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CHAPTER 1: INTRODUCTION

The rise of large-volume unlabeled data with high dimensionality presents un-

precedented challenges for machine learning and data mining societies. Relying on

expensive labeled data, most of the traditional supervised learning methods are in-

capable of taking advantage of the enormous amount of unlabeled data in large scale

data analytics. In the past, much effort has been made to learn compact representa-

tions (features) with unlabeled data. Among many dimensionality reduction methods

such as PCA [38], ICA [37], and Factor Analysis [11], sparse representation learning

is promising and has shown advantages [26, 6, 24, 39].

Inspired from early stage computational process of biological visual systems [30],

sparse representation approximately represents data as a sparse linear combination of

fixed basis vectors in a dictionary matrix. The dictionaries are often non-orthogonal,

and due to the sparseness more interpretable [27]. Thus, representing the data into

a lower dimensional space makes data analysis more efficient. Lee et al. [20] pro-

posed efficient sparse coding algorithm, which produces low level gabor-like feature.

Inducing sparsity penalty in traditional unsupervised models such as sparse restricted

boltzman machine (RBM) [21], sparse auto-encoder [36] has shown improved results

in many classification tasks. Hierarchical model for sparse representation learning

was proposed to build high level features [19]. Greedy layer wise pre-training [12, 1]

approach in deep learning [5] became very popular for deep hierarchical frameworks.

Multi-layer of stacked sparse auto-encoder (SAE) [1, 35, 19], sparse Deep belief net

(DBN), convolutional deep belief net (CDBN) [22] are few frameworks for learning

sparse representation.

Despite of all these recent developments, current methods are limited when dealing

with large scale data. Mostly, complex deep architecture and expensive training time

are responsible for lack of good feature representations for large scale data. In most
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of the cases, researchers typically reduce the sizes of data sets and models in order to

train networks in a practical amount of time. However, these reductions undermine

the learning of high-level features.

The goal of large scale sparse representation learning is to extract features by

learning the dictionary that captures high level structured information in large-scale

data. Optimization of sparse representation learning has always been a difficult task

due to its non-convex property. Different optimization techniques such as sub-gradient

optimization [4], feature-sign [20], proximal method [14] have been applied. However,

with the sheer size of data available today, new optimization techniques are urgently

needed for unsupervised learning of large-scale sparse representation.

To address these problems, we draw upon the idea from sequential minimal op-

timization (SMO) [33] which can be considered as a Hessian free optimization. This

decomposition method was first introduced for large scale support vector machines

(SVM) [33], [15] and later for L1 least square conventional sparse coding [23]. In this

paper, we propose a fast algorithm for training an encoder-decoder based module,

which efficiently extracts sparse and compact features from any data set with various

size. The focus of this work is thus to provide a fast sparse representation learning

algorithm which will work efficiently. Decomposition of the optimization problem in

our model enables us to solve each subproblems analytically. We demonstrate experi-

mentally that our algorithm is efficient than the commonly used sparse representation

learning algorithm.

Contributions. The contributions of this paper are as follow:

I. A new formulation and solution for an unsupervised learning problem that is

capable of extracting heterogeneous features with low computational cost and

time;

II. A fast auto sparse encoder (FASE) module for large scale sparse feature rep-

resentation learning that extracts details features from the larger dimensional
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patches;

III. Introducing the SMO for the first time for learning of sparse representation from

unlabeled image data;

IV. An evaluation of execution time and classification accuracy of the proposed

method and the alternative state-of-the-art unsupervised learning methods in

two different experimental settings.
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CHAPTER 2: BACKGROUND LITERATURE

This chapter provides an outline of the basic principles of sparse representation

[30] upon which the remaining chapters are based. The chapter also introduces some

of the notation that will be used throughout this thesis.

The work in this thesis tends to proposes a new unsupervised method that is able

to learn sparse representation from unlabeled data efficiently. A novel learning algo-

rithm has been derived based on the traditional sparse coding schemes [20]. Therefore

this chapter is broken into two sections to describe the theoretical analysis or foun-

dation of learning sparse features and some of the most common classical approaches

used in machine learning for unsupervised sparse representation learning.

2.1 Learning Sparse Features

Sparse representation is a principle that a sample can be approximated by a sparse

linear combination of basis vectors. To represent input image X = [x1, . . . ,xn] ∈

Rm×n as a weighted linear combination of a small no. of (unknown) basis vectors

d1, . . . ,dk (each in Rm) also called bases so that each input X can be approximately

decomposed as: X ≈
∑k

j=1 djzj s.t. zj ’s are mostly sparse vector.

A sparse representation uses more features where at any given time a signifi-

cant number of the features will have a zero value. Non-orthogonal and redundant

basis vectors can be extracted by learning of sparse representation. This principle

has been applied for high dimensional data analysis because of the robustness, non-

orthogonality and interpretability.

Notation: Matrices are always presented in uppercase bold (e.g., X), vectors are in

lower-case bold (e.g., x) and scalars in lower-case (e.g., x) through out the paper. The

matrix represented by I denotes an identity matrix. Any operator T on a vector or

matrix in this paper represents the transpose. We may often omit vector indices (e.g.,
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dj refers to the jth basis vector and zj to the jth sparse code vector) when referring

to the variables being optimized. In these instances we assume that D = [d1, . . . ,dk]

and Z = [z1, . . . , zk]
T .

