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A Comparative Study of Bayesian Model Selection Criteria 
for Capture-Recapture Models for Closed Populations 

 
Ross M. Gosky Sujit K. Ghosh 

Appalachian State University North Carolina State University 
 

 
Capture-Recapture models estimate unknown population sizes. Eight standard closed population models 
exist, allowing for time, behavioral, and heterogeneity effects. Bayesian versions of these models are 
presented and use of Akaike's Information Criterion (AIC) and the Deviance Information Criterion (DIC) 
are explored as model selection tools, through simulation and real dataset analysis. 
 
Key words: AIC, Bayesian inference, capture-recapture models, closed population, DIC, Gibbs sampling, 
heterogeneity, MCMC, model selection, WinBUGS. 
 
 

Introduction 
 
For capture-recapture experiments involving 
closed populations, likelihood-based models 
based upon the multinomial distribution are 
commonly used, and a thorough treatment of 
these models is given by Otis, Burnham, White, 
and Anderson (1978). These models allow 
animal capture probabilities to vary based on 
three types of effects: time effects, heterogeneity 
effects, and behavioral effects. Time effects 
occur when capture probabilities vary by capture 
period. Heterogeneity effects occur when 
capture probabilities vary by animal. Behavioral 
effects occur when an animal's capture 
probability changes after they are captured for 
the first time. 

This effect is called a trap-happy effect 
when the capture probability increases after 
initial capture, and is called a trap-shy effect  
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when the capture probability decreases after 
initial capture. Denoting subscripts t, h, and b to 
refer to time, heterogeneity, and behavioral 
effects, respectively, eight models have been 
developed, with the model subscripts indicating 
which effects are present in the modeling of 
capture probabilities. The goal of each model is 
to estimate the unknown population size N. The 
model M0 denotes a model which has none of 
the three effects. Model Mt contains time effects, 
model Mh contains heterogeneity effects, and 
model Mb contains behavioral effects. Models 
Mtb, Mbh, Mth, and Mtbh are complex models 
accounting for variation in capture probabilities 
from each listed effect. Chao (2001) provides an 
overview of closed population models as well. 

Pledger (2000) discussed using mixture 
models to fit heterogeneity effects in capture-
recapture data, and discussed use of Akaike's 
Information Criterion (AIC) as a model selection 
tool.  Caution in using heterogeneity models is 
necessary, though, as Link (2003) showed that 
estimates of N under Mh models are highly 
dependent upon the assumed distribution of 
capture probabilities in the population. He refers 
to the parameter N as non-identifiable in 
heterogeneity models because different, 
reasonable, models may fit the data equally well 
but give very different inferences about N. 
Link's results imply that distinguishing between 
different heterogeneity models may never be 
possible.  However, it remains plausible that 
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estimates of N from Mh models are more 
accurate than those from Model M0, for 
example, in populations with heterogeneity. 

Program MARK (see 
http://welcome.warnercnr.colostate.edu/~gwhite/
mark/mark.htm), provides estimates of N for 
these closed population models as well as end-
user flexibility in the specific parameterization 
of the models. For example, the mixture models 
of Pledger (2000) can be fit in Program MARK 
with different numbers of mixture groups 
specified by the user. Program MARK also 
provides model selection functionality based on 
Akaike’s Information Criterion (Akaike, 1973). 

Bayesian versions of closed population 
models have also been presented. Early 
approaches focused on Model Mt, such as 
Castledine (1981), and George and Robert 
(1992). Ghosh and Norris (2005) presented a 
Bayesian version of Mbh, and Mh, Mb, and M0 as 
special cases of this model. Furthermore, they 
presented a model selection approach based 
upon a criterion proposed by Gelfand and Ghosh 
(1998). Other recent work on Bayesian models 
have been presented by Durban and Elston 
(2005) and by King and Brooks (2008). King 
and Brooks recommended Bayesian Model 
Averaging and Reversible Jump Markov Chain 
Monte Carlo (RJMCMC) methods for 
recapture/recovery data analyses, while Durban 
and Elston focused on Model Mth by adapting a 
log-linear modeling approach to the models of 
Agresti and Coull (1999). More recently, Gosky 
and Ghosh (2011) provide Bayesian estimation 
methodologies for all eight models. 
 

Methodology 
 
Bayesian Closed Population Capture-Recapture 
Models 

Bayesian statistical modeling requires 
the development of the likelihood function of the 
observed data, given a set of parameters, as well 
as the joint prior distribution of all model 
parameters. A major benefit of Bayesian models 
for capture-recapture data is that Bayesian 
estimates of N, from its posterior distribution, 
are easily obtainable and this posterior 
distribution gives appropriate measures of 
variability for estimating N. Even when non-
informative prior distributions are used for 

model parameters, these estimates of variability 
are not based on asymptotic criteria and hold 
when N and the number of capture periods are 
relatively small (e.g., see Gosky and Ghosh, 
2011). Bayesian modeling also allows for the 
possibility of using informative prior 
information about model parameters, if 
available. 

