup and delivery problem with alternative
access airports is studied. We introduce a mixed integer mathematical program for customer
order pickup scheduling, fleet routing and allocations, and assignment of customer orders to
flights available a multiple regional airports. We decompose the problem based on identical
vehicles using Lagrangian decomposition and then develop a successive subproblem solving
approach to solve the problem. The performance of this innovative approach is tested through

a set of experimental problems and a case study based on the Southern California region.
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Chapter Two
Dynamic Routing of Time-Sensitive Air-Cargo

Using Real-Time Information

2.1 Introduction

Over the past decade, the unprecedented growth in the global trade has further
increased the importance of just-in-time (JIT) logistics and contributed to the growth of the air-
cargo industry. According to a recent study for The International Air Cargo Association, the
global air-cargo industry carried 100 billion ton-miles with a direct revenue exceeding $50
billion in 2005 (Kasarda et al., 2006). The biennial World Air Cargo Forecast by Boeing forecasts
that the world air-cargo traffic will grow at a rate of 5.8% per year over the next 20 years
(Boeing, 2008). This growth is accompanied by steady increase in flight delays. For example, in
July 2007, 28% of the flights in the U.S. domestic market arrived late, up from 19% in July 2003
(Bureau of Transportation Statistics, 2010). The impact of these delays is as severe for the time-
sensitive air-cargo shipments (common in JIT logistics) as it is for passengers. In fact, when the
International Air Transport Association (IATA) asked major shippers for their main issues in
February 2008, efficiency (reducing costs) and reliability were identified as the top two issues.!

Facing these challenging trends, freight forwarders and shippers must plan and manage their

! Bisignani, G., Plenary speech, IATA World Air Cargo Symposium, 2008.
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routes more effectively to improve the delivery performance of air-cargo. Internet companies,
such as “Flightstats.com”, “Flightview.com”, “Pathfinder-web.com” and “Flightexplorer.com”,
provide historical and real-time flight on-time performance data to improve in-advance
planning and real-time management of routes. Further, “Pathfinder-web.com” also provides
static routes based on such factors as weather/airport status and on-time statistics. The
dynamic route planning for a time-sensitive air-cargo by leveraging the available historical and
real-time air-network congestion information is the subject of this study.

A freight forwarder (forwarder in short), upon receiving a time-sensitive shipment, has
three options: shipping via (1) an integrator’s (e.g., FedEx, UPS, DHL) express or next-flight-out
service, (2) a mixed belly (e.g., United Airlines, Delta Airlines, American Airlines) or combination
carrier (e.g., Lufthansa Cargo AG, Korean Air), and (3) chartered/dedicated freighter. Clearly,
the forwarder’s decision depends on the reward/penalty structure of the agreement with the
shipper as well as on the attributes of the shipment such as size (weight and volume), value
density, commodity type (e.g., hazmat), origin and destination, contracted capacity with
carriers and so on. In this study we are considering shipments for which chartering dedicated
freighter is not economically feasible. Accordingly, the forwarder in this study considers only
integrators’ express and next-flight-out service (cost effective for shipments less than 70-150

Ibs) and the mixed belly or combination carrier option which provides broader network
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coverage with more frequent flight connectivity and significantly lower costs.” Furthermore, a
shipment route involving multiple carriers, and possibly the integrator, provides the greatest
schedule and route flexibility leading to the shortest delivery lead-time. This study is motivated
by practical applications affecting different industries. Since the beginning of 2000, automotive
OEMs (e.g., GM and Ford) have been shifting their sourcing from domestic facilities to Canada,
Mexico and overseas (Klier and Rubenstein, 2008). This has not only increased the supply chain
transportation lead-times but also increased the supply chain sourcing risks. Supply disruptions
caused by various reasons, such as quality defects and incorrect shipments (quantity, part mix),
can halt the assembly processes in multiple facilities. The disruption of an assembly line is
estimated to cost $60-100K/hour in a medium-sized finished vehicle assembly plant.? In
response, the OEMs often resort to expedited shipment by either chartering a freighter or a
cargo helicopter for time-definite delivery, which can cost $100Ks depending on the origin-
destination and freighter availability. These incidents are routine and OEMs have chartered
aircrafts to ship products such as wheels, power trains and transmissions.