2.1.1 Theoretical Analysis

Sparse representation learning includes two different techniques. First one is

termed as sparse coding, where a sparse vector representing a data sample is being

learned for a fixed dictionary matrix. Second one is termed as dictionary learning,

where the dictionary is being learned for given data sample. The formal mathemat-

ical formulation or theory of sparse representation can be analyzed from a Bayesian

perspective for better understanding. For simplicity in this section, we drop the index

j and denote each single day point x = xj; z = zj = [z1, . . . , zk]
T ∈ Rk. The model

has the following formulation:

(x|D, z, λ) = z1d1 + z2d2 · · ·+ zkdk + ξ = Dz + ξ (2.1)

where D = [d1, . . . ,dk] ∈ Rm×k is called dictionary, z is a sparse code vector, and

the error term is defined by ξ. D, z and ξ are the model parameters. The model has

the following constraints:

1. ξ ∼ N (0,Φ) , where Φ = φI where φ is a positive scalar.

2. dj ∼ N (0,∆) where ∆ = I .

3. z is independent of ξ .

To understand the concept of sparse representation we should analysis the concept

of Bayesian sparse representation. Given a new input x and a dictionary D, by the

above definition of sparse coding the statistical formulation is as follows
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(x|D) = Dz + ξ (2.2)

Now let us assume that the code vector has Laplacian prior with zero mean and

isotropic variance, that is

p(z,D) = L(0,Γ) =
1

(2γ)k
exp

‖x‖1
γ (2.3)

after takin the normal distribution

p(x|D, z,Φ) = N (Dz,Φ) =
1

(2π)m/2Φm/2
exp

‖x−Dz‖22
2Φ (2.4)

Thus we can have the following posterior

p(z|D,x,Φ,Γ) ∝ p(x|D, z,Φ)p(z|Γ) (2.5)

by applying the log function we have

L(z) = log p(x|D, z) + log p(x) = −‖x−Dz‖2
2

2Φ
− ‖z‖1

γ
(2.6)

where, c is a constant variable. Now the equivalent minimization problem is as

follows:

min
z

1

2
‖x−Dz‖2

2 + λ‖z‖1, (2.7)

where λ = Φ
γ

. It is a general regression model with L1 regularization also know as

LASSO, equivalent to a maximum a posteriori estimation. As instance-based learning,

the sparse coding methods without dictionary learning are able to classify complex

data, but become very slow as the number of samples increases dramatically.



7

2.2 Classical Methods

2.2.1 Sparse Coding Representation

Sparse coding has been widely used to extract features for classification [34], [8].

Sparse coding proposed by Lee et al. [20] describes a class of algorithms, where the

observed data sample X ∈ Rm×n is represented compactly by using a small number

of unknown basis vectors dj ∈ Rm : 1 < j < k and sparse representation vectors

Z ∈ Rk×n, i.e., X ≈
∑k

j=1 djzj where k >> m for overcomplete representation. The

objective is to minimize the reconstruction error X−
∑k

j=1 djzj, in order to discover

good dictionary D = [d1, . . . ,dk] ∈ Rm×k to represent input vectors as closely as

possible, which can be formulated as a non-convex optimization problem:

arg min
D,Z

1

2
‖X−DZ‖2

F + β‖Z‖1, (2.8)

subject to : ‖dj‖2
2 ≤ c for j = 1, . . . , k,

where β is a sparsity penalty and c is a constant. This problem can be solved by

two convex optimization problems until convergence. The L1 regularized least squares

problem, also termed as LASSO, is solved with respect to Z, using the feature sign

search algorithm. The L2 constrained least squares problem is solved with respect to

dictionary D, using the Lagrange dual algorithm.

For learning sparse representation, the feature-sign search algorithm minimizes

the following objective with respect Z, while the dictionary remains fixed,

arg min
Z

1

2
‖X−

k∑
j=1

djzj‖2
F + β‖

k∑
j=1

zj‖1. (2.9)

The algorithm is based on an active set optimization method and iteratively tries

to guess the sign (positive, negative or zero) for nonzero coefficients, zj’s. Each of
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the terms |zj|1 can be replaced by either zj (if positive sign), 0 (if zero) or −zj (if

negative sign). Hence, the problem (Eq.2.8) will be reduced to a solvable standard

unconstrained quadratic optimization problem (QP). The algorithm proceeds by re-

peatedly refining the guess for signs until it converges to an optimal solution. This

algorithm is currently one of the state-of-the-art LASSO solvers, and efficiently learns

feature representation from small dimensional image data sets. However, for larger

image patches convergence becomes significantly slower and takes a long time to find

optimal sparse vectors. Another drawback of sparse coding is that, the coefficients

are not merely encouraged to be sparse; they are encouraged to remain close to 0,

even when they are active.

For dictionary learning, the Lagrange dual algorithm [3] minimizes the following

objective by solving the corresponding dual problem analytically with L2 constraint,

arg min
D

1

2
‖X−DZ‖2

F , (2.10)

subject to : ‖dj‖2
2 ≤ c for j = 1, . . . , k.

The overall model setup is similar to a decoder module without the encoder part.

While learning, two optimization problems are solved alternatingly in each iteration

cycle. However, the drawback of this strategy is the computational expense associated

with both problems. Also, the inference in sparse coding takes longer time, as there is

no encoder module to make initial prediction. The inference of sparse representation

becomes slower as the number of features increases. On the other hand, in this work,

we implemented an algorithm using the idea from the SMO for solving the LASSO

problem, which interestingly improves the inference efficiency, thus overall learning is

optimized.