The approach to modeling heterogeneity 
used is identical to that presented in Ghosh and 
Norris (2005), using a finite-mixture approach to 
heterogeneity rather than utilizing a continuous 
distribution to model individual capture 
probabilities. This basic idea was introduced by 
Norris and Pollock (1996) and discussed further 
in Pledger (2000), and has been shown to be 
effective in modeling heterogeneity. 

Let k represent the number of capture 
periods in the study. Define indicator variables 
Xij = 1 if animal i is captured during capture 
period j, for i = 1, 2, ..., N and j = 1, 2, ..., k. 
Also denote pij = Pr(Xij = 1) as the probability 
that animal i is captured during capture period j. 

Denote the capture matrix X with 
dimensions N x k with entry Xij. Denote X[i,.] as 
the ith row of X, a vector with 2k possible values 
because each entry in the vector is zero or one. 
For simplicity, these outcomes can be ordered as 
 
Outcome 0: capture history (0, 0, 0, ..., 0, 0, 0); 

 
Outcome 1: capture history (0, 0, 0, ..., 0, 0, 1); 

 
Outcome 2: capture history (0, 0, 0, ..., 0, 1, 0); 

 
Outcome 3: capture history (0, 0, 0, ..., 0, 1, 1); 

 
through Outcome 2k - 1: capture history (1, 1, 1, 
…, 1, 1, 1). 
 

Each animal in the population has 
exactly one of the 2k capture histories. Noting 
that (Xi1, Xi2, ..., Xik) represents the observed 
capture history of any animal in the population, 
Capture History hi is defined corresponding to 
the previous ordering of outcomes, as hi =


=

−
k

j

jk
ijX

1

2 . Notice that each hi takes values in 

the set 0, 1, ..., 2k - 1. Denote Zl as the number of 
animals with capture history l, for l = 0, 1, ..., 2k 
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- 1, i.e., Zl =  =
i

i lhI )(  where I(.) denotes the 

indicator function which takes the value 1 if hi = 
l and takes the value 0 otherwise. Note that Z0, 
the number of animals with capture history (0, 0, 
..., 0), cannot be observed. Also, note that 


−

=

12

0

k

l
lZ = N. Denote S = N – Z0 as the number of 

animals observed during at least one capture 
period. Denote Pl as the probability of animal i 
having capture history l. Then 
 

( )
1

: 1
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ij

i
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l ij ij
i h l j
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−

= =

= −∏∏       (2.1) 

Defining L = 2k - 1, the joint distribution of (Z1, 
Z2, ..., ZL) is 
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where P = (P1, P2,..., PL). Note that if N were 
known, this model would represent a 
multinomial likelihood function with counts Z0, 
…, ZL and probabilities P0, …, PL. However N is 
unknown and it is the main parameter of interest. 
From equation (2.2) it follows that the likelihood 
function of (N, P) is given by 
 

L(N, P|Z) α ∏ 
=

−

=







 −






 L

l

SNL

l
l

Z
l PP

S
N

l

1 1

1  (2.3) 

 
where Z = (Z1, …, ZL) denotes the set of 
observed counts, which turns out to be the 
minimal sufficient statistic for this model. 

It is of interest to estimate N, treating P 
as a nuisance parameter. The capture probability 
vector P varies depending on the specific model. 
A Bayesian modeling framework was adopted 
for each of the eight models, where  

)Pr( nN =  α δn
1

 , n = 1, 2, …, Nmax 

was used as the prior distribution for N, with δ > 
0 fixed at a specific value and Nmax fixed at a 
realistic upper bound for N. A non-informative 
prior distribution can be obtained with δ = 0.5 
(or alternatively  δ = 1) and a uniform prior is 
obtained with δ = 0. The final estimate of N is 
obtained from the marginal posterior distribution 
of N by integrating out the parameters 
corresponding to P. The most complex model, 
Mtbh, is introduced first followed by descriptions 
of each of the other seven models as special 
cases of Mtbh. 
 
Model Mtbh 

This model allows for individual 
heterogeneity, time, and behavior effects. For 
heterogeneity, a finite mixture distribution is 
used, representing m possibly distinct groups 
within the population. Behavioral effects are 
modeled as constant across each of the m groups 
and across capture periods 2 through k to 
minimize the number of model parameters and 
to allow the model to be fit to studies with a 
minimal number of capture periods. 