The logistic disruptions also arise when a time insensitive and surface divertible cargo
becomes a time-sensitive cargo requiring air shipment. Freight forwarders regularly draw
shipments from intermodal facilities (e.g. ports, airports, rail terminals) and forward it to the

consignees (with or without break bulk). However, due to the late arrival of the vessel or the

? For instance, the shipping rate for an LD2 container with dimensions (61.5x60.4x64) inches and weight 1,228 Ibs
from Cleveland to Seattle on 22 March 2010 with UPS is $4,9K-$8,5K depending on service type and is $933 for
Delta Cargo (Source: www.ups.com, http://www.delta.com/business programs services/delta cargo/).

® Based on interviews with the managers at Ford MP&L and GM Supply Chain department.
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congestion at the intermodal facility, there occur excessive delays such that the cargo becomes
no longer suitable for surface diversion (e.g. trucking) and needs to be air shipped. For instance,
the Target Logistics, a freight forwarding company in California, US, often experiences delays
due to the congestion at the port of Long Beach, California. A container shipment arriving from
East Asia may require some of its contents to be air shipped next-flight-out if the delay is
excessive. When such an incident occurs, the Target Logistics explores options for the best
outbound flight from the regional airports (Los Angeles, Ontario, Oakland, San Diego) by trading
off the delivery lead-time with the cost. In addition to considering the flight availability, cost,
and size restrictions, the Target Logistics also accounts for the road traffic congestion to the
airport and its other shipments and classes for that day. Another practical application is the air-
cargo shipments during peak seasons (e.g. Christmas Day) where the demand for both the
passenger and the cargo transportation exceeds the supply. C.H. Robinson, a leading third party
logistics (3PL) company, provides air-cargo freight forwarding services to manufacturing
companies, such as 1% and 2" Tier automotive suppliers in Michigan, through the Detroit
Metropolitan Airport (DTW). Whereas the air-cargo demand is stable and the contracted carrier
capacity is sufficient during regular months, C.H. Robinson cannot meet the requested service
levels in high demand seasons. For example, during December months, C.H. Robinson
determines the flight routes, which are less likely to be congested, and books same-day flights
with mixed carriers for its time-sensitive shipments.

The main goal of this study is to investigate the benefits of dynamic (online) routing of a

time-sensitive air-cargo on the air network from an origin airport to a destination airport while
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accounting for the real-time and historical information (e.g., delays, cancellations, capacity
availability) to optimize a given shipment criteria (e.g., cost, delivery lead-time). We study the
problem from a freight forwarder’s perspective for two reasons. First, more than 90% of air-
cargo shipments are handled through freight forwarders (Doganis, 2002). In comparison,
shippers sending freight directly with carriers/integrators account for only a small fraction
(approximately 5-10%) of total airfreight volume (Althen et al.,, 2001). Second, due to the
industry practice of capacity contracts, the freight forwarders have access to cargo capacity
from multiple carriers at favorable terms and rates (Hellermann, 2006). We also note that, in
most instances, a static route may be the best option since it is not only the least cost option
but can also provide short delivery lead-times. However, for highly time-sensitive shipments
and in the absence of routes with short lead-times (or the routes are subject to delays),
dynamic routing can provide short delivery lead-times with affordable costs. The approach
presented in this study allows freight forwarders to effectively make these trade-off decisions.
The proposed approach is a Markov decision process (MDP) model for dynamic routing that
differs from other MDP formulations in the literature. Our contribution is three fold. First, we
propose a novel departure delay estimation model based on the real-time delay announcement
and historical data. Secondly, we provide a dynamic routing model on the air network that
differs from those on traditional road networks such that it considers scheduled departures and
effect of stochastic travel times and departure delays. The dynamic routing model incorporates
the proposed departure delay estimation model. Finally, through experimental studies and real-

world case studies, we show that the proposed dynamic routing model can provide significant
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savings for freight forwarders. These savings depend on the severity of delays, variability of
travel times, availability and accuracy of real-time delay announcements as well as availability
of flight alternatives. Lastly, we note the distinction between this paper’s problem, freight
forwarders’ dynamic routing of air-cargo through available flights to improve the overall
delivery performance of a single shipment, and the broader and more strategic problem of
carriers or integrators planning of their fleet routes and schedules. The later problem concerns
an asset owner’s (carrier, integrator) operations planning to improve operating performance as
well as utilization of aircraft fleet and other assets (Yan et al. 2006, Tang et al. 2008).

