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Chapter I Introduction  

1.1 Background 

With the advance of modern technology, many types of modern machineries, such as air 

conditioners, vehicles, aircrafts, computers, etc., are created to help people living better. 

However, the automated machineries inevitably create vibrations in their working process. The 

vibration can further cause annoying noise, and even structural fatigue or failure. Thus, 

understanding the vibration characteristics of a structure is of vital importance to improve the 

quality of the product. 

A dynamic structure shows distinctively different characters at different frequency range. 

At low frequency range, all the structural components are strongly coupled and the response is 

typically dominated by a small number of lower-order modes. The Finite Element Method (FEM) 

has become a powerful tool in modeling the low frequency vibration [Reddy, 2006]. A structure 

may have complex geometry, varying material properties, and subject to complex boundary or 

loading conditions. In FEM, a structure is first discretized into a large number of small elements, 

and the governing equation is approximated on each element with some interpolation functions; 

all the element equations are assembled under the continuity condition among the boundaries; 

the system equation is then solved with the actual boundary condition of the whole system. 

Although several commercialized FEM software have successfully served the vibration analysis 

in the industry, the analyzed frequency is limited to a few hundred Hertz even with millions of 

elements on the most advanced computer server. It is widely believed that this low frequency 

limit is primarily due to the insufficient computing power. However, there are other intrinsic 

reasons that prevent its use in the high frequency range [Langley, 2004]. The FEM is introduced 
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to account for the complex geometric forms, material properties, surface loads, and complex 

boundary conditions. At high frequency, when these requirements are already met, refining the 

element size to catch the tiny wave lengt  inevitably spread t e numerical “round-off” error. 

Although increasing the order of the interpolation functions provides a way to improve the 

results, current FEM is only restricted to low frequency analysis [Li, 2007]. 

At high frequencies, the response spectra tend to become smooth without strong modal 

showings, and deterministic method is not practical any more. Since the structural components 

are weakly coupled, the internal energy level is a more viable parameter. Over the past half 

century, Statistical Energy Analysis (SEA) has emerged as a dominant method [Lyon, 1962, 

1995] in analyzing high frequency vibration, in which a system is divided into a set of 

subsystems according to their geometric forms, dynamic material properties, as well as their 

contained mode (wave) types. The basic principle is that a subsystem should contain a group of 

“similar” energy storage modes (waves), w ic  receives, dissipate, and transmit energy in a 

simple “ eat conduction” form. T e energy flow between t e neig boring systems is assumed 

proportional to the difference of their modal energy level by a constant Coupling Loss Factor 

(CLF). The final system equation is governed by the power balance and energy conservation 

principle. The calculation is normally fast since very few unknown variables are used in the SEA 

analysis. The calculation error is also controlled by the powerful energy conservation principle. 

The calculated internal energy level could also be directly related to some energy parameters, 

such as Sound Pressure Level. However, the SEA method is still limited to high frequency 

analysis for the following reasons [Fahy, 1994; Burroughs, 1997; Hopkins, 2003; Park, 2004]: 
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 (1) All the modes in the analyzed frequency band are assumed to have equal modal 

energy, thus a high modal overlap factor is required; otherwise the coupling loss factor is 

strongly dictated by modal behavior. 

 (2) The CLF is assumed to be a constant and only correlate to the physically connected 

neighbor subsystems. Then SEA method only applies for weakly coupled system. Under strong 

coupling condition, the indirect coupling loss factors may not be zero [Hopkins, 2002].  

(3) The internal damping in the subsystem cannot be too high such that the averaged 

internal energy level becomes a non-suitable variable.  

(4) SEA does not work well for periodic systems, in w ic  a “wave filtering” effect 

happens.  

Furthermore, the only variable in SEA is the averaged energy level, thus no detailed 

information, such as displacement, stress, strain, is available. The basic assumption in the SEA 

made it an easy and quick method in analyzing the high frequency vibration; but the same 

assumptions also made it only suit for high frequency range. When the modal overlap factor is 

small and modal coupling is strong, SEA method cannot be directly used since the CLF becomes 

both frequency and space dependent. 

Between the low frequency and high frequency range, there is a well-known unsolved 

medium frequency gap. In the medium frequency range, a dynamic structure exhibits mixed 

coherent global and incoherent local motions (Langley & Bremner, 1999; Shorter & Langley, 

2005). The response spectra are typically highly irregular and very sensitive to the geometric 

details, material properties, and boundary conditions. A small perturbation change in the 

structural detail can cause large change in frequency and phase responses. Because the dominant 
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excitation frequency bands usually fall in the medium frequency range for many vibration and 

noise problems, the medium frequency analysis have both analytical and practical importance. 

The fact is that the medium frequency range is not clearly defined since the response spectra 

pattern are more correlated to modal order than frequency range. In some sense, it is accepted 

that the mid-frequency range is where the conventional deterministic methods such as FEM are 

not appropriate, yet the SEA assumptions are not applicable. In this critical frequency range, no 

mature prediction technique is available at the moment, although a vast amount of research 

efforts can be found in the literature searching for a solution of this unsolved problem (Desmet, 

2002; Pierre, 2003). 

The first approach in these efforts is to push the upper frequency limit of FEA method so 

that the mid-frequency problem can be partially or fully covered (Zienkiewicz, 2000; Fries and 

Belytschko, 2010). The first method in this approach is to improve the computation efficiency of 

the current FEA method. The most efficient solver in the actual industry computation of large 

scale problem is the Lanczos method, which is normally used in standard normal mode analysis 

since its fast and accurate performance. The computation efficiency can also be greatly improved 

by using sub-structuring method such as Component Mode Synthesis (CMS). Review papers on 

Sub-structuring methods are reported (Craig, 1977; Klerk, 2008). The Automated Multi-level 

Synthesis (AMLS) method developed by Bennighof (2004) is widely used in current FEA 

computation acceleration. AMLS automatically divide the stiffness and mass matrices into tree-

like structure, and the lowest level component is solved by using Craig-Bampton CMS method 

with fixed boundary condition. The other method in pushing the upper frequency limit of FEA is 

to improve its convergence rate. Such techniques include adaptive meshing (h-method), multi-

scale technique, and using high order element (p-method). While many methods are developed 



5 

 

for solving the mid-frequency problem, these methods are either directly target to or closely 

related with the p-method. Discontinuous enrich method (DEM) developed by Farhat (2003) 

enrich the standard polynomial field within each finite element by a non-conforming field that 

contains free-space solutions of the homogeneous partial differential equation to be solved. 

Similar idea that enriches the finite element by using harmonic functions can be found in crack 

analysis (Housavi, 2011). T e Partition of Unity met od, w ic  is developed by Babuška (1997), 

is also used in solving mid frequency vibration problem (Bel, 2005). Desmet (1998) developed a 

method called wave based method (WBM), which uses the exact solution of homogeneous 

Helmholtz equation as the approximation solution. Since the governing equation is satisfied by 

each of the approximation function, the final system equation is solved by only enforcing 

boundary and continuity conditions using a weighted residual formulation. Ladeveze (1999) 

developed a method called variational theory of complex rays (VTCR), in which the solution is 

decomposed as a combination of interior rays, edge rays, and corner rays that satisfy the 

governing equation. So the final equation is also solved by enforcing the boundary and interface 

continuity condition by using a variational formulation. VTCR and WBM methods are closely 

related, and both belong to the Trefftz method. 

The second approach in solving the mid frequency problem is to push the lower limit of the 

SEA method by relaxing some of its stringent requirements, for example, the coupling between 

systems can be strong, there can be only a few modes in some subsystems, there is only 

moderate uncertainty in subsystems, or the excitation can be correlated or localized (SEA assume 

rain-on-the-roof excitation), etc. Several methods have been developed to extend SEA method to 

medium frequency range based on the belief that the SEA method is still valid if the CLFs can be 

somehow determined more accurately. The first method is to obtain the exact displacement and 
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force solution using modal superposition method, called Dynamic Stiffness Method [Park, 2004]. 

T e second met od is to obtain t e exact displacement and force solution using Green’s function, 

called Receptance Method [Shankar, 1995]. The third method is to calculate the CLF using wave 

scattering theory at the subsystem junctions, called Mobility Power Flow Method [Troshin & 

Sanderson, 1998] or Spectral Element Method [Igawa, et al., 2004]. In all these methods, the 

solution of the boundary value problem for each subsystem (element) must make the value at its 

boundaries compatible with its neighboring subsystem (element). The extent and efficiency of 

how this task is solved is a vital criterion in deciding the usefulness and success of the method.  

The third approach in conquering the mid frequency problem is a hybrid method which 

combines both the FEA and SEA concepts. The Energy Finite Element Analysis (EFEA) method 

is a direct combination of the element idea of FEA and energy concept of SEA (Yan, et al., 2000; 

Zhao & Vlahopoulos, 2004). Since the field energy variable used the same rule as heat transfer 

law, available thermal FEA software can be directly adopted in EFEA analysis. But the natural 

differences between thermal problem and vibration problem make this method less attractive in 

real applications. In fact, complex structure may have some components exhibiting high-

frequency behavior while others showing low-frequency behavior. A hybrid deterministic-

statistical method known as Fuzzy Structure Theory (Soize, 1993; Shorter and Langley, 2005) 

was developed, in which a system is divided into a master FEA structure and slave fuzzy 

structures described by SEA method. The coupling between the FEA and SEA components are 

described by a diffuse field reciprocity relation (Langley and Bremner, 1999; Langley and 

Cordioli, 2009). Applications of hybrid FEA plus SEA concept in industry can also be found 

(Cotoni, etc., 2007; Chen, etc., 2011). Another similar method combing the FEA method and 

analytical impedance is also developed (Mace 2002). 
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Although plenty of new methods are proposed for mid-frequency analysis, no mature 

method is available to solve the mid-frequency challenge in the industry vibration analysis. It is 

believed that analytical approaches hold the key to an effective modeling of complex structure in 

the middle frequency range. Fourier Spectral Element Method (FSEM), which is more close to 

the first approach in solving the mid frequency problem, will be introduced in this dissertation. 

FSEM model of a system has smaller model size and higher convergence rate than FEM model, 

which make it possible to tackle higher frequency problem before encountering the computation 

capacity limitation. FSEM method is closely related to DEM, VTCR, and WBM methods. The 

difference is that FSEM method satisfies both the governing equation and the boundary 

condition in an exact sense. 

1.2 General description of current research approach 

Since the analytical solution is not readily available for the vibration of general beams or 

plates, a variety of series are used to approximate the displacement function. Fourier series based 

trigonometric functions are one of the best choices because of their orthogonality and 

completeness, as well as their excellent stability in numerical calculations. Furthermore, 

vibrations are naturally expressible as waves, which are normally described by trigonometric 

functions. However, the Fourier series is only complete in a weak sense. Its convergence speed 

for a non-periodic function is slow within the interval and typically fails to converge at the 

boundaries, thus limiting the applications of Fourier method to only a few ideal boundary 

conditions. Then, it is of vital importance to improve the convergence speed of the Fourier series 

for its practical application in the vibration analysis. The fact is that displacement functions are 

approximated by simple polynomials in Finite Element Analysis, which is recognized as one of 

the most useful techniques in modern engineering applications. The applications of FEM method 
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in vibration analysis is limited to low frequency range because high order polynomials are not 

stable and have round-off errors in numerical calculation. Recognizing the fact that the 

convergence rate for the Fourier series expansion of a periodic function is directly related to its 

smoothness, this dissertation makes a concerted effort to accelerate the convergence of the 

Fourier series. The research approach is based on a modified Fourier series method proposed by 

Li (2000, 2002). The method will be briefly explained here for the completeness of the 

dissertation. 

Theorem 1 Let  ( ) be a continuous function of period 2L and differentiable to the     

order, where     derivatives are continuous and the     derivative is absolutely integrable. 

Then the Fourier series of all m derivatives can be obtained by term-by-term differentiation of 

the Fourier series of  ( ) , where all the series, except possibly the last, converge to the 

corresponding derivative. Moreover, the Fourier coefficients of the function  ( ) satisfies the 

relations           
            

   . 

Based on the theorem, Li [2000] introduced an auxiliary polynomial function in the 

displacement function approximation, 

 ( )   ̅( )   ( )  (1.1) 

where  ( ) is chosen to account for all the relevant function and derivative discontinuities with 

the original beam displacement function, and  ̅( ) is a continuous “residual” function wit  at 

least three continuous derivatives 

Mathematically, the displacement function  ( ) defined over [0, L] can be viewed as a 

part of an even function defined over [-L, L], and the Fourier expansion of this even function 
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then only contains the cosine terms. The Fourier cosine series is able to correctly converge to 

 ( ) at any point over [0, L]. However, its derivative   ( ) is an odd function over [-L, L] 

leading to a jump at the end locations. Thus, its Fourier series expansion will accordingly have a 

convergence problem due to the discontinuity at the end points. This difficulty can be removed 

by requiring the auxiliary function  ( ) satisfying following conditions  

  ( )    ( ),   ( )    ( ),  (1.2) 

Apparently, the cosine series representation of  ̅( ) is able to converge correctly to the function 

itself and its first derivative at every point in the definition domain. Analogously, discontinuities 

potentially associated with the third-order derivative can be removed by adding two more 

requirements on the auxiliary function  ( ) 

    ( )      ( ),     ( )      ( ),  (1.4, 1.5) 

Then the function  ( )  has at least three continuous derivatives over the entire definition 

domain and its fourth derivatives exist, which is the requirement of an admissible beam 

displacement function. 

The superiority of current method is obvious when we compare it with the Differential 

Quadrature (DQ) method, which is one of the most popular numerical methods for finding a 

discrete form of solution. In DQ method, the derivative of a function at a given point is 

expressed as a weighted linear combination of the function values at all the discrete grid points 

properly distributed over the entire solution domain. Figure 1.1 shows the fifth mode shape 

function and its first two derivatives of a clamped beam along with the approximated results 

from both the DQ interpolation scheme and current method. Only the results on the right half of 

the beam are shown because of the symmetry of the mode. Although the DQ result approximated 
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the beam function itself relatively well, larger discrepancies are observed for the first and 

especially the second derivative. It is observed that current method converges to the original 

solution in a much faster speed. The superiority of current method is more visible for high order 

derivatives. 

 

Figure 1.1 A comparison of the DQ interpolation scheme and current FSEM method: Original 

beam function (black), the first derivative (red), the second derivative (blue); DQ with traditional 

Legendre interpolation function (triangle); Current method (circle) 

Two dimensional vibration functions cannot be directly approximated by the product of 

two one dimensional functions for the non-separate nature of the two dimensional vibration 

problems. The displacement function defined over [0, a; 0, b] can be viewed as a part of an even 

function defined over [-a, a; -b, b], it is also approximated by 

 (   )   ̅(   )   (   )  (1.6) 

the residual function  ̅( )  is expressed as a double Fourier cosine series. The auxiliary 

polynomial function  ( ) is such designed that  
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  (   )    (   ),   (   )    (   ),     (   )      (   ),     (   )      (   ) (1.7-10) 

  (   )    (   ),   (   )    (   ),     (   )      (   ),     (   )      (   ). (1.11-14) 

then the function  (   ) in Eq. (1.6) satisfy the required conditions in Theorem 1 on both x and 

y dimensions, the discontinuity on each edge of the plate is subtracted by one term in  (   ), 

and the residual function  ̅(   ) is periodic continuous to the third derivative, i.e.  ̅(   )  

  (   ).  

The form of complementary functions  (   ) has not been explicitly specified. Actually, 

any function sufficiently smooth such as polynomials and trigonometric functions can be used. 

Thus, this idea essentially opens an avenue for systematically defining a complete set of 

admissible or displacement functions that can be used in the Rayleigh-Ritz methods and 

universally applied to different boundary conditions for various structural components. The 

excellent accuracy and convergence of the Fourier series solutions have been repeatedly 

demonstrated for beams (Li, 2000, 2002; Li & Xu, 2009; and Xu & Li, 2008) and plates (Li, 

2004; Li & Daniels, 2002; Du et al., 2007; Li et al., 2009; and Zhang & Li, 2009) under various 

boundary conditions.  

In the Fourier Spectrum Element Method (FSEM) presented in this dissertation, a system 

is divided into substructures based on its geometric and material characteristics. The governing 

equation in a typical subsystem is approximated by the improved series, and then the system 

equation is assembled in an FEM-like process. The vibration of a general 3-D structure 

composed of triangular plates, rectangular plates, and beams can be solved with high fidelity. 

FSEM method provides a promising avenue to extend high frequency limit of analytical method.  
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1.3 Objective and outline 

 Fourier Spectral Element Method was introduced about a decade ago on the vibration of 

simple beams with general boundary condition (Li, 2000), and was extended to the vibration of 

rectangular plates with elastic supports (Li, 2004). The formulation on the vibration of 

rectangular plates was revised later to enforce computation efficiency (Li, et al., 2009; Zhang & 

Li, 2009). Similar approach was also adopted on the vibration of beams (Xu, et al., 2010). The 

objective of this dissertation is to extend the FSEM method on a general 3-D structure composed 

of arbitrary number of triangular plates, rectangular plates, and beams. Since the matrix size of 

the FSEM method is substantially smaller than the FEA method, FSEM method has the potential 

to reduce the calculation time, and tackle the unsolved Mid-frequency problem. 

Chapter II reviews several promising methods available in the literature on the vibration 

of beams with general boundary condition. The strength of each method is also briefly discussed. 

Then the revised FSEM formulation is introduced on a beam with general boundary condition. A 

simple example showing its excellent convergence property is also provided. 

Chapter III introduces the revised FSEM formulation on a rectangular plate with elastic 

boundary supports. An exact series solution is first given by using the Weighted Residual 

Method. Then the variational form of FSEM on rectangular plates with varying elastic boundary 

supports is obtained by using Rayleigh-Ritz method. Fast convergence of FSEM results is 

illustrated by comparing them to the convergence of the FEA results as well as those results 

available in the literature.  

Chapter IV introduces a new formulation that extend FSEM concept on the vibration of 

general triangular plates with elastic supports. FSEM results match well with all the available 
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results in the literature on triangular plates with classical boundary supports, especially 

interesting are those results on plates with free boundary condition and plates with anisotropic 

material properties. 

Chapter V summarizes all the formulation on triangular plates, rectangular plates, and 

beams, and introduces the coupling among the three types of elements in a general 3-D space. 

All formulations are further transformed into a standard unit local coordinates, which enable the 

storage of one set of matrices for all structures. Finally, the FSEM is benchmarked on four 

general structure examples with both Lab and FEA results. 

Chapter VI conclude this dissertation, and provides some suggested topics to further 

studies of the FSEM method. 
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Chapter II Vibration of beams with elastic boundary supports 

2.1 Beam vibration description 

 

 

Figure 2.1 A beam elastically restrained at both ends 

Consider a uniform Euler-Bernoulli beam as depicted in Figure 2.1. The beam is 

supported at the two boundary ends with deflectional and rotational elastic springs. The damping, 

shear deformation, and rotary inertia in the beam are all neglected for simplicity of explanation. 

The governing differential equation for the vibration of the beam is given as 

       (   )     ̈(   )   (   ) (2.1) 

where  ,  ,   A are Elastic modulus, moment of inertia, mass density and cross section area, 

respectively.  (   ) is the deflection of the beam.  (   )is the distributed load on the beam 

surface. A prime denotes differentiation with respect to position x , and an over dot denotes 

differentiation with respect to time t. 

Assume that the beam is under periodic excitation, i.e. the surface load function  (   )  

 ( )    . The solution of Eq. (2.1) is assumed in the form  (   )   ( )    , Then the 

governing differential Eq. (2.1) is simplified as, 

       ( )       ( )   ( )
 

(2.2) 

The boundary conditions of the beam can be expressed as, 
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   (   )         (   ),    
 (   )       (   ) (2.3, 2.4) 

   (   )        (   ),    
 (   )        (   )

 
(2.5, 2.6) 

where             are the translational and rotational constants of the springs. Under the same 

condition that the beam is under harmonic excitation, the boundary condition could be further 

simplified as,  

   ( )         ( ),     ( )       ( ) (2.7, 2.8) 

   ( )        ( ),     ( )        ( )
 

(2.9, 2.10) 

Eq. (2.2) and Eq. (2.7-2.10) constitute a forth order linear differential equation with 

general boundary conditions. This boundary value problem is the starting point of the following 

discussion. How efficiently this one dimensional problem is solved largely determine the 

met od’s applicability in solving  ig  frequency and  ig  dimensional vibration analysis.  