Denoting τij = 1 if animal i has been 
captured before capture period j, then for each 
group, the capture probability vector is pi = pi1 
I(τij = 0) + pi2 I(τij = 1) and (pi1, pi2) ~ F(.), 
described next. A finite mixture distribution is 
assumed for the 2k-dimensional distribution 
function, F, specifically dF(p) = 


=

=
r

m
mm pI

1

)( θπ , where πm denotes the 

probability at support point θm = (θ11m, …, θ1km, 

θ21m, …, θ2km)T, and 
=

r

m
m

1

π =1. The probability 

of initial capture in capture period j is 
represented as θ1jm, where j = 1, 2, ..., k within 
population group m, where m = 1, 2, ..., r. 
Similarly, θ2jm is the probability of subsequent 
capture in capture period j within population 
group m. As previously stated, the behavior 
effect is constant across the capture periods and 
the m population groups. Thus θ2jm = θ1jm + c for 
j = 2, ..., k and m = 1, 2, ..., r. Furthermore, θ2jm 
= 0 for m = 1, 2, ..., r because subsequent 
capture is impossible in capture period one. 
Fixing r = 2 mass points representing possibly 
two distinct population groups implies that 1-π2 
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= π1= π. Prior distributions for π and θ1jm are π, 
θ1jm ~ Beta(a,b) for j = 1, …, k and m = 1, 2. 

A conditional prior distribution of c 
given θ1jm for j = 1, …, k. and m = 1, 2 is 
Uniform(-min rmkj ≤≤≤≤ 1;2  θ1jm, 1-max rmkj ≤≤≤≤ 1;2  

θ1jm). This mixture model requires restrictions 
for identifiability of all model parameters, so θ1j1 
< θ1j2 for j = 1, 2, ..., k and θ2j1 < θ2j2 for j = 2, 3, 
..., k is set. 
 
Model Mtb 

Restrict π1 = 1 from Model Mtbh.  
 
Model Mth 

Restrict θ2jm = θ1jm for j = 2, ..., k and m 
= 1, ..., r, from Model Mtbh. 
 
Model Mbh 

Restrict θ11m = θ12m = … = θ1km and θ22m 
= θ23m = … = θ2km for m = 1, 2, …, r from Mtbh. 
Rather than modeling θ2jm = θ1jm + c, choose 

prior distributions θ11m , θ22m 
...

~
dii

Beta(a, b) for 
m = 1, ..., r. Fixing r = 2 mass points as 
described in Mtbh, restrict θ111 < θ112 and θ221 < 
θ222 for identifiability of all model parameters. 
 
Model Mt 

From Model Mth, restrict π1 = 1. 
 
Model Mh 

From Model Mbh, restrict θ22m = θ11m for 
m = 1, 2, …, r. 
 
Model Mb 

From Model Mbh, restrict π1 = 1. 
 
Model M0 

Restrict π1 = 1 from Model Mh. 
 

The number of parameters in each 
model as a function of r, the number of support 
points of the finite mixture distribution F and k, 
the number of capture periods, is determined 
from the preceding model descriptions. For 
example, Model Mtbh has parameters N, π1, ..., 
πr-1, θ111, … , θ1k1, θ112, … , θ1k2, θ11r, … , θ1kr, 
and c. The number of parameters is thus 1 + (r-
1) + kr + 1 = r(k + 1) + 1. Similarly it is 
established that Mth has r(k + 1) parameters, Mbh 
has 3r parameters, Mtb has k + 2 parameters, Mh 

has 2r parameters, Mb has 3 parameters, Mt has k 
+ 1 parameters, and M0 has 2 parameters. 

Posterior distributions of the model 
parameters for all eight models can be closely 
approximated using Markov Chain Monte Carlo 
(MCMC) methods available in the WinBUGS 
V1.4 software package (http://www.mrc-
bsu.cam.ac.uk/bugs/winbugs/contents.shtml). 
 
Model Selection Methods 

Because eight possible models exist for 
a given closed population data set, definitive 
methods for model selection are necessary in 
such analyses. The eight models are generally 
(though not exclusively) nested, ranging from 
very simple models (M0) to complex models 
(Mtbh). Model selection criteria allow the best 
model of the eight to be fit to the data. Striking a 
balance and finding a model that neither under-
fits nor over-fits the data is the motivation for 
model selection criteria (Burnham & Anderson, 
2002). 

Akaike's Information Criterion (AIC) is 
one such method of model selection, and seems 
to be the most commonly used criterion for 
model selection. The intent of AIC is to measure 
the mathematical distance between the true 
population and the fitted model, by using the so-
called Kullback-Leibler discrepancy. To 
differentiate between models with different 
numbers of parameters, AIC adds two times the 
number of model parameters to the estimated 
Kullback-Leibler discrepancy. Thus, when two 
models of differing complexity fit a data set 
equally well AIC chooses the simpler model by 
penalizing the complex model for having more 
model parameters. The rule of parsimony says 
that a researcher should choose the simplest 
model that adequately describes the behavior of 
the population. Use of AIC generally supports 
this rule. 