Sparse coding is also difficult to be integrated into a deep generative model of
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data (e.g. natural images). Recently Yu et al. [40] and Zeiler et al. [42] have shown

some success at learning hierarchical sparse coding. However, generative models such

as sparse deep belief net (DBN) and convolutional deep belief net (CDBN) [22] with

their combination of feed-forward and feed-back connections during inference can

learn a much higher quality features, than simple stacked feed-forward models like

deep sparse coding models. We, therefore, expect that our fast inference algorithm

will yield better performance than a feed-forward architecture by extracting compli-

cated features by training an unsupervised model. Our algorithmic framework and

better classification results, effectively make headway on the future challenges of deep

learning [5].

2.2.2 Dictionary Learning Models

The Energy Based Model (EBM) [36] was proposed for learning sparse and over-

complete features. The model is basically a dictionary learning based model. An

energy-based model has been proposed with a similar architecture of auto encoder.

The model includes an encoding part as well as an decoding part. In order to learn

sparse representations a non-linear logistic function with an adaptive bias has been

placed between encoder and decoder to achieve sparsity. It controls the degree of

sparsity of the representation as well as the entropy of each code unit. The model

apply spercifying logistic activation function to induce the sparsity instead of L1 reg-

ularization. In Later study Lecun et al. proposed Predictive Sparse Decomposition

(PSD) [35] algorithm which is a special case of autoencoder. The model has demon-

strated effectiveness in computation in a series of work. They differ in the specifics of

the architecture where PSD has nonlinear encoder function and L1 constraints on the

representation. They claimed a fast inference procedure for training the model than

one of the state of the art Feature Sign Search algorithm [20]. The disadvantage of

both the methods is the optimization technique which is solely based on sub-gradient
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method [4].

Hierarchical model for sparse dictionary learning was proposed to build high level

features [19]. Greedy layer wise pre-training [12, 1] approach in deep learning [5]

became very popular for deep hierarchical frameworks. Multi-layer of stacked sparse

auto-encoder (SAE) [1, 35, 19], sparse Deep belief net (DBN), convolutional deep be-

lief net (CDBN) [22] are few frameworks for learning sparse representation. In recent

years some popular dictionary learning models has been proposed by researchers such

as K-means learning framework proposed by Coates et al. [9], hierarchical matching

pursuit [2] and large scale dictionary learning model proposed by Zhang et al. [41].

Despite of all these recent developments, current methods are limited when dealing

with large scale data. Mostly, complex deep architecture and expensive training time

are responsible for lack of good feature representations for large scale data.

Optimization of sparse representation learning has always been a difficult task due

to its non-convex property. Different optimization techniques such as sub-gradient

optimization [4], feature-sign [20], proximal method [14] have been applied. However,

with the sheer size of data available today, new optimization techniques are urgently

needed for unsupervised learning of large-scale sparse representation.
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CHAPTER 3: SPARSE REPRESENTATION

LEARNING

In this chapter a new encoder-decoder based module named fast auto sparse en-

coder (FASE) has been proposed. The derivation of the efficient learning algorithm for

extracting sparse and compact features of high dimensional data, has been discussed

in details.

This new optimization technique inspired by Sequential Minimal Optimization

(SMO) [33] simultaneously learns a dictionary as well as creates sparse representa-

tions. This chapter also includes the empirical results on famous Caltech-101 [16]

image database. The effectiveness of FASE algorithm in terms of computation time

has been demonstrated.

3.1 Learning Framework

Suppose that, we are given an input sample x ∈ Rm (e.g., image patches) in a high

dimensional space. The representation learning algorithm consists of two modules.

First one is a feed forward encoder module that maps the input to a code vector

or latent representation z ∈ Rk. The other one is a decoder module that tends to

reconstruct the input sample approximately by a linear combination (i.e., x ≈ Dz)

of k basis vectors in a dictionary matrix D = [d1, . . . ,dk] ∈ Rm×k. A non-linear

encoding function f(x; W) has been used to map x→ z, where W = [w1, . . . ,wk]
T ∈

Rk×m is a latent weight matrix. For sparse representation, L1 constraint is imposed

to induce sparsity to the internal code vector. Our proposed module named fast

auto sparse encoder (FASE) is, in spirit, similar to a sparse auto-encoder framework

[36]. While learning, for given n data samples in Rm represented by matrix X =

[x1, . . . ,xn] ∈ Rm×n, we want to learn a dictionary D = [d1, . . . ,dk] ∈ Rm×k, and
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sparse representation code vectors Z = [z1, . . . , zn] ∈ Rk×n, so that each input sample

xj can be approximated by Dzj. Now the optimization problem can be formulaized

over D, Z and W as below:

arg min
D,Z,W

1

2
‖X−DZ‖2

F + λ‖Z‖1 +
α

2
‖Z− f(X; W)‖2

F , (3.1)

subject to : ‖di‖2
2 ≤ 1 for i = 1, . . . , k,

where λ > 0 is a parameter that controls the sparsity of the code vectors (features)

and α is a penalty parameter. We consider ‖.‖F and ‖.‖1 to represent Frobenius norm

and elementwise L1-norm respectively. In our experiment, we use sigmoid activation

function, f(X; W) = (1 + exp−(WX))−1, and set α equals to 1. One can use different

activation functions, such as, hyperbolic tangent function and rectifier linear unit.