2.2 Literature review on the transverse vibration of beams 

Many techniques have been developed for the vibration of beams with several 

constitutional equations, various loading and boundary conditions. It is not the purpose to review 

all the available methods for beam vibrations. Only some prominent methods designed to solve 

the boundary value problem presented in Section 2.1 will be reviewed. 

2.2.1 Modal Superposition Method 

In Modal Superposition Method, the response of a beam under external excitation is 

assumed as a combination of its natural modes,  

 ( )  ∑      ( )  (2.11) 



16 

 

where   ( ) is the k
th

 natural mode of the beam, and    is the unknown coefficients to be 

determined by the orthogonality condition of the eigen functions [Rao & Mirza, 1989; Rosa, 

1998; Lestari & Hanagud, 2001].  

The general expression for    is 

  ( )       (  )       (  )        (  )         (  ) (2.12) 

where   (         )are the coefficients to be determined by the boundary conditions. 

Substituting Eq. (2.12) in Eq. (2.7-2.10), and writing the result expression in matrix form 

    . (2.13) 

where   [           ], and   is a     matrix. 

For Eq. (2.13) to have a nontrivial solution, the coefficient matrix must be singular, i.e. 

| |    (2.14) 

The only variable in Eq. (2.14) is the frequency  . All the  s that satisfy Eq. (2.14) are the 

natural frequencies of the beam. With a solved frequency   the corresponding modal 

coefficients could be further determined by solving Eq. (2.14) with a free parameter among 

               . 

This method can be easily extended to multiple beam vibration analysis [Gurgoze & Erol, 

2001; Low, 2003; Naguleswaran, 2003; Maurizi, 2004; Lin, 2008, 2009]. Adding one extra beam 

to the existing system means adding one extra unknown function, 

  ( )       (  )       (  )        (  )         (  )  (2.15) 
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Eq. (2.15) has four extra unknown coefficients to be solved. The continuity of the displacement, 

slope, bending moment, shear forces between the existing system and the added beam compose 

four extra constraint equations. So adding one extra beam only extends the   matrix in Eq. (2.14) 

by four rows and four columns. The eigen values and eigen functions are solved by the same 

method as done on the existing system [Lin, 2008, 2009].  

The Modal Superposition method is exact in all the frequency range. So it is one of the 

competitive candidates for high frequency vibration analysis. The disadvantage is that the 

frequencies have to be determined one by one through numerical searching method. Furthermore, 

it only suit for simple boundary condition in two dimensional problems. For complex boundary 

conditions, t e “exact” eigen function doesn’t exist.   

2.2.2 Receptance Method 

Using t e Green’s function met od [Goel, 1976; Abu-Hilal, 2003], the solution of Eq. 

(2.2) could also be given as, 

 ( )  ∫  ( ) (   )  
 

  
(2.16) 

w ere t e Green’s function  (   ) is the solution of following equation,  

        (   )
 

(2.17) 

Eq. (2.17) could be solved by taking the Laplace transform, 

 ̂( )  
 

     [ 
       ( )      ( )      ( )      ( )] (2.18) 

and the inverse Laplace transform of Eq. (2.18) is found to be  
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 (   )  
  (   ) (   )

    ( )  ( )  
  ( )

 
  ( )  

   ( )

    ( )  
    ( )

    ( )  (2.19) 

where  (   ) is unit step function, and 

  ( )  
 

 
(    (  )     (  )) ,   ( )  

 

 
(    (  )     (  )) ,  (2.20, 2.21) 

  ( )  
 

 
(    (  )     (  )) ,   ( )  

 

 
(    (  )     (  ))  (2.22, 2.23) 

  ( ),    ( ),    ( ),     ( ) are solved by replacing     in Eq. (2.19) and its derivatives. 

Once t e Green’s function Eq. (2.19) is obtained, the natural frequencies, mode shapes, and 

forced response could all be obtained. Detailed discussion and information for various 

degenerate cases, such as clamped, cantilever, etc, are given by Abu-Hilail [2003]. Green’s 

function method only involves integration over the geometry domain. The slow convergence 

problem exit in the infinite series summation method is avoided. So it is also one of the 

promising methods for high frequency analysis. 

2.2.3 Discrete Singular Convolution Method 

Discrete Singular Convolution (DSC) is introduced by Wei (1999). Singular convolution 

is defined by the theory of distribution [Wei, 1999]. Let   ( ) be a distribution and  ( ) be an 

element of the space of test function. A singular convolution is defined as  

 ( )  (   )( )  ∫  (   ) ( )
 

  
    (2.24) 

Her  (   ) is a singular kernel, and could be chosen as the Direc delta function 

 ( )   ( )( ) (         ) (2.25) 
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Since  ( )( ) are singular, and can not be directly used in computation. Sequence of 

approximation    ( )     (  )   ⁄  is constructed, and then the Discrete Singular Convolution 

(DSC) is then defined as  

  ( )  ∑   (    )
 
     (  ) (2.26) 

All the derivatives of  (  ) are then transferred to the kernel function.  

 ( )( )  ∑    ⁄   
( ) (    )

 
     (  ) (2.27) 

It should be noted that the summation in Eq. (2.27) is symmetric about the evaluated 

point. Those points near the boundaries must be treated separately. Fictional values are proposed 

in assisting the DSC computation. For simply supported (clamped) edges, anti-symmetric 

(symmetric) values about the boundary edge are adopted in the computation [Wei, 2001]. For 

other more complicated boundary conditions, complicated methods are needed. After all the 

derivatives and the function itself are substituted into the governing equation, the eigen value, 

and eigen functions are obtained numerically.  

DSC method is categorized as one of the weighted finite difference method with 

Gaussian regularizer [Boyd, 2006]. Very promising results are reported in the literature [Wei, 

2002; Wei et al., 2002; Zhao, et al., 2002], even in the high frequency vibration analysis [Secgin 

& Sarigul, 2009]. The vital disadvantage is that it only suit for problems with zero deflection 

along the boundaries; otherwise it lose its high accuracy.  Free boundary condition is studied as a 

special case [Zhao, 2005], but still constitutes a big challenge for DSC method.  Another 

disadvantage is that there is no given method on how to choose the free variable  . It heavily 
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relies on the experience of the user, and mostly is chosen by trial and error method [Wei & Zhao, 

2006, 2007]. 

2.2.4 Differential Quadrature Method 

The Differential Quadrature (DQ) method is proposed by Bellman & Casti [Bellman, et 

al., 1971, 1972] in the early 1970s. The basic idea in the DQ method is to approximate the 

derivative of a function as a weighted linear combination of the function values at all the discrete 

grid points in the whole domain of the spatial coordinate. 

   (  )  ∑     
 
    (  ) (         ) (2.28) 

where the discrete grid points   and the weighting coefficients    could be determined in various 

fashions [Bert & Malik, 1996].  Bellman & Casti chose    the roots of the shifted Legendre 

polynomial of degree N,   
 ( )    (    ).      are determined by letting Eq. (2.28) be exact 

for the test functions   ( )    ,            . The test functions could also be taken as 

the following form generalized by Legendre polynomials  ( )  
  ( )

(    )  
( )

( )
, in which   ( ) 

and   
( )( ) are the N

th 
order Legendre polynomial and its first derivative. Once the weighting 

coefficient      is obtained, the high order differential could be easily obtained by repeating the 

same method. Thus, any partial differential equation can be reduced to a system of linear 

algebraic equations. Successful solutions are obtained for beam and plate vibration problems 

under various complex boundary conditions [Bert, et al, 1994; Shu, 1997, 1999, 2000]. Unlike 

the DSC method, the boundary conditions could be treated as some extra constraint on the 

weighting coefficient elements in DQ method. It is showed that the DQ method could be cast 

into high order polynomial interpolation methods [Shu, 2000]. The disadvantages of the DQ 
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method are rooted in the uncertainties or controversy with selecting the test functions and the 

grid points. Delta-grids are commonly used in approximating the second order derivatives as 

included in the boundary conditions of a plate problem. However, such grids can potentially lead 

to an ill-conditioned weighting coefficient matrix [Shu, 2000].  

2.2.5 Hierarchical Function Method  

Two versions of the finite element method are commonly used in vibration analysis. 

While h-version finite element regulate the maximum diameter of the element, p-version finite 

element keep the mesh size fixed and increase the degree of the interpolation functions 

progressively until the desired accuracy is reached. A particular class of p-version of  the finite 

element method is called Hierarchic Finite Element Method (HFEM), in which the set of      

order interpolation functions constitutes the subset of        order interpolation function. In 

HFEM method, four special functions in each direction are designed to account for the boundary 

conditions; the rest functions are designed to satisfy the condition that their values and their first 

derivative values on the boundaries are all zero.  

Based on Legendre orthogonal polynomials, 
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Zhu [1985] introduced a set of hierarchic functions by introducing  
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Specify s=2 in Z u’s polynomial, Bardell [1991] introduced the following hierarchic 

function set , 
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   
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along with four function account for the boundary conditions, 

  331 1
1 2 4 4

f      ,        2 31 1 1 1
2 8 8 8 8

f         (2.32, 2.33) 

  331 1
3 2 4 4

f      ,        2 31 1 1 1
2 8 8 8 8

f          (2.34, 2.35) 

Analyzed t e “round-off” error in Bardell’s formulation in  ig  order terms, Beslin & 

Nicolas [Beslin & Nicolas] introduced another set of hierarchic function set using trigonometric 

functions, 

     sin sinr r r r ra b c d       (2.36) 

in which
ra , 

rb , 
rc  

rd are chosen as in following table, 

Order ra  
rb  

rc  
rd  

1 4  3 4  4  3 4  

2 4  3 4  2  3 2  

3 4  3 4  4  3 4  

4 4  3 4  2  3 2  

4r    4 2r    4 2r   2  2  
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Very  ig  order modes (up to 850t  mode) for simply supported plate are obtained in Beslin’s 

result [1997]. But the accuracy is reduced for free plate. The applicability of the method to other 

general boundary conditions needs further investigation. 

2.2.6 Static Beam Function Method  

This method is introduced by Zhou [1996]. The deflection of a beam under static loading 

satisfy following differential equation, 

       ( )   ( ) (2.37) 

in which  ( ) can be expanded into a sine series, 

 ( )  ∑      (     ) 
     (2.38) 

Then the general solution of the beam under static loading is, 

  ( )            
     

  ∑   (    )    (     ) 
    (2.39) 

Based on the solution in Eq. (2.39), Zhou introduced a set of function, 

 ( )  ∑   [             
      

     (     )] 
    (2.40) 

The coefficients   ,    ,    ,     are introduced in each of the basis function to satisfy the 

boundary conditions.  

T e met od is directly applied in plate vibration in Z ou’s work [1996]. Rayleigh-Ritz 

method is used in the eigen value analysis. Quick convergence is observed in the presented 

results. 
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2.2.7 Spectral-Tchebychev Method 

Recently, Yagci, et al [Yagci, et al., 2009] presented an interesting method called 

Spectral-Tchebychev Method. The beam displacement function is approximated by the 

Tchebychev polynomials, 

 ( )  ∑     ( )
 
    (2.41)  

where   ( ) is the     scaled Tchebychev polynomial. 

Then the solution is decomposed into two parts, i.e.,      , where   and q  are 

vectors in the null space and null-perpendicular space of the boundary conditions. The method is 

used in both linear and non-linear beam vibration analysis, and promising results are reported 

[Yagci, 2009]. Spectral Tchebychev method used null-Space of the boundary value condition 

concept, which could also be utilized by other approximation methods.  

2.2.8 Fourier Series Method with Stokes Transformation   

In Modal Superposition Method, the displacement function is assumed as a linear 

combination of the eigen functions, then its derivatives are obtained by term-by-term 

differentiation. Under complex structure or boundary conditions, the displacement could also be 

approximated by other polynomial or trigonometric functions. However, under what condition 

the derivative could be moved into the summation bracket and differentiated term-by term will 

be vital for the correctness of the calculated results. The method is based on following two 

theorems,  

Theorem 2 Let  ( ) be a continuous function defined on [0, L] with an absolutely 

integrable derivative, and let  ( )
 
be expanded in Fourier cosine series 
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  0
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
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Theorem 3 Let  ( ) be a continuous function defined on [0, L] with an absolutely 

integrable derivative, and let  ( ) be expanded in Fourier sine series 

 
1

sinm m

m

f x b x
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              0 x L     /m m L    (2.44) 

then  
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   (2.45) 

Theorem 3 is called Stokes Transformation. These theorems tell that while a cosine series can be 

differentiated term by term, it can be done to sine series only if  ( )   ( )   . 

The beam displacement function is first approximated by a Fourier sine series [Greif & 

Mittendorf, 1976; Wang & Lin, 1996; Maurizi & Robledo, 1998].  
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(2.46) 

Then by using the Stokes transformation, 
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(2.47) 
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The second derivative is derived by utilizing theorem 2, 

       
1

2
1 0 sin

m

m m m m

m

w x w L w A x
L

  



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   (2.48) 

High order derivertives could all be obtained by utilizing a combination the two theories. 

 ( ),   ( ),    ( ), and     ( ) are the unknown variables in the boundary conditions, and 

could be expressed by the coefficients   , replace them back into the governing equation, and 

the natural frequencies and mode shapes could be easily determined by the orthogonal properties 

of        over the domain [0,L]. 

The displacement could also be expressed as a Fourier cosine series, and similar 

procedure and results could be obtained. Also note that the these formula should be treated 

separately when the four terms  ( ),  ( ),    ( ), and     ( ) are all zeros. The method is first 

used in vibration analysis in Rayleigh-Ritz method [Greif & Mittendorf, 1976], and extended 

into exact analysis method by Wang and Lin [1996], Very promising results are also reported for 

both beams and plates [Kim & Kim, 2001, 2005; Hurlebaus & Gaul, 2001].  

2.3 Transverse vibration of generally supported beams 

2.3.1 Analytical function approximation in the beam vibration analysis  

The unknown displacement function of a beam is expressed in the following series form, 

 ( )  ∑      (    ⁄ ) 
    ∑   

 
      (    ⁄ )  (2.49) 

where   ,    are the unknown coefficients to be determined. This series can also be found in 

Xu’s P D dissertation (Chap. III page 43). The function is a superposition of a Fourier cosine 

series and an auxiliary polynomial that is used to remove the discontinuities in the original 
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displacement function and its related derivatives. The auxiliary polynomial  ( ) is sought as a 

combination of four sine terms that are orthogonal to the cosine terms in the residual function 

 ̅( ). 

2.3.2 Energy equation 

Energy equation is recognized as the weak form of the general governing differential 

equation. It could be obtained by multiply  ( ) on both side of the governing Eq. (2.2) and 

integrate on [   ]  

∫    ( )     ( )  
 

 
   ∫     ( )  

 

 
  ∫  ( ) ( )  

 

 
 
 

(2.50) 

Use integration by parts twice on the first term, Eq. (2.54) could be further expressed as 

      ( ) ( )| 
       ( )  ( )| 

    ∫ [   ( )]   
 

 
   ∫     ( )  

 

 
  

∫  ( ) ( )  
 

 
  (2.51) 

the Hamilton Energy equation is easily obtained by utilizing the four boundary condition,  

 ( )     
 ( )     

 ( )     
  ( )     

  ( )    ∫ [   ( )]   
 

 

  

  ∫     ( )  
 

 
 ∫  ( ) ( )  

 

 
   (2.52) 

Replace  ( ) with Eq. (2.49) and utilize the Hamilton principle, which state that the 

structural motion renders the value of  ( ) stationary, i.e. 

  ( )     (2.53) 
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By equal all the partial derivatives with respect to the unknown coefficients zeros, 

following equation is derived,  

(     )     (2.54) 

Eq. (2.54) form a standard characteristic equation of the beam when    . 

2.3.3 Numerical examples 

The convergence speed of the current method is first tested on a clamped-clamped beam. 

This boundary condition is generated by setting both the linear and rotational spring stiffness to 

infinity, which is represented by a very large number,              and              , 

respectively. Table 2.1 shows the first eight lowest frequency parameters,       

( √   (  ))
   

 with different truncation number (M=4, 5,  , 10) in Equation (2.49). It is seen 

that the solution converges so fast that just a few terms can lead to an excellent prediction. Based 

on observation of the excellent convergence speed, the truncation number is set to M=10 in the 

following calculation. 

Table 2.2 lists the first eight lowest frequency parameters       ( √   (  ))
   

 

when the elastic boundary constraints varies from free to clamped boundary condition. By 

varying the elastic constants used in simulating the boundary conditions in Eq. (2.3-2.6), current 

method works for a beam with general elastic boundary conditions. 

Figure 2.2 give the first eight lowest mode shapes for a cantilevel beam obtained by 

current method with trucation number M=10 and the exact solution. The classical solution for 

this case is well known as, 
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Table 2.1 The first eight lowest frequency parameters       ( √   (  ))
   

 of a clamped-

clamped beam with different truncation number in the approximation series in Equation (2.49). 

Mode M = 4 M = 5 M = 6 M = 7 M = 8 M = 9 M = 10 Exact 

1 1.50629 1.50565 1.50565 1.50562 1.50562 1.50562 1.50562 1.50562 

2 2.50229 2.50229 2.49993 2.49993 2.49978 2.49978 2.49976 2.49975 

3 3.50123 3.50013 3.50013 3.50004 3.50004 3.50002 3.50002 3.50001 

4 4.50114 4.50114 4.50034 4.50034 4.50009 4.50009 4.50003 4.5 

5 328.610 5.59331 5.59332 5.50024 5.50024 5.50001 5.50004 5.5 

6 344.037 344.037 6.60673 6.60671 6.50023 6.50023 6.50003 6.5 

7 2340.66 370.007 370.007 7.74446 7.74446 7.50139 7.50148 7.5 

8 2619.97 2619.97 382.767 382.767 8.77435 8.77439 8.50164 8.5 

Table 2.2 The first eight lowest frequency parameters       ( √   (  ))
   

 of a beam 

with the elastic constant coefficient varing from free to clamped boundary condition and 

truncation number      in Eq. (2.49). 

Mode 1 2 3 4 5 6 7 8 

k=K=10-6      0.01197 0.04751 1.50562 2.49976 3.50002 4.50003 5.50027 6.50044 

k=K=0.01      0.11970 0.23554 1.50697 2.50058 3.50060 4.50049 5.50064 6.50075 

k=K=0.1      0.21278 0.41675 1.51883 2.50788 3.50580 4.50452 5.50394 6.50354 

k=K=      0.37740 0.71089 1.61165 2.57090 3.55270 4.54188 5.53496 6.53005 

k=K=10      0.66471 1.04115 1.88023 2.81769 3.77627 4.74474 5.71971 6.69923 

k=K=100      1.11337 1.48483 2.11641 3.01459 3.98123 4.96376 5.95145 6.94131 

k=K=103 E    1.44056 2.20255 2.78815 3.39088 4.17465 5.08477 6.04498 7.02476 

k=K=106      1.50555 2.49944 3.49916 4.49821 5.49670 6.49454 7.49295 8.48925 

Clamped 1.50562 2.49976 3.50002 4.50003 5.50004 6.50003 7.50148 8.50164 
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1)    2)     

3)    4)  

5)    6)   

7) 8)  

Figure 2.2 The first eight lowest mode shapes for a cantilever beam obtained by current method 

with truncation number M=10 (blue curves) and by the exact solution equation (red circles). 
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 ( )      (      )     (      )    (    (      )     (      ))  (2.55) 

where    [    (   )     (   )] [(    (   )     (   ))]. Although only fourteen eigen-

values are calculated with truncation number     , it is clear that the listed mode shapes 

match the exact solution very well. All these results have indicated that the mode shapes can also 

be accurately obtained by taking only a few terms in the Fourier series. 

2.3.4 Discussions and Conclusions 

A simple and fast convergent method is presented for the dynamic analysis of a beam 

with general boundary conditions. The beam displacement is sought as the superposition of a 

Fourier series and four auxiliary sine functions that is used to remove the discontinuities with the 

original displacement function and its related derivatives. The modal parameters of the beam can 

be readily and systematically obtained from solving a standard matrix eigenproblem, instead of 

the non-linear hyperbolic equations as in the traditional techniques. It has been shown through 

numerical examples that the natural frequencies and mode shapes can both be accurately 

calculated for beams with various boundary conditions. The remarkable convergence of the 

current solution is demonstrated both theoretically and numerically. Extension of the proposed 

technique to two dimensional structures such as rectangular plates and triangular plates with 

general boundary conditions will be demonstrated in the following chapters.  
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Chapter III Transverse vibration of rectangular plates with elastic boundary supports 

3.1 Rectangular plate vibration description 

 

 

 

Figure 3.1 A rectangular plate elastically restrained along all the edges 

Consider a rectangular plate with its edges elastically restrained against both deflection 

and rotation as shown in Figure 3.1. It is assumed that the plate vibrates under a harmonic 

excitation at a given frequency  . The effects of material damping, rotary inertia, and transverse 

shear deformations are all neglected. The vibration of the plate is governed by the following 

differential equation 

    (   )       (   )   (   ) (3.1) 

where         ⁄           ⁄       ⁄ ,  (   )  is the flexural displacement;  is the 

angular frequency;  , , and   are the bending rigidity, the mass density and the thickness of the 

plate, respectively;  (   ) is the distributed harmonic excitation acting on the plate surface. The 

frequency term      is suppressed on both sides of the Eq. (3.1) for simplicity. 