As the models are nested, AIC is 
examined as model selection tool. However, 
AIC is not asymptotically consistent in the sense 
that the probability that it chooses the correct 
model (given that the data has been generated 
from the correct model) does not converge to 
one as the sample size tends to infinity 
(Schwartz, 1978). A modified version of AIC 
within the Bayesian framework is used for 
model selection. 
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The Deviance Information Criterion 
(DIC) is strictly a Bayesian model selection 
criterion (Spiegelhalter, et al., 2002), which is 
structured similarly to AIC. The main difference 
between AIC and DIC is in the penalty term 
added to the estimated Kullback-Leibler 
discrepancy. DIC adds two times the effective 
number of parameters to the estimated Kullback-
Leibler discrepancy. The effective number of 
parameters is a Bayesian concept. It recognizes 
that the number of parameters in a Bayesian 
model is influenced by the prior distributions of 
these parameters. The DIC criterion presents a 
methodology to measure this number of 
parameters. The DIC is, then, the difference 
between the estimated mean KL distance, and 
the KL distance estimated at the posterior mean 
of each of the model parameters. 

DIC is also examined as a model 
selection criterion for these models. Use of DIC 
does not require the models to be nested. 
However, the modeling herein uses a mixture 
approach for heterogeneity models, and there are 
some questions about use of DIC for mixture 
models. Some recent suggestions have been 
made regarding these problems (see Celeux, et 
al., 2006). 

Use of the Bayesian Information 
Criterion (BIC) was considered for model 
selection, but, for capture-recapture models the 
sample size is unclear (as N itself is a parameter 
and k, the number of capture periods, is usually 
much smaller than necessary for asymptotic 
properties to work). Therefore, AIC and DIC are 
focused on as potential model selection criteria; 
specifically, it is assessed whether AIC and DIC 
choose the correct model for a given data set. 

A model selection criterion proposed by 
Gelfand and Ghosh (1998) is based upon 
minimizing the squared predictive error of the 
observed data, where the predictive distribution 
of the observed data is based partially upon the 
posterior distribution of the parameters, given 
the observed data, rather than on the prior 
distribution of the parameters. Ghosh and Norris 
(2005) discussed using this method for Model 
Mbh, and their findings were promising. This 
criterion is an area of future research, as it easily 
allows non-nested models to be directly 
compared and it balances between model fit and 
model complexity. 

Results 
 
Data Generation Process and Bayesian Analysis 
Method 

This simulation consists of eight 
experiments. Experiment one contains 100 data 
sets generated under each modeling assumption 
(M0, Mt, Mh, ..., Mtbh). Experiments two through 
eight each contain 50 data sets generated under 
each modeling assumption. Each experiment 
uses Markov Chain Monte Carlo (MCMC) 
methods to fit each data set using each of the 
eight models. Thus, experiment one consists of 
6,400 analyses (800 data sets each analyzed 
under eight models). Experiments two through 
eight consist of 3,200 analyses (400 data sets 
analyzed under eight models). Each data set is a 
simulated capture-recapture study with k = 5 
capture periods. The methodology used to 
generate pij values is illustrated in Table 1, and 
detailed information regarding the data 
generating parameters is provided in an 
Appendix available at 
http://www.mathsci.appstate.edu/~rmg/. 

Calculations of pij for Mtbh, the most 
complex model, are computed as F(µ + βj + ητij 
+ κZi), where F is the Logistic distribution 
function 

F(x) = [1 + e-1]-1, Zi 
...

~
dii

N(0,1), 
 
where τij = 1 if the animal has been previously 
captured, and τij = 0 otherwise. 

The approach in Table 1 resembles a 25-2 
fractional factorial design with factors N, 
Average pij, and magnitude of time, behavioral, 
and heterogeneity effects. Means and standard 
deviations of the pij for each simulation 
experiment are listed in the Appendix. 

For each data set, and under each model, 
an estimate of the posterior density of N was 
constructed using WinBUGS Version 1.4. The 
median of this posterior distribution, denoted 
ˆ ,N  was chosen to estimate N and AIC and DIC 

were also computed. For these simulation 
experiments, non-informative prior distributions 
were chosen for the model parameters. 
Specifically, δ = 0.5 was chosen as the 
hyperparameter for the prior distribution of N; r 
= 2 was selected for the number of support 
points for F, and a = b = 0.5 for hyperparameters  



GOSKY & GHOSH 
 

73 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
for the prior distributions of all the capture 
probabilities. 

A burn-in period of 3,000 samples was 
used to allow convergence of the MCMC 
processes to a stable distribution. After the burn-
in period, 2,000 samples were selected from 
each of three MCMC chains with dispersed 
starting values for the model parameters. 
Therefore, posterior distribution estimates are 
based upon 6,000 total samples. Convergence of 
the models was checked through the Gelman-
Rubin statistic in WinBUGS. Table 2 shows 
means and percentages of times each model was 
selected by the MCMC estimates of AIC for 
Experiment one. 
 
