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CHAPTER 1 

INTRODUCTION 

    The development of the automated vehicle and the advanced driver assistance 

system (ADAS) unobtrusively relieve the driver from a lot of tedious tasks. With 

the help of ADAS, drivers can pay more attention and have more time to handle 

higher-level tasks. In order to accomplish this task, many sensors are integrated 

into the ADAS system, including RADAR, LIDAR, ultrasound and cameras. 

However, almost every kind of sensor has its own limitations, like the limited 

azimuth measurement of RADAR, and short detection range under rain or snow of 

LIDAR [1]. In addition to these limitations, the cost of sensors is another big issue. 

Based on this consideration, many researchers focus on the single vision-based 

system. However, the quality of information provided by the vision sensors is still 

very sensitive under different weather conditions – the same as the human eyes. 

Thus, it is very important to report the quality of an image captured by an on-

board camera under bad weather is. 

      In our approach, we estimate the confidence of an image based on the visible 

range which we analyzed from the same image. Actually, the visibility estimated can 

not only be used to deduce confidence, but is also an important indicator to help a 

driver drive safely. According to literature, the human eyes estimate 60 % further 

about the position of vehicles in front under foggy weather than fair weather [2]. 

Nowadays, most sensors used to detect visual range are quite expensive to operate, 

install, and calibrate like the scatterometer and the transmissometer [3]. Therefore, 

many have proposed their own ways to estimate visibility range based on cheap 
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sensors, like a camera. This research will focus on the camera approach and the 

need and solutions to better algorithms. 

1.1   MOTIVIATION 

    On-road visibility detection is a problem researched and discussed world-wide in 

the last decade. Some focused on the standstill cameras installed along the road at 

first [4]. Affected by the inconvenience and the infrastructure cost, many later 

moved to the on-board camera systems. However, since the detection algorithms 

based on such systems are always used under many assumptions, they can only be 

used under specific terrain conditions, like straight flat road segments. 

The method proposed here follows the Koschmieder’s law, which is primarily used 

to calculate how visibility is blurred by fog. Then, it estimates the visibility by detecting 

the horizon, the inflection point and the variance of the image of the preceding vehicle. 

The algorithm contributes in three ways: first, regardless of the terrain, the method can 

always maintain a relatively accurate result as long as the vehicle is on a structured 

road. Second, this method only requires monocular camera, while many systems 

require both a LIDAR and a camera in order to make an accurate prediction. Third, the 

confidence of image will be analyzed during this procedure.  

This thesis is organized as follows: in Chapter 2, several perspectives and general 

achievements about autonomous vehicle will be presented. Second, related works will 

be summarized based on the different kinds of sensors the visual detection systems 

used and their limitations. Chapter 3 will briefly introduce the platform we used to 

create the simulation environment and how we built it. Also, some other components 

that were added into this system will be mentioned. Chapter 4 will describe how we 
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analyze the images, the general process of the algorithm and the result under a 

simulation environment. Finally, we conclude the thesis, analyze the experiment, 

and introduce the future work. 
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1.2   BACKGROUND 
 

As many OEMs are ambitious to set their goal to release their conditional 

automated vehicles (Level three) in 2020 including Ford, GM. One biggest 

problem now is how to judge whether their system is reliable under a specific 

environment. As what specified by SAE, a conditional automated vehicle shall be 

able to reminder a driver to take it over whenever system is not confident. As Fig 

1.1 shows, almost half of the ADAS functions are based on the camera solely or 

partially. For example, lane keeping, surround view, traffic sign recognition, and 

pedestrian detection.  That is the reason why the visibility detection is important 

since image-based algorithms heavily rely on the visibility. Whenever the visibility 

falls under a threshold, a detector is needed to warn the user to take over the 

control.  

 

 

Figure 1.1: Part of the functions currently available on the vehicle [27]. 
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CHAPTER 2 

BACKGROUND AND SIGNIFICANCE 

    In the past 10 years, many researchers already have studied ways to detect fog 

using a binocular camera, monocular camera or RADAR. Many different solutions 

have been proposed by researchers to estimate visible range under the fog. First, 

researchers like Bush et al. [8] and Hasegawa [4] utilized a fixed camera mounted 

on the road or overhead structure to detect fog. This method exploits some 

advantages like foreground detection, which can be used to improve accuracy of 

object contour detection. The general idea of Bush’s method is to detect the 

furthest pixel, whose contrast is greater than 5 % in the contour of any object in the 

captured image. Later, by estimating the distance of the furthest visible pixel to 

host-vehicle, visible range is deduced. It was a very popular idea at first. However, 

since it is a static application, it may involve lot infrastructure problems. Thus, 

many researchers later shifted their focus to the on-board sensors application. In 

the following several sections, we introduce several methods to estimate visibility 

by using different on-board sensors.
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2.1 MONOCULAR AND BINOCULAR CAMERA 

    Most researchers who estimate visible range by monocular camera have to make 

two assumptions beforehand. The first is the flat world assumption which is used 

to estimate how far a certain pixel is in the image, from the camera. The other one 

is Koschmieder’s model which is used to estimate the inflection point in the image. 

Similar solutions and techniques can be found in [5], [9], [10], [14]. The general 

procedure of these methods is to find inflection points, which represent the division 

points separating the inside and the outside of the fog, by using region growing 

algorithm. In addition, the authors need to find out the horizon line in the image. 

Generally, the Hough line detection algorithm is used to find the horizon. Finally, 

based on the ordinate of horizon in the image, inflection point, flat-world assumption 

and Koschmieder’s model, visible range in the real world coordinate is deduced. 

The difference between these solutions mainly involves the kind of region growing 

algorithms and the kind optimization algorithms that are used to improve the 

accuracy. Additionally, different methods are utilized to find the inflection point, like 

the second derivative of the Koschmieder’s model, while some others try to find the 

furthest visible pixel whose contrast is bigger than 5 % in the image to represent it 

[16]. 

In order to avoid the flat-world assumption, some try to estimate range with the 

aid of binocular cameras. Hautiere et al. [16] built a depth map of the vehicle 

environment and then estimated range based on a v-disparity method. But in 

general, the main solution is similar. 