In terms of the flexural displacement, the bending and twisting moments, and the 

transverse shearing forces can be expressed as  

     (
   

     
   

   ), (3.2) 

     (
   

     
   

   ), (3.3) 
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      (   )
   

   
,  (3.4) 

     
 

  
(  )  

    

  
   (

   

   
 (   )

   

    
), (3.5) 

and 

     
 

  
(  )  

    

  
   (

   

   
 (   )

   

    
) (3.6) 

The boundary conditions for an elastically restrained rectangular plate are as follows:  

   ( )    ,    ( )          at    
 

(3.7, 3. 8) 

   ( )     ,    ( )         at      (3.9, 3.10) 

   ( )    ,    ( )          at      (3.11, 3.12) 

and 

   ( )     ,    ( )         at     (3.13, 3.14) 

where    ( ),    ( ),    ( ), and     ( ) are four stiffness functions representing the linear 

springs against deflection,    ( ) ,     ( ) ,     ( ) , and     ( )  are four stiffness functions 

representing the rotary springs against rotation, and   ,   ,   , and    are shear forces and 

bending moments at    ,    ,    , and     respectively. It should be noted that the 

stiffness functions allow the spring stiffness varying along each edge. Eq. (3.7-3.14) represent all 

possible general elastic edge conditions. All the classical homogeneous boundary conditions can 

be directly obtained by accordingly setting the spring constants to be extremely large or small. 
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3.2 Literature review on the transverse vibration of rectangular plates 

There is a wealth of literature on the vibrations of rectangular plates with various 

boundary conditions, but a vast majority of them is focused on the classical boundary conditions 

representing various combinations of clamped, simply supported or free edges [Leissa, 1993]. 

While a number of studies have been devoted to the vibrations of plates with uniform elastic 

restraints along an edge [Carmichael, 1959; Laura, et al., 1974, 1977, 1978, 1979; Li, 2002, 

2004], only few references can be found dealing with non-uniform elastic restraints [Leissa, et al., 

1979; Laura & Gutierrez, 1994; Shu & Wang 1999, Zhao & Wei, 2002]. Due to the non-

separatable nature of the plate vibration governing equation, exact solutions are only available 

for plates which are simply supported (or guided) along at least one pair of opposite edges. 

Accordingly, a variety of approximate or numerical solution techniques have been employed to 

solve plate problems under different boundary conditions,  which include, but are not limited to, 

Rayleigh-Ritz procedures, finite strip method [Cheung, 1971], superposition method [Gorman, 

1980], Differential Quadrature method (DQ) [Shu, 1997], and Discrete Singular Convolution 

method (DSC) [Wei, et al., 1997].  Variational Method, such as Rayleigh-Ritz, is another widely 

used technique for obtaining an approximate solution for the plate vibration. When the Rayleigh-

Ritz method is employed in solving plate problems, the displacement function is often expressed 

in terms of characteristic functions obtained for beams with similar boundary conditions 

[Warburton, 1954; Leissa, 1973; Dickinson & Li, 1982; Warburton, 1979; 1984]. Although the 

characteristic functions are well known in the form of trigonometric and hyperbolic functions, 

they are explicitly dependent upon the boundary conditions. Furthermore, the characteristic 

function is generally unavailable for beams with complex boundary conditions. Instead of the 

beam functions, one can also use other forms of admissible functions such as simple or 
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orthogonal polynomials, trigonometric functions and their combinations [Cupial, 1997; Bhat, 

1985; Dickinson & Di-Blasio, 1986; Laura & Grossi, 1981; Zhao, 195, 1996; Beslin & Nicolas, 

1997]. When the admissible functions do not form a complete set, the accuracy and convergence 

of the corresponding solution cannot be easily estimated.  A well-known problem with use of 

complete (orthogonal) polynomials is that the higher order polynomials tend to become 

numerically unstable due to the computer round-off errors.  This numerical difficulty can be 

avoided by using the trigonometric functions [Cupial, 1997] or the combinations of 

trigonometric functions and lower order polynomials [Laura, 1997; Zhao, 1996].  Although it has 

become a “standard” practice to express t e plate displacement function as the series expansion 

of the beam functions (whether they are in the form of trigonometric functions, hyperbolic 

functions, polynomials or their combinations), there is no guarantee mathematically that such a 

representation will actually converge to the true solution because of the difference between the 

beam and plate boundary conditions.  While the limitation of such a mathematical treatment is 

not readily assessed, its practical implication becomes immediately clear when a non-uniform 

boundary condition is specified along an edge.  More explicitly, a similar boundary condition 

cannot be readily chosen for the purpose of determining the appropriate beam functions. 

Based on the linearity of the plate vibration problems, a systematic superposition method 

is proposed by Gorman for solving plate problems under various boundary conditions [Gorman, 

1997, 2000, 2003]. In the superposition method a general boundary condition is decomposed into 

a number of “simple” boundary conditions for w ic  analytical solutions exist or can be easily 

derived. This technique, however, requires a good understanding and skillful decomposition of 

the original problems. For more complex boundary conditions when the elastic coefficients are 

actually function of the coordinate, the superposition method does not work. Moreover, the 
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decomposition of the boundary condition itself creates fictional jump discontinuity at the corners 

of the plate, which create further convergence problem. The displacement at the corner 

intersection may be forced to zero in the final solution.  

Hurlebaus & Gaul [2001] solved the eigenfrequencies of a plate with completely free 

boundary conditions by using the following displacement function,  (   )      ⁄  

∑         (   ) 
    ∑         (   )

 
    ∑ ∑       (   ) 

   
 
      (   ), where 

      ⁄  and       ⁄ . Galerkin weighted residual method and integration by parts are 

utilized in solving the governing equation, which is further written as an integral relation 

between the boundary slope value and the function value on the boundaries. The author observed 

that the displacement function can be further simplified as a double Fourier cosine series, 

  (   )  ∑ ∑       (   ) 
   

 
      (   ). As pointed out by Rosales & Filipich [2003], 

the convergence might be lost in the direct term-by-term differentials. Although the solution is 

correct for plate with free boundary condition, this method may not suit for other complex 

boundary condition.  

Filipich & Rosales [2000] developed a method called Whole Element Method, in which 

the displacement functional is expressed as a double Fourier sine series plus several designed 

functions,   (   )  ∑ ∑       (   )
 
   

 
      (   )   (   ∑       (   )

 
   )  

 (   ∑       (   )
 
   )         ∑      (   )

 
    ∑      (   )

 
      . This method is 

also applied to the vibration of plates with internal supports [Escalante, et al., 2004]. It is 

observed by current author that the function can be represented by the following form, 

    (   )  ∑ ∑      ( )
   
   

   
     ( ), where   ( )   ,   ( )   , and   ( )  
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   (     ). It is similar to Z ou’s static beam function met od applied to 2-D vibration, but with 

only the first two orders of polynomials.  

The series solutions derived in refs. [Pilipich & Rosales, 2000; Hurlebaus, 2001] may not 

be extended to other boundary conditions other than the completely free case.  Although these 

series solutions were claimed  to be able to exactly calculate the eigenfrequencies, mode shapes 

and even the slopes, they may not automatically become an exact solution in the classical sense 

because a classical solution will have to be sufficiently smooth; that is, the third-order 

derivatives are continuous, and the fourth- order derivatives exist everywhere on the plate.  For 

example, if the moments and shear forces cannot be assured to be exact throughout the plate and 

along the edges (when they are not completely free), it may not be possible to ascertain that the 

eigenfrequencies and mode shapes can be calculated exactly or with any arbitrary precision. 

These questions or concerns can be circumvented by the proposed solution which is also 

expressed in the form of series expansions. It is, however, substantially different from the 

aforementioned series solutions in that it can be differentiated term-by-term to obtain other 

useful quantities (such as, slopes, moments and shear forces) at any point on the plate, and hence 

be directly substituted into the governing equation and boundary conditions to solve for the 

unknown expansion coefficients in an exact manner. This chapter represents an extension of the 

solution method previously developed for analyzing vibrations of beams [Li, 2000] and in-plane 

vibrations [Du, et al., 2007]. In comparison with the solutions for in-plane vibrations, the current 

method will have to include more supplementary terms to improve the smoothness (and hence 

the rate of convergence) of the displacement function and to account for the potential 

discontinuities with the higher-order derivatives along the edges when they are periodically 

extended onto the entire x-y plane. A set of supplementary functions is provided in the form of 
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trigonometric functions which is essentially unaffected by the differential operations and can 

avoid the possibility of nullifying a boundary condition. The mathematical and numerical 

advantages of the current solution method will become obvious from the following discussions.   

3.3 Displacement function selection 

The displacement function will be sought in the form of series expansions as:  

 (   )  ∑ ∑       (    ) 
   

 
      (    )  ∑ [  

 ( )∑   
  

      (    )   
   

  
 ( )∑   

  
      (   )]  (3.15) 

where         ,         , and   
 ( )  (or   

 ( ) ) represent a set of closed-form 

sufficiently smooth functions defined over [0, a] (or [0, b]). T e term “sufficiently smoot ” 

implies that the third order derivatives of these functions exist and are continuous at any point on 

the plate. Such requirements can be readily satisfied by simple polynomials [Li, 2002].  

Theoretically, there are an infinite number of these supplementary functions. However, one 

needs to ensure that the selected functions will not nullify any of the boundary conditions. As 

mentioned earlier, these functions are introduced specifically to take care of the possible 

discontinuities with the first and third derivatives at each edge.  In the subsequent solution phase, 

however, the expansion coefficients will have to be directly solved from the governing equations 

and the boundary conditions.  Thus, the selected supplementary functions should not interfere 

wit  t is process in any way.  To better understand it, let’s consider, for example, t e boundary 

condition, Eq. (3.8).  If the supplementary functions and their second derivatives (with respect to 

x) all vanish at x=0, then this boundary condition will be mathematically nullified for Kx0=0.  In 

other words, the resulting coefficient matrix will become singular for Kx0=0.  Similar situations 
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can occur at other edges.  With this in mind, the supplementary functions will be here chosen in 

the form of trigonometric functions which are essentially unaffected by differential operations:  

  
 ( )  

  

  
   (

  

  
)  

 

   
   (

   

  
),   

 ( )   
  

  
   (

  

  
)  

 

   
   (

   

  
), (3.16, 3.17) 
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     (
  

  
)  

  

      (
   

  
),   

 ( )   
  

     (
  

  
)  

  

      (
   

  
)  (3.18, 3.19) 

It is easy to verify that   
  ( )    

  ( )    
    ( )    

     ( )   , and all other first and third 

derivatives are identically zero at the edges.  These conditions are not necessary, but make it 

easier to understand the meanings of the 1-D Fourier series expansions: each of them represents 

either the first or the third derivative of the displacement function at one of the edges.  By doing 

such, the 2-D series will be “forced” to represent a residual displacement function w ic   as, at 

least, three continuous derivatives in both x and y directions.  

It can be proven mathematically that ( Theorem 1)the series expansion given in Eq. (3.15) 

is able to expand and uniformly converge to any function f(x, y)C
3
 for (x, y)D: ([0, a;0, b]). 

Also, this series can be simply differentiated, through term-by-term, to obtain the uniformly 

convergent series expansions for up to the fourth-order derivatives. Mathematically, an exact 

displacement (or classical) solution is a particular function w(x, y)C
3
 for (x, y)D which 

satisfies the governing equation at every field point and the boundary conditions at every 

boundary point. Thus, the remaining task for seeking an exact displacement solution will simply 

involve finding a set of expansion coefficients to ensure the governing equation and the 

boundary conditions to be satisfied by the current series solution exactly on a point-wise basis.  

When a plate problem is amenable to the separation of variables, an exact solution is 

usually expressed as a series expansion where each term will simultaneously satisfy the 
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homogeneous governing equation and the boundary conditions. However, in determining the 

response to an applied load, it should not matter whether the governing equation or a boundary 

condition is satisfied individually by each term or globally by the whole series. Take a simply 

supported plate as an example. A sine function will be able to exactly satisfy the characteristic 

equation and the boundary conditions at each edge. Then the exact solution is often understood 

as a simple Fourier series which may also be interpreted as a modal expansion. To calculate the 

vibrational response, however, the governing equation will usually include two more terms to 

account for the damping effect and the loading condition, and the solution (the expansion 

coefficients) are solved by equating the like terms on both sides (of course, it must be explicitly 

assumed that the forcing function can also be expanded into a sine series). In other words, the 

governing equation is actually satisfied globally by the series, rather than individually by each 

term. Since in real calculations a series solution will have to be truncated somewhere according 

to a pre-determined error bound, an exact solution really implies that the results can be obtained 

to any desired degree of accuracy. This characterization equally applies to the current solution as 

described below. The only procedural difference between the classical solution and the proposed 

one is that the boundary conditions are automatically satisfied by each term, and the expansion 

coefficients are only required to satisfy the governing equation; in comparison, the expansion 

coefficients in the current solution will have to explicitly satisfy both the governing equation and 

the boundary conditions. This distinction will probably have no mathematical significance in 

regard to the convergence and accuracy of the solution, although a pre-satisfaction of the 

boundary conditions or governing equation by each of the expansion terms may result in a 

reduction of the computing effort. 
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3.4 Exact Method 

3.4.1 Theoretical Formulation 

In what follows, our attention will be directed to solving the unknown expansion 

coefficients by letting the assumed solution satisfy both the governing equation and the boundary 

conditions. Substituting the displacement expression, Eq. (3.15), into the boundary condition, Eq. 

(3.7), results in 

   (∑ ∑    
 
   

 
      (    ))  ∑ [  

 ( )∑   
  

      
 ( )∑   

  
      (    )]

 
    

  [(   )∑ (    
 )  

    (    )
 
    ∑   

    (    )
 
   ] (3.20) 

It is seen that all the term in the above equation, except for the second one, are in the 

form of cosine series expansion in y direction. So it is natural to also expand   
 ( ) into a cosine 

series, i.e.   
 ( )  ∑   

  
      (    ). By equating the coefficients for the like terms on both 

sides, the following equations can be derived 
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 ∑   
  

      
 ( )  

 ] 
    (   )(    

 )  
    

   
   

 
∑    

 
       

(             )  (3.21) 

Three similar equations can be directly obtained from Eqs. (3.9-3.14), 

∑ ∑ [    
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 ]    (             ) (3.22) 

   

 
∑ [  

 ∑ (  )   
  

      
 ( )  

 ] 
    (   )   

   
    

  
   

 
∑ (  )      

 
       

(             ) (3.23) 
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And 

∑ ∑ (  ) [  ̅ 
     

   
 ]  

  
   

 
    ∑ [  

   ( )      
   

 ( )]  
  

    
   

 
  

  

∑ (  ) [   
      

 ]   
 
    (             ) (3.24) 

where   
   ( )  ∑  ̅ 

  
      (    ). 

These equations indicate that the unknown coefficients in the 2-D and 1-D series 

expansions are not independent; they have to explicitly comply with the constraint conditions, 

Eqs. (3.21-3.24). Four more constraint equations corresponding to the boundary conditions at the 

remaining two edges can be readily written out by replacing the variables  ,   
    ̅ 

 ,   and   , 

with  ,   
    ̅ 

 ,   and  , respectively. It now becomes clear that satisfying these constraint 

equations by the expansion coefficients is equivalent to an exact satisfaction of all the boundary 

conditions (by the displacement function) on a point-wise basis.   

The constraint equations can be rewritten in a matrix form as, 

       (3.25) 

where   [  
    

      
    

    
      

     
    

      
    

    
      

    
    

      
     

    
      

 ] , 

and   [                                          ]
 . In Eq. (3.25), it is assumed 

that all the series expansions are truncated to m M and n N  to facilitate numerical 

implementation.  

Eq. (3.25) represents a set of 4(M+N) equations against a total of 4(M+N)+M×N unknown 

expansion coefficients. Thus, additional M×N equations will have to be provided to solve for the 

expansion coefficients. By substituting Eq. (3.15) into the governing differential equation get 
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Again, after all the non-cosine functions in the above equation are expanded into cosine series, 

  
 ( )( )  ∑  ̅̅ 

  
      (    ), the following equations can be obtained by comparing the like 

terms on both sides 

(   
     

      
    

 )    ∑ [(   
   

      
  ̅ 

   ̅̅ 
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  (  
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 ]  
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 ] 

   ]    (3.27) 

where            , and            . It can be further written in a matrix form as  

( ̃    )  
    

 
( ̃    )    (3.28) 

Equations. (3.25) and (3.28) cannot be directly combined to form a characteristic 

equation about the coefficient vectors a and p because the assembled mass matrix will become 

singular. By following the approach traditionally used for determining an eigenvalue, one may 

first solve Eq. (3.28) for a in terms of p. Substituting the result into the boundary conditions, Eq. 

(3.25), will lead to a set of homogeneous equations. The eigenvalues can then be obtained as the 

roots of a nonlinear function which is defined as the determinant of the coefficient matrix. Such 

an approach is numerically not preferable because of the well known difficulties and concerns 
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associated with solving a highly nonlinear equation. Instead, Eq. (3.25) will be here used to 

eliminate the vector p from Eq. (3.28), resulting in 

[  
    

 
 ]    (3.29) 

where    ̃       , and     ̃        

Equation (3.29) represents a standard characteristic equation from which all the eigenpairs can be 

determined. Once the eigenvector a is determined for a given eigenvalue, the corresponding 

vector p can be calculated directly using Eq. (3.25). Subsequently, the mode shapes can be 

constructed by substituting a and p into Eq. (3.15). Detailed formulation can be found in a 

recently published paper (Li, etc, 2009) 

Although this study is focused on free vibrations of an elastically restrained plate, the 

forced vibration can also be determined by simply adding a load vector to the right side of Eq. 

(3.29). It should be noted that the elements of the load vector represent the Fourier coefficients of 

the forcing function when it is expanded into a cosine series over the plate area. 

3.4.2 Numerical Results 

Several examples involving various boundary conditions will be given to show the 

superiority of current method. First, consider a C-S-S-F plate, in which C, S, F represent clamped, 

simply supported, and free edges, respectively. A clamped edge can be viewed as a special case 

when the stiffness constants for the (translational and rotational) springs become infinitely large 

(which is represented by a very large number, 5.0×10
7
, in the actual calculations). The free-edge 

condition is easily created by setting the stiffness constants for both springs equal to zero. The 
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displacement expansion is truncated to        in all the subsequent calculations. The 

frequency parameters      √     are listed in Tables 3.1.  

The above examples are presented as the special cases of elastically restrained plates. It is 

shown that the frequency parameters for the classical homogeneous boundary conditions can be 

accurately determined by modifying the stiffness of the restraining springs. It should be 

emphasized that unlike most existing techniques, the current method offers a unified solution for 

a variety of boundary conditions including all the classical cases, and the modification of 

boundary conditions from one case to another is as simple as changing the material properties or 

the plate dimensions.  

Table 3.1. Frequency parameters      √     for C-S-S-F rectangular plate with different 

aspect ratios (* Li, 2004; † FEM wit          elements). 

      √     

r=a/b 1 2 3 4 5 6 

1.0 16.785 

 16.87 * 

16.790
†
 

31.115 

 31.14 

31.110 

51.392 

51.64 

51.393 

64.016 

 64.03 

64.017 

67.549  

67.64 

67.534 

101.21 

101.2 

101.10 

1.5 18.463 50.409 53.453 88.682 107.65 126.05 

2.0 20.577 56.265 77.316 110.69 117.24 175.77 

2.5 

22.997 

23.07 * 

23.003 
†
 

59.705 

59.97 

59.723 

111.90 

111.9 

111.90 

114.54 

115.1 

114.58 

153.06 

153.1 

153.06 

188.54 

189.6 

188.60 

3.0 25.628 63.672 119.11 154.20 193.38 196.24 

3.5 28.399 68.063 124.31 199.00 204.21 246.85 

4.0 31.274 72.795 130.07 205.32 261.95 299.44 
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Next, consider a square plate elastically supported along all of its edges. The stiffnesses for the 

transverse and rotational restraints are chosen as           and          , respectively. 