Analysis of AIC as a Model Selection Criterion 

AIC (Akaike, 1973) has been used 
extensively as a model selection tool. 
Calculation of AIC adds a parameter penalty to 
the estimated Kullback-Leibler Discrepancy 
between the fitted model and the true model. 
Using θ as a general term to represent all the 
model parameters (e.g. θ = (N, P) as in Equation 
2.3), X as a general term to represent the 
observed data (e.g. X = (Z1, …, ZL) as in 
Equation 2.3), p' as the number of model 
parameters, and LogL as the log likelihood 
function, a form for calculation of AIC is given 
by 

AIC = -2LogL(θ̂  | X) + 2p'           (4.1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where θ̂  is the MLE of θ under the assumed 
model. However, the AIC calculation used here 
is different from the usual form of AIC. 
Defining 
 

D(θ) = -2LogL(θ |X),             (4.2) 
 
use AIC = E[D(θ)|X] + 2p' where E[D(θ)|X] is 
the mean of the posterior distribution of D(θ). 

Analysis of Table 2, which gives the 
MCMC AIC means and model selection 
percentages for simulation experiment one, 
indicates that overall the AIC is effective in 
determining the correct model. For the first 
seven columns in the table, the minimum AIC 
mean occurs when the fitted model matches the 
data generating assumptions. This suggests that 
AIC is capable of identifying the correct model, 
on average. 

Perhaps more indicative of the 
performance of AIC is the percentage of times it 
chooses the correct model. For this analysis, a 
model with the minimum posterior mean of AIC 
was chosen for a given data set. When a tie 
occurs between two models, the simpler model 
is chosen. Ideally, the diagonal entries in the 
table should have the highest percentages of 
selections by AIC. The table columns represent 
the true model generating assumptions. 

Selection of a different model from the 
data generating assumptions may be called a 
model selection error, and the percentage of AIC 

Table 1: Data Generating Assumptions for Simulation Experiments 1 to 8 

Experiment 
Number 

N 
Average 

pij 
Time 

Effects 
Behavioral 

Effects 
Heterogeneity 

1 500 0.2 Large Positive Large 

2 500 0.2 Small Positive Small 

3 500 0.4 Large Negative Large 

4 100 0.4 Large Positive Small 

5 100 0.4 Small Positive Large 

6 100 0.2 Large Negative Small 

7 500 0.4 Small Negative Small 

8 100 0.2 Small Negative Large 
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model selection errors is also listed in the last 
row of Table 2. In this respect, for seven of the 
eight models, AIC performs well. Among these 
seven models, for Mt and Mth, the percentage of 
selections is 87 percent, which is somewhat 
lower than for the other models. When Mt and 
Mth are not selected by AIC, though, AIC selects 
a similar model, but with more effects. This is 
better than the selection of an unrelated model. 
Model Mtbh does not perform as well. Data 
generated under the assumptions of Mtbh only 
had a 42% selection rate by AIC. When Mtbh 
was not selected in this column, the model 
selected was one of the sub-models containing 
two of the effects (Mth, Mbh, and Mtb). 

Some of this could be due to relative 
weighting of the time, behavioral, and 
heterogeneity effects within Mtbh, as AIC may be 
picking the model based on the most significant 
of these effects present in any particular data set 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Furthermore, with five capture periods, model 
Mtbh may be somewhat over-parameterized. 
Thirty-one distinct capture histories were 
observed, and model Mtbh includes 13 
parameters for such data, which may lead to the 
estimation of effects due only to random chance. 
However, from an overall look at this table, it is 
concluded that AIC performs well as a model 
selection tool. 

A summary of the AIC selection rates 
from Experiments two through eight is given in 
Table 3, which lists only whether AIC chose the 
correct model in each experiment. Thus, the 
94% entry in the first row and column shows 
that in experiment two, AIC chose model M0 
correctly 94% of the time for the data sets 
generated with constant capture probability. 