We are interested in minimizing the objective given by Eq. 3.1. The first quadratic

term measures the discrepancy between observed input and reconstructed input.

The third quadratic term ‖Z − f(X; W)‖2
2 penalizes the violation of constraint,

Z = f(X; W); so that the system can predict the internal sparse representation

as accurately as possible. Training objective is accomplished in two phases:

• Inferring the sparse code vector by solving minimization problem in Eq. 3.1 to

achieve optimal Z∗ for given X and fixed W, D (as in sparse coding).

• Adjust both latent weights W and dictionary D in order to reconstruct the

image sample as close as possible for given X and fixed Z∗ (as in dictionary

learning).
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3.2 Sequential Optimization

Like most of sparse representation learning models, the optimization is a non-

convex process. Moreover, L1 penalty term makes the problem of finding optimal code

vector z very difficult. In our learning model we introduce an SMO-based inference

at each iteration, which is very fast and efficient for large size data, in comparison to

current state-of-the-art methods.

3.2.1 Inferring latent feature

The SMO is generally a decomposition optimization method for quadratic pro-

gramming problems. This method applies for optimization problem with equality

and bound constraints. In each iteration, a few number of variables violating the

optimality conditions are included in an working set, while the rest are fixed. In

this method only a minimal number of variables (even one or two) are updated by

a solver. This procedure iterates until no variable violates the optimality condition.

Because the objective function is decreased in each iteration, the convergence to the

optimal solution is guaranteed in regular cases. One of the properties of the SMO is

that the subproblem with only minimal variables can be solved analytically. We now

derive a new SMO solution for accelerated inference of sparse codes or features. For

implementation simplicity, we assume that there is only a single data point in Eq. 3.1;

it is trivial in our proposed formulation to handle multiple data point in a training

set. When D, W are fixed, finding the optimal Z requires solving n subproblems.

The jth subproblem finds zj for xj. In this section, we drop the index j and denote

x = xj; z = zj = [z1, . . . , zk]
T ∈ Rk. The objective function is then as follows:
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arg min
z1,...,zk

R(z) =
1

2
‖x−Dz‖2

2 + λ‖z‖1 +
1

2
‖z− f(x; W)‖2

2

=
1

2
(zTHz + zTz) + gTd z + zTgc + λ‖z‖1. (3.2)

The objective function in Eq. 3.2 is equivalent to the unconstrained non-smooth

QP problem, where Hessian matrix, H = DTD, gc = −sigm(Wx), and gd = −DTx.

LetA be the set of a few working variables and P be the set of fixed variables. Let’s as-

sume that the vectors and matrices, z, gc, gd and H are properly arranged with respect

to A and P , so that z =

∣∣∣∣∣∣∣
zA

zP

∣∣∣∣∣∣∣, gc =

∣∣∣∣∣∣∣
gcA

gcP

∣∣∣∣∣∣∣, gd =

∣∣∣∣∣∣∣
gdA

gdP

∣∣∣∣∣∣∣ and H =

∣∣∣∣∣∣∣
HAA HAP

HPA HPP

∣∣∣∣∣∣∣.
We use the indices A and P in the notations to denote the correspondence with

working and fixed set respectively.

The decomposition of R(z) in Eq. 3.2 can be the following L1 least square sub-

problem:

R(zA) =
1

2

∣∣∣∣ zTA zTP

∣∣∣∣
∣∣∣∣∣∣∣

HAA HAP

HPA HPP

∣∣∣∣∣∣∣
∣∣∣∣ zAzP

∣∣∣∣+
1

2

∣∣∣∣ zTA zTP

∣∣∣∣
∣∣∣∣∣∣∣

zA

zP

∣∣∣∣∣∣∣
+

∣∣∣∣ gTdA gTdP

∣∣∣∣
∣∣∣∣∣∣∣

zA

zP

∣∣∣∣∣∣∣+

∣∣∣∣ zTA zTP

∣∣∣∣
∣∣∣∣∣∣∣

gcA

gcP

∣∣∣∣∣∣∣
+λ‖zA‖1 + λ‖zP‖1

=
1

2
(zTAHAA · zA + zTA · zA) + (HAPzP + gdA)TzA

+zTAgcA + λ‖zA‖1 + const. (3.3)

Analytical solution:

To avoid the expensive Hessian matrix (H) calculation in each iteration for the

objective update, we solve the subproblems analytically in a closed form. The minimal
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subproblem with only one active variable z1 is given as follows:

min
z1

R(z1) =
1

2
h11z

2
1 +

1

2
z2

1 + (H1PzP + gd1)z1

+z1gc1 + λ‖z1‖

=
1

2
h11z

2
1 + b1z1 + λ‖z1‖, (3.4)

where A = {z1}, P = {k − 1 remaining variable}, b1 = H1PzP + gd1 + gc1 .

This is the minimal subproblem of Eq. 3.2, which can be solved analytically as

the following procedure. Let us separate the interval into z1 ≥ 0 and z1 ≤ 0. For

positive interval the objective R(z1) becomes,

R(z1) =
1

2
(h11 + 1)z2

1 + (b1 + λ)z1.

Taking first-order derivative and setting it to zero, we have z
(+)
1 = −b1−λ

(h11+1)
. There-

fore, for interval z1 ≥ 0, the optimal solution is:

z
(+)∗

1 =


z

(+)
1 , if z1 ≥ 0

0, otherwise.