The rest of the paper is organized as follows. Survey of relevant literature is given in
Section 2. Modeling the dynamic routing of air-cargo and delay estimation is presented in
Section 3. Section 4 presents the results of an experimental study conducted to investigate the
benefits of dynamic routing and accurate real-time flight status information. Two case study
applications of the proposed approach are discussed in Section 5. Finally, Section 6 offers

concluding remarks and proposes avenues for future research.

2.2 Literature Review

The problem investigated in this study relates to multiple research streams. The
proposed dynamic routing formulation and solution approach is closest to the stochastic time-
dependent shortest path problems (STD-SP) and hence we restrict our review to those studies
with stochastic and time-dependent arc travel costs. In terms of application, this study also
relates to the literature on the estimation of flight departure/arrival delays and

cancellations/diversions which is briefly reviewed in the end.
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The shortest-path problems are referred as STD-SP when arc costs follow a known
probability distribution which is also time-dependent. Hall (1986) studied the STD-SP problems
and showed that the optimal solution has to be an ‘adaptive decision policy’ (ADP) rather than
a static route. In an ADP, the node to visit next depends on both the node and the time of
arrival at that node, and therefore the classical SP algorithms cannot be used. Hall (1986)
employed the dynamic programming (DP) approach to derive the optimal policy. Bertsekas and
Tsitsiklis (1991) proved the existence of optimal policies for STD-SP. Later, Fu and Rilett (1998)
modified the method of Hall (1986) for problems where arc costs are continuous random
variables. They showed the computational intractability of the problem based on the mean-
variance relationship between the travel time of a given path and the dynamic and stochastic
travel times of the individual arcs. They also proposed a heuristic in recognition of this
intractability. Bander and White (2002) modeled a heuristic search algorithm AO* for the
problem and demonstrated significant computational advantages over DP, when there exists
known strong lower bounds on the total expected travel cost between any node and the
destination node. Fu (2001) estimated immediate arc travel times and proposed a label-
correcting algorithm as a treatment to the recursive relations in DP. Waller and Ziliaskopoulos
(2002) suggested polynomial algorithms to find optimal policies for stochastic shortest path
problems with one-step arc and limited temporal dependencies. Gao and Chabini (2006)
designed an ADP algorithm and proposed efficient approximations to time and arc dependent
stochastic networks. An alternative routing solution to the ADP is a single path satisfying an

optimality criterion. For identifying paths with the least expected travel (LET) time, Miller-Hooks
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and Mahmassani (1998) proposed a modified label-correcting algorithm. Miller-Hooks and
Mahmassani (2000) extended this algorithm by proposing algorithms that find the expected
lower bound of LET paths and exact solutions by using hyperpaths.

All of the above studies on STD-SP assume deterministic time dependence of arc costs,
with the exception of Waller and Ziliaskopoulos (2002) and Gao and Chabini (2006). However,
the change in the cost of traversing an arc over-time can be stochastic as in the flight departure
delays. Psaraftis and Tsitsiklis (1993) is the first study to consider stochastic temporal
dependence of arc costs and to suggest using real-time information en route. They considered
an acyclic network where the cost of outgoing arcs of a node is a function of the environment
state of that node and the state changes according to a Markovian process. They assumed that
the arc’s state is learned only when the vehicle arrives at the source node and that the state of
nodes are independent. They proposed a DP procedure to solve the problem. Azaron and
Kianfar (2003) extended Psaraftis and Tsitsiklis (1993) by evolving the states of current node as
well as its forward nodes with independent continuous-time semi-Markov processes for ship
routing problem in a stochastic but time invariant network. Kim et al. (2005a) studied a similar
problem as in Psaraftis and Tsitsiklis (1993) except that the information of all arcs are available
real-time. They proposed a dynamic programming formulation where the state space includes
states of all arcs, time, and the current node. They stated that the state space of the proposed
formulation becomes quite large, making the problem intractable. To address the intractable
state-space issue, Kim et al. (2005b) proposed state space reduction methods. Thomas and