In column one of Table 3, a strong AIC 
selection rate is  observed  for M0 data  for  all  
 

Table 2: Simulation Experiment One Average AIC Posterior Mean and AIC 
Model Selection Percentages 

   True Model     

Model 
Fit 

M0 Mh Mt Mb Mbh Mtb Mth Mtbh 

Avg AIC (Top Line) 
AIC% (Bottom Line) 

M0 
134.3 
92% 

197.2 
0% 

320.7 
0% 

191.8 
0% 

252.4 
0% 

533.4 
0% 

354.3 
0% 

539.0 
0% 

Mh 
138.4 
0% 

159.2 
95% 

325.1 
0% 

194.4 
0% 

196.6 
0% 

537.2 
0% 

328.5 
0% 

501.4 
0% 

Mt 
142.4 
1% 

205.4 
0% 

136.2 
87% 

173.2 
0% 

236.2 
0% 

164.6 
2% 

198.1 
0% 

239.7 
0% 

Mb 
136.4 
7% 

197.9 
0% 

208.0 
0% 

157.9 
99% 

201.6 
0% 

227.2 
0% 

193.6 
0% 

181.3 
0% 

Mbh 
142.5 
0% 

163.0 
5% 

214.8 
0% 

163.6 
1% 

165.5 
99% 

234.1 
0% 

184.5 
2% 

174.5 
13% 

Mtb 
144.2 
0% 

203.8 
0% 

138.0 
13% 

165.8 
0% 

207.1 
0% 

151.1 
97% 

186.1 
3% 

174.5 
11% 

Mth 
153.8 
0% 

175.0 
0% 

147.7 
0% 

177.0 
0% 

181.1 
1% 

161.9 
2% 

166.7 
87% 

165.1 
36% 

Mtbh 
155.6 
0% 

176.6 
0% 

149.4 
0% 

177.1 
0% 

179.8 
0% 

162.1 
0% 

168.5 
8% 

163.5 
42% 

Error % 8% 5% 13% 1% 1% 3% 13% 58% 
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experiments. Column two shows strong AIC 
selection rates for the Mb data sets, with the 
exception of experiments six and eight. These 
two experiments had relatively small capture 
probabilities, smaller population sizes of N = 
100, and negative behavioral effects. This 
combination of factors makes detection of 
behavioral effects difficult due to small observed 
numbers of recaptures. 

Column three shows strong selection 
rates for Mt data, except for experiments five 
and eight. However, both of those experiments 
have small-magnitude time effects and smaller 
population sizes N = 100, indicating a simpler 
model such as M0 may be more appropriate for 
the data. Experiments two and seven, which also 
have small time effects, but a larger population 
size N = 500 show larger AIC selection 
percentages of 78% and 88% respectively. 

Column four shows that Mh data has 
reasonably high selection percentages for 
experiments three, five, and eight, and small 
selection percentages for experiments two, four, 
six, and seven. The low selection rates occur in 
experiments with small heterogeneity effects in 
the data. It appears AIC selects a heterogeneity 
model when the heterogeneity effects are large, 
but not when they are relatively small. 

Column five shows that Mtb data has a 
high AIC selection rate in experiments two, 
three, and seven. Mtb data has a moderate AIC 
selection rate of 62% in experiment four, and 
has low selection rates in experiments five, six, 
and  eight.  The  low  selection  rates  occur  in  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
experiments with small time effects. The 
moderate selection rate in experiment four 
occurs when time effects in the data are large. 
Some examination of this case shows that when 
Mtb is not chosen, one of the submodels Mb or 
Mt is chosen by AIC. 

The low selection percentages for 
experiments two, four, six, and seven for the 
heterogeneity models Mbh, Mth, and Mtbh occur 
due to the small heterogeneity effects in those 
experiments, and this again reflects that 
comparable models without heterogeneity 
effects can adequately fit the data. Low selection 
rates for Mbh, Mth, and Mtbh are seen in 
experiment eight, and for the Mth and Mtbh data 
for experiment five. These low rates occur for 
experiments where heterogeneity effects are 
large. However, due to the small magnitude time 
effects in experiments five and eight, for the Mth 
data AIC chooses Mb and Mbh most often as the 
best model, reflecting adequate fit for these data 
sets by simpler models. Some examination of 
the underlying results (not available in Table 3) 
shows that the penalty term for the number of 
parameters is the reason that Mth has a higher 
AIC value for these data sets. 

For the Mtbh data sets, AIC chooses 
Model Mbh most commonly, followed by model 
Mb. The choice of Mbh again reflects the small 
magnitude of the time effects in these data sets. 
The choice of model Mb is surprising given that 
the heterogeneity in the data is strong in 
experiment five. However, a behavioral effect 
and a heterogeneity effect are not completely 

Table 3: Selection Rates for AIC for Simulation Experiments 2 to 8 Selection 
Rates for Data Sets Generated Via Listed Model Assumptions 

Experiment M0 Mb Mt Mh Mbh Mtb Mth Mtbh 

2 94% 96% 78% 0% 86% 0% 0% 0% 

3 90% 96% 90% 92% 98% 100% 94% 70% 

4 92% 96% 82% 6% 62% 0% 0% 0% 

5 94% 92% 36% 78% 12% 52% 2% 0% 

6 84% 48% 62% 2% 8% 0% 0% 0% 

7 96% 100% 88% 0% 76% 4% 0% 0% 

8 92% 44% 18% 54% 6% 20% 0% 0% 
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unrelated. For capture periods two through k, the 
behavioral effect creates two distinct groups in 
the population: those which have been 
previously captured and those which have not 
been previously captured. Each group has 
separate capture probabilities. Although group 
membership is changing with each capture 
period, Model Mb could provide a reasonable fit 
to data with heterogeneity in some instances. 