The frequency parameters are shown in Table 3.2 for plates with different aspect ratios from 1 to 

4. Thus far, our attention has been focused on the frequency parameters for different boundary 

conditions and aspect ratios. As a matter of fact, the eigenpairs (eigenfrequencies and 

eigenvectors) are simultaneously obtained from the characteristic equation, Eq. (3.32). For a 

given eigenfrequency, the corresponding eigenvector actually contains the expansion coefficients, 

Amn. In order to determine the mode 

Table 3.2. Frequency parameters       √     for a square plate with     ⁄      and 

   ⁄       at    ,   and    ,  , respectively († FEM wit          elements). 

      √     

r=a/b 1 2 3 4 5 6 

1.0 17.509 

17.474
†
 

25.292 

25.228 

25.292 

25.228 

33.893 

33.795 

46.285 

46.264 

46.856 

46.779 1.5 20.718 

20.664
†
 

27.455 

27.362 

35.433 

35.357 

44.712 

44.595 

47.694 

47.623 

69.282 

69.194 2.0 23.217 

23.151
†
 

29.346 

29.230 

48.772 

48.683 

50.239 

50.165 

60.024 

59.908 

86.096 

86.001 2.5 25.374 

25.298
†
 

31.069 

30.932 

49.812 

49.705 

70.381 

70.308 

80.411 

80.298 

93.651 

93.592 3.0 27.322 

27.238
†
 

32.675 

32.520 

50.822 

50.698 

94.186 

94.116 

95.857 

95.788 

105.98 

105.87 3.5 29.123 

29.038
†
 

34.192 

34.040 

51.807 

51.682 

94.717 

94.646 

126.54 

126.47 

136.68 

136.58 4.0 30.809 

30.710
†
 

35.639 

35.455 

52.770 

52.612 

95.243 

95.153 

161.35 

161.28 

162.31 

162.24 
shape, the expansion coefficients for the 1-D Fourier series expansions also need to be calculated 

using Eq. (3.28). Once all the expansion coefficients are known, the mode shapes can be simply 

obtained from Eq. (3.15) in an analytical form. For example, plotted in Figure 3.2 are the mode 

shapes that correspond to the six frequencies given in the first row of Table 3.2. Because the 

stiffnesses of the restraining springs are sufficiently large, the characteristics of the rigid body 
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motions are effectively eliminated. Although one can still see the traces of the modes for a 

completely clamped plate, the edges and corners now become quite alive in the current case. 

  

  

  

Figure 3.2. The (a) first, (b) second, (c) third, (d) fourth, (e) fifth, and (f) sixth mode shapes of a 

square plate with           and           at all four edges.  

 e  f

 a  b

 c  d
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3.5 Variational Method 

3.5.1 Theoretical Formulation 

Rayleigh-Ritz method is used in finding an approximate solution from the Hamilton's 

equation 

 ( )   ( )   ( )   ( ) (3.30) 

where  ( ) is the total kinetic energy,  ( ) is the total potential energy, and  ( ) is the input 

work by the excitation force  (   ). 

For a purely bending plate, the total potential energy can be expressed as 
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                                            (3.31) 

the total kinetic energy is calculated from 

 ( )  
 

 
∫ ∫   (

  

  
)
 

    
 

 

 

 
  (3.32) 

and the external work is calculated from 

 ( )  ∫ ∫  (   ) (   )    
 

 

 

 
 (3.33) 

In Eq. (3.31), the first integral represents the strain energy due to the bending of the plate and the 

rest integrals represent the potential energies stored in the springs. 
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Hamilton’ principle states t at t e true displacement field  (   ) of the plate renders the 

value of  ( ) stationary. The motion of the plate subject to Eqs. (3.1, 3.7-3.14) is found from 

the extremalization of the Hamiltonian of the plate over the chosen displacement function space.   

  ( )    (3.34)  

Equations. (3.1, 3.7-3.14) can be derived by substituting Eqs. (3.30-3.33) into Eq. (3.34) and 

integrating by parts. 

In Hamilton’s principle, it is critical to c oose an appropriate admissible function space 

in which the true displacement function exits. How efficient the method is depends on how fewer 

coefficients are needed to faithfully represent the true displacement function. When the 

admissible functions form a complete set, the Rayleigh-Ritz solution converges to the analytical 

solution obtained in strong form. In this study, the admissible function for the displacement is 

expressed as Eq. (3.15).  

In what follows, our attention is directed to solving t e Hamilton’s Eq. (3.34). The 

displacement expression Eq. (3.34) is substituted into Eqs. (3.30-3.33) in determining the 

generalized coordinates (namely, the Fourier expansion coefficients). In the process, however, 

the stiffness functions and all other non-cosine terms have to be first expanded into Fourier 

cosine series, for instance,    ( )  ∑  ̃    
 
      (    )    

 ( )  ∑  ̃ 
  

      (    ). 

The equations formed by taking partial derivative to    were summarized as, 

∑ ∑         
       

 
    

 
     ∑ [∑        

     
  

     ∑        
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  ̃ 
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   ]      (3.35) 

Taking partial derivative respect to   
  (i=1, 2, 3, 4) results in, 
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Taking partial derivative respect to   
 
 (i=1, 2, 3, 4) results in, 
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The series in Eqs. (3.35-3.37) are truncated to predetermined number M and N in x and y 

direction respectively, and are further written in matrix form, 

[
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]    (3.38) 

The full expression of  the    ,    ,    ,    
 ,    

  in Eq. (3.38) and   
 ,   

 ,   
 ,   

 ,  ̃ 
 ,  ̃ 

 ,    
   

, 

    
   

 in Eqs. (3.35-3.37) are given in a recently published paper (Zhang & Li, 2009). A 

summarized version of the formulation can also be found in another recently published paper by 

the authors (Zhang & Li, 2010). Equation (3.38) is further written as  

(       )     (3.39) 

where   [     
   

 ]  and  [      
    

 ] 
 

For a given force,       the response of plate can be directly solved from Eq. (3.39). When 

   , Eq. (3.39) represents a standard matrix characteristic equation from which all the 
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eigenpairs can be determined by solving a standard matrix eigenvalue problem. Once the 

generalized coordinates, a, is determined, the corresponding mode shape or displacement field 

can be constructed by substituting a into Eq. (3.15). 

3.5.2 Numerical Results 

Several examples involving plates with nonuniform elastic restraints are given in this 

section. First, let’s consider a problem previously investigated by several researc ers [Leissa, et 

al, 1979; Laura & Gutierrez, 1994; Shu & Wang, 1999; Zhao & Wei, 2002]. As shown in Figure 

3.3, this problem involves a simply supported plate with rotational restraints of parabolically 

varying stiffness along two opposite edges (SESE). This is a special case of the general boundary 

condition Eqs. (3.7-3,14), when the stiffness functions are set to:    ( )     ( )   , 

   ( )     ( )   , and    ( )     ( )   , and    ( )     ( )    (   )   . 

 

Figure 3.3 A simply supported plate with rotational springs of parabolically varying stiffness 

along two opposite edges, where    is a constant. 

0( )yk x  

0( ) (1 ) /y cK x K x x D a   

0 ( )xk y  

0( ) 0xK y   

x  

( )xak y  

( ) 0xaK y   

( )ybk x  

( ) (1 ) /yb cK x K x x D a 

 

y
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Figure 3.4. A rectangular plate with varying elastic edge supports including linear, 

parabolic, and harmonic functions. 

where    is a constant. Anot er “classical” case is referred to as CECE w ere t e two simply 

supported edges become fully clamped, namely,    ( )     ( )    

The fundamental frequencies calculated using various methods are shown in Table 3.3 

for the SESE and CECE cases, respectively. It is noted that the current results compare well with 

those previously obtained from other different techniques. As mentioned earlier, the series 

expansion, Eq. (3.39), will has to be truncated in numerical calculations. It is chosen as   

     in all the subsequent calculations. 

Although nonuniform restraints against rotations are allowed in the above examples, the 

transverse displacement is fully restrained along each edge. In many practical applications, 

however, both the translational and rotational restraints may have to be considered as elastic and 

their stiffnesses can vary from point to point on an edge. While the restraining of transverse 

 3

0( ) (1 cos ) /yk x x D a   

3

0( ) (1 cos ) /yK x x D a    

3

0( ) (1 ) /xk y y D a 

0( ) (1 ) /xK y y D a   

x  

2 3( ) (1 ) /xak y y D a   

( ) /xaK y D a  

3( ) /ybk x D a            

( ) /ybK x D a  y
 

① : 

④ : 

③ : 

② : 
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displacement along each edge may be needed in the previous studies for whatever reasons, it is 

definitely unnecessary for the current method. When the displacement is not identically equal to 

zero along each edge, the frequency parameter,      √    , become dependent upon 

Poisson’s ratio. For t e simplicity, Poisson’s ratio will be set as 0.3v  in the following 

calculations.  

TABLE 3.3. Frequency parameters      √     for (a) SESE: Simply supported plate with 

rotational springs of parabolically varying stiffness along two opposite edges (b) CECE: Setup (a) 

with two simply supported edges clamped (a, Leissa, et al, 1979; b, Laura & Gutierrez, 1994; c, 

Shu & Wang, 1999; d, Zhao & Wei, 2002) 

In the current method, the stiffness for each restraining spring can be specified as an 

arbitrary function of spatial coordinates. Specifically, we consider the restraining scheme 

depicted in Figure 3.4 w ere t e stiffness functions are “arbitrarily” selected as uniform, linear, 

 SESE CECE 

  
Kc a b c d current a b c d current 

0.5 0 12.337 12.34 12.337 12.337 12.349 23.814 23.82 23.816 23.816 23.816 

 0.1 12.341 12.34 12.341 12.340 12.354 23.844 23.82 23.818 23.819 23.818 

 1 12.372 12.38 12.379 12.362 12.391 23.876 23.85 23.839 23.843 23.839 

 10 12.621 12.66 12.666 12.550 12.674 24.136 24.01 23.996 24.019 23.996 

 100 13.319 13.37 13.364 13.207 13.366 24.561 24.41 24.393 24.410 24.393 

 10
6
 13.688 13.7 13.686 13.686 13.686 24.566 24.60 24.578 24.579 24.578 

1 0 19.739 19.74 19.734 19.739 19.748 28.951 28.96 28.951 28.952 28.951 

 0.1 19.757 19.76 19.761 19.764 19.770 28.969 28.98 28.966 28.970 28.966 

 1 19.915 19.95 19.951 19.985 19.960 28.219 29.12 29.102 29.128 29.103 

 10 21.235 21.49 21.487 21.701 21.493 32.179 30.24 30.222 30.383 30.222 

 100 25.799 26.13 26.147 26.356 26.149 35.379 33.82 33.796 33.960 33.795 

 10
6
 28.951 28.98 28.951 28.951 28.950 35.992 36.01 35.985 35.987 35.985 
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parabolic and sinusoidal along the edges. As mentioned earlier, each of the stiffness function will 

be generally represented by a Fourier cosine series expansion. For convenience, the current 

restraining conditions at 0x  , y b , x a  and 0y   will be labeled as ①, ②, ③ and ④, 

respectively. The first ten frequency parameters,      √    , are presented in Tables 3.4 

for plates of different aspect ratios, /r b a , when they are subjected to the restraining condition  

①+②+③+④. The FEM solution is shown in Table 3.4 as a reference. In the FEM model, each 

edge is divided into 100 elements, which is considered adequately fine to capture the spatial 

variations of these lower order modes. The current results match well with those obtained from 

the FEM model.  

Table 3.4. Frequency parameters      √     for rectangular plates with boundary 

condition described in Figure 3.4 († Finite Element Met od wit          elements). 

r=a/b  1  2  3  4  5  6  7  8  9  10 

1 2.17 

†2.18 

5.14 

5.09 

5.71 

5.78 

15.00 

14.98 

24.17 

24.17 

27.14 

27.16 

37.17 

37.12 

37.53 

37.50 

64.56 

64.57 

65.48 

65.49 

1.5 2.39 5.75 8.78 22.12 25.77 48.46 54.76 63.22 70.21 89.07 

2 2.58 5.84 13.24 25.75 29.82 60.68 64.53 94.94 104.3 110.1 

2.5 2.76 5.93 18.36 25.73 37.97 64.46 73.60 121.0 122.1 148.0 

4 3.23 6.18 25.68 36.85 64.16 64.96 114.7 122.1 175.9 199.6 

Thus far, our attention has been focused on the frequency parameters for different 

boundary conditions and aspect ratios. As a matter of fact, in the current solution the eigenpairs 

(eigenfrequencies and eigenvectors) are simultaneously obtained from the characteristic equation, 

Eq. (3.39). For a given eigenfrequency, the corresponding eigenvector actually contains the 
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expansion coefficients,    ,   , and    from which the mode shape can be readily calculated 

from Eq. (3.15) in an analytical form. For example, plotted in Figure 3.5 are the first eight mode 

shapes for a plate of aspect ratio r = 2 under the boundary condition of ①+②+③+④. For 

conciseness, the FEM mode shapes will not be presented here; it suffices to say that the modes in 

Figure 3.5 have all been validated by the FEM model. 

3.6 Conclustions 

An analytical method has been developed for the vibration analysis of rectangular plates 

with arbitrary elastic edge restraints of varying stiffness distributions. The displacement function 

is generally expressed as a standard two-dimensional Fourier cosine series supplemented by 

several one-dimensional Fourier series expansions that are introduced to ensure the availability 

and uniform convergence of the series representation for any boundary conditions. Unlike the 

existing techniques such as DQ and DSC methods, the current method offers a unified solution to 

a wide class of plate problems and does not require any special procedures or schemes in dealing 

with different boundary conditions. Both translational and rotational restraints can be generally 

specified along any edge, and an arbitrary stiffness distribution is universally described in terms 

of a set of invariants, cosine functions. While this treatment is very useful and effective for a 

continuously-distributed restraint, it may not be suitable for a discretely or partially restrained 

edge because of the possible slow convergence or overshoots of the series representation at or 

near a discontinuity point. This problem, however, can be easily resolved by substituting the 

given (discontinuous) stiffness functions into Eq. (3.31) directly and carrying out the integrations 

analytically or numerically. T e met od was first applied to several “classical” cases w ic  were 

previously investigated by using various techniques. 
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Figure 3.5. The (a) first, (b) second, (c) third, (d) fourth, (e) fifth, (f) sixth, (g) seventh and (h) 

eighth mode shapes for a plate with aspect ratio     and boundary condition described in 

Figure 3.4. 

 e
 f

 a  b

 c  d

 g
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It is also used to solve a class of more difficult problems in which the displacement is no 

longer completely restrained in the translational direction. The accuracy and reliability of the 

current method are repeatedly demonstrated through all these examples, as evidenced by a good 

comparison with the existing or FEA results. Finally, it should be mentioned that although the 

current solution is sought in a weak form from the Rayleigh-Ritz procedure, it is mathematically 

equivalent to what would be obtained from the strong formulation because the constructed 

displacement function is sufficiently smooth over the entire solution domain. The adoption of a 

weak formulation may become far more advantageous when the vibration of a plate structure is 

attempted. 
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Chapter IV Vibration of general triangular plates with elastic boundary supports 

4.1 Triangular plate vibration description 

 

 

Figure 4.1. A general triangular plate with elastically restrained edges. 

Figure 4.1 shows an isotropic triangular plate with its edges elastically restrained against 

both translation and rotation. The effects of damping, rotational inertia, and transverse shear 

deformation are all neglected here for simplicity of presentation. The vibration of the plate is 

governed by the following differential equation 

    (   )       (   )   (   ) (4.1) 

where    
  

     
  

       
  

   ;  (   )  is the flexural displacement;   is the angular 

frequency;  (   ) is the distributed harmonic excitation acting on the plate surface; and D, , 

and h are the bending rigidity, the mass density, and the thickness of the plate, respectively. The 

governing equation given here is exactly the same as Eq. (3.1) except that the domain is changed 

to a triangular region. 

The boundary conditions along the elastically restrained edges can be specified as  
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      ,    
  

  
    (       ) (4.2, 4.3) 

where    (  ) is the stiffness function of the translational (rotational) elastic restraints on the     

edge, and   ,    are the shear force and bending moment at the     edge, respectively. The 

stiffness for each elastic restraint is also allowed to vary along the edges. Thus, Eqs. (4.2, 4.3) 

represent a general set of boundary conditions from which any of the classical homogeneous 

boundary conditions (free, simply supported, clamped and guided) can be simply specified as a 

special case when the stiffness for each of the elastic restraints is set equal to either zero or 

infinity.  

4.2 Literature review on the transverse vibration of triangular plates 

Triangular plates are important structural elements since any polygon plate can be 

analyzed as a combination of triangular plates. The vibration of triangular plates has been 

extensively studied in the past years [Leissa, 1993]; however, its solvability is limited because 

the triangular domain cannot be described by two variables with independent constant bounds. 

The first quick method is to map the triangular domain onto a rectangular domain by a 

coordinate transformation [Karunasena et al., 1996, 1997]. Then, the problem can be solved by 

directly adopting the methods used in analyzing the vibration of rectangular plates. The 

drawback of this seemingly easy method is that singularity is introduced in the mapping process. 

Another method is to extend the triangular domain into a quadrilateral domain by adding one 

extremely thin layer on it, and the problem is solved as a quadrilateral plate with variable 

thickness [Huang, et al., 2001; Sakiyama, et al.,2003]. This method gives approximate frequency 

results since the mass and spring matrices are only slightly modified by the extending thin layer. 

However, care must be taken that the mode shapes adjacent to the extended edge are more 
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distorted than the remaining area. The third method is to map the general triangular domain onto 

a right angled isosceles domain [Singh & Saxena, 1996; Singh & Hassan, 1998]. This process is 

more stable since it is normally a linear transformation. The transformed domain is largely 

simplified, although it is still a triangle.  

An analytical solution is not available for the vibration of the triangular plates. A trial 

series from a certain functional is usually chosen to approximate the solution [Leissa, 1993]. The 

critical step is to identify which trial functional to use. First of all, the functional must be 

complete to approximate all the possible mode shapes at different frequencies. Second, the 

functional must satisfy all the boundary conditions either individually or collectively. Whereas 

excessive functionals cause slow convergence, incomplete functional leads to solutions with 

missed frequencies.  One of the extensively used methods is to approximate the displacement by 

the product of a complete series and a given function that satisfies all the geometric boundary 

conditions, and the product is then used as the trial function in the vibration analysis, The 

geometric boundary conditions are thus satisfied by each individual function in the series. Since 

the original functional is diluted, the convergence speed of the solution is accordingly improved. 

However, the method is complicated to use in real calculations since different boundary 

conditions are to be satisfied by different functions. It should also be pointed out that the natural 

boundary conditions are completely ignored in this method. Since the stresses in the plate are 

obtained by high order derivatives of the mode shapes, which are not calculated with enough 

accuracy, no meaningful results are reported in the literature.  Another method is to choose a 

polynomial function that satisfies all the geometric boundary conditions, and the remaining 

functions are generated by the Gram-Schmidt orthogonalization procedure [Bhat, 1987; Lam, et 

al., 1990; Singh & Chakraverty, 1992]. Once the functional is chosen, the next step is to 
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determine the unknown coefficients in the approximation series. The Weighted residual method 

and the Rayleigh-Ritz method are both used in the literature. The Rayleigh-Ritz method is more 

frequently used since it is closely related to the least square method and produces symmetric 

stiffness and mass matrices.  

Furthermore, Leissa and Jaber [1992] used two dimensional simple polynomials as the 

trial function in studying the vibration of free triangular plates with the Rayleigh-Ritz method, 

and the best possible frequency solutions are carefully chosen to avoid the ill-conditioning of the 

matrices. Huang et al. [2005] used a complete series plus some special functions in dealing with 

the singularities at the corners. Other methods used in analyzing the triangular plate vibration are 

the Superposition method [Saliba, 1996], the Finite Element method [Haldar & Sengupta, 2003], 

and the Differential Quadrature method [Chen and Cheung, 1998]. 