(3.5)

Similarly, for negative interval, we have the optimal solution as:

z
(−)∗

1 =


z

(−)
1 , if z1 ≤ 0

0, otherwise,

(3.6)

where z
(−)
1 = −b1+λ

(h11+1)
. By considering both together, the optimal solution is the

one among z
(+)∗

1 and z
(−)∗

1 , whichever obtains the minimum objective value, that is:

arg min
z

(+)∗
1 ,z

(−)∗
1

R(z1).
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Now we can see that,

z
(+)
1 ≥ 0 =⇒ −b1 − λ

(h11 + 1)
≥ 0 =⇒ b1 ≤ −λ.

Similarly,

z
(−)
1 ≤ 0 =⇒ −b1 + λ

(h11 + 1)
≤ 0 =⇒ b1 ≥ λ.

So, if b1 ≤ −λ or b1 ≥ λ, the solution of Eq.3.4 is z∗1 = −b1−λ
(h11+1)

or z∗1 = −b1+λ
(h11+1)

,

respectively. Otherwise, z∗1 = 0.

Therefore, each subproblem has following analytical optimal solution:

z∗1 =


−sgn(b1)(|b1|−λ)

(h11+1)
, if |b1| ≥ λ

0, otherwise.

(3.7)

without loss of generality, this is the analytical solution to Eq. 3.2, where math-

ematical sign function is represented by operator sgn. This is the rule of updating

an active or working variable coefficient. To obtain this rule, we follow a general

proposition [23] given below which is very significant.

Proposition 1. The solution to the following problem

min
z
f(z) = z2 + bz + λ|z|

is analytically

z∗ =


−sgn(b)(|b| − λ), if |b| ≥ λ

0, otherwise.

Optimality condition:

The Karush Kuhn Tucker (KKT) necessary and sufficient optimality condition of
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Eq. 3.2 is:

∂R(z)

∂z
= zT (H + I) + gTd + gTc +

∂(λ‖z‖1)

∂z
= 0. (3.8)

However, because λ‖z‖1 is not differentiable, we employ the sub-differential concept

[7]. Hence we have the optimality condition,

si = (Hi: + Ii:)z + gdi + gci =


λ if zi < 0

∈ [−λ, λ] if zi = 0

−λ if zi > 0,

(3.9)

where we use si to define the optimality condition for each variable and Hi: to

denote the corresponding row of H matrix.

3.2.2 Dictionary and latent weight learning

In each iteration we have another phase after one cycle of inference. When z is

learned, we apply the gradient descent update rule to adjust the dictionary D and

latent weight W while the value of z remains fixed. We perform only one step update

and proceed to next iteration cycle. We are interested in following optimization

problem over the parameter D and W:

arg min
W,D

J(θ) =
1

2
‖x−Dz‖2

2 +
1

2
‖z− f(x; W)‖2

2

+
α1

2
‖D‖2

2 +
α2

2
‖W‖2

2, (3.10)

where θ denotes the collection of parameters and α1, α2 are the regularization

parameters. We use the L2-norm regularization for both dictionary D and weight

W. After each update, the column of dictionary matrix has been normalized to have

unit L2-norm to assure the uniqueness of sparse linear combination. The update rules
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are as follows:

D← D− η1∇DJ(θ),

W←W − η2∇WJ(θ),

where gradient calculations are given by ∇DJ(θ) and ∇WJ(θ) with respect to D

and W correspondingly. The learning rates are η1, η2.

3.3 FASE Algorithm

In proposed FASE method, we successfully remove the need of large Hessian-

vector matrix multiplication, which makes the method more suitable for large-scale

application. Algorithm 1 shows the proposed learning method.

3.3.1 Implementation details

In each iteration, the proposed algorithm tends to select and update the coef-

ficients, which violate the KKT optimality condition. The selection of a violating

variable and a working variable is implemented systematically in constant time to

optimize the procedure. The algorithm proceeds by making a choice of working vari-

able. In each iteration, a violating variable z1 must be set as a working variable,

and should be updated analytically to optimize. After the update of z1, the vector

s (defined in Eq. 3.9) should be updated in order to obtain the optimality condition

again and choose the new violating variable z1. Intuitively, s can be updated by its

definition. However, it would take linear time to update each element si. In fact, if

we keep a record of its previous value (denoted by si′), si can be updated in constant

time. Suppose, zold represents the coefficients of the old z1, and znew represents the

coefficients of the updated z1. We derive that, siold = (hi1+1)ziold+HiPzPold+gdi+gci ,

sinew = (hi1 + 1)zinew + HiPzPnew + gdi + gci , and HiPzPnew = HiPzPold .
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Algorithm 1 Unsupervised Sparse Feature Learning

Input: Sample data x ∈ Rm.
Load parameters
Random Initialization: Wm×k, Dk×m.
While (t < maximum iteration) or convergence Do

1. Normalize D to unit norm.
2. Start FOR: each subproblem DO

2.a Initialize, zinit = f(x; W).
2.b Run SMO to estimate optimal z:
• Estimate active and passive sets:
A = {z1},
P = {k − 1 remaining variable}

• Calculate
H = DTD,
gc = −sigm(Wx),
gd = −DTz.
• Iteratively select a variable z1, and compute
b1 = H1PzP + gd1 + gc1 .
• Check the optimality condition as in Eq. 3.9.
• If z1 violates condition:

update z1new using Eq. 3.7
update b1new = s1old − (h11 + 1)z1old ,
where s1old = (h11 + 1)z1old + b1.