Finally, for experiment eight, for the 
Mbh, Mth, and Mtbh data sets, no particular model 
is selected overwhelmingly, and the true model 
is also rarely selected for these data sets. This 
may reflect the combination of small population 
size of N = 100, the negative behavioral effects, 
the average capture probabilities being 20%, and 
the large degree of heterogeneity in the data. For 
a small population, it is difficult to have one data 
set reflect all those sources of variation, causing 
problems for a selection criterion such as AIC. 

Overall the performance of AIC as a 
model selection method for these models is 
encouraging. However, it is recommended that 
AIC be a guide to select a subset of suitable 
models for further analysis. Although AIC 
performed well in selecting the true model when 
the degree of underlying time, heterogeneity, or 
behavioral effects was large, the performance 
when these effects were small means that 
another model is selected. For this reason, it is 
recommended that AIC be used to narrow the set 
of eight models down to a smaller number of 
candidate models. A more detailed analysis 
involving other factors, such as the opinion of a 
subject matter expert, should be used to make 
the final model choice. 
 
Analysis of DIC as a Model Selection Criterion 

The DIC criterion is a recent 
development in model selection. DIC can be 
expressed similarly to AIC. Given the common 
use of AIC, this feature allows users to quickly 
understand the form and use of DIC. 
Additionally, DIC is easy to calculate, as it is a 
function of the posterior parameters and the 
model deviance (where deviance is related to the 
log-likelihood). 

Using the same notation as in the 
definition of AIC, and again denoting D(θ) = -
2LogL(θ |X), and defining pD = E(D(θ)|X) - D(

θ̂ ), where E(D(θ)|X) represents the posterior 
mean of D(θ), it is possible to calculate 
 

DIC = D(θ̂ ) + 2pD,                (4.3) 
 

where θ̂  is a posterior estimate of θ, e.g., θ̂  = 
E[θ |X] or Median[ θ |X]. As stated previously, 
the pD term in DIC represents an effective 
number of parameters. The pD term measures 
the decrease in the deviance (increase in the 
likelihood) obtained by using posterior estimates 
of the parameters θ. Note that although DIC is 
structured to look like AIC, the penalty term is 
actually a function of the model fit, not simply a 
discrete number of parameters. 

For computational purposes, Dev(θ) is 
defined as the MCMC computed deviance for 
any particular data set and model combination 

and D as the MCMC mean of the deviance 

statistic, pD is computed as pD = D - Dev(θ̂ ) 

and computationally, results in DIC = Dev(θ̂ ) + 
2pD. 

In the simulations, DIC did not perform 
as well as AIC in model selection. For several of 
the models, most notably Mbh, the pD penalty 
term in the DIC criterion was frequently 
negative in the simulations. Although pD is 
typically positive for most Bayesian statistical 
models, pD can be negative for a particular 
model and data set if the likelihood function is 
not log-concave. A negative pD rewards, rather 
than penalizes, a model for model complexity. 
When pD is negative, then for simple data sets 
(M0, for example), DIC selects a more complex 
model in the majority of cases. Of particular 
concern was the disproportionately large number 
of selections of model Mbh across all data sets, 
due to the frequency of the penalty term pD 
being negative. Detailed data tables regarding 
the performance of DIC across the eight 
simulation experiments are available at 
http://www.mathsci.appstate.edu/~rmg/. 

Spiegelhalter, et al. (2002) stated that 

alternative choices for θ̂  could be the posterior 
median or posterior mode. So, pD can be 
calculated with these alternatives to the posterior 

mean ofθ̂ . Because DIC performed poorly with 

the posterior mean asθ̂ , the performance of DIC 
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was examined when the posterior median was 

used for θ̂  instead. Ultimately, with this change, 
the problem of negative pD values improved, 
but still persisted with this change. Overall, 
performance of DIC in model selection for these 
models is inferior to that of AIC; based upon this 
simulation study, use of AIC as a model 
selection tool is recommended over DIC. 
 
Analysis of Real Data Sets: Cottontail Rabbit 
Data 

In Edwards and Eberhardt (1967), a 
capture-recapture experiment involving 135 
cottontail rabbits was performed. The rabbits 
were released into a forty acre rabbit-proof area, 
and eighteen capture periods followed after a 
four day waiting period which gave the rabbits 
familiarity with their surroundings. Bayesian 
Models with the Program MARK models are 
compared. The data and a Program MARK 
analysis of the data are included with the MARK 
software package, and Pledger (2000), among 
others, has analyzed this data set. A total of 
seventy-six animals were captured at least once 
during the eighteen capture periods. Forty-three 
animals were captured once during the study, 
sixteen were captured twice, eight were captured 
three times, six were captured four times, two 
were captured six times, and one rabbit was 
captured seven times. 