White (2007) study a similar problem as in Kim et al. (2005a) but also consider the amount of
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time that an observed arc has spent in a particular state. All these studies consider routing on
unscheduled transport networks where there is no schedule induced or switching delays at the
nodes as in scheduled networks or multimodal transportation, respectively. There are few
studies on the routing problem on multimodal networks with time-dependent arc weights (e.g.,
cost or travel time). Ziliaskopoulos and Wardell (2000) proposed a time-dependent intermodal
optimum path algorithm for deterministic multimodal transportation networks while
accounting for delays at mode and arc switching points. Opasanon and Miller-Hooks (2001)
proposed the stochastic variation of the approach by Ziliaskopoulos and Wardell (2000) where
the mode transfer delays and arc travel times are stochastic and time varying. However, this
study assumes independence over time for all probability distributions. Our proposed dynamic
routing model differs from earlier models in the STD-SP literature by accounting for the
scheduled departures, the effect of stochastic travel times and departure delays. In addition, it
admits the real-time announced information on the status of flights and makes routing
decisions and updates the delay distributions based on this online information.

The estimation of flight departure/arrival delays and cancellations/diversions has been
the subject of several studies (Mueller and Chatterji 2002, Chatterji and Sridhar 2005, Tu et al.
2008). These studies can be categorized into analytical (e.g. queuing), statistical (e.g. regression
models) and simulation approaches that vary by computational efficiency and level of detail.
For example, the delay and cancellation component in the Federal Aviation Administration
(FAA) NAS Strategy Simulator takes a macroscopic approach and obtains approximations of

delay based on the aggregate values of input parameters, namely traffic demand and airport
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capacity. The majority of delay estimation approaches proposed in the literature predict
cancellations and delays at the system level rather than for each individual flight. The only two
studies considering the traveler’s perspective (e.g. passenger) are Wang and Sherry (2007) and
Tien et al. (2008). Whereas Wang and Sherry (2007) estimate delays at a flight level, Tien et al.
(2008) propose a model that estimates overall averages across multiple flights. Tien et al.
(2008) consider passenger trip scenarios by explicitly accounting for probability of flight
cancellation, distribution of flight delay (if not cancelled), and probability of missing a
connecting flight. In Section 3.1, we adopt the traveler’s perspective approach taken in Wang
and Sherry (2007) and Tien et al. (2008) and propose a delay estimation model accounting for
flight disruption and recovery scenarios and using historical data to estimate the probabilities.
Our model differs from the two studies in that it incorporates real-time information updating

while accounting for the fidelity of real-time delay announcement.

2.3 Dynamic Air-Cargo Routing

Let G = (N, A) be the directed graph of an air network with a finite set of nodes n € N
representing airports and a set of arcs [ € A representing connecting flights between the
airports. Since there can be multiple flights between any airport pairs, we designate each flight
with a distinct arc. In particular, let A; € A denote the set of flights between airports n’ to n”
where [ = (n',n'"), then i € A; denotes a unique flight from n' to n”’. In the remainder of this
work, we refer to these flights as arcs. A dynamic routing problem on this air network is

concerned with departing from the origin node (n,) and arriving to the destination node
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(ng4) via a series of airport/flight selection decisions. The goal is to find an optimal routing

policy that minimizes a total cost criterion.
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Figure 2.1. Time sequence of the air-cargo arriving to airport n at time t, departing at 8; + §; and arriving
to the airport n” at time t'=0; + §; + t;.

The flight arcs have three parameters affecting the flight selection decisions which are
illustrated through the time sequence depiction in Figure 2.1. First parameter is the stochastic
travel time of arc i (t;) which is measured as the duration from the gate closure at the origin
airport until the unloading of the air-cargo at the destination airport. This duration includes
taxi-out at the origin airport, air time (e.g., flight duration), taxi-in at the destination, and
unloading time. The second parameter is the scheduled departure time of flight (6;). Node
arrival prior to 6; results in waiting until departure. Whereas the scheduled departure times are
exactly known, the arrival time to the airport node is unknown making the waiting time at the
node a stochastic variable. For the purpose of notational clarity and without loss of generality,
we assume any cargo processing times (e.g. security checks, processing prior to being loaded
onto the aircraft) are already accounted for in the scheduled departure time ;. Alternatively,

0; can be considered as the scheduled cut-off time for flight i for air-cargo acceptance. The final



22

parameter, absent from most network routing models, is the stochastic departure delay (5;)
corresponding to an uncontrollable waiting time at the origin node of an arc (flight i) before
traveling through it. Therefore, the total waiting time for an air-cargo of flight i arriving to the
airport at time t is jointly determined by the waiting due to scheduled departure time
max{t — 6;,0} and the departure delay §;. Accordingly, if the flight has not departed past the
scheduled departure time, the actual departure time depends on §;, which is stochastic. Once
the flight has departed, the arc becomes unavailable. This temporal change in arc availability is
another attribute that distinguishes this problem setting from the other STD-SP problems.