For all variables, update the optimality condition as:
si = (hi1 + 1)(znew − zold) + gdi + gci .

• Terminate if no variable violates optimality condition.
2.c Calculate new objective value using Eq. 3.1.
2.d Estimate and update W, D using gradient descent method.

update D← D− η1∇DJ(θ),
update W←W − η2∇WJ(θ).

3. End FOR
End While

We thus can update each element si by the following equation which takes constant

time:

si = (hi1 + 1)(znew − zold) + gdi + gci .

Similar idea also applies to the computation of b1 before updating z1. According

to the definition, b1 can also be updated in linear time. However, it can actually be
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updated in constant time as well. We can update b1 in constant time as following:

b1new = s1old − (h11 + 1)z1old .

In order to optimize the selection of working variable, a meticulous procedure has

been followed. We measure the difference between si and its corresponding desired

values (Eq. 3.9) for each variables. The difference di is given by the following equation:

di =


|si − λ| if zi < 0

|si| − λ if zi = 0

|si − (−λ)| if zi > 0.

The variable with the maximum di value is then selected as the working variable. Also

note that, before the iterative update of the method, z and s need to be initialized.

So, zinit = f(x; W) and sinit = (Hi:+I)zinit+gdi+gci , respectively. This initialization

makes the iterative update very efficient, as z is eventually sparse.

3.3.2 Convergence Analysis

Now we can briefly analyze the the convergence of the FASE algorithm to the

global optimum of Eq. 3.1. We base our analysis on a traditional SMO approach [32],

[31]. In the inference phase, the LASSO problem in Eq. 3.2 is solved by the SMO.

The derived KKT conditions in Eq. 3.9 are necessary and sufficient conditions for an

optimal point of this type of positive definite QP problem. As long as SMO optimizes

and updates the working variables at every iteration, each step will decrease the

objective function according to Osuna et al. theorem [31]. The theorem simply proves

that the large QP problem can be broken down into a series of smaller subproblems

and maintain a feasible point that obeys all of the constraints. Therefore, a sequence

of subproblems given by Eq. 3.3 that always have at least one violation variable to
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(a) (b)

Figure 3.1: a) Efficiency of the methods with respect to various patch size. (b) Efficiency of the
methods when using different number of features.

optimize, will be guaranteed to converge to the optimum. Also in each iteration cycle,

after the inference loop, one step of gradient descent update takes place to optimize

the problem in Eq. 3.10. Thus, the combination of two optimization problem ensures

the overall convergence of the objective value given by Eq. 3.1.

3.4 Experiments and Result

To assess the efficiency of the proposed method with respect to the execution time

of convergence and computational cost, we first test methods on a natural image

database with various patch size and number of features. We use the Caltech-101

database that consists of 102 categories. We select randomly 30 images per class

and pre-process them as in [16]: The images are converted to gray-scale, and then

down-sampled and zero padded to 143× 143 pixels. Finally, we normalize the images

to have the standard Gaussian distribution. The convergence of each method is

evaluated with the relative change in objective function value. The method is stopped

when this change drops below a preset threshold. We compare the proposed method

with the sparse coding algorithm proposed by Lee et al. [20] with respect to the

execution time. This traditional sparse coding method has been used for the baseline
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comparison of the efficiency of methods. We use the code given by the author as

it is fairly optimized and easy to modify. All algorithms were implemented using

MATLAB on a machine with 64-bit AMD dual-processor systems, with 6GB of RAM

and speed of 2.93GHz.

First, we perform experiments using 10,000 patches with varying sizes to evaluate

the efficiency and scalability of the methods. Figure ??(a) shows the comparison

with respect to various patch size while we estimate 512 dimensional code vector per

training sample. As shown in the figure, the execution time of sparse coding method

is exponentially increasing with the larger patch size, while ours changes linearly. The

figure shows that the time of the proposed method is increased from 1.04 hours to 3.1

hours while using 32 × 32 and 80 × 80 patch size, respectively. However, the sparse

coding method [20] took 11.3 hours and 6.5 days for 32× 32 and 80× 80 patch sizes,

respectively.

Second, we evaluate the efficiency of the methods with varying number of fea-

tures using the same data. We randomly select 10, 000 patches of 50 × 50 pixels.

Figure ??(b) shows execution time for each method when the number of the learned

features is increased from 512 to 1024. Our execution time is approximately 1.3 and

3.4 hours for corresponding feature numbers; whereas the sparse coding take about

1.5 and 14 days to complete the learning process. Our FASE performs significantly

fast while learning large number of features from bigger size data.

Fig. ?? shows some examples of learned dictionaries using FASE and sparse coding

methods for visualization. The proposed method is able to extract good features

from the large patches which have been avoided because of high execution time and

computational cost in the unsupervised learning process. According to Coates et al.

[9] larger input size can capture complex features that cover a larger area of images.