The biggest problem of such solutions is that they only maintain a relatively 



7 
 

  
 

accurate estimation result within 400 meters. In the following picture, the purple 

point represents the inflection point and the yellow point represents the horizon 

point. When the actual visibility is too far, the inflection point will be very close to 

the horizon. Since the image is always somehow deteriorated by noise, the 

calculated point fluctuates among the real inflection point. This is not a problem 

when it is very far from the horizon. However, when it is very close to the horizon, a 

one- or two-pixel distance error in the image will cause a huge error in the final 

estimated visible range based on Koschmieder’s model. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.1: Estimated Visibility by finding the Horizon Point and the Inflection 
Point: the purple point is the Inflection Point and the yellow point is the Horizon 
Point 

 
 
 

Limited by this constraint, many authors use this method to classify weather 
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conditions rather than the exact determination of the visibility range. The input 

images are classified into coarse weather categories like dense fog, moderate fog 

and low fog. 

2.2 MONOCULAR CAMERA ASSISTED BY RADAR 

      Since a monocular camera itself is not enough to make an accurate estimation, 

many later try to use radar to detect range. Michael Gabb et al. [11] proposed a 

solution to estimate visibility with aid of a state-of-art vehicle detection and 

tracking algorithm. The time at which each vehicle disappears in the video and 

how far they go captured by the on-board camera will be recorded, which 

represents the visible range. Since there are many vehicles within each frame, 

there could be many visibility inputs. These inputs are filtered to deduce a final 

visibility estimation. 

However, this algorithm heavily relies on the presence of a number of vehicles 

to get a correct result and it requires a relatively long time to be initialized. In an 

extreme case, for instance, when there is no incoming or preceding vehicles in 

front of the host vehicle, the algorithm cannot work properly. Another problem is 

the cost. RADAR is much more expensive than a camera. In addition, RADAR 

usually has a more limited azimuth angle than the camera. The typical detection 

range for a radar is ±30◦. 

Another solution proposed by Kenji et al. [12] [13] is to classify weather categories 

by evaluating variance or Discrete Cosine Transform (DCT) of vehicle image 

cropped from images captured on the road. A vehicle template image was used to 

detect vehicles in the image. RADAR here is also used as a tool to detect a more 
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accurate range between a front vehicle and the host vehicle. A part of my solution 

is inspired by their algorithm. 

       This algorithm also has its own problem.  Using a template vehicle image to find 

vehicles will highly reduce accurate rates of vehicle detection. In addition, to detect 

a relatively accurate numerical visible distance is more desired than just classify 

weather conditions into several coarse categories.  

2.3 OTHER SOLUTIONS 

      The issue of finding ways to remove fog effects in the image or restore the image is 

also encountered frequently in the literature review. Since it is not a main topic of 

this thesis, however, we will only lightly cover this area. 

Most researchers try to recover the image based on an image-deterioration 

model, which is deduced from Koschmieder’s model like Nicolas Hautiere et al. 

[14] and Narashimhan et al. [15]. What they did was to find the atmosphere 

coefficient k, assisted by the same method introduced in the previous section. By 

inserting this coefficient into the Koschmieder’s model, an image can be thereby 

restored. However, due to vertical objects in the image, the intensity of the restored 

image is discontinuous around the boundary of vertical objects on the road. Thus, 

by extracting these areas and then trying to saturate the intensity of these areas 

with surrounding road intensities, a final restored image is presented. 

Other solutions which do not rely on the Koschmieder’s model are always based 

on some other findings like Tan et al. [17] and He et al. [18]. He proposed a 

method to restore an image based on an interesting finding, the black channel. 

They found that for most haze-free outdoor images in most of the non-sky patches, 
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there is at least one color channel, the black channel, that has very low intensity at 

some pixels. More interesting is that 75 % of these low intensity pixels have zero 

values. Based on this finding, the author took a min operation among all the local 

path and then deduced the fog transmission equation by calculating the difference 

between minimum intensity value of local path with value zero. Tan [17] tried to 

recover the deteriorated image by maximizing the contrast of the image; however, 

this may bring many artificial particles into the image. 
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CHAPTER 3 

CREATION OF SIMULATION ENVIRONMENT 

3.1 INTRODUCTION OF PRESCAN 

     PreScan is a platform used to build simulation environments which can be used 

to develop and test different kinds of ADAS functions. The biggest advantage of 

this platform is the availability of multiple types of sensors. PreScan has a big 

virtual sensor library including camera, LIDAR, RADAR, GPS, and Vehicle–to-

Vehicle (V2V) communication protocols. Equipped with these sensors, one can 

create blocks in the Simulink to develop ADAS functions. In addition, one can add 

noise and predefine the drift of sensors to simulate possible scenarios, or test the 

robustness of one’s algorithm. 

Another simulation platform used ubiquitously is VisSim, which focuses on 

traffic patterns. Many, therefore, use it to plan the best route, analyze traffic flow 

or reschedule the timetable of a bus. One advantage of VisSim is that one does not 

need to set a trajectory for every vehicle. What one needs to do is to define a number 

for traffic flow and the average speed for different types of vehicles that one wants to  
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(a) Main Features of PreScan [20] (b) Main Features of VISSIM [21] 

 
 

Figure 3.1: Comparison between PreScan and VISSIM 
 
 

add in the experiment, and VisSim simulates the drivers’ behavior automatically. 

Vehicles in the VisSim will try to avoid collision automatically if possible, while they 

will only follow predefined trajectories in the PreScan. Thus, the experiments built in 

the PreScan are all under micro-scenarios with limited numbers of vehicles and 

distance. 
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3.2 ENVIRONMENT MODELING 

      The first task is to create road networks. The information to create a road 

network is gathered from three parts, a simplified map from OpenStreetMap, a 

satellite map screenshot from Google Maps, and real world-data collected on the 

road. The whole process is actually to correct the simplified map manually based on 

information from satellite map and real-world data. 

        We can first directly download simplified maps from OpenStreetMap and then 

underlay a satellite map with it. It is not very easy to align these two maps. In order 

to align them closely, we need to find a point on the satellite map with its longitude 

and latitude. That is needed when you import the satellite map. Since every point on 

the OpenStreetMap is labelled with its GPS data, we can align the maps by 

overlaying the points. Second, we need to find out the real length of a segment of a 

recognizable line. It will be used as a scalar to match the two maps. A higher 

resolution satellite map is recommended. It consumes a lot of time to adjust the 

alignment if you use a rough map. 

We can roughly build the network now, but we still need images and inclination 

data to estimate heights of rail guards, slopes of the roads, and correct roads. 