The departure delay (6;) is attributable to a multitude of factors that can be classified as
the congestion at the origin and destination airports, weather, equipment (mechanical failures,
late pushback tug, etc.), personnel (unavailable flight crew or gate agents, etc.), ground
operations, passenger/cargo processing/loading delays, unscheduled maintenance and so forth
(Mueller and Chatterji, 2002). The departure delay can be negative, zero or positive. The cases
6;=0 and §; >0 indicate on-time and late departures, respectively. We adapt
“DepDelayMinutes” definition of the Bureau of Transportation Statistics (BTS) where the
departure delay is defined as the difference between scheduled and actual departure time and
early departures are set to 0 and regarded as on-time departures. Accordingly, we consider
only the non-negative departure delays in our routing model for three reasons. First, the early
departures durations are very small compared to late departure delays and thus the effect on
the routing policy decisions is minimal. For instance in 2010, the average early departure delays

for all flights outbound from Detroit, Atlanta, Memphis, New York (LaGuardia), Minneapolis,
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Charlotte and Dallas airports were -3.8, -3.8, -4.0, -5.4, -4.0, -4.4, and -3.7 minutes which are
negligible compared to the average late departure delays of 31.9, 32.4, 33.2, 48.5, 26.2, 29.8,
and 32.7 minutes, respectively (BTS, 2010). Secondly, early departures are only possible once all
the cargo is loaded (or passengers have boarded). This can only happen if the capacity is full or
if the routed cargo is already loaded on the plane. In the former case, the flight is unavailable
due to insufficient capacity and need not be considered in routing. In the latter case, we already
selected this flight and considering its negative departure possibility would only further support
the inclusion of the flight in the routing policy. Lastly, only the late departure delay information
is announced in real-time (i.e. early departures are not announced).

Most carriers accept cargo reservations in advance, e.g., in hours, which is sufficient for
a forwarder to book a flight while en route or at the preceding airports. These booking cut-off
times (a.k.a. closeout or lockout times) are typically 30-60 minutes for shipments under 100 |bs
and 1-2 hours for larger shipments depending on the carrier and airport. The cut-off times for
transfers can range between 30 minutes to several hours, depending on the connection type
(domestic or international), carrier and airport operations, and on whether the cargo is loose or
containerized in Unit Load Devices (ULDs). During transshipment of air-cargo from one aircraft
to another, the forwarders are subject to the line-up area check-in time (Nsakanda et al., 2004).
This line-up area is the final sequencing stage of shipments in ULDs or pallets before the loading
onto an aircraft. The latest check-in time depends on the carrier, aircraft size and airport
operations. Nsakanda et al. (2004) report on terminal cut-off time of 45 minutes as the latest

time to send an ULD or a cart to the staging area. In our model, we consider the carrier cut-off
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times for the initial loading at the origin airport and the line-up area cut-off times for transfers
at the intermediate airports. We assume that the forwarder can freely revise, at some
cost/penalty if necessary, its booking decisions prior to arriving at a node subject to the cut-off
times.* However, upon arriving at a node, the final flight selection decision is made and then
the air-cargo is loaded on the aircraft. We assume that there is no recourse decision at that
node once the air-cargo is loaded meaning the flight decision is permanent. This is a reasonable
assumption since the freight forwarders often do not have the flexibility to get their cargo
loaded and unloaded at a short notice due to physical constraints.