Also, larger image patches, small stride number, and learning large number features

are the key factors to achieve good results. However, we see that learning large
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(a)

(b)
(16× 16) (32× 32) (50× 50)

Figure 3.2: Example of learned dictionaries using various dimensional image patches with (a) the
proposed FASE and (b) sparse coding [20] methods.

patches increases the dimensionality of the space. The key result of our experiments

is that our proposed FASE speed up the convergence process by omitting expensive

Hessian-vector matrix multiplication in each iteration. In comparison, state-of-the-

art LASSO solver feature-sign method takes days to find coefficients for the sparse

coding method [20]. Our algorithm successfully learned Gabor-like edges and also

recognizes image-like complex structures. This result demonstrates the scalability of

our algorithm. However, effectiveness of using these features can be better understood

by using bigger data set and running it with more computational resources.
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CHAPTER 4: SPARSE FEATURES AND

CLASSIFICATION

This chapter evaluates our proposed method on object classification tasks. The

performance of our proposed method has been assessed on several data sets including

CIFAR-10 [17], Caltech-101 [10] and AR face database [25]. The method has been

compared with various alternative state of the art methods in terms of the execution

time and classification accuracy. All algorithms were implemented using MATLAB

on a machine with 64-bit AMD dual-processor systems, with 6GB of RAM and speed

of 2.93GHz.

4.1 Object Classification

In machine learning area object classification has always been a challenging prob-

lem. The linear support vector machine (SVM) and a deep neural network (DNN)have

been used for the classification in our method. The rectified linear units (ReLU) [28]

activation function and the dropout regularization method [13] are used to improve

(a) (b) (c)

Figure 4.1: (a) Efficiency of the methods with respect to various patch size. (b) Efficiency of
the methods when using different number of features. (c) Classification comparison when using
various number of samples in the learning stage and with two different classifiers (i.e., linear SVM
and DNN).
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the classification accuracy of the DNN. The ReLU is used for all hidden layers to

produce sparse activity vectors and learn much faster than ordinary logistic units. To

avoid the over-fitting problem in DNNs, we use the dropout method as a regularization

which randomly sets each unit’s activation in all hidden layers to be 0 with a proba-

bility p. The value of p can be chosen based on the specific problem at hand (a typical

value of p is 0.5). We apply dropout only in the training phase. In the classification,

the DNNs have an architecture in dimension of {(dim)− (A∗dim)− (B ∗dim)− (C)}

with lr = 0.01, momentum = 0.5, dropout fraction (df) = 0.5, ep = 1000, and where

dim is the dimension of each feature vector, A = 1.2 ∗ dim, B = 1.5 ∗ dim, and C is

the class number. The constants in the hidden layers are chosen empirically. In the

unsupervised learning part, we train the entire labeled training set of images before

the classification step. We also should note that, all images in our experiments are

locally normalized to have the Gaussian distribution.

4.1.1 Evaluation on CIFAR-10

To show the quality of our feature learning method in classification, we first apply

the proposed method on CIFAR-10 database. The CIFAR-10 database [17] consists

of 10 classes with 50, 000 training and 10, 000 testing images in size of 32×32×3. We

process the data using contrast normalization and whitening as in [9]. We randomly

trained 40, 000 image patches in size of 6× 6× 3. We learn 512 dictionaries with our

fast unsupervised learning algorithm. Then we extract features from 50, 000 training

images following the convolutional extraction process of Coates et al. [9]. In this

experiment we use stride 1 with 6 × 6 patches to obtain a dense feature extraction.

The non-linear mapping transforms the input patches into a new representation with

512 features using the learned dictionaries. Then we use pooling for dimensionality

reduction; and 2048 pooled features are used to train the DNN classifier.

Our result using this set up is reported and compared with other methods in
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Figure 4.2: Images from Caltech-101 databases with selected categories. Each row shows samples
from different classes.

Table 4.1. The goal here is to show that the proposed method extracts good features

for the classification. We use the available codes [9, 20] for the comparison in our

experiments. We obtain better or at least comparable results with the closest state-

of-the-art methods [18], [9], [20]. The method proposed in [8] reported an accuracy of

81.5%, which is slightly higher than our classification accuracy of 78.8%. However, the

method [8] applies a preset soft-thresholding activation function for encoding, whereas

our FASE algorithm tends to learn the encoding function by training. Therefore, the

direct comparison between these two methods is beyond the scope of this work, as

the encoding mechanism is fairly different.

4.1.2 Evaluation on Caltech-101

As we briefly describe above, Caltech-101 database consists of 102 categories in-

cluding a background class. Figure 4.2 shows example images from the database. We

use 30 training and up to 30 testing images per each category. We also follow the
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Table 4.1: Precision results for the CIFAR-10 database

Method Acc. (%)

3-Way Factored RBM (3 layers)[18] 65.3

Sparse auto-encoder(SAE) + Linear SVM [9] 73.4

Sparse RBM + Linear SVM [21] 72.4

K-means (trangle) + Linear SVM [9] 77.9

Sparse coding + DNN 2-layers [20] 73.3

FASE + DNN 2-layers 78.8

Table 4.2: Precision results for the Caltech-101 database

Methods Acc. (%)

IPSD + PCA + Gaussian kernel SVM [16] 54.0

K-means (trangle) + Linear SVM [9] 48.1

Sparse coding + DNN 2-layers [20] 51.1

FASE + DNN 2-layers 54.6

same normalization and pre-processing steps as we did in the Section ??. We train

our proposed and alternative methods on 50, 000 patches which are selected randomly

from 3060 training images. The size of each patch is chosen as 32× 32.

The number of learned feature is 256 in our experiment. After the dictionaries

are learned, we follow the same feature extraction procedure as we explained above.