I will next emphasize the segments which I use to build network and their 

limitations
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3.2.1 Flexible Road 

       The road segment which I used most frequently is flexible road, which is what 90 

% of all segments in the road network consist of. PreScan introduces the flexible 

road as ”basically the same as a curved road, but the user has the option to add any 

number of definition points between start point and end point” [26]. It actually 

means every definition point you add in the flexible road creates a new segment and 

thus you can adjust every segment subtly to overlay the satellite map. As we know, 

roads are not exactly straight in reality. Thus, it offers us this flexibility to create 

these variations. Besides that, I use the flexible road as long as possible. The longer 

the road, the less unexpected are the variations that exist, as demonstrated in Fig 

3.2. In addition, you can create a sharper curve as the road grows longer. Therefore, 

it is recommended to connect all flexible roads as one. 

3.2.2 Lane Adapter 

      Lane adapters are used frequently when building freeways. PreScan says, “The 

Lane Adapter Road is a road segment connecting two roads with a different number of 

lanes, different widths of lanes or a combination of both.” Many may use an entrance 

lane road or exit lane road to merge roads. However, as I have looked at the satellite map 

from Google Earth, I found almost all the merge lanes in the freeway merged gradually 

instead of abruptly. Thus, a lane adapter actually is much more appropriate to use as a 

road merger, as seen in Fig 3.3 below. 
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(a) Flexible Road with Limited Number 

of Definition Points 

(b) Flexible Road with Many Definition 

Points 
 

Figure 3.2: Flexible Roads are more skewed with too many definition points 
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(a) Built with Entrance Lane Road (b) Built with Lane Adapter 

 

 

 

(c) Road Surface from Satellite Image 

 
 

Figure 3.3: Entrance Lane Road vs. Lane Adapter Road 
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Another feature of a lane adapter is that you can enable the Positive / Negative 

x-dir lane offset option to determine which lane you want to merge. However, only 

the first lane can be merged if you choose entrance lane road or exit lane road to 

merge new lanes. 

3.2.3 Ramp Segment 

     A ramp segment is the only road segment that has the option to define a title 

angle. Unfortunately, it is a straight road. Thus, we use small segments of flexible 

roads to link ramp segments when building an overpass. Unfortunately, the result of 

doing so is to make roads look very wavy. However, I still have not found a better 

solution till now to make it much smoother. 

3.3 VEHCILE AND SENSOR INTEGRATION 

     After building the road network, many other components can be added on. The 

first one is the vehicle. After that, as mentioned before, each vehicle’s trajectory 

needs to be set in the PreScan. 

3.3.1    Trajectory 

     The trajectory consists of two parts: speed profile and path. You can choose either 

an inherit mode, or a free drafting mode to plot paths. However, you can only change 

the elevation of a path in the drafting mode. Thus, you can only use this mode when 

you have ramp segments in your road. 
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Figure 3.4: Drafting Mode Provides More Tunable Parameters 

 

Additionally, drifting mode offers you different types of path segment like arc, 

Bezier curve, lane change and so on. It is much more useful when used to create 

different traffic scenarios. In the demo experiments, PreScan also provides a case 

where a vehicle can change from one path to the other. Fig 3.5 shows how a black 

vehicle changes its predefined path to a new one. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.5: Vehicle Can Change Trajectories between Defined Paths Freely 
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In the speed profile, you can add as many time slots, which can be used to describe the 

car behavior within the amount of time associated with the slot, as you want. For 

every slot, we can define a type from wait, sudden throttle release, to acceleration. 

One can also set the initial position of a vehicle in case one wants to share a path with 

more than one vehicle. However, please save your file first before you modify your 

speed profile. It is very likely that your file will crash during modification.  

3.4 SOME LIMITATIONS OF PRESCAN 

      PreScan still has some limitations for now, regarding the road networks. You 

may notice some work cannot be done easily with the current implementation. 

Thus, the section here is to remind a new user that some parts of the road cannot be 

built easily without workarounds. 

 

1. PreScan does offer the option to set the width of the shoulder. However, in case 

the width of right or left shoulder of a road is different, you cannot set width 

for the shoulder individually. 

2. Another case is Fig.3.6 (a). When two lanes of the same road are merged to 

different lanes simultaneously, Lane Adapter does not offer you the option to 

imitate this scenario. 

3. Although we can use a ramp road to create overpass, we cannot create road 

underneath the ground. There are also some special patterns which I have no 

idea to simulate it in the PreScan, as can be seen below. 

 
 
 



 

 

20 
 

 

                         

 

 

(a)  User cannot set widths for the road                    (b) Lanes can not be merged into an arbitrary   

 individually when the size of shoulders                   Lane in the successor road 

   are different 

 

(c) The wavy overpass 

 

Figure 3.6: Limitations of PreScan
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3.5 SENSORS 

      There are three types of sensors in the PreScan: Idealized Sensor, Detailed Sensor 

and Ground Truth Sensor. All the information of sensors can be found in the 

manual. Thus, I try to focus on several important, but may easily missed points. 

Firstly, it will consume a lot of time to output a camera image in the Simulink. 

Thus, if you do not need camera images for real-time processing, it is better to 

disable the “Output Simulink Image” option in the Camera Sensor configuration. 

However, in case you need the image for further real-time processing, you have to 

check this option. Even when you do not need to plot this image, you still need to 

check it. What the “Output Simulink Image” does is nothing to do with plotting 

but produces an RGB matrix for the user. Again, it is not recommended to plot 

image synchronously in the simulation. 

Secondly, try not to set the update frequency of the sensor too high, especially 

when you need to visualize data like LIDAR or RADAR output in real-time. 

Furthermore, the compilation sheet rate must be higher than the update frequency 

of sensors. The higher the sheet rate is, the slower the performance of the outputs 

is. This is because computers need to process more frames when rate is higher. 
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3.6 DRIVER IN THE LOOP 

      In order to analyze how realistic the environment we built is, we added the 

human-in- the-loop feature into the system. A brief explanation of how it was built 

follows. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.7: System Appearance 

 

 
3.6.1 Vehicle Mode 

      There are three options that can be chosen from the driver model: Man-in-the-

loop, Path Follower, and Path Follower with Preview. A steering wheel is required
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to enable Man-in-the-loop mode. The one we use in the experiment is Logitech G27. 

Once the model is chosen and created in the PreScan, you can have several built-in 

blocks which are created automatically by PreScan in the SimuLink. From these basic 

built-in blocks, we can enable manual shift or automatic shift, light the fog light or 

activate haptic feedback. Also, we can add ADAS function blocks based on sensors to 

take over the control when emergency is detected. 