Any flight at a given time can be in one of the two states: available or unavailable for
loading the air-cargo. The unavailable flights are those that are departed, diverted, cancelled
(due to insufficient load levels, bad weather conditions, operational failures, etc.) or no-longer
accepting cargo (e.g., past cut-off time or insufficient capacity). Sometimes, the flight delays can
be lengthy and we consider delays larger than a threshold level (§) as excessive delays.”> The
availability of a flight is random and cannot be fully guaranteed while the cargo is en route, so
we rely on probability estimates from the historical data on flight cancellations and diversions

that are publicly available from the BTS and the FAA’s Operations Network (OPSNET). It is also

* The U.S. Bureau of Customs and Border Protection (CBP) and Canada Border Services Agency (CBSA) require
freight forwarders to transmit air-cargo and conveyance data several hours in advance for both inbound and
outbound shipments. However, for short-haul distances, this requirement is prior to time of departure (“wheels
up”) of aircraft for first U.S. or Canadian airport of arrival and is thus not limiting the changes in flight
routes.(Source:http://www.cbp.gov/xp/cgov/trade/automated/automated systems/ams/camir_air/, http://www.cbsa-

asfc.gc.ca/prog/aci-ipec/menu-eng.html )
* Delays longer than a threshold typically lead to cancellation or other recovery methods, rather than delays
subsequent flights (AhmadBeygi et al., 2008)
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possible that not all flights outgoing from an airport will have cargo space available. The
availability of cargo space is further affected by the seasonality and trends in air-cargo supply
and demand volumes. In the absence of real-time information on the availability of cargo space
for short-term booking, we account for unavailability through historically estimated
probabilities. In Section 3.2, we incorporate the flight unavailability due to cancellation,
diversion and lack of cargo space. Section 3.1 presents a delay prediction model which
considers real-time announced delay information and its fidelity. Given that this real-time
information is broadcast by the carriers, airports and FAA, they reflect the best information

available from the delay and cancellation estimation processes used in practice.
2.3.1 Modeling Departure Delay

In this section, we first describe the distribution of the departure delay given the real-
time announced delay information. Then, we present the delay modeling approach used in the
dynamic air-cargo routing model.

Let's denote the density and cumulative distribution functions of the departure delay for
a flight i with ¥(8;) and W(J;), respectively. Let a; denote the “on-time” departure probability
of flight i, i.e. ¥(§; = 0) = a; and §; follows any continuous distribution for delayed flights
6; > 0. This distinction between delayed and on-time flights allows for empirical estimation of
the delay distributions by fitting common continuous distributions such as Exponential and
Weibull. For routing purposes, we assume that the flight departure delay is bounded with a
finite delay (¢) such that after & the flight is considered as unavailable. Provided that ¢ is chosen

sufficiently large, any flight that is delayed longer than ¢ but eventually departed is not only of
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little value for dynamic routing but is also considered an outlier (Tu et al, 2008). Further, as per
the definition of the BTS, early departures are regarded as on-time departures and §; is set to 0.
Accordingly, we have ¥(§;) =1 —a; for0 < §; < ¢ and y¥(6;) = 0for §; < 0,6; = &

At any given time t, the decision maker has access to real-time information on the
departure delay &;(t) for i =1,2...,|A| as forecasted by the carriers and airports. This
information is referred as the announced departure delay and is assumed imperfect. To simplify
the notation, we will suppress the time from the announced delay and use Sl- instead. Given the
announced delay §;, the distribution P(6i|8i) represents the degree of accuracy in the
departure delay announcement, e.g. P((Si = Sd&-) = 1 corresponds to the case of perfect
information. However, once the real-time announcement (Si) on the departure delay (§;) is
revealed, we assume that the information is tail conditionally accurate such that the flight will
not depart earlier than the announced departure delay, i.e. P(5;) = 0 for §; < Si . Note that if
there is no announcement, then either the flight departs on time or will be delayed without an
announcement. In the latter case, the announced delay is considered as a zero delay
announcement, e.g. Si = (0. We assume announced delays can be updated but are non-
decreasing with time, i.e. §;(t;) < §;(t,) fort; < t, .

Given the historical data on announced and actualized delays, one can estimate the
conditional probability of the actualized delay given the announced delay. The estimation of
P(6i|8i) requires the availability of sufficient historical data on the actualized departure delays
and the associated announced delays. For any given flight, these historical data sets are usually

sparse considering the effect of other determining factors such as seasonality (e.g., time of the
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day, day of the week, month) and non-recurring events (e.g., weather conditions, special days).
Accordingly, we instead approximate this distribution by considering the intervals for the
announced delay, Sl- € (v, vt forr =1,..,m, wher