We compare our FASE with the available two algorithms and closest state-of-the-art

single layer methods as shown in Table 4.2. The proposed method achieves 54.6%

classification accuracy that is comparable to the closest works. Using the same DNN,

the sparse coding method [20] obtains 51.1% classification accuracy; whereas our

learning speed is much more faster. Invariant predictive sparse decomposition (IPSD)

method [16] obtains 54.0% classification rate. As can be seen, our method does not

only estimate features faster than the sparse coding method [20], but also it extracts

important features that are able to achieve better classification accuracy when the

feature map size is relatively larger (i.e., 32 × 32). Also, learning method using K-
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means technique [9] gets 48.1% classification accuracy which is much lower than ours.

The proposed method obtains better classification accuracy as can be seen on the

experiments on both CIFAR-10 and Caltech-101 databases. Figure ??(c) shows the

classification results by using the linear SVM and DNN classifiers after using 10, 000

and 50, 000 unlabeled patches for each method. With these results, we show how

various sample numbers affect the feature learning stage by using different classifiers

to make the comparison.

4.2 Face Recognition

4.2.1 Evaluation on AR Face Database

The classification quality is also measured on AR [25] face database. The aligned

AR database [25] contains 100 subjects (50 men and 50 women), with 26 different im-

ages per subject which totals to 2, 600 images taken in two sessions. In this database,

there are facial expression (neural, smile, anger, scream), illumination, and occlusion

(sunglass, scarf) challenges. In our experiment, we use all images without the occlu-

sion challenges for both the unsupervised learning and classification steps. Figure 4.3

shows some example images from a subject. We segment four essential facial regions

with sizes of 39 x 51 (left eye and right eye), 30 x 60 (mouth), and 45 x 42 (nose).

Figure 4.4 shows our pipeline that we follow for the AR database. First, we learn

the dictionary for each facial region separately. We believe that better representations

are obtained by running the unsupervised learning for each region. The features of

the labeled data are extracted using the learned dictionary. Before the classification,

we combine the features extracted from four regions, and train the classifier.

In our experiment, we follow a scenario described in [41] which reported one

of the state-of-the-art recognition rates. We select a subset of 1400 images which

are composed of 14 images per subject with the facial expression and illumination
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Figure 4.3: Images from one subject in AR database with various facial expression and illumina-
tion.

Figure 4.4: The framework for the classification of AR data.

changes. Various train-test image partitions are used. We conduct 10 runs for train-

test procedure to get the average recognition rate for each partition.

In Table 4.3, we show the face recognition rates obtained by the proposed frame-

Table 4.3: Comparison of face recognition rates on AR database.

Acc. (%) with various Train

Methods 2 Train 4 Train 5 Train

PCA [41] 34.94 50.71 56.13

LPP [41] 55.07 68.12 71.58

NPE [41] 40.45 52.95 61.12

ONPP [41] 62.20 77.25 81.76

EPP [41] 72.45 83.86 86.23

Sparse Filt.+SVM [29] 58.83 78.50 82.22

K-means+SVM [9] 65.24 82.25 85.56

FASE+SVM 72.83 85.25 89.12
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work, alternative methods that were reported in [41], and publicly available algo-

rithms [29, 9]. We follow the same framework as shown in Fig. 4.4 for each method

[29, 9] to get fair comparison. The results show that our framework is better than

the similar single layer learning and state-of-the-art methods applied on the AR face

database.
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CHAPTER 5: CONCLUSION

In this thesis work we presented a new auto encoder-decoder based method for

unsupervised learning of sparse representation. To estimate sparse code vectors, we

propose to use SMO method for fast convergence. To avoid the expensive Hessian ma-

trix calculation needed for coefficient update, we solve the subproblem analytically in

a closed-form solution. The proposed method is applied to derive sparse representa-

tions from unlabeled image data, which is increasingly available. Our results suggest

that the proposed learning method is able to learn features from larger images with

low computational cost and execution time. We have tested the proposed method

on several datasets and the experimental results demonstrate its effectiveness. We

also discussed the scalability issue in details and extend the module in a parallel

and distributed system. We outline the derivation of proposed algorithm in a Map-

reduce environment. Our future goal would be the implementation of the algorithm

for applications in the area of Big data [5] research. Another direction for future

work might be to integrate our feature extraction scheme into a hierarchical model

such as sparse deep belief net (DBN), convolutional deep belief net (CDBN) [22] for

challenging machine learning and computer vision tasks.
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High dimensionality and the sheer size of unlabeled data available today demand

new development in unsupervised learning of sparse representation. Despite of recent

advances in representation learning, most of the current methods are limited when

dealing with large scale unlabeled data. In this study, we propose a new unsupervised

method that is able to learn sparse representation from unlabeled data efficiently. We

derive a closed-form solution based on the sequential minimal optimization (SMO)

for training an auto encoder-decoder module, which efficiently extracts sparse and

compact features from any data set with various size. The inference process in the

proposed learning algorithm does not require any expensive Hessian computation

for solving the underlying optimization problems. Decomposition of the non-convex

optimization problem in our model enables us to solve each subproblems analyti-

cally. Using several image datasets including CIFAR-10, CALTECH-101 and AR

face database, we demonstrate the effectiveness in terms of computation time and

classification accuracy. Proposed method discovers dictionaries that are able to cap-

ture low level features in larger dimensional patches in quite lower executional time

than the other alternatives. Then by detailed experimental results, we present that
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our module outperforms various similar single layer state-of-the-art methods including

Sparse Filtering and K-Means clustering method.
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