3.6.2 Eye Tribe and Oculus Rift 

      Since Man-in-the-loop function is already provided by PreScan, it is easy to 

reproduce it by following instructions. The problem is how we can integrate Oculus 

Rift, or Eye Tribe into this system. The first thought is to add a camera view in the 

driver seat, and then change its direction and view according to the movement of 

the eyeball or head. Unfortunately, the position and direction of camera is fixed 

once we predefined them in the PreScan GUI. Only the direction of the vehicle is 

changeable. An alternative idea is to add another vehicle beneath the ground and 

then add a camera on it with the same height of the driver’s viewer in the host 

vehicle. We keep the second vehicle in the same position of the host vehicle, but 

change its direction or view according to the movement of the eyeball or head 

detected by Eye Tribe or Oculus Rift. In this way, we can simulate how view 

changes when a driver looks around. Oculus Rift here is used as a head-mounted 

display and tracking tool – the same as Eye Tribe. The degree of movement of head 

is detected by these sensors, and sent to SimuLink. 
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Figure 3.8: Human-in-the-loop 
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CHAPTER 4 

VISIBILITY ESTIMATION AND CONFIDENCE ANLAYSIS 

     In this chapter, I will go through the procedure of the fog detection algorithm. 

First, several underlying assumptions will be introduced and then the detailed 

explanation of the algorithm. The algorithm states two parts and then these two ways 

of measurements will be combined based on a probabilistic model. 

4.1 ASSUMPTIONS AND ARCHITECTURE  

      The first problem of single camera system is distance. In order to approximate 

the real distance of each row in the image, we need to analyze the image under the 

flat-world assumption first. Thus, we constrain our method to a structured road which 

we assume is planar. Secondly, the model used to simulate fog is Koschmieder’s Law 

[6], which is a very popular model used to imitate how fog attenuates the luminance. 
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4.1.1 Flat-World Assumption 

      Figure 1.1 below shows us an on-board camera model which we use to calculate 

distance of each row in the image. Coordinate S (X,Y,Z) is centered at one point on 

the road, while C (x,y,z) is another coordinate centered at the pinhole of this camera. 

For an image captured by this camera, we create the third and planar coordinate 

(u,v) with its center(u0,v0). Assuming f is focal length of the camera, tpu and tpv 

stand for size of a pixel in millimeter horizontally and vertically (we assume tp  ≅ 

tpu  ≅  tpv  ), then we say α =  f
tp

⁄  denotes the focal length of camera represented by 

the number of pixels. Thus, any points (x,y,z) in the coordinate C can be expressed 

by the Equation (4.1) below derived from trigonometry of the camera model on the 

image coordinate. 

 

 

 

 

                          
Figure 4.1: Trigonometry of a pinhole camera model 

  
 
 
 

{
𝑢 = 𝑢0 +  𝛼

𝑦
𝑥⁄

𝑣 = 𝑣0 +  𝛼 𝑧
𝑥⁄

                                                          (4.1) 
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       As Figure 4.1 shows, we can find two similar triangles. H here in the figure 

represents the height of the camera based on the coordinate S, if we denote vh as 

ordinate of horizon that pass through the image. For any point M(d,y,0) on the 

ground relative to the S(X, Y, Z) with what it shows on the image plane m(u,v), we 

have the equation below. 

 
 

𝑣−𝑣ℎ

𝛼
=  

𝐻

𝑑
                                               (4.2) 

When camera is tilted by degree θ towards the horizon, we can still find a similar 

equation, in the Figure 4.2.  (VhC = 
𝑓

𝛼
) 

𝑣 − 𝑣ℎ

𝛼
𝑐𝑜𝑠 𝜃

=  
𝐻

𝑑
 

                                                  𝑑 =  
𝛼𝐻

(𝑣−𝑣ℎ) cos 𝛼
                                        (4.3)  

 

 
Figure 4.2: Trigonometry of a titled pinhole camera model and ground 
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4.1.2 Koschmieder’s Law 

    One of the most important and popular models used to study fog effect is 

Koschmieder’s model. Koschmieder [6] studied and revealed his model of how 

luminance attenuated through atmosphere in 1924. In this equation, he successfully 

linked the degradation of luminance with the distance of an object. 

 

 
L = L0e

−kd  + Lf (1 − e−kd) (4.4) 

What this model shows us is luminance of an object will be attenuated by 

coefficient e−kd, and gradually deteriorated by luminance of sky at rate of Lf (1 − 

e−kd). In this equation, L stands for the perceived luminance of an object at 

distance d, L0 is the intrinsic luminance of the object, Lf is the background 

luminance, k is the extinction coefficient. Later, this equation, rewritten by Duntley 

[7], unveiled the relationship between an object with contrast C0 against 

background and observed the contrast C at distance d. 

 
 

 
C  = [(𝐿0  − Lf )/Lf ]e−kd  = 𝐶0e−kd (4.5)       

In 1987, the International Commission on Illumination set a contrast threshold [19], 

which is 5 %, for the barely visible object, in order to define ”meteorological 

visibility distance” Vmet. Thus, for a black object, having contrast C0=1, the greatest 

distance it can be seen is defined as Vmet. According to (1.4), Vmet is derived below. 
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  𝑉𝑚𝑒𝑡 =  −
1

𝐾
𝑙𝑜𝑔(0.05) ≅

3

𝐾
                                                  (4.6) 

4.1.3 Detection System Architecture  

      The process of visibility and image confidence estimation, as Figure 1.3 

demonstrates, can be separated in two. 

In the first part, Sobel and Canny filters are applied to the image in order to 

find the lane markings. Later, based on the lane markings gotten, we can easily 

calculate the horizon by employing the Hough line detector. In the meantime, a 

region growing algorithm is used to find the inflection point. According to 

Equation (4.3), we can find the distance of inflection point, relative to camera, 

from ordinates of inflection point and horizon. Then, a rough extinction coefficient 

k can be deduced. Finally, least square optimization is utilized to get a more 

accurate coefficient k. This coefficient will be used as base estimation for part two 

of the algorithm. 

What this first step does is to give us general information of the image. In part 

two, we need to verify both the coefficient k and confidence information we 

deduced from part one. By tracking vehicles, clipping each vehicle and calculating 

its variance, we can get another extinction coefficient kv . By comparing both kv and 

k, we can confirm how the result concluded trustworthy in part one. Thus, a more 

accurate evaluation of an image can be made and image confidence can be 

deduced. 
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Figure 4.3: Detection System Architecture 
 

4.2 ROUGH VISBILITY ESTIMATION 

4.2.1 Methodology 

To any fog deteriorated image, we can randomly pick a vertical line of image 

from the top to the bottom. As seen in Figure 4.1 (b), at the position around 

ordinate 550, the intensity drops dramatically. Intuitively, an object tends to be 

obscured quickest by fog around the furthest visible range. However, a much more 

explicit explanation needs a mathematical point of view, which I will explain 

below. 