Most of the relevant literature found on the vibration of triangular plates is on plate with 

classical boundary conditions, which rarely exist in practice. Although boundaries with elastic 

restraints are more inclusive, little attention has been paid to this research subject. The only 

paper found in the literature is the research done by Nallim et al. [2005]. The orthogonal 

polynomials in their trial function are so constructed that the first member of the series satisfies 

all the geometrical boundary conditions. For an elastically restrained edge, however, the 

geometric and natural boundary conditions are mixed and cannot be satisfied separately. It is not 

easy to decide which polynomial in their method to choose for an elastically restrained edge 

ranging from free to clamped boundary conditions. It is concluded that a more simple and 

efficient method is still needed for the vibration of triangular plates with elastically restrained 

edges.  
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The primary focus of the current chapter is to introduce a trial function that satisfies all 

the boundary conditions of a triangular plate with elastically restrained edges.  Several single 

series are specially designed and added into an already complete double series. Similar methods 

have been successfully applied to the vibration analysis of both beams [Li & Daniels, 2002] and 

rectangular plates [Li, et al., 2009; Zhang & Li, 2009].  It should be stressed that although the 

functional is denser than a general complete series, the convergence speed is actually improved 

by the added single series. Furthermore, the same set of functions could be used for all the 

general boundary conditions, which makes the method very attractive in real applications. Since 

the boundary conditions are all satisfied and the convergence speed is greatly improved, the high 

order derivative values including the bending moments and shear forces can be calculated by 

directly differentiating the obtained displacement solution. The general triangular plate is first 

mapped onto a right angled isosceles triangular plate. The unknown coefficients in the trial 

function are determined by the Rayleigh-Ritz method, and the resulting matrices are all 

analytically evaluated. Some numeral examples are given to test the completeness and 

convergence speed of the method.  

4.3 Variational formulation using the Rayleigh-Ritz method 

A variational formulation is used in providing a solution for the current problem. The 

response of the plate subject to arbitrary forcing function  (   ) is obtained by extremalizing 

the Hamiltonian of the plate under a suitable subspace,  

  ( )   ∫ ( (
  

  
)   ( )   ( ))  

  

  
   (4.4) 

where   (
  

  
) is the total kinetic energy,  ( ) is the total potential energy, and   ( ) is the 

work done by the excitation force.  
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For a purely bending plate, the total potential energy can be expressed as 
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where    represents the original triangular domain;     represents the     edge, and   is the 

Poisson’s ratio of t e plate material. T e first integral represents t e strain energy due to t e 

bending of the plate and the rest integrals represent the potential energy stored in the restraining 

springs. 

The total kinetic energy and the external work are calculated from 
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4.3. Coordinate transformation 

 

 

 

 

Figure 4.2.A triangular plate before (a) and after (b) coordinator transformation 
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The geometric information of the triangular plate can be described by the length a and b 

of two edges and the apex angle   between them. In assisting the integral calculation, the 

irregular triangular domain (Figure 4.2a) is mapped onto a right-angled isosceles triangular 

domain (Figure 4.2b) by using the following coordinate transformation, 

{
            

         
 (4.8) 

Then the relation of the first and second derivatives between the original and transformed 

coordinates could be written as follows,  
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which is further written as     
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which is further written as    
      . 

  

   
         (       ) (4.11) 

where    [         ],    [  ], and    [        ] are the normal derivatives 

of the three corresponding edges. 

The total potential energy can be further expressed as 
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where   represents the transformed right-angled unit isosceles triangular area.  〈 〉 is the     row 

of the transformation matrix  ;            is the Jacobian of the transformation on the area, 

    ,       and    √              are the Jacobians of the transformations along the 

three edges. 

The total kinetic energy and the external work are further written as 
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Replacing the transformed potential energy Eq. (4.12) into the Hamiltonian Eq. (4.4), one get 
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where    [( 〈 〉)
 
( 〈 〉    〈 〉)  ( 〈 〉)
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         ∬    
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      (4.17) 

4.4. Displacement function and resultant matrix equation 

Since an analytical result is not available, a trial function is used along with the Rayleigh-

Ritz method. When the displacement field is periodically extended onto the whole x-y plane, as 

implied by the Fourier approximation, discontinuities may exist along the edges for the 

flexibility of the boundaries. To assure uniform convergence of the solution, the discontinuity 

along each of the edges is transformed to some sets of single Fourier series. The displacement 

function for the transformed unit right-angled isosceles triangular area is chosen as, 
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It is easy to verify that   
 ( )    

   ( )   . Each of the two terms accounts for the 

potential discontinuity of the original function or its derivatives along one of the edges     

(the same for    ). The third single series (     )  is similarly designed for the 

hypotenuse, i.e. 
  (     ) 

     . To simplify the formulation, the normal derivative of the series 

associated with     against the hypotenuse is also set to zero. Therefore, the double series only 
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represents a residual displacement function that is continuous and has at least three continuous 

derivatives over the entire x-y plane. Because the smoother a periodic function is, the faster its 

Fourier series converges, the current displacement function quickly converges to the analytical 

vibration solution of a triangular plate with given elastic boundary conditions. 

When the displacement function in Eq. (4.18) and its derivatives are substituted into the 

Energy Eqs. (4.15)-(4.17) and then the Hamiltonian Eq. (4.4), the following system of linear 

equations is obtained, 
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]  (4.19) 

where   [                       ],   [                       ], 

  [                       ] , and   [                       ] . More detailed 

information on     and     is given in the Appendix and can be found in reference (Zhang & Li, 

2011). 

Eq. (4.19) could be further written as, 

  ̃        ̃    (4.20) 

For a given excitation    , all the unknown expansion coefficients in the response function of 

the plate can be directly solved from Eq. (4.20). By setting    , Eq. (4.20) simply represents a 

characteristic equation from which all the eigenpairs can be readily determined by solving a 

standard eigenvalue problem.   
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4.5 Vibration of anisotropic triangular plates  

The vibration formulations of the anisotropic triangular plates are essentially the same as 

those of the isotropic plates except the potential energy of the plate is expressed as 
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where the rigidities    s are given by the following formulations, 
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where   ,    are the elastic modulus of the plate in the two principal directions, and   is the 

angle between the first principal direction and the x-axis of the original coordinate;    ,     are 

the Poisson’s ratios, and     is the shear modulus. 

Almost all the steps used in solving the vibration of isotropic plates are applicable to 

those of anisotropic plates. The only change is that the   matrix in Eq. (4.15) is redefined as,  
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4.6 Numerical results and discussions 

To test the completeness, convergence speed, and applicability of the described method, 

the results of some representative triangular plates with various boundary conditions are 

compared with those available in the literature. The geometry of the plate is completely defined 

by the length of two neighboring edges (  and  ) and the angle   between them. The truncation 

term in all the series is set as M=N=10. T e Poisson’s ratio is c osen as       in all results on 

isotropic plates. The elastic constants    and    of the translational and rotational elastic 

restraints are normalized by the flexible rigidity of the plate material and the length of the 

corresponding edge, i.e.,     
            and               . The infinite spring 

constant in classical boundary conditions is represented by the number 10
8
. 

4.6.1 Convergence test on a free equilateral triangular plate 

Although plenty of results are reported on the triangular plate vibration with other 

classical boundary conditions, few results are found for plates with free boundary conditions 

[Leissa & Jaber, 1992], which then stand as an interesting example to test the convergence speed 

of the current method. Table 4.1 lists the first several non-dimensional parameters   

   √   ⁄  of an equilateral triangular plate with free boundary conditions obtained with 

different truncation numbers in the series. T e Poisson’s ratio is c osen as      . Most of the 

results found in the literature fall among the current results with different truncation numbers. 

Among them those results reported by Leissa and Jaber [1992] are very close to current results 

with large truncation numbers, and their results are obtained with a series specially designed for 
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triangular plates with free boundary conditions. It is observed that the current results converge at 

a faster speed. Based on the convergence property of the current method, all the following results 

are calculated with M=N=10. 

Table 4.1. The first seven non-dimensional frequency parameters      √   ⁄  of a free 

equilateral plate obtained with different truncation numbers (     ). (#: Lessia & Jaber, 1992; 

##: Liew, 1993; †: Sing  & Hassan, 1998; ‡: Nallim, et al., 2005) 

M=

N 

4 5 6 7 8 9 10 Ref. # Ref.## 

& 

Ref. 
†
 Ref. 

‡
 

 1 34.28

6 

34.28

1 

34.27

9 

34.27

9 

34.27

9 

34.27

9 

34.27

9 

34.27

9 

34.38 34.28

4 

34.285 

 2 36.07

1 

36.06

4 

36.06

2 

36.06

2 

36.06

2 

36.06

2 

36.06

2 

36.06

3 

36.06 36.28

1 

36.068 

 3 36.08

0 

36.06

9 

36.06

3 

36.06

2 

36.06

2 

36.06

2 

36.06

2 

36.06

3 

36.16 36.33

2 

36.066 

 4 84.83

7 

84.69

5 

84.68

6 

84.68

4 

84.68

3 

84.68

3 

84.68

3 

84.68

3 

84.68   

 5 84.87

2 

84.70

2 

84.69

0 

84.68

5 

84.68

4 

84.68

3 

84.68

3 

84.68

3 

85.33   

 6 92.11

5 

92.01

2 

91.96

5 

91.95

7 

91.95

6 

91.95

6 

91.95

5 

91.95

6 

91.95   

 7 117.0

8 

116.3

2 

116.2

4 

116.2

3 

116.2

2 

116.2

2 

116.2

2 

    

4.6.2 Vibration of triangular plates with classical boundary conditions 

Table 4.2 lists the first three non-dimensional frequency parameters      √   ⁄  for 

isosceles triangular plates with ten classical boundary conditions. Three different apex angles are 

chosen as     , 90, and 120.  C, S, F are used to represent classical boundary conditions, e.g., 

SCF means simply supported on edge 1, clamped on edge 2, and free on edge 3. Finite Element 

results are also included for the cases with       since larger differences are found for some 

of the high order modes than the cases with            . 
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Table 4.2. The first three non-dimensional frequency parameters      √   ⁄  for isosceles 

triangular plates with three different apex angles and ten classical boundary conditions along 

with those results found in literature. †: Sing  & Hassan, 1998;  ‡: Nallim, et al., 2005; * : Bhat, 

1987; 
#
 : Finite Element Method with 3,000 elements. 

  60 90 120 

Source  1  2  3  1  2  3  1  2  3 

CCC 99.023 189.02 189.04 93.790 157.79 194.77 140.16 207.50 267.20 

†
99.02 189.01 189.01 93.79 157.79 194.82 140.17 207.83 272.22 

‡
99.020 189.01 189.01 93.791 157.83 195.00 

#
139.90 207.18 266.48 

CCS 81.601 164.99 165.32 73.394 131.58 165.00 105.21 165.32 218.75 

†
81.601 164.99 165.32 73.395 131.58 165.05 105.26 165.72 223.54 

‡
81.601 164.99 165.32 73.397 131.63 165.49 

#
105.09 165.16 218.35 

CCF 40.047 95.872 101.83 29.095 63.567 89.882 34.637 66.495 99.205 

†
40.016 95.827 101.79 29.093 63.567 89.866 34.641 66.498 99.863 

‡
40.018 95.838 101.80 29.093 63.571 90.133 

#
34.630 66.490 99.165 

SCF 26.562 75.316 84.353 17.967 47.950 73.626 18.924 46.785 75.581 

†
26.561 75.314 84.35 17.976 47.949 73.629 18.951 46.791 75.941 

‡
26.560 75.313 84.349 17.967 47.950 73.629 

#
18.905 46.782 75.563 

SSC 66.177 142.74 143.48 65.790 121.08 154.45 100.58 158.91 212.23 

†
66.177 142.74 143.48 65.791 121.09 154.61 100.77 159.28 219.54 

‡
66.177 142.79 143.50    

#
99.546 157.76 210.43 

SSS 52.639 122.82 122.82 49.348 98.696 128.30 71.929 122.82 169.93 

†
52.638 122.82 122.82 49.348 98.7 128.43 72.121 123.23 176.39 

‡52.63 122.83 122.84    
#
71.675 122.77 169.67 

FSF 22.646 26.659 69.397 14.561 24.737 42.026 11.365 27.097 41.835 

†
22.646 26.659 69.418 14.561 24.738 42.039 11.38 27.175 41.995 

‡
22.647 26.659 69.404    

#
11.362 27.091 41.828 
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4.6.3 Vibration of triangular plates with elastically restrained boundary conditions 

Table 4.3 lists the first ten non-dimensional frequency parameters      √   ⁄  for a 

right-angled isosceles triangular plate with evenly spread elastic boundary constraints. The 

rotational spring K and linear spring k are varied in such a way that the plate boundary 

conditions go from FFF to SSS, and to CCC. The infinite number is represented by a very large 

number, i.e., 10
8
. Current results agree well with those found in the literature [Kim, 1990; Leissa 

& Jaber, 1992] and those calculated with finely meshed Finite Element Method. 

  

FSS 16.092 57.630 68.330 17.316 51.035 72.966 24.255 59.936 95.038 

†
16.092 57.63 68.33 17.316 51.036 72.982 24.327 59.999 95.398 

‡
16.092 57.630 68.33    

#
24.235 59.933 95.007 

FCF 8.9205 35.090 38.484 6.1637 23.457 32.663 5.6959 21.477 35.993 

†
8.9210 35.095 38.484 6.1670 23.458 32.682 5.7010 21.501 36.269 

*
8.9221 35.132 38.505 6.1732 23.414 32.716 5.7171 21.526 37.455 

‡
8.9166 35.094 38.483    

#
5.6899 21.457 35.950 

FFF 34.279 36.062 36.062 19.068 29.123 45.397 13.431 25.189 46.086 

†
34.284 36.281 36.332 19.077 29.191 45.62 13.434 25.22 46.639 

‡
34.281 36.064 36.065    

#
13.431 25.190 46.090 
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Table 4.3. The first ten non-dimensional frequency parameters      √   ⁄  for an right-

angled isosceles triangular plate with evenly spread elastic boundary constraints. K represents 

rotational spring and k represents linear spring. Infinite number is taken as 10
8
. †: Kim & 

Dickinson, 1990; ‡: Leissa & Jaber, 1992; #: Finite Element Method with 3,359 elements. 

 

 1  2  3  4  5  6  7  8  9  10 

FFF 0 0 0 19.068 29.123 45.397 49.475 72.350 84.052 99.939 

    
†
19.080 29.250 46.030 49.650 73.680 85.970  

    
‡
19
068 29.123 45.398 49.476 72.367 84.091  

k=10
-2

, ,K=0 0.2151 0.3162 0.3221 19.071 29.125 45.399 49.476 72.350 84.053 99.939 

k=10
-1

, ,K=0 0.6797 0.9998 1.0184 19.102 29.147 45.414 49.488 72.359 84.062 99.945 

k=1,K=0 2.1337 3.1564 3.2182 19.410 29.364 45.567 49.606 61.129 72.449 84.155 

k=10, ,K=0 6.3389 9.8189 10.111 22.327 31.439 47.061 50.792 73.348 85.075 100.62 

k=10
2
, ,K=0 16.122 27.202 30.064 40.847 46.600 59.707 62.425 82.290 93.674 106.75 

 
#
16.141 27.296 30.400 41.304 47.004 60.444 63.018 83.329 94.027 107.05 

k=10
3
, ,K=0 35.803 58.496 69.775 86.908 97.059 114.16 119.54 136.28 146.73 158.15 

k=10
4
, ,K=0 47.291 90.916 115.91 145.83 168.77 199.88 203.64 208.81 228.97 259.95 

SSS 49.348 98.696 128.30 167.79 197.39 246.74 256.61 286.22 335.57 365.20 

 
†
49.350 98.760 128.40 169.10 200.30 249.80     

K=10
-2

, k=10
8
 49.378 98.726 128.33 167.81 197.42 246.77 256.64 286.25 335.60 365.22 

K=10
-1

, k=10
8
 49.646 98.994 128.60 168.08 197.69 247.04 256.91 286.53 335.87 365.49 

K=1, k=10
8
 52.131 101.54 131.17 170.67 200.28 249.64 259.52 289.11 338.48 368.10 

K=10, k=10
8
 66.626 118.21 148.66 189.10 219.05 269.05 279.16 309.10 358.69 388.73 

K=10
2
, k=10

8
 87.448 147.49 182.21 227.47 260.33 315.13 326.20 358.87 411.64 444.30 

K=10
3
, k=10

8
 93.029 156.48 193.14 240.73 275.30 332.86 344.34 378.65 433.86 467.89 

K=10
4
, k=10

8
 93.691 157.59 194.51 242.42 277.23 335.20 346.75 381.30 436.89 471.15 

CCC 93.766 157.71 194.67 242.62 277.46 335.47 347.03 381.62 437.26 471.55 

 
†
93.790 157.80 194.80 243.10 278.20 336.30     
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4.6.4 Vibration of anisotropic triangular plates 

The method is then applied to an orthotropic right-angled cantilever triangular plate 

(FCF). The plate is made of carbon/epoxy composite material with the following material 

properties [Kim & Hong, 1988]:          ,           ,          , and     

       .       is used to agree with the setup in the ref. [Nallim, et al., 2005].  Table 4.4 

listed the first eight non-dimensional frequency parameters      √    ⁄  along with those 

of Nallim et al [2005], and Kim and Dickinson [1990].     is defined as 

      
   (        )⁄ . 

Table 4.4. The first eight non-dimensional frequency parameters      √    ⁄  of an 

orthotropic right-angled cantilever triangular plate (FCF). The plate is made of carbon/epoxy 

composite material (     ) with following material properties:          ,           , 

         , and            . †: Kim & Dickinson, 1990; ‡: Nallim, et al., 2005.  

b/a  1  2  3  4  5  6  7  8 

1/3   23.6754 89.4748 130.222 231.597 316.94 441.197 503.05 606.82 

† 23.68 89.47 130.2 231.7 317.1 444.5 - - 

‡23.6763 89.4695 130.219 231.596 317.051 441.966 506.012 614.757 

1/2.5   22.948 81.861 123.651 214.978 295.822 385.13 449.929 546.656 

 † 22.95 81.86 123.7 215 296.2 387.7 - - 

 ‡22.9486 81.8557 123.648 214.987 295.971 386.676 451.631 556.032 

1/2   22.0617 72.3317 117.122 191.578 262.183 325.734 403.386 452.889 

 † 22.06 72.34 117.1 191.7 263.2 327.5 - - 

 ‡22.0622 72.3326 117.125 191.606 262.589 327.511 404.302 466.37 

1/1.5   20.9671 60.6675 110.24 156.043 210.946 292.66 315.431 353.502 

 † 20.97 60.67 110.3 156.2 211.8 294 - - 

 ‡20.9674 60.6674 110.249 156.097 211.363 295.571 319.255 370.871 
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1   19.5691 46.9946 97.0025 112.684 157.792 200.499 245.756 279.578 

 † 19.57 47 97.12 113.1 158.1 201.1 - - 

 ‡19.5694 46.9954 97.141 112.9 159.198 205.563 264.355 294.432 

1.5   18.3704 37.0553 68.5394 101.211 108.011 145.966 165.998 200.34 

 † 18.37 37.06 68.55 101.6 108.4 147.8 - - 

 ‡18.3712 37.0727 68.7113 102.34 114.767 156.485 180.852 235.89 

2   17.6458 31.9099 53.549 78.814 99.9765 108.448 138.459 148.446 

 † 17.65 31.91 53.59 79.83 100.6 113.7 - - 

 ‡17.648 31.9297 54.6002 85.6955 100.443 134.046 147.991 207.21 

2.5   17.1539 28.7661 45.0686 63.7816 85.2004 98.2941 109.379 132.775 

 † 17.16 28.77 45.22 65.41 93.14 99.14 - - 

 ‡17.1571 28.8573 46.7145 69.2801 98.3726 122.602 137.191 192.978 

3   16.7939 26.6391 39.6706 54.3677 70.9871 89.5571 96.9944 111.301 

 † 16.78 26.65 39.97 56.54 81.82 97.59 - - 

 ‡16.8013 26.8304 41.0884 61.3023 97.0716 114.903 131.315 182.076 

 

Comparisons are also made with an anisotropic isosceles triangular plate with evenly 

spread elastic boundary constraints. The geometric parameters are    ,    (       )⁄ , 

and      . The material properties are chosen to agree with those reported by Nallim et al 

[2005], i.e.          ,         ,        , and         . The angle   in the current 

paper is complementary to t e one reported in Nallim’s paper. Table 4.5 listed the first eight non-

dimensional frequency parameters      √    ⁄  for             . It is observed that the 

current results agree with those in the literature, but the difference increases with the decrease of 

the elastic constants   and  .  
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Table 4.5. The first six non-dimensional frequency parameters      √    ⁄  of an 

anisotropic isosceles triangular plate with evenly spread elastic boundary constraints. The 

geometric parameters are    ,    (       )⁄ , and      .  The material properties are 