Since we have already deduced the Equation (4.3) and (4.4), we can merge 

them together to express Koschmieder’s model in a new equation, 
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(a) Original Image (b) Intensity of image increases very 

quickly when it approaches to the furthest 

visible range 

 

Figure 4.4: How an image can be deteriorated by fog 
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𝐿 = 𝐿0𝑒
−

𝑘𝜆
𝑣−𝑣ℎ + 𝐿𝑓 (1 − 𝑒

−
𝑘𝜆

𝑣−𝑣ℎ)                                                 (4.7) 

 

 

      Where the 𝜆 =  𝛼𝐻
cos 𝜃⁄  in the Equation (4.7). As mentioned before, an object 

tends to be obscured quickest by fog around the furthest visible range. Therefore, 

we can find the inflection point when the second derivative of Equation (4.7) with 

respect to image ordinate v equals to zero, which is where the intensity drops 

quickest in the image. 

 

 

                     
𝜕2𝐿

 𝜕𝑣2
=

𝑘𝜆(𝑅−𝐿𝑓)

(𝑣−𝑣ℎ)3
𝑒

−
𝑘𝜖

𝑣−𝑣ℎ [
𝑘𝜆

𝑣−𝑣ℎ
− 2] = 0                       (4.8) 

 

 

     If we take the right part of equation (4.8) equal to zero, then we can have two 

solutions; k1  = 0 and 

 
 

 
2(vi − vh) 2 

k2 = = 
λ di 

(4.9) 

 

Where vi represents inflection point in the image and di represents its distance to 

the camera. 

Based on the Equation (4.8) and Equation (4.6), we can find the relation 

between visibility with inflection point and horizon. 

𝑑𝑚𝑒𝑡 = 3𝜆
2(𝑣𝑖 − 𝑣ℎ)                                                              ⁄ (4.10)  
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Thus, the problem now becomes how to find out the inflection point and the horizon. 

 

4.2.2 Detection of inflection point 

Region growing algorithms are very popularly used to find out inflection points. In this 

way, only free space is added into checking the region. Thus, we can avoid the influence of 

volatile pixels of any object on the road. It will be much more accurate for us to find 

where and how stable pixels of road surface are deteriorated by the fog. For the 

sake of efficiency and purpose of a rough result, we choose a similar region growing 

algorithm listed in [5] with fewer constraints. Generally, the bottom row of the 

image is always a part of the road surface. Thus, we choose the bottom row as seed 

pixels for the algorithm. The algorithm is designed to grow upward, since the road 

surface extends vertically to the top in the image. With these prerequisites, several 

constraints are added. 

For any seed pixel, the algorithm will check the right, left and middle pixels above 

it. These points will be aggregated into a growing region only if they meet these 

constraints: 

1. |pseed − pnew| ≤ 3 

 
The difference of intensity between seed pixel and new pixel has to be within 3 

 

2. |pmedianbottom − pnew| ≤ 3n 

 
pmedianbottom represents the median intensity value of pixels in the bottom row, 

n represents difference of row number between bottom row and pnew . This 

constraint is to keep new aggregated pixels similar with the bottom row. 
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3. p ∈/ R 

 
              The pixel should not be in the edge of an image. 

 

4. |pmedian − pnew| ≤ 10 

 
All pixels that meet the requirements above will be reordered to calculate their 

median intensity value. Any pixel too far from the median will be discarded.

 

 

                        

(a) Original Image (b) Result of the Growing Region 

 
 

Figure 4.5: Original Image and the Growing Region 

 

Once we get the growing region, we need to check whether it contains both sky and 

ground surface – which is used as a criteria to check whether fog exists in the 

image, which is the case in Figure 4.5 above. 

If this is so, we will calculate the median for each row in the region. The result of 

Fig 4.4(a) is shown in Fig 4.4(b). In order to find the global maxima in the 

region, we will calculate the median difference for every 20 rows. The row, which 
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has biggest difference, will be recorded as an inflection row and then we choose 

the center point in this row as the inflection point. We have tried to calculate 

median difference every 10 rows or every 15 rows, however the noise introduced 

is still too large to get a reasonable result. It is actually another reason why 

we cannot get a rough result from this solution and why the estimation of 

visibility beyond 400 or 500 meters is inaccurate. It is because we calculate the 

median difference for every 20 rows. An example is shown here.  According to 

Equation (4.10), if we install a camera which is parallel with ground, with focal 

length 1.4mm, tp = 400 pixels/mm and 1 meter away from surface. Then λ 

should be equal to 5600. However the ground truth visibility is 500 meters, then 

we can get: 

 
 

(𝑣𝑖 − 𝑣ℎ) =
3𝜆

2𝑑𝑚𝑒𝑡
=

3×5600

2×500
= 16.8                                        (4.11)

 
 

 

 

The equation above tells us that when the visibility range is 500 meters, the 

inflection point should be 16.8 pixel units away from the horizon point. 

As we already have around 10 pixels inaccuracy in calculating the inflection 

point, you can image the result will be very inaccurate when the visibility is beyond 

500 meters. Below is an example showing the inflection point estimated from this 

algorithm when ground truth visibility is 400 or 500 meters. The inflection point 

(purple) is aligned with horizon point (orange) in Fig 4.6(b) below. 
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(a) Inflection Point (Purple) Estimated when ground 

truth visibility is 400 meters 

(b) Inflection Point Estimated when ground 

truth visibility is 500 meters, the inflection 

point is so close to the horizon point so as 

to almost the same one  

Figure 4.6: Estimated Position of the Inflection Point 
 

4.2.3  Detection of Horizon 

       The way we use to estimate the horizon is based on the Hough line detection 

algorithm. The very first step is to find edges in the image by employing the Canny 

and Sobel detectors. Secondly, the two longest lines, which are actually lane 

markings, detected by Hough line detection algorithm are extracted after the first 

step (see Figure 4.7). 
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(a) Original Image (b) Result of Hough Line Detection 

Figure 4.7: Original Image and the Lane detected by Hough Line Detection    

 

In order to improve the efficiency of the algorithm, Hough Line detection 

algorithm is modified to fit the scenario. To detect two lane markings, Hough line 

detector will search for the longest lines in the range from 0 to π/2 and from π/2 to 

π individually. Since there is a second way to calculate the position of the horizon 

based on the pitch of camera, we can always use it as a way to check consistency 

between these two methods and also a threshold is set for disagreement of these 

two methods. Thus, we can reduce the possibility of mistakes in finding the 

horizon. 
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4.2.4 Optimization 

    Based on the position of horizon and inflection point, a visibility range and 

atmosphere extinction coefficient 𝑘0 can be deduced. However, since some errors are 

introduced either by the methods or by the device, an optimization is needed for a 

more accurate result. According to Equation (4.4), if we know the original intensity, 

fog intensity and coefficient k, then we can approximate the intensity of an object 

perceived by CCD at different location. Again, we need the growing region calculated 

in the first step. If we take the median intensity of the bottom row of the region as the 

original intensity of the ground surface and the median intensity of the top row as 

intensity of fog, then for any k and distance d, we can get an intensity L. For the 

efficiency, k will be assigned any value from k0-0.01 to k0+0.01 and square error will 

be calculated between median intensity from the growing region and theoretical 

intensity from Equation (4.4). Finally, minimum square error will be found and the 

calculated new coefficient koptimized will be used to deduce visibility. Figure 4.8 shows 

a theoretical curve (blue) calculated based on Equation (4.4) and an actual curve 

calculated based on the growing region (orange). 

 

As you can see from the Figure 4.8, only a part of these two curves aligned together 

which is from ordinate of the horizon to 50 pixels below the inflection point. Part of 

that may be caused by the big variance in intensity of the ground surface in the bottom 

row. In order to avoid such noise, only the rows range from the horizon row to the row 

50 pixels below the inflection point will be counted into the optimization algorithm. A 

table below shows how the optimization algorithm can improve the accuracy. 
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Figure 4.8: Comparison between Theoretical Curve and Actual Curve of How the 
Image Corrupted by the Fog 

 

 
 

Ground Truth Estimation  without Optimization Estimation  with Optimization 

50m 46m 59m 

100m 88m 103m 

200m 140m 222m 

350m 193m 279m 

400m 255m 288m 

500m Infinity Infinity 

 

Table 4.1: Visibility Estimation Result Comparing with the Ground Truth 
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4.3 ACCURATE VISIBILITY ESTIMATION 

    In this section, I will demonstrate how a new method is introduced to estimate 

visibility. Later, in Chapter 5 I will show how this method and the one introduced 

in the last section can work together and the necessity of using this method. 

4.3.1 Methodology 

     The equation listed below shows how we calculate the variance of an image. 
 
 
 

𝜎2 =
1

𝑁
∑ (𝐿𝑗 −

1

𝑁
∑ 𝐿𝑖

𝑁
𝑗=1

)𝑁
𝑗=1

                                    (4.12) 

 

Li and Lj here represent pixels captured by the CCD of the camera. Based on the 

Equation (4.4) and (4.12), we can express the variance σ of image by original 

intensity value of an object which is shown by Equation (4.13). Notice that the 𝐿𝑗0 

here is the original intensity of the object not the intensity captured by the camera. 

Therefore, 𝜎 in the equation (4.12) and 𝜎 1 in the (4.13) are the same. 

 

 

𝜎1
2 =

𝑒
−2𝑘𝑑

1

𝑁
∑ (𝐿𝑗0 −

1

𝑁
∑ 𝐿𝑖0

𝑁
𝑗=1

)𝑁
𝑗=1

                             (4.13) 

  
 

If the image we discussed above is an image of a vehicle, and we have 

another image of the same vehicle under the same weather condition at a different 

distance when captured, then we can express the variance of this vehicle image by 

using same equation above. 

𝜎2
2 =

𝑒
−2𝑘𝑑

1

𝑁
∑ (𝐿𝑗0 −

1

𝑁
∑ 𝐿𝑖0

𝑁
𝑗=1

)𝑁
𝑗=1

                             (4.14)
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In this way, we can express the atmosphere coefficient k as equation (4.15) by 

(4.13) and (4.14) 

 

 

𝑘 =
1

2(𝑑2−𝑑1)
ln (

𝜎1
2

𝜎2
2)                                                    (4.15) 

 

So, σ1 and σ2 above are the variances of two images and d1 and d2 are the 

distance in the real world between the vehicle captured and the host vehicle. Once 

we get the coefficient k, based on the Equation (4.9), we can calculate the visibility 

range. 

      One step of this method involves how to detect and trim vehicle image from the 

background. It is actually another topic, which we will only lightly cover here. Many 

methods and review articles are published in this area including knowledge based 

methods, stereo-vision-based methods, and motion-based methods. A detailed 

introduction can be found in [23] and [24]. Actually, since we can detect a vehicle 

with stereo-vision methods, this is another reason why many researchers will 

choose stereo-camera to estimate visibility. All the methods listed above are called 

Hypothesis Generation (HG) methods which is used to find out possible locations of 

vehicles. After that, Hypothesis Verification (HV) is employed to verify all these 

possible locations based on machine learning or other techniques. In order to 

improve the efficiency and precision rate of the detection algorithm, many now 

consider to integrate the tracking algorithms into it. Since a valid detection result will  

 

trigger the process of the tracking and then possible location of the vehicle; the next 

image frame will feed into the detection algorithm. Thus, a Bayesian approach is 
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built for detection. However, for the sake of simplicity, we skip all these approaches 

in this work and just manually select and clip all these vehicle figures. 

4.3.2 Confidence Analysis 

       As stated before, the confidence of the image will also be produced of this 

method. Confidence itself is not just the only indicator, we are interested about, it 

is also an intermediate value we need for optimization. 