         ,         ,        , and         . ‡ Nallim, et al., 2005 

 =0°  1  2  3  4  5  6  ‡  1 ‡  2 ‡  3 

K  k=10
8
        

0 18.203 28.616 40.571 54.235 57.578 69.667 18.242 29.157 43.264 

1 20.468 30.880 42.910 56.640 60.330 72.129 20.196 31.230 45.584 

10 27.257 38.582 51.433 65.884 69.556 82.091 27.371 39.669 56.794 

50 33.752 46.619 60.964 76.871 80.615 94.866 34.098 48.309 72.146 

100 35.532 48.956 63.884 80.433 84.253 99.457 35.899 50.879 77.789 

10
8
 37.909 52.158 67.996 86.079 89.964 108.50 37.911 53.191 74.466 

K  k=100        

0 6.675 9.208 11.794 12.574 15.765 17.166 6.868 9.151 11.866 

1 7.172 9.676 13.128 13.631 17.681 18.715 7.154 9.245 11.995 

10 7.481 10.210 13.933 17.664 18.605 24.257 7.472 9.513 12.403 

50 7.595 10.467 14.324 19.169 19.619 25.133 7.591 9.685 12.684 

100 7.619 10.522 14.404 19.298 19.981 25.352 7.615 9.723 12.746 

10
8
 7.662 10.616 14.540 19.495 20.582 25.657 7.672 9.810 12.856 

K  k=50        

0 4.985 7.185 8.811 10.366 12.647 14.521 5.114 6.905 8.610 

1 5.425 7.647 10.829 11.147 14.856 16.068 5.324 6.974 9.470 

10 5.689 8.175 11.509 15.420 15.694 21.091 5.525 7.215 9.963 

50 5.797 8.403 11.869 16.320 17.178 22.166 5.605 7.364 10.226 

100 5.819 8.446 11.945 16.465 17.489 22.430 5.621 7.394 10.279 

10
8
 5.860 8.522 12.068 16.656 17.929 22.760 5.657 7.437 10.346 

K  k=10        

0 2.514 4.220 4.629 6.513 8.331 9.602 2.497 3.476 3.967 

1 2.887 4.499 6.724 7.384 10.166 11.938 2.577 3.696 5.829 

10 3.085 4.864 7.402 10.774 11.604 17.836 2.701 4.580 9.324 

50 3.141 5.047 7.846 12.283 12.567 19.387 2.691 4.088 7.111 

100 3.150 5.082 7.938 12.571 12.778 19.744 2.698 4.110 7.205 

10
8
 3.168 5.129 8.045 12.904 13.044 20.224 2.706 4.139 7.318 

K  k=1      
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0 0.970 1.751 1.783 3.341 5.803 6.957 

1 1.155 1.976 4.260 4.704 8.452 10.593 

10 1.201 2.455 5.548 8.461 10.478 17.110 

50 1.211 2.686 6.208 10.195 11.635 18.797 

100 1.212 2.729 6.338 10.528 11.879 19.180 

10
8
 1.215 2.777 6.499 10.929 12.196 19.702 

K  k=0     

0 0.000 0.000 0.000 2.620 5.401 6.650 

1 0.000 1.189 3.892 4.189 8.257 10.448 

10 0.000 1.915 5.327 8.136 10.356 17.031 

50 0.000 2.203 6.024 9.919 11.535 18.734 

100 0.000 2.254 6.159 10.260 11.783 19.119 

10
8
 0.000 2.314 6.329 10.674 12.109 19.645 

 

 =30°  1  2  3  4  5  6  ‡  1 ‡  2 ‡  3 

K  k=10
8
        

0 17.909 28.630 40.942 53.348 57.649 69.637 17.922 28.966 43.322 

1 19.907 30.839 43.264 55.533 60.001 71.999 19.715 31.013 45.736 

10 26.493 38.577 51.987 64.579 69.614 82.029 26.449 39.587 56.504 

50 31.546 45.076 59.887 73.510 79.055 92.403 31.752 47.199 67.167 

100 32.770 46.745 62.016 76.034 81.751 95.455 33.038 49.166 70.229 

10
8
 34.302 48.888 64.813 79.456 85.463 99.690 34.315 49.116 67.989 

K  k=100        

0 6.794 9.376 12.381 13.132 16.868 18.169 6.872 9.240 11.779 

1 7.237 9.845 13.234 14.481 17.947 20.467 7.122 9.349 12.148 

10 7.551 10.355 14.130 17.326 19.151 24.125 7.458 9.549 12.565 

50 7.652 10.578 14.497 18.397 19.843 25.103 7.581 9.657 12.785 

100 7.672 10.627 14.570 18.573 19.993 25.297 7.581 9.657 12.785 

10
8
 7.703 10.698 14.682 18.849 20.200 25.591 7.639 9.730 12.974 

K  k=50        

0 5.066 7.277 9.470 10.536 14.054 15.037 5.130 6.954 8.652 

1 5.469 7.739 10.847 11.750 15.007 17.577 5.313 7.044 9.517 

10 5.730 8.253 11.610 14.658 15.986 20.984 5.515 7.223 10.066 

50 5.830 8.465 11.920 15.664 16.681 22.069 5.591 7.323 10.290 

100 5.851 8.506 11.981 15.831 16.836 22.305 5.606 7.344 10.333 
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10
8
 5.882 8.565 12.070 16.086 17.030 22.601 5.627 7.377 10.426 

K  k=10        

0 2.533 4.210 4.968 6.497 9.448 9.655 2.505 3.476 3.974 

1 2.885 4.503 6.701 7.363 10.113 13.467 2.574 3.701 5.833 

10 3.092 4.819 7.319 10.265 11.628 17.626 0.000 0.000 0.000 

50 3.155 4.955 7.686 11.441 12.617 19.219 2.644 3.936 6.603 

100 3.166 4.980 7.759 11.661 12.836 19.556 2.673 4.023 6.996 

10
8
 3.181 5.011 7.845 11.947 13.113 19.962 2.681 4.068 7.185 

K  k=1      

0 0.968 1.770 1.782 3.253 6.746 7.117 

1 1.149 1.927 4.140 4.901 8.304 12.167 

10 1.199 2.315 5.388 8.423 10.446 16.847 

50 1.210 2.492 5.991 9.813 11.633 18.598 

100 1.212 2.524 6.105 10.081 11.885 18.962 

10
8
 1.214 2.559 6.236 10.421 12.204 19.406 

K  k=0     

0 0.000 0.000 0.000 2.490 6.415 6.778 

1 0.000 1.094 3.747 4.486 8.097 12.017 

10 0.000 1.736 5.152 8.176 10.317 16.761 

50 0.000 1.974 5.796 9.603 11.528 18.530 

100 0.000 2.016 5.040 5.916 9.877 11.783 

10
8
 0.000 2.062 6.055 10.228 12.101 19.345 

 

4.6.5 Mode shapes 

Once the natural frequencies are obtained, the corresponding eigenvectors quickly 

determine the mode shapes under the given frequencies. Figure 4.3 gives the first three mode 

shapes of triangular plates with different geometries and boundary conditions. a1-a6 in Figure 

4.3 are the first six modes of a free equilateral triangular plate as described in Section 3.1. b1-b6 

in Figure 4.3 are the first six mode shapes of a right-angled isosceles triangular plate with elastic 

boundary constraints      and       as described in Section 3.3. c1-c6 in Figure 4.3 are 

the first six mode shapes of an anisotropic plate with       and elastic boundary constraints 
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      and      as described in Section 3.4. The mode shapes are checked and agree with 

those available in the literature. 

 

Figure 4.3. The first six mode shapes of a free equilateral triangular plate as described in Section 

4.6.1 (a1-a6), a right-angled isosceles triangular plate with elastic boundary constraints      

and       as described in Section 4.6.3 (b1-b6), and an anisotropic plate with       and 

elastic boundary constraints       and      as described in Section 4.6.4 (c1-c6). 

4.7 Conclusions 

The applicability and convergence of a method in solving the vibration of triangular 

plates depend largely on how and to what extend the actual displacement can be faithfully 

represented by the chosen displacement function. A general triangular plate is first mapped onto 

a right-angled unit isosceles triangular plate. Then a displacement function is introduced that 

collectively satisfies all the boundary conditions of a triangular plate with elastically restrained 

edges.  Several single series are specially designed and added into the already complete double 

series in the displacement function. The trial functional is denser than a normal complete series 

and the convergence speed is improved by the added single series. Furthermore, the same set of 

functions is used for all the boundary conditions, which makes the method very attractive in real 

(a1) (a2) (a3) (a4) (a5) (a6)

(b1) (b2) (b3) (b4) (b5) (b6)

(c1) (c2) (c3) (c4) (c5) (c6)



80 

 

applications. Since the boundary conditions are all satisfied and the convergence speed is 

improved, the high order derivative values including the bending moments and the shear forces 

can be directly calculated by differentiating the obtained displacement solution. The unknown 

coefficients in the trial functions are determined by the Rayleigh-Ritz method, and the resulting 

matrix elements are all analytically evaluated. Numerical examples are tested on general 

isotropic and anisotropic triangular plates with a variety of classical and elastic boundary 

conditions. The completeness of the current method as well as its fast convergence are verified 

by all the collected results. 

The current method should also be applicable to plates with other more complicated 

geometries and material properties, such as plates with variable thickness, plates with shear 

deformation and rotary inertia effects, etc.  
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Chapter V Vibration of build-up structure composed of triangular plates, rectangular 

plates, and beams 

5.1 Structure vibration description 

 

 

Figure 5.1 A general structure composed of triangular plates, rectangular plates and beams 

Studied in this chapter are complex industrial structures consist of an arbitrary number of 

triangular plates, rectangular plates, and beams (Figure 5.1). The coupling among the plates and 

beams are modeled by a combination of linear and rotational springs, which can account for any 

coupling ranging from free to rigid connection. While the coupling location between a beam and 

plate can be on the boundary or interior of the plate, two plates are only coupled along their 

edges, The same apply to two beams, which are only coupled at their end points to ensure fast 

convergence of the solution. 

5.2 Literature review 

With increasing customer demands and stricter fuel efficiency regulation, the auto 

industry generated a steadily increasing interest in optimizing the mechanical structure of and 

thus reducing the weight of the vehicle. Noise and vibration attributes of the vehicle make up one 



82 

 

of the major part of the heavy investment. The natural frequencies of the vehicle shift toward 

higher frequency range when the vehicle becomes more roomy and lighter. An accurate and 

computation efficient algorism in mid-frequency noise and vibration prediction is still in need 

despite the stride improvement of FEA method and modern computation power.  

A structure shows different characteristics at three different frequency ranges. At low 

frequencies, where only a few modes dominate the response of a structure, deterministic FEA 

method is the golden tool for vibration analysis. But as the frequency increase, the element size 

has to be reduced to capture the small wave length. Furthermore, the structure is more sensitive 

to structure variations such as material property variation, manufacture tolerance, modeling 

approximation, etc. At high frequencies, where the model density is so high that only statistically 

averaged response is possible, SEA method is the appropriate tool to use. However, there is still 

a wide mid-frequency range that is more sensitive to human ear and strongly correlated with the 

product quality. In this frequency range, the computational requirement is prohibitively large for 

FEA method, while the basic assumption of the SEA method is not yet fulfilled. Furthermore, 

complex structure may have some components exhibit high-frequency behavior while others 

show low-frequency behavior. At this critical frequency range, no mature prediction technique is 

available at the moment although a vast amount of research efforts can be found in the literature 

searching for a solution of this unsolved problem (Desmet, 2002; Piere, 2003). The first 

approach in these efforts is to push the upper frequency limit of FEA method so that the mid-

frequency problem can be partially or fully covered (Zienkiewicz, 2000; Fries and Belytschko, 

2010). The first method in this approach is to improve the computation efficiency of the current 

FEA method. The most efficient solver is chosen in the actual industry computation of large 

scale problem, Lanczos method is normally used in standard normal mode analysis since its fast 
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and accurate performance. The computation efficiency can also be greatly improved by using 

sub-structuring method such as Component Mode Synthesis (CMS). Review papers on Sub-

structuring methods can be found in the literature (Craig, 1977; Klerk, 2008). Following the old 

principle of “divide and conquer”, an expensive large problem is replaced by solving a 

combination of several (or many) smaller problems. Since the computation time decrease 

exponentially with the decrease of matrix size, CMS can potentially save the computation time 

by magnitude of order while keep a relatively good accuracy. Different approaches exist in CMS 

method on how the components are connected. The component boundary condition can be 

chosen as free, fixed, or a mixed boundary conditions. Commonly used Craig-Bampton method 

use a combination of dynamic modes with fixed boundary condition and static constraint modes 

performed by mean of Guyan static condensation, which apply a unit displacement at each one 

boundary node while keep all other boundary nodes fixed. Furthermore, dividing the system into 

components allows a combination of results from different groups or even different methods, 

such as FEA, SEA, or experimental results. CMS method is further used in uncertainty reanalysis 

(Zhang, 2005; Sellgren, 2003, Gaurav, 2011). Herran (2011) reported an improved method 

which orthogonalizes the constraint modes with respect to t e mass matrix flowing Fauc er’s 

method. Since the reduced mass matrix is diagonal, the computation efficiency of explicit 

resolution can be improved.  The Automated Multi-level Synthesis (AMLS) method developed 

by Bennighof (2004) is widely used in current FEA computation acceleration, AMLS 

automatically divide the stiffness and mass matrices into tree-like structure, and the lowest level 

component is solved by using Craig-Bampton CMS method with fixed boundary condition. An 

industrial validation case of AMLS method can also be found (Ragnarsson 2011).  
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The other method in pushing the upper frequency limit of FEA is to improve its 

convergence rate. Such techniques include adaptive meshing (h-method), multi-scale technique, 

and using high order element (p-method). While many methods are developed for solving the 

mid-frequency problem, these methods are either directly target to or closely related with the p-

method. Discontinuous enrich method (DEM) developed by Farhat (2003) enrich the standard 

polynomial field within each finite element by a non-conforming field that contains free-space 

solutions of the homogeneous partial differential equation to be solved. DEM method is also 

applied to three dimensional acoustic scattering problems (Tezaur, 2006). Similar idea enriches 

the finite element by harmonic functions (Housavi, 2011) can be found in crack analysis. The 

Partition of Unity met od, w ic  is developed by Babuška (1997), is also used in solving mid 

frequency vibration problem (Bel, 2005). Desmet (1998) developed a method called Wave based 

method (WBM), which use the exact solution of homogeneous Helmholtz equation as the 

approximation solution. Since the governing equation is satisfied by each of the approximation 

function, the final system equation is solved by only enforcing boundary and continuity 

conditions using a weighted residual formulation. Several research paper related with WBM and 

its combination with other method can be found in the literature (Bergen, 2008; Genechten, 2010; 

Vergeot, 2011;). Ladeveze (1999) developed a method called variational theory of complex rays 

(VTCR), in which the solution is decomposed into a combination of interior rays, edge rays, and 

corner rays that satisfy the governing equation a priori. So the final equation is also solved by 

enforcing the boundary and interface continuity condition by using a variational formulation. 

VTCR method and WBM method are closely related with each other, and both belong to the 

Trefftz method. 



85 

 

The second approach in solving the mid frequency problem is to push the lower limit of 

the SEA method by relaxing some of its stringent requirements, such as the coupling between 

systems can be strong, there can be only a few modes in some subsystems, there is only 

moderate uncertainty in subsystems, or the excitation can be correlated or localized (SEA assume 

rain-on-the-roof excitation). Most of the methods in this direction use the helpful results from 

FEA method. One of such method is the Mobility Power Flow Analysis, which use the mobility 

function at the coupling points calculated by FEA to represent the coupling between 

substructures and SEA concepts are used to estimate the system response (Cuschieri, 1987, 

1990). Since t e coupling loss factor doesn’t require spatial and frequency averaging, t e results 

can represent the model behavior at the mid frequency range. Another method called statistical 

model energy distribution analysis (SmEdA) method compute the model behavior of the 

substructures by FEA method in advance, and the coupling loss factor between individual modes 

of connection subsystem is used in SEA analysis (Stelzer, 2011).   

The third approach in conquering the mid frequency problem is a hybrid method which 

combines both the FEA and SEA concepts. The Energy Finite Element Analysis (EFEA) method 

directly combine the element idea of FEA and energy concept of SEA. Since the field energy 

variable used the same rule as heat transfer law, available thermal FEA software can be directly 

adopted in EFEA analysis. But the natural difference between thermal problem and vibration 

problem make this method less attractive in real application. In fact, complex structure may have 

some components exhibit high-frequency behavior while others show low-frequency behavior. A 

hybrid deterministic-statistical method call Fuzzy Structure Theory (Soize, 1993; Shorter and 

Langley, 2005) was developed, in which a system is divided into master FEA structure and slave 

fuzzy structures described by SEA method. The coupling between the FEA and SEA components 
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are described by a diffuse field reciprocity relation (Langley and Bremner, 1999; Langley and 

Cordioli, 2009). Application of hybrid FEA plus SEA concept in industry can also be found 

(Cotoni, etc., 2007; Chen, etc., 2011). Another similar method combing the FEA method and 

analytical impedance is also developed (Mace 2002) 

Although plenty of new methods are proposed for mid-frequency analysis, no mature 

method is available to solve the mid-frequency challenge in the industry vibration analysis. This 

chapter will have a detailed description of Fourier Series Element Method (FSEM) method, 

which is more close to the first approach in solving the mid frequency problem. FSEM model of 

a system has smaller model size and higher convergence rate than FEM model, which make it 

possible to tackle higher frequency problem before encounter the computation capacity 

limitation. Current method is closely related with DEM, VTCR, and WBM methods. The 

difference is t at current met od doesn’t only satisfy t e governing equation, but also t e 

boundary conditions in an exact sense. The final system equation is assembled by the variational 

formulation on both the interior and the boundary of the studied domain. 

5.3 Energy equations 

The expression for the total potential energy, kinetic energy of the plate and beam 

assembly and the external energy contribution are given, respectively, by  

  ∑ (  
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 ∑ (  

    
   )
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 ∑   

     

   
 ∑   
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where    (   ) is the total number of plates (beams) in the build-up structure;    ,    ,     are 

the numbers of coupling spring among the plates, among the beams, and among the plates and 

beams, respectively;   
 
 (   

  ) is the strain energy due to the vibration of the     plate (beam); 

  
   

 (   
   

) is the potential energy stored in the boundary springs of the      plate (beam);    
  

, 

  
  

,   
   are the potential energies stored in the      pair of coupling spring between plate and 

plate,  plate and beam, beam and beam, respectively;   
 
 (  

 ) is the kinetic energy corresponding 

to the vibration of the     plate (beam).   
 
 and   

  are the energy contribution from the external 

force done on the     plate and beams, respectively. 

5.3.1 Energy contribution from a single plate 

The strain energy of a single plate is given by 

  
  

 

 
∭          

  (5.3) 

For a plate with uniform thickness  , Equaiton (5.3) could be further simplified as, 

  
  

 

 
∬ (∫          
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where    is the surface area of the     plate.  

The total potential energy for a classical plate can be decomposed as  

  
    

      
   

   

where   
   

 represents the contribution from the transverse vibration; and   
   

 account for the 

contribution from the in-plane vibration. 
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For a classical plate undergoing only transverse vibration, the transverse straight lines are 

assumed inextensible and remain perpendicular to the deformed midsurface. The strain along the 

transverse direction is assumed negligible. These assumptions are equivalent to specifying  

   
   ,     

   ,     
     (5.5) 

Then all the nonzero strains exist only in the plane parallel to the plate surface. The 

displacement field and associated nonzero plane strains are, 

            ⁄  ,             ⁄  ,      (     )  

   
      

       ⁄  ,    
      

       ⁄  ,    
      

         ⁄  (5.6) 

where   ,   ,    are the local coordinates of the     plate. 

The strain energy associated with the transverse vibration is expressed as, 
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where   [   
    

    
  ] ,   [   

    
     

  ] ,        , and    is the material 

constitutive matrix of  the      plate. Using the relation in Eq. (5.6), Eq. (5.7) could be further 

given as, 

  
    

  

  
∬     

        
   (5.8) 

where      [       
 ⁄        

 ⁄            ⁄ ] . 

For a classical plate undergoing only in-plane vibration, the displacement field and 

associated strains are, 
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     (     ) ,      (     ) ,        
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        ⁄ ,     
        ⁄        ⁄    (5.9) 

The strain energy associated with in-plane vibration is expressed as, 
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where     [      ⁄       ⁄       ⁄        ⁄ ] . 

Eq. (5.8) and Eq. (5.10) is applicable for both isotropic and anisotropic plates. 