The confidence is based on the variance we calculated in the last step. Consider 

a case in which we followed a vehicle for 20 meters. The preceding vehicle is 5 m/s 

faster than the host-vehicle and the on-board camera will capture an image every 1 

second. If the preceding vehicle captured is 25 meters away from the host-car in 

the first image, then we have a series images of this vehicle ranging from 25 to 45 

meters. Based on the Equation (4.9), we can get an estimation of the atmosphere 

coefficient k by any two variances of the vehicle images with different distances 

between it and the host-car when captured. If we only calculate the ratio of each 

two variances by Equation (4.16) and for all these five images ranging from 25 

meters to 45 meters, then we can actually make a table showing variance ratios 

(see Table 4.2). The variance ratios calculated below is under the 150 meters 

visibility of the fog. 
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𝑅𝑎𝑡𝑖𝑜 = 100
𝜎1

2

𝜎2
2                                                       (4.16) 

 
 

Ratio 25m 30m 35m 40m 45m 

0m 100 100 100 100 100 

5m 
 

84.9044 92.1565 77.1763 92.0751 

10m 
  

78.2449 71.1230 71.0602 

15m 
   

60.3865 65.4866 

20m 
    

55.6010 

 

Table 4.2: Variance Ratio of Vehicle Image in the Different Position under the 150 
Meters Ground Visible Range 

 

        We can just take the last column of Table 4.2 as an example to interpret this 

table. For the variance σ45 of vehicle image we captured at 45 meters away from the 

host- vehicle, we will definitely get 100 if we replace both the σ1and σ2 from 

Equation 4.10 by σ45. The ratio, 92.0751, in the next row is based on the ratio 

between σ45  and σ40, which is the variance of vehicle image we captured at 40 

meters away from the host-vehicle. There is five meters difference among each image 

we captured on the road. As you can see, for five images, we can get 15 ratios. 

Thus, some kind optimization is important in order to increase accuracy and reduce 

redundancy for these numbers. This kind optimization will be explained in the next 

section. After such optimization, we can draw a confidence curve to visualize how 

visibility is attenuated by the fog under different kind thickness of fog. 
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4.3.3 Optimization 

      Visibility estimated directly from such method can achieve a better result than 

what we get from the rough visibility estimation method. However, in order to 

eliminate the effects of noise further, a similar approach employed in the rough 

visibility method is utilized. As mentioned before, the confidence ratio will be used 

as an intermediate value for optimize. Actually, after all the ratio numbers are 

calculated as what shows in the Table 4.2, we will calculate the median of each row 

in the table. Any ratio value in the table beyond the ±50 % of the median will be 

discarded. Finally, the remaining number will be averaged as the final ratio for 

calculating visibility. According to Equation 4.13 and 4.14, we can derive the 

equation below. 

 

 
 

𝜎1
2

𝜎2
2 =  

𝑒−2𝑘𝑑1

𝑒−2𝑘𝑑2
                                                        (4.17)  

Similarly, k will be assigned any value from 0 to 0.09, and distant d1 and d2 are 

based on the distance when vehicle images are captured. Later, square error will be 

calculated between average ratios and theoretical ratios. At last, the coefficient k with 

least error will be taken to calculate visibility based on Equation (4.9). 

The image below shows how image confidence declines with range after 

optimization. Table 4.3 below shows how estimation of visibility is improved by the 

new approach after optimization. 
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(a) Image Confidence Curve Under 150 

meters Visibility 

(b) Image Confidence Curve Under 500 

meters Visibility 
 

Figure 4.9: Image Confidence Curve 
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Ground Truth New Approach of Estimation Old Approach of Estimation 

50m 60m 59m 

100m 95m 103m 

200m 180m 222m 

350m 340m 279m 

400m 380m 288m 

500m 480m Infinity 

 

        Table 4.3:  Visibility Estimation Result by Using Different Approaches



47 
 

 
  

CHAPTER 5 

DISCUSSIONS AND CONCLUSIONS 

    In this chapter, the algorithm for distance estimation described in the previous 

chapter will be analyzed and discussed here, we first describe how several factors 

may impact the visibility estimation result in the new approach. Next, a way to 

combine a single measurement into a final estimation will be presented. Third, we 

will talk about the conclusions and future work. 

5.1 FACTORS THAT MAY IMPACT ESTIMATION ACCURACY 

   Based on the algorithm we proposed, we can easily find three factors, tracking 

distance, image acquisition speed and reference image position, may affect the 

final estimation result, as follows. 
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5.1.1 Tracking Distance 

   As we see in the algorithm, in order to calculate a relative accurate variance 

ratio, we need to track a vehicle for a certain distance. We may intuitively assume 

that the longer we track, the better the estimation result we will get. However, we 

still want to know whether there is a tracking range threshold where it is hard for us 

to improve accuracy dramatically even when we track longer distance for this 

method. 

In order to test the algorithm, we set the different ground-truth visible ranges 

from 50 meters to 500 meters in the simulation environment for this experiment. 

Then, under a specific environment, we track a vehicle from initial distance of 25 

meters to 90 meters and clip a vehicle image every five meters. Thus, we have a 

series of 13 images of the vehicle. To accomplish this experiment, we reduce 

number of images one by one from the last image, and thus we can calculate 

variance ratios for 75 meter tracking distance to 10 meters tracking distance. 

Figure 5.1 presents how the tracking range under the ground-truth 150 meters 

and 500 meters affects visibility estimation results. The green and the orange line in 

the Fig 5.1 (a) and (b) are the ground-truth of 150 meters and 500 meters. As you can 

see, the longer we track a vehicle, the better result we can estimate. From the table 

below you may find we can get a relatively accurate visible range estimation result 

after tracking 40 % of ground-truth visible range. 
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(a) Tracking Distance vs. Estimated 

Visibility Result under Ground-Truth 

150 meters 

(b) Tracking Distance vs. Estimated 

Visibility Result under Ground-Truth 

500 meters 
 

Figure 5.1:Tracking Distance vs. Estimated Visibility Result 
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Tracking Distance of Ground Truth Visible Range 100m 200m 300m 400m 500m 

10 % 106 247 417 INF INF 

20 % 99 205 402 895 INF 

30 % 103 189 364 691 714 

40 % 95 205 342 459 512 

50 % 91 201 298 388 523 

60 % 94 
  

392 
 

 

Table 5.1:  Tracking Distance vs. Visibility Estimation Accuracy 

 

 
 

From this table, you can easily find that the algorithm will overestimate the 

visibility when tracking a short distance. This result coincidentally matches with 

article [2]. As it says, human eyes will estimate the position of front vehicles under 

foggy weather as further away than the fair weather. Though I did not prove this 

algorithm works as same as the way how human eyes work, it may be an interesting 

topic which we can work on in the future. 

This result or experiment also explains why we need a rough result from the old 

visible range approach. This is because we need to track 40 % of the ground-truth 

visible range in order to get a good estimation.
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5.1.2 Image Capture Rate and Initial Position of Reference 

Image 

    In this section, we will analyze whether the other two effects, image acquisition 

speed and reference image position, impact the result. Similarly, we set ground-

truth visibility from 50 meters to 400 meters in the simulation environment and 

then we captured the vehicle image every 1.25 meters to 30 meters in the image 

capture rate experiment. 