The boundary condition of the plates and beams are all described by a set of linear and 

rotational springs. The strain energy stored in the boundary spring is given by, 
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where    [      ]  ,     [
   

   
 

   

   

   

   
 

   

   
]
 

,    and    are the coupling spring 

matrices in the local coordinate of the     plate, and    represents the boundary of the     plate.  

The kinetic energy of the plate is simply given by  

   
 

 
  ∬     (  

    
    

 )
 

       (5.12) 

5.3.2 Energy contribution from a single beam 

The potential energy of a single beam can also be obtained based on Eq. (5.3). The 

contribution from the flexible vibration, longitudinal vibration, and torsional vibration are 

assumed linearly addable and given as, 
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where   ,     ,     ,   ,   ,    are t e Young’s modulus, moment inertia about y and z axes, cross-

sectional area, shear modulus, and rotatary inertia of the beam, respectively.  

The kinetic energy of the beam is given by, 
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    (5.14) 

where    is the beam density. 

The strain energy stored in the boundary spring is given by, 

  
    

 

 
  

      
 

 
   

        

where    [      ]  ,     [   
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. 

5.3.3 Energy contribution from the coupling springs  

The coupling condition among the plates and beams are again described by different sets 

of linear coupling springs. The strain energy is first given in the global coordinates. For the     

pair of coupled edge between     edge of      plate and     edge of the     plate, the strain 

energy stored in the spring is given as  
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where  ̅ ,  ̅ ,   ̅ represent the global coordinate,  ̅  [ ̅  ̅  ̅ ] ,   ̅  [  ̅    ̅    ̅  ] , 

and  ̅ ,  ̅ ,  ̅  (  ̅  ,   ̅  ,   ̅  ) represent the displacement (rotation) of the     plate in the global 

coordinate.;  ̅  and  ̅  represents the coupling spring in the global coordinate. 

For the coupling between a plate and a beam when the beam lies inside the plate surface, 

the coupling Eq. (5.15) also changed to 
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where  ̅   ,   ̅    represents the translation and rotation associated with the beam, respectively.  

When the coupling only occurs at one point between a plate and a beam, the integration sign in 

Eq. (5.16) is dropped and given by  
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For two beams coupled at one point, the strain energy is given by  
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 ̅ (  ̅      ̅   )  (5.18) 

Since the condition for the fast convergence of the current method will be violated if the 

coupling occurs at the middle point of the beams or plate. It is suggested that the plate and beam 

structure be constructed such that the coupling only happen at their boundaries. However, it 
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should be point out that the solution in the method will converge to the exact solution even the 

coupling exist in the middle area of the plates or beams. 

The energy contribution from the external force done on the     plate and beams are 

  
  ∬    

        (5.42) 

  
  ∫            

  (5.43) 

where    [  
 (   )   

 (   )   
 (   )],      [    

 ( )     
 ( )     

 ( )     
 ( )] are the 

external force act on the plate and beams.  

5.4 Transformation from global to local coordinate 

Although the displacement filed and energy equation for a single plate or beam are both 

described in the local coordinate, the coupling condition between two plates or beams has to be 

described in the global coordinate. To define the plate (or beam) local coordinates, three distinct 

points are needed and these points cannot stand on the same line in the space. Although the 

dimension of a plate contains enough information for the definition of its local coordinate, an 

extra point is needed for a beam to define its orientation.  

5.4.1 Transformation matrix from global to local coordinates 

The transformation between local and global coordinates will be described for a general 

triangular plate. The extra point for a rectangular point is neglected and the reference point 

created for a beam is used in its local coordinate definition. 
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Figure 5.2 Transformation between the local and global coordinates 

In Figure 5.2, the  ̅- ̅- ̅ coordinate represents the global coordinate, and the   -  -   

 coordinate represents the local coordinate of the     plate.       are the three apex points of the 

plate, and ( ̅ , ̅ ,  ̅) (j=1, 2, 3) are the global coordinates of the three points.  

In the global coordinate,    [( ̅   ̅ )
  ( ̅   ̅ )

  (  ̅    ̅)
 ]   ,    [( ̅   ̅ )

  

( ̅   ̅ )
  (  ̅    ̅)

 ]   ,    [( ̅   ̅ )
  ( ̅   ̅ )

  (  ̅    ̅)
 ]   ,   

     (
           

      
), and         (

           

      
) 

The coordinates in the two systems are related by a rotation matrix and a transformation vector, 

 ̅        ̅  (5.19) 

where  ̅  [ ̅  ̅  ̅] ,    [   ] ,  ̅  [ ̅  ̅   ̅] , and    [
         
         

         

]  

The local coordinates of the three apex points are   [   ] , 

   [    ] ,    [             ] , then    [    ]  and    

   ̅ 

 ̅ 

 ̅ 

B( ̅ , ̅ ,  ̅) 

C( ̅ , ̅ ,  ̅) 

A( ̅ , ̅ ,  ̅) 
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[             ] . Since both the global and local coordinates of the three points are 

given and the two vectors AB and AC have zero   - components, the first two column of the 

transformation matrix    is determined by following equation, 

[
 ̅   ̅  ̅   ̅ 

 ̅   ̅  ̅   ̅ 

  ̅    ̅   ̅    ̅

]  [
      
      

      

] [
        
       

]  (5.20) 

Since AB and AC are in the same plane but not exist in the same line, the last matrix in Eq. (5.20) 

is invertible and the equation could be further written as, 

[
      
      

      

]  [

          

          

          
] [

        
       

]
  

 (5.21) 

The transformation from global to local coordinate is always linear and the third column 

component of the transformation matrix is determined by  

 〈 〉   〈 〉   〈 〉   (5.22) 

where  〈 〉 represents the     column of the transformation matrix T. The transformation matrix 

is thus calculated for a defined general plate in a three dimensional space.  

5.4.2 Energy equations in the transformed local coordinates 

The principal direction of the coupling or boundary spring is assumed given and have its 

own local coordinate system  ̃- ̃- ̃. The spring matrix has nonzero values at its diagonal terms 

only in its own coordinate, and  ̃      [  ̃   ̃   ̃ ] ( ̅      [  ̃   ̃   ̃ ]), where 

diag [.] denotes the diagonal matrix formed from the listed elements   ̃ ,   ̃ , and   ̃  (  ̃ ,   ̃ , 

and   ̃ ). The transformation matrix between the spring local coordinate and the plate local 
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coordinate is also assumed known as  ̃ . i.e.    ̃  ̃ . Then the spring matrices could be 

expressed in the local coordinates as, 

    ̃  ̃  ̃ 
 
 ,     ̃  ̃  ̃ 

 
  (5.23) 

The local coordinate of the springs will be chosen to match that of the coupling edge of 

the first plate. Since the transformation matrix for the local coordinate of the plate is known as   , 

The transformation matrix for the spring is obtained by times it with    

 ̃        (5.24) 

where    [
                
               

   

] . For a general triangular plate, the three edges are 

numbered as follow, AB as 1, BC as 2, CA as 3. Table 5.1 lists the     for the three triangular 

plate edges. 

Table 5.1 transformation angles for the three edges of a general triangular plate 

Edge number  1 2 3 

     0       

For a general rectangular plate, the four edges are numbered as follow, AB as 1, BC as 2, 

CD as 3, and DA as 4. Table 5.2 lists the     for the four rectangular edges. 

Table 5.2 transformation angles for the four edges of a general rectangular plate 

Edge number 1 2 3 4 

    0           
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Based on the coordinate transformation, the energy Eq. (5.15) accounting for the 

contribution from the coupling springs of two plates are further expressed as, 
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  (5.25) 

where   
   ̃ 

 
 ̃  ̃     ̃ 

 
 ̅  ̃   

 
 ,   

   ̃ 
 
 ̃  ̃     ̃ 

 
 ̅  ̃   

 , and    
   ̃ 

 
 ̃  ̃  

   ̃ 
 
 ̅  ̃   

  ;   
 ,  

 ,and    
  have the same format as   

 ,  
 ,and    

 , respectively. 

The Eqs. (5.16- 5.18) follow the same pattern except that they differ Eq. (5.25) with an 

integration sign.  

5.5 Transformation of the plate integration into a standard form 

To reduce the calculation burden in solving a complex structure consists of many plates 

and beams, it is advantageous to have the stiffness and mass matrixes of the plates saved in 

advance and load them when compiling the matrix for a given structure. However, it is 

impossible to save the matrix of a general triangular or rectangular plate. By transforming the 

energy Eq. (5.8) and Eq. (5.10) into a unit right angled isosceles triangle or unit square domain, 

the matrices only need to be saved one time. From now on,   , and    will denote the original 

local coordinate and   and   will represents the transformed local coordinates. 

The irregular triangular domain (Figure5.3a) is mapped onto a unit right angled isosceles 

triangular domain (Figure5.3b) by using the following coordinate transformation, 



97 

 

 

Figure 5.3 A triangular plate before (a) and after (b) coordinator transformation 

{
            

         
  (5.26) 

Then the relation of the first and second derivatives between the original and transformed 

coordinates could be written as follows,  

[

  

   
  

   

]  [
  ⁄  

      ⁄  (     )⁄
] [

  

  
  

  

]  (5.27) 

Eq. (5.27) is further written as 

   
        (5.28) 
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 (5.29) 

Eq. (5.29) is further written as 

   
       (5.30) 

Eq. (5.8) and (5.10) could be further written as 
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where   
   

 
   ,      [       

 ⁄        
 ⁄            ⁄ ] ,           , and 

S stand for a unit right angled isosceles triangular domain. 
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where   
    ̂   ̂ ,     [      ⁄       ⁄       ⁄       ⁄ ] ,          , and S 

stand for a unit right angled isosceles triangular domain.  ̂  stands for the following 

transformation matrix 

 ̂  [
  ⁄    
        ⁄  (     )⁄

      ⁄  (     )⁄   ⁄  
] (5.33) 

For the energy equation of rectangular plate, the integration region is transformed into 

unit square domain. The transformation matrices are  

  [
  ⁄  
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] (5.34) 

 ̅  [
   ⁄   
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] (5.35) 
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] (5.37) 

For a general coupling edge between two plates, Eq. (5.25) is further written as 
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where    is the length of the coupling edge.   |  [      ]| ,    [
  

  

  

  
] , 

   [
  

  

  

  
], and    [

  

  

  

  
];  ̌  

  [

 ̌   ̌   ̌  

 ̌   ̌   ̌  

 ̌   ̌   ̌  

], in which 

 ̌      
     

   
    

  
,  ̌       

     
   

    
  

,  ̌        
   

(   
     

  
    

     
  

) , 

 ̌       
     

   
    

 
,  ̌      

     
   

    
  

,  ̌       
   

(   
     

  
    

     
  

) , 

 ̌    (    
   

   
      

   
   

 )    
  

,  ̌   (    
   

   
      

   
   

 )    
  

,  ̌   

[
    

  

     
  ]

 

[
   

    
 

   
    

 ] [
    

  

     
  

] ;     
   is the     row of the transformation matrix    

5.6 Approximation functions of the plate and beam displacements 

The vibration of the plates and beams are assumed arbitrary and the corresponding 

displacements are the unknown functions to be solved. The assumed solution must able to 

describe the vibration shapes of the plates and beams under any condition, which requires the 

functional being complete in the resolved domain. The transverse and in-plane displacement 

functions of the plates and beams will be summarized as follow, 

Rectangular plates: 

 (   )  ∑ ∑    
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 ∑   ( )
 
   ∑    
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where u, v, w, represent displacement in x, y, z direction, respectively; R represents rectangular 

plate, and    
   

,    
   

,    
   

, etc. are the unknown coefficients to be determined in the vibration 

solution.   ( )  (          ) are four special functions designed to account the boundary 

conditions of the plate displacement. 
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Triangular plates 
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   (   (   )  (  )    (   ))  (5.35) 

where T represents triangular plate, and   ( ) (     ) are the same special functions used in 

approximating the rectangular plate displacements. 

Beams 
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where   represents the tortional displacement of the beam;   
   

,   
   

,   
   

,   
   

,   
   

,   
   

,   
   

, 

  
   

 are the unknown coefficients to be determined. 

5.7 Characteristic equation of a general structure 

Fourier spectrum element modal is developed by using Hamiton’s principal on the weak 

form of the governing equation expressed in energy Eqs. (5.1)-(5.3), 

 (     )     (5.40) 

Minimization of the Hamiltonian function will lead to the following system of equations, 

(     )     (5.40) 
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where   is composed by all the unknown coefficients in the plate and beam displacement 

functions,  , and   are the stiffness and mass matrices ,and   is the force vector. All the matrix 

elements in these matrices can be analytically derived by using the general formulation provided 

in the Appendix. 
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Eq. (5.40) represents a standard matrix characteristic equation from which all the eigenpairs can 

be determined by solving a standard matrix eigenvalue problem. Once the generalized 

coordinates, a, is determined, the corresponding mode shape or displacement field can be 

constructed by substituting a into Eq. (5.26-5.39).  

5.8 Results and discussion 

5.8.1 Example 1: a 3-D beam frame 

a) b) c)  

Figure 5.4 A rigidly connected 3-D frame. a) Setup used in current method with corner numbers 

at the frame corners and beam numbers in the middle of the beams. b) FEM model c) Lab setup 

with the same number sequence as current and FEM models. 

The first testing example is a 3-D frame made of steel AISI A1018 as depicted in Figure 

5.4. The frame has a length of 0.6 m (beam 1 and 3), a width of 0.4 m (beam 2 and 4), and a 

height of 0.5 m (beam 5, 6, 7, and 8). All the angles among the connected beams are 90 degrees. 

The cross sections of all the beams are 15.875 mm×15.875 mm. The mechanical properties of the 

beams are: Elastic modulus              Pa, Poisson’s ratio       , material density 

X

YZ
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            , and structural damping       , which was calculated by half power method 

with some initial testing results. 

The frame is hanged to the ceiling by a rubber band to simulate free boundary condition, 

the hanging point was chosen at one of the frame corner to minimize the outside influence on the 

frame vibration. The frame was transversely excited by an impact hammer (PCB086C01) and the 

response was acquired by t e toolbox “Sound and vibration 6.0” of NI Labview 2009 t roug  

data acquisition hard ware NI USB-9234. The overall dimensions of the frame, the excitation and 

response locations in the tests are illustrated in Figure 5.5, in which F represents the excitation 

force and R represents response of the frame. For example, 1R (2R, 3R) and 1F (2F, 3F) 

constitute a set of measurement. The relative locations of the points are given in the local 

coordinates of the beams. For example, 0.3L7 represents the location is at 30% of beam number 

7 with origin at the smaller corner number 3 as given in Figure 5.4a.  

Figure 5.5 A scheme showing the input force and response locations. 

The force response function (FRF) curves of the tested 3-D frame are given in Figure 5.6-

5.8 for three different pair of input and output locations. The prediction from current method is 

x 
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very close to the FEM results with more discrepancy at high frequencies. All the theoretically 

predicted peaks are captured in the testing results with small shift at high frequencies and extra 

responses caused by experimental uncertainties, which include: the input force is not exactly on 

the designed location and direction; the beam joints are not as rigid as the middle potion of the 

beams. However, the overall agreements among the three methods are satisfactory. 

Figure 5.6 FRF curves of the 3-D frame with input force at 0.6L of beam 3 in y direction and 

response measured at 0.3L of beam 7 in y direction. 

 

Figure 5.7 FRF curves of the 3-D frame with input force at 0.5L of beam 1 in y direction and 

response measured at 0.3L of beam 5 in y direction. 
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Figure 5.8 FRF curves of the 3-D frame with input force at 0.25L of beam 4 in z direction and 

response measured at 0.3L of beam 1 in y direction.  

Table 5.3 lists the first fourteen flexible natural frequencies of the frame from the three 

methods. The truncation number used in current method is M=10 in Equation (5.36-5.39), which 

makes the size of the stiffness and mass matrices        . Whereas the matrix size of FEM 

model with 400 elements is          , which is about     times the size of matrix in 

current method. The results from FEM model match with current results pretty well with more 

discrepancy at high frequencies. The frequencies from the Lab results also confirmed current 

results.  

Table 5.3 The first twelve flexible model frequencies of the tested frame from (* FSEM method 

with M=10; # FEA method with 400 elements; @ Lab results). 

Mode 1 2 3 4 5 6 7 8 9 10 11 12 

Natural 

frequency 

(Hz) 

23.8* 27.7 32.1 35.5 36.3 49.7 54.9 66.7 67.8 86.5 133.3 165.5 

23.8
#
 27.7 32.1 35.5 36.3 49.7 54.9 66.7 67.8 86.5 133.3 165.4 

24
@

 27 32 34 38 52 56 66 68 88 132 166 
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Figure 5.9 Some typical low to mid frequency mode shapes from current method (mode numbers 

in parentheses) and FEM method (mode numbers in brackets).  
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Figure 5.9 shows some randomly picked low to mid frequency mode shapes for the tested 

frame. The mode shapes from current method is indexed by numbers in parentheses and those 

from FEM method are indexed by numbers in brackets. While half of the modes from both 

methods look identical to each other, the rest of the modes are also the same but with opposite 

phase angles. This example verified that current method correctly and efficiently predicted the 

vibration characteristics of the simple frame. The size of the solved characteristic equation is 

significantly smaller than the corresponding FEM model with the same accuracy. It showed that 

current model might have a higher upper frequency limit than the corresponding FEM model. 

The applicability of current model for more complex geometry will be proven in following 

examples. 
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5.8.2 Example 2: a 3-D plate structure 

The second testing example is a structure as described in Figure. 5.10, which comes from 

a real engineering structure with slight modification on the edges. All the plates constituting the 

structure have the same thickness             m, and the same material properties with 

Elastic modulus               Pa, Poisson’s ratio       , and density            . 

 

Figure 5.10 The evaluated general plate structure with a) corner numbers at the plate corners, b) 

plate numbers at the plate centers, and c) lab setup. 

Table 5.4 The global coordinates of all the corners of the tested plate structure 

The global coordinates of all the plate corners, most of which are the structure corners, are given 

in Table 5.4. The plate numbers and their constituting corner numbers are given in Table 5.5. 

With all the plate numbers and their corresponding corners numbers given, the geometry of the 

structure is completely described. 

Corners 1 2 3 4 5 6 7 11 12 13 14 15 16 17 

x (m) 0 0.45 0.45 0 0 0.39 0 0 0.45 0.45 0 0 0.39 0 

y (m) 0 0 0 0 0 0 0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

z (m) 0 0 0.09 0.09 0.23 0.36 0.43 0 0 0.09 0.09 0.23 0.36 0.43 



110 

 

Table 5.5 The plate numbers and their corresponding corner numbers of the tested plate structure 

Plate Number 1 2 3 4 5 6 7 8 9 10 

Point 1 1 4 5 5 11 14 15 15 6 7 

Point 2 2 3 3 6 12 13 13 16 3 5 

Point 3 3 5 6 7 13 15 16 17 13 15 

Point 4 4    14    16 17 

All the connecting plates are rigidly coupled in the plate structure. A rigidly coupled edge 

was simulated by setting the coupling spring stiffness to a very large value, i.e. 1.0      in 

current calculation. The truncation number were set as M=N=10 for both the rectangular and 

triangular plates. The stiffness and mass matrices of the structure were assembled with pre-

calculated matrices for a single unit square plate or a single unit right angled triangular plate. 

Then the frequencies and mode shapes were obtained by solving a standard eigen-value problem. 

An identical FEM model was also built by meshing the structure with element size around 0.01m, 

which make the final FEM model consists of 21,766 elements. The first fourteen flexible 

frequencies from the FEM model were calculated by using Lanczos method. In the lab test, the 

same equipment used in measuring the frame response in example 1 was used in measuring the 

plate structure response. Natural frequencies were identified as the distinctive peaks in the FRF 

curves. 

Table 5.6 shows the first fourteen flexible modal frequencies of the tested plate structure. 

The frequencies from current methods are found very close to the FEM results. The slight 

differences are expected and might be caused by the difference in the matrix formulation process. 

The couplings of the connecting plates are also modeled differently. The experimental results 

also confirmed with the current results with a maximum difference of 16 %. The discrepancy 

was caused by following reasons: small details in the structure such as the flange were not 
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modeled in the current and FEM model; the structure is hanged to the ceiling, which is not a 

completely free boundary condition, etc. 

Table 5.6 The first fourteen flexible modal frequencies of the tested plate structure. 

Mode Natural frequencies (Hz) Relative error  from Lab(%) 

 Current FEM Lab Current FEM 

1 8.536 8.491 9.24 7.62 8.11 

2 11.952 11.805 11.2 6.71 5.40 

3 13.102 13.321 15.2 13.80 12.36 

4 19.809 20.084 23.6 16.06 14.90 

5 22.171 22.017 25.6 13.39 14.00 

6 32.25 32.176 32.6 1.07 1.30 

7 35.213 35.303 34.6 1.77 2.03 

8 40.289 40.123 39.4 2.26 1.84 

9 41.143 41.372 44.4 7.34 6.82 

10 45.016 45.597 47.5 5.23 4.01 

11 51.795 51.884 53.5 3.19 3.02 

12 58.021 58.138 58 0.04 0.24 

13 64.846 65.867 62.4 3.92 5.56 

14 67.219 67.902 70 3.97 3.00 

The first eight flexible mode shapes from both current method and Finite element results 

are given in Figure 5.11. Although contour results were given FEM model, the accuracy of the 

high order identities, such as the stress level, power flow in the structure, is not assured. On the 

contrary, current results are presented in analytical form, then the displacement are given 

continuously on the whole plate domain. The corresponding high order identities are also 

convergent and readily available.   
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Figure 5.11 The first eight modes of the tested structure from current method (mode numbers in 

parentheses) and FEM method with 21,766 elements (mode numbers in brackets). 
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5.8.3 Example 3: a car frame structure 

Figure 5.12 shows a beam frame representing the outline of a car body. The orientations 

and beam coupling angles are complex enough to represent all possible scenarios. The beam 

corner coordinates are given in Table 5.7 and also plotted in Figure 5.12a. The beam numbers 

with their corresponding corner numbers are given in Table 5.8 and also plotted in Figure 5.12b. 

The total beam number is 80, which can represent a fairly general complex beam structure.  The 

cross sections of all the beams are solid squares with width of 0.015 meter. The orientations of 

all the beams are designed so that the point [1, 1, 1] lies in the beam principal planes. All the 

connected beams are rigidly coupled, which is simulated by a set of linear and rotational springs 

with sufficiently large value, i.e., 1.0     . The mechanical properties of all the beams are: 

Elastic modulus              Pa, Poisson’s ratio      , material density   

          .  

Table 5.9 gives the first twenty-four flexible frequencies of the car frame from current 

and FEM methods. The truncation number used in current method is M=10 in Equation (5.36-

5.39), then the size of the stiffness and mass matrices is 4160 4160. Whereas the matrix size of 

the FEM model with 2173 elements is 13038 13038, which is about 10 times the size of 

matrices in current method. The results from both methods are very close to each other, which 

confirmed the correctness of current model. It is concluded that current method works for an 

arbitrary beam frame model with any beam orientation and beam section. The coupling between 

any two beams is completely modeled with six elastic springs.  
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(a) 

 

( b) 

Figure 5.12 A frame structure representing the outline of a car body with a) corner numbers, and 

b) beam numbers. 
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Table 5.7 The global coordinates of all the car frame corners 

Corners x y z Corners x y z 

1 -1.15 0.158 -0.251 30 -0.529 -0.0906 -0.26 

2 -0.873 0.211 -0.255 31 0.498 -0.393 -0.279 

3 -0.86 0.211 -0.131 32 0.498 -0.0906 -0.279 

4 -0.724 0.211 -0.104 33 0.519 -0.393 -0.167 

5 -0.559 0.211 -0.114 34 0.658 -0.393 -0.145 

6 -0.529 0.211 -0.26 35 0.784 -0.393 -0.167 

7 0.498 0.211 -0.279 36 0.805 -0.393 -0.283 

8 0.519 0.211 -0.167 37 0.805 -0.0906 -0.283 

9 0.658 0.211 -0.145 38 0.995 -0.365 -0.262 

10 0.785 0.211 -0.167 39 0.995 -0.0906 -0.262 

11 0.806 0.211 -0.283 40 1 -0.365 -0.0798 

12 0.995 0.184 -0.262 41 1 -0.0906 -0.08 

13 1 0.184 -0.0801 42 0.687 -0.393 -0.0288 

14 0.687 0.211 -0.0291 43 0.687 -0.0906 -0.029 

15 0.363 0.211 -0.024 44 0.363 -0.393 -0.0237 

16 0.0967 0.149 0.178 45 0.363 -0.0906 -0.0239 

17 -0.23 0.149 0.217 46 0.0966 -0.332 0.179 

18 -0.501 0.148 0.197 47 0.0966 -0.0915 0.179 

19 -0.593 0.211 0.025 48 -0.231 -0.331 0.217 

20 -0.89 0.21 0.0116 49 -0.23 -0.0911 0.217 

21 -1.15 0.158 -0.0393 50 -0.501 -0.332 0.197 

22 -1.15 -0.334 -0.251 51 -0.501 -0.0919 0.197 

23 -1.15 -0.0885 -0.251 52 -0.594 -0.393 0.0253 

24 -0.873 -0.393 -0.255 53 -0.594 -0.0906 0.0251 

25 -0.873 -0.0906 -0.255 54 -0.89 -0.394 0.0119 

26 -0.86 -0.393 -0.131 55 -0.89 -0.0916 0.0118 

27 -0.724 -0.393 -0.104 56 -1.15 -0.334 -0.039 

28 -0.559 -0.393 -0.114 57 -1.15 -0.0884 -0.0392 

29 -0.529 -0.393 -0.26     
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Table 5.8 The corner numbers of the car frame beams 

Line 

number 

Node 

1 

Node 

2 

 Line 

number 

Node 

1 

Node 

2 

 Line 

number 

Nod

e 1 

Node 

2 

1 25 57  28 23 3  55 43 44 

2 57 56  29 3 5  56 44 17 

3 56 54  30 24 26  57 45 46 

4 52 50  31 26 28  58 46 18 

5 50 48  32 28 29  59 47 48 

6 46 44  33 29 30  60 48 19 

7 44 42  34 30 31  61 49 50 

8 42 41  35 31 33  62 50 20 

9 5 6  36 33 35  63 51 52 

10 6 7  37 35 36  64 52 21 

11 7 8  38 36 37  65 53 54 

12 8 9  39 37 38  66 54 22 

13 9 10  40 38 40  67 55 56 

14 10 11  41 40 1  68 56 23 

15 11 12  42 1 43  69 4 57 

16 12 13  43 43 45  70 57 3 

17 13 14  44 45 47  71 24 25 

18 14 15  45 49 47  72 25 5 

19 15 16  46 49 51  73 26 27 

20 16 2  47 51 53  74 27 6 

21 2 17  48 53 55  75 31 32 

22 17 18  49 55 4  76 32 10 

23 18 19  50 4 24  77 33 34 

24 20 19  51 40 41  78 34 11 

25 20 21  52 41 16  79 38 39 

26 21 22  53 1 42  80 39 15 

27 22 23  54 42 2     
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Figure 5.13 gives the first few natural modes of the car frame from both current and FEM 

methods. While the results from current method are plotted in the left side and indexed by 

numbers in parentheses, the results from FEM method are plotted in the right side and indexed 

by numbers in square brackets.  The first mode is a breathing mode, in which the frame expands 

in vertical direction. The second and third modes are two torsion modes. The third and fourth 

modes are two bending modes. The sixth mode is another torsion mode. The mode shapes from 

current method are almost identical to those results from FEM method.  

Table 5.9 The first twenty-four flexible modal frequencies of the car frame structure from current 

method with truncation M=10 and FEM method with 2173 elements. 

Mode Frequencies (Hz) Mode Frequencies (Hz) Mode Frequencies (Hz) 

 Current FEM  Current FEM  Current FEM 

1 11.80 11.80 9 34.67 34.67 17 54.69 54.69 

2 16.38 16.38 10 39.05 39.05 18 60.45 60.44 

3 18.85 18.85 11 39.29 39.29 19 70.62 70.62 

4 20.14 20.14 12 44.39 44.39 20 72.41 72.41 

5 22.47 22.47 13 47.64 47.64 21 78.71 78.71 

6 22.52 22.52 14 50.85 50.85 22 80.43 80.42 

7 29.42 29.42 15 51.77 51.77 23 84.74 84.73 

8 29.53 29.54 16 53.08 53.08 24 86.13 86.12 
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Figure 5.13 The first six mode shapes of the car frame from current method ( left side and 

indexed in parenthesis) and FEM method with 2173 elements (right side and indexed in square 

bracets)  
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5.8.4 Example 4: a car frame structure with coupled roof side plates  

 

Figure 5.14 The car frame in Figure 5.12 coupled with extra plates on its roof side 

Figure 5.14 shows the car frame in Example 3 coupled with extra plates on its roof. All the plates 

and their corresponding corner numbers are listed in Table 5.10. All the neighboring components 

of the sixteen triangular plates, eight rectangular plates, and eighty beams are rigidly coupled by 

using six elastic springs with infinite value, represented by 1.0    . All the plates are assumed 

having the same thickness at 1 mm and the same mechanical properties with Elastic modulus 

             Pa, Poisson’s ratio      , material density             . 

Table 5.11 gives the first twenty four flexible frequencies of the car structure. The 

truncation number for the triangular plates and rectangular plates are set vary with their 

dimensions by following formula,   [     
     ⁄ ] ,   [     

 
    ⁄ ]   where   

  

(   
 

 )is the maximum length of the     plate in x ( y) direction,      is the maximum length of 

all the plates in both x and y direction. The square bracket means rounding to the next lower 

integer. The matrix size of the calculated mass and stiffness matrices in current method is 

         . The FEM model meshed with element size 0.01 meter has 16008 elements, which 
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makes the mass and stiffness matrix size about              , which is significantly larger 

than the matrices used in FSEM method. 

Figure 5.15 gives the first 24 normal mode shapes of the structure. All the compared mode 

shapes are comparable with those modes obtained by using FEM method. Some of the mode 

shapes looks different because they have opposite phases. This example structure composes 16 

triangular plates, 8 rectangular plates, and 80 beams. The FSEM results including model 

frequencies and mode shapes are all verified with FEA results calculated with fine mesh grids. It 

is believed that current FSEM is ready to be deployed in industry application.  

5.9 Conclusions 

Fourier Spectral Element Method is successfully applied to general structures composed 

of triangular plates, rectangular plates and beams. The connection among the plates and beams 

are described by six translational and rotational springs varying along the coupling edges. The 

vibration problem is formed in a varational formulation, and all the energy equation are 

transformed into a united form in the local coordinates, which enable the usage of one set of 

stored matrices for all the beam and plate components. The displacement fields are described by 

improved Fourier series functions with sufficient convergence rate to guarantee exact solution of 

the solved problem. Since the boundary conditions are all satisfied and the convergence speed is 

greatly improved, the high order derivative values including bending moments and shear forces 

can be calculated by directly differentiating the obtained displacement solution. The validity of 

the FSEM method is tested on several numerical examples ranging from a simple beam frame, a 

plate structure, a complex beam system, and a complex plate-beam assembly. Since the matrix 

size of the FSEM method is substantially smaller than the FEA method, FSEM method has the 

potential to reduce the calculation time, and tackle the unsolved Mid-frequency problem.  
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Table 5.10 The corresponding corner numbers of all the coupled plates 

Plate 

number 

Node 1 Node 2 Node 3 Plate 

number 

Node 1 Node 2 Node 3 Node4 

1 1 44 43 13 23 3 57  

2 1 42 44 14 23 57 56  

3 42 2 17 15 56 57 4  

4 42 17 44 16 56 4 55  

5 45 46 47 17 43 44 46 45 

6 47 46 48 18 44 17 18 46 

7 46 18 48 19 47 48 50 49 

8 48 18 19 20 48 19 20 50 

9 21 22 54 21 49 50 52 51 

10 21 54 52 22 50 20 21 52 

11 52 54 53 23 22 23 56 54 

12 52 53 51 24 54 56 55 53 

 

Table 5.11 The first twenty four flexible modal frequencies of the car structure from current 

FSEM method and FEM method with 16008 elements. 

Mode FSEM FEM Mode FSEM FEM Mode FSEM FEM 

1 11.09 11.09 9 33.65 33.62 17 57.78 57.78 

2 15.90 15.73 10 35.39 35.19 18 58.20 58.12 

3 17.34 17.32 11 37.07 36.69 19 60.72 60.69 

4 18.69 18.58 12 43.53 43.52 20 70.44 70.40 

5 21.08 21.08 13 46.12 45.85 21 72.49 72.48 

6 21.91 21.89 14 46.15 46.14 22 79.26 78.58 

7 27.57 27.57 15 52.11 51.78 23 83.93 83.89 

8 30.10 30.03 16 53.08 53.08 24 85.10 85.06 
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Figure 5.15 The first twenty four mode shapes of the car structure obtained by using FEM 

method (left side and indexed in parenthesis ) and current FSEM method (right side and indexed 

in square brackets) 
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Chapter VI Concluding Remarks 

6.1 Summary  

The Fourier Spectral Element Method (FSEM) was initially developed about a decade 

ago on the vibration of beams with general boundary condition (Li, 2000). This method was 

further extended to the transverse vibration of rectangular plates with elastic supports (Li, 2004) 

and in-plane vibration of rectangular plate (Du, etc., 2007). The formulation on the plate 

vibration was revised to enhance convergence and alleviate the calculation burden (Li, etc., 2009; 

Zhang & Li, 2009). The formulation on the beam vibration was also updated and used to couple 

with the vibration of rectangular plates (Xu, etc., 2010; Xu, 2010). The updated formulation on 

the vibration of rectangular plates was also used on the vibration of coupled plate structures (Xu, 

2010; Du, etc., 2010). The FSEM was further extended on the vibration of general triangular 

plates with arbitrary boundary conditions (Zhang & Li, 2011). Detailed formulations for a 

general structure composed of arbitrary number of rectangular plates, triangular plates, and 

beams are presented in this dissertation. The formulation on the in-plane vibration of general 

rectangular plates is also updated. All the energy equation are transformed into a united form in 

their local coordinates, which enable the usage of one set of stored matrices for all the beam and 

plate components, thus reducing the matrix construction time for a complex structure from hours 

to seconds.  

The enabling feature of FSEM method is that the displacement fields of the beams or 

plates were subtracted by some supplementary functions, so that the remaining field is smooth 

enough on the boundaries to be described by standard Fourier cosine series with fast 

convergence rate. Although the derived quantities such as bending moment and shear force have 

degraded accuracy relative to the direct displacement field, they are guaranteed to converge to 
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the exact solution. Detailed formulation on the vibration of beams, rectangular plates, triangular 

plates are explained in Chapter II, III, and IV, respectively. Chapter V presented the coupling 

formulation among all the three components, and applied the FSEM on general structures 

composed of arbitrary number of triangular plates, rectangular plates, and beams.  

FSEM represents one of the deterministic methods in pushing the high frequency limit in 

vibration prediction. It is closely related with DEM, VTCR, and WBM methods, etc. The 

difference is that FSEM method satisfies both the governing equation and the boundary 

conditions in an exact sense. Since the matrix size of the FSEM method is substantially smaller 

than the FEA method, FSEM method has the potential to reduce the calculation time, and tackle 

the unsolved Mid-frequency problem.  

The validity of the FSEM method has been repeatedly verified on many examples 

including both simple and complex structures, which can be found throughout Chapter II to 

Chapter V. The FEA-like assembling process makes it ready to be coupled with other methods 

like CMS, AMLS, SEA, etc. 

6.2 Future Work 

Fourier Spectral Element method has been successfully applied on general structures 

composed of arbitrary number of triangular plates, rectangular plates, and beams. The 

development on triangular plates made FSEM very versatile on analyzing structure with complex 

geometry. On the other hand, FSEM works more efficiently on quadrilateral shaped rectangular 

plates. So it is very necessary to expand the rectangular plate formulation onto general 

quadrilateral shaped plates, which might only need a coordinate transformation and could 

improve the efficiency of current FSEM method. Furthermore, there seems no barrier that 
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prevent from extending current formulation on general 3-D solids, which could enable FSEM to 

predict acoustic radiation, which is a cold corner even in FEA analysis. FSEM method might 

find breakthrough in predicting sound pressure level correctly. 

Since the FSEM matrices are less sparse than FEA matrices with the same size. Computation 

could be as expensive as FEA method. To speed up the calculation and shorten the reanalysis 

period, FSEM should find its connection with Component Modal Synthesis (CMS), especially 

the widely used Automated Multi-level Synthesis (AMLS) method. The computation efficiency 

can also able increased without sacrificing much accuracy. 

Furthermore, several new analytical methods focused on mid-frequency vibration problems are 

proposed recently. FSEM should be carefully compared with those promising methods such as 

Wave Based Method (WBM), Variational Theory of Complex Ray (VTCR), Discontinuous 

Enrichment Method (DEM), etc. Good method will stand tall in comparison with others. 
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APPENDIX: General formulation used in developing the FSEM stiffness and mass matrices 

Let’s define 

 (  (    ) (    ) (      ) (      ) (      ) (      ))  ∫ ∫ (    
(   )

 

 

 

 )   
(  )( )  

(  )( )    (    )    (    )    (    )    (    )                (A1)  

if                         

Each of the trigonometric function could either be cosine or sine function depends on       

(cosine) or       (sine). 

and  

 (     (       ) (       ) (      ) (      ) (      ) (      ))   ∫   (  
 

 

 

 
)
 

  
(  )( )  

(  )(   ))    (   )    (    )    (    )    (    )    (    )              

(A2) 

                                      

where  ( )  ∑      (   )
 
    is the rotational restraint function along one of the 

boundaries; when     , the variable   in the   function  is replaced by  (   ). 

The recurrence formulation 

 (  (     ) (     )  )  
 

 
(   (  (       )  )     (  (       )  ))    (A3) 

where   (  (  )(     ))  ⁄ ,     (  )⌊(     )  ⁄ ⌋,    (  )⌊(       )  ⁄ ⌋ and ⌊ ⌋  gives 

the largest integer less than or equal to     
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Since all the trigonometric functions and the functions in  ( ) are of the form    (    ⁄ ) 

(   (    ⁄ )). Eq. (A3) is repeatedly used in breaking down the   and    into following three 

basic integrations   ,    and   , which are all evaluated analytically.  
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∫ (   )    (    ⁄ )             
 

 

∫ (   )    (    ⁄ )             
 

 

  (A4) 

  (     )  |

 (   )⁄       
(   ⁄ )   (   ⁄ )             

(    ⁄ )  (       )     

           (A4.1) 

  (     )  |

       

(   ⁄ )(     (   ⁄ ))             

    ⁄ (    ⁄ )  (       )     

                                 (A4.2) 

  (  (    ) (    ))    

∫ ∫ (     )    (    ⁄ )
   

 

 

 
    (    ⁄ )                     (A5) 

Other terms when               are similarly defined as those in (A1). 

  (  (    ) (   ))  |

( (   )⁄ )  (        )       

  ((    ) (   ))       

(    ⁄ )  (    (    ) (   ))     

            (A5.1) 

   (  (    ) (   ))  |

       

  ((    ) (   ))       

(   ⁄ )[   (     )     (    (    ) (   ))]     

 

 (A5.2) 

  ((    ) (    ))  ∫ ∫    (    ⁄ )
   

 

 

 
    (    ⁄ )                      (A6) 



129 

 

Other terms when               are similarly defined as in those in (A1). 
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ABSTRACT 

THE FOURIER SPECTRAL ELEMENT METHOD FOR VIBRATION ANALYSIS OF 

GENERAL DYNAMIC STRUCTURES 

by 

XUEFENG ZHANG 

May 2012 

Advisor: Dr. Wen Li 

Major: Mechanical Engineering 

Degree: Doctor of Philosophy 

The Fourier Spectral Element Method (FSEM) was proposed by Wen Li on the vibration 

of simple beams (Li, 2000), and was extended to the vibration of rectangular plates (Li, 2004). 

This dissertation proposes a revised formulation on the vibration of rectangular plates with 

general boundary conditions, and extends the FSEM on the vibration of general triangular plates 

with elastic boundary supports. 3-D coupling formulation among the plates and beams is further 

developed. A general dynamic structure is then analyzed by dividing the structure into coupled 

triangular plates, rectangular plates, and beams. The accuracy and fast convergence of FSEM 

method is repeatedly benchmarked by analytical, experimental, and numerical results from the 

literature, laboratory tests, and commercial software.  

The enabling feature of FSEM method is that the approximation solution satisfies both 

the governing equation and the boundary conditions of the beam (plates) vibration in an exact 

sense. The displacement function composes a standard Fourier cosine series plus several 

supplementary functions to ensure the convergence to the exact solution including displacement, 

bending moment, and shear forces, etc. All the formulation is transformed into standard forms 

and a set of stored matrices ensure fast assembly of the studied structure matrix. Since the matrix 
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size of the FSEM method is substantially smaller than the FEA method, FSEM method has the 

potential to reduce the calculation time, and tackle the unsolved Mid-frequency problem. 
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