       Attached below is the result of ground-truth visibility of 200 meters and 400 

meters for different image acquisition speed. We can find that for different image 

acquisition speed, the visible estimation results only vary slightly. Thus a higher 

image captured rate does not contribute to the higher accuracy of visibility 

estimation. 

It is very likely that since images are captured too closely, we only get a lot of 

redundant information which may not contribute a lot to the final estimation 

result. For this experiment, we calculated under other different ground-truth 

visibility environments as seen in the table listed below. Distance Difference here 

refers to the difference of the distance between host-vehicle and tracking vehicle in 

each two continuous images. 
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(a) Image Acquisition Speed vs. Estimated 

Visibility Result under Ground-Truth 

200 meters 

(b) Image Acquisition Speed vs. Estimated 

Visibility Result under Ground-Truth 400 

meters
 

Figure 5.2: Image Acquisition Speed vs. Estimated Visibility 
 
 

Distance Difference 50m 100m 200m 400m 

1.25m 61 94.9 202 
 

2.50m 59 93 186 
 

3.75m 58 94 178 
 

5.00m 61 96 200 409 

7.50m 57 91 181 
 

10.00m 59 95 180 376 

15.00m 62 93 181 
 

20.00m 55 94 188 409 

30.00m 
 

95 
  

40.00m 
   

402 
 

Table 5.2:  Image Acquisition Speed vs. Visibility Estimation Accuracy 
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     What the next experiment did is to check the effect of the position of the reference 

image captured. Reference image here refers to the first image which contains a 

specific vehicle. In the experiment, different positions of reference images are 

checked and recorded under the same environment. Figure 5.3 below shows how 

position of reference image affects the estimation.

 

 

                                        

(c) Reference Image Position vs. Estimated                              (b) Reference Image Position vs. Estimated  

Visibility under 400 meters Visibility                                         Visibility under 500 meters Visibility 

 

Figure 5.3: Reference Image Position vs. Estimated Visibility 
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Position of Reference Image 100m 200m 300m 400m 500m 

25m 97 200 298 388 512 

30m 95 198 296 380 484 

35m 95 203 281 362 479 

40m 91 203 290 373 429 

50m 97 203 267 344 434 

60m 102 228 316 349 437 

70m 112 310 323 373 470 

 

Table 5.3: Position of Reference Image vs. Visibility Estimation Accuracy 
 

 

From Table 5.3 above, we can find that the position of the reference image has very 

little effect on the final result. However, an interesting pattern has been found 

where the estimation result generally falls down between 35 meters to 50 meters 

and then increases. This is caused by the factor of tracking range. As mentioned 

before, a limited tracking range may lead the algorithm to overestimate the 

visibility. Since, the distance for which we will track the vehicle in this experiment 

is fixed, then our actual tracking distance becomes less and less when we prolong 

the position of reference image. 



55 
 

 
  

5.2 COMBINATION OF SINGLE MEASUREMENTS 

 

    For each tracked vehicle, we can get a single measurement result. In order to 

combine all these single measurements to derive a final result, a Gaussian Mixture 

Model is chosen to combine the measurements. According to [25], the expression of 

model can be listed below. 

                                                                                  

𝜇 =  
1

𝑁
∑ 𝑧𝑗

𝑁
𝑗=1                                                        (5.1)  

 

𝜎 =  
1

𝑁
∑ (𝑧𝑗 −  𝜇)𝑁

𝑗=1                                                     (5.2)  

 

  𝑧𝑗 here represents every single measurement which is treated equally, and σ, µ 

are variance and mean of the final estimation result. 

Note that the weight of visibility we estimated in the specific positions and times 
 

ds dt 

will drop by rate e− 
ts   and e

− 
tt   [11], where ds  and dt  are the spatial and temporal 

 
distances, and tt and td are parameters controlling how fast the weight of a certain 

visibility estimation drops. 

5.3 Conclusion and Future Work 

    In this thesis, we briefly introduce how we build simulation environments by 

PreScan, a new algorithm how to estimate the visibility under the bad weather. The 

algorithm we proposed here increases the accuracy of the visibility estimation by 

only using a monocular camera. Also, an optimization approach is proposed with 

the algorithm to further improve the performance of the algorithm.   
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There are several parts which we can improve in the future. First, after testing the 

algorithm in the simulation environment, we are planning to test the algorithm in 

the real environment. It will be important not only to validate how good the 

algorithm performs in the environment, but also for validating how good PreScan 

can simulate foggy environments. It may be used in the future to improve the 

algorithm which PreScan used to simulate fog. 

Secondly, another interesting topic which we can study in the future is to analyze 

whether the variance comparison is similar to that used by the human eyes to 

recognize how visibility is corrupted by fog. Furthermore, the confidence curve 

deduced from the second step also can be used to improve algorithms like vehicle 

recognitions, based on machine learning or other approaches. Some algorithms 

cannot detect vehicles not due to bad performance itself, but possibly because the 

images has already been corrupted by fog. Thus, we can test how good our 

algorithm makes estimation by comparing it with the precision and recall rate of 

vehicle recognition algorithms for the same set of images. 

The third part which we can work on is the incorporation of the vehicle 

recognition and tracking algorithms to make my method work automatically. At 

the moment, we just clip the vehicle images from background manually. 
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More and more drivers nowadays enjoy the convenience brought by 

advanced driver assistances system (ADAS) including collision detection, 

lane keeping and ACC. However, many assistant functions are still 

constrained by weather and terrain. In the way towards automated driving, 

the need of an automatic condition detector is inevitable, since many 

solutions only work for certain conditions. When it comes to camera, which is 

most commonly used tool in lane 
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detection,  obstacle  detection,  visibility  estimation  is  one  of  such  important 

parameters we need to analyze. 

    Although many papers have proposed their own ways to estimate visibility 

range, there is little research on the question of how to estimate the confidence 

of an image. In this thesis, we introduce a new way to detect visual distance 

based on a monocular camera, and thereby we calculate the overall image 

confidence. 

     Much progresses has been achieved in the past ten years from restoration of 

foggy images, real-time fog detection to weather classification. However, each 

method has its own drawbacks, ranging from complexity, cost, and inaccuracy. 

According to these considerations, the new way we proposed to estimate 

visibility range is based on a single vision system. In addition, this method can 

maintain a relatively robust estimation and produce a more accurate result. 
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