Using the models provided by Program 
MARK, Table 4 gives the estimate of N for each 
model, and the upper and lower limits of ninety-
five percent confidence intervals for N, and the 
frequentist AIC statistic for each model. For 
Model Mth, the data was analyzed under two 
specifications, once with constant difference in 
capture probabilities between the two mixture 
groups across the time periods, and once without 
this restriction. Estimates and confidence limits 
for N are rounded to the nearest integer. 

Using AIC, it is found that the Mth 
model with additive capture probability 
difference across the r = 2 groups across capture 
periods, and Model Mtbh have comparably small 
AIC values. The point estimator from the chosen 
Mth model is more accurate than the Mtbh model 
and the confidence interval for Mth is narrower. 

Using WinBUGS v.1.4, the Bayesian 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
models were fit to the cottontail data, using the 
non-informative prior distributions for N and the 
capture probabilities described in Section 4.1. 

For each model, Table 5 lists N̂  (the posterior 
median), the AIC posterior mean, and ninety-
five percent, equal-tailed posterior interval 
bounds from the MCMC posterior distribution 
of N. Figure 1 shows the MCMC posterior 
density of N for Model Mtb. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Bayesian Model Results for Cottontail 
Dataset 

Model N̂  2.5% 97.5% 
AIC Posterior 

Mean 
M0 97 86 114 461.5 

Mh 145 99 615 453.3 

Mb 96 81 153 464.4 

Mt 92 83 106 453.2 

Mtb 104 88 138 452.8 

Mbh 119 85 581 457.2 

Mth 98 86 120 475.8 

Mtbh 107 88 151 477.2 

Table 4: Program MARK Results for Cottontail 
Dataset 

Estimator N̂  LCL UCL AIC 

M0 96 87 114 379.6 
Mh 

(2 mixture groups) 
136 96 256 369.6 

Mh 
(3 mixture groups) 

157 89 593 373.5 

Mb 94 82 129 381.6 

Mt 95 86 112 354.6 

Mbh 113 86 214 369.1 
Mth 

(2 mixture groups; 
additive) 

133 96 241 341.3 

Mth 
(2 mixture groups; 

unrestricted) 
98 88 117 367.0 

Mtb 162 117 260 343.3 

Mtbh 270 100 1698 341.9 
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Note that AIC chooses Model Mtb. Other 
candidate models with comparable AIC values 
are Mh and Mt. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Model Mtb underestimates the true N = 135 but a 
95% equal-tail interval from the posterior 

distribution of N contains the true N. The N̂
from the Bayesian Model Mt underestimates the 
true N = 135, as does Model Mt in Program 
MARK. The interval estimates produced by the 
two methods are similar, which is not surprising 
given that relatively uninformative prior 
distributions for the parameters were used, and 
the likelihood functions of the two models are 
the same. 

The Bayesian Mh estimate is somewhat 
above, but relatively close to the true N = 135, 
as are both Mh estimates from Program MARK. 
The Bayesian posterior density of N has a higher 
97.5th percentile than the upper bound for the 
confidence interval given for Model Mh in 
Program MARK. The Model Mh posterior 
density for N is heavily right-skewed, and the 
posterior interval length could be significantly 
shortened by choosing an interval other than an 
equal-tailed interval, or by lowering the 
confidence level. 

Ultimately, the Mtb point estimate of N, 
via the posterior median of N, is comparably 
accurate with the Mtb estimator from Program 
MARK. Also note the Program MARK Mth 
estimator is quite accurate for N. The Bayesian 
Mtb model has a narrower confidence interval 
than that from Program MARK, and the 
Bayesian interval contains the true N = 135. 

Because this is only one data set, general 
conclusions cannot be made. 
 
Analysis of Real Data Sets: Mead’s Milkweed 
Flower Data 

Alexander, Slade, and Kettle (1997) 
used mark-recapture methods to estimate the 
number of Mead’s Milkweed plants on a 4.5-ha 
tract of land in Kansas. The capture periods 
consisted of an annual search of the land area 
over a span of four years. Observed plants were 
marked with a flag so that previous captures 
were detectable in subsequent years. Censuses 
were considered impossible because these plants 
are perennial and do not flower every year. 
Presence of flowering stems makes the plants 
easier to observe. The authors considered the 
population closed over the four-year span 
because the plant has a long lifespan, a high 
survival rate, and births and deaths were 
considered negligible during the study. 
Ultimately, a total of 129 flowers were observed 
in the study. Twenty-two plants were observed 
during one capture period, fifty-six were 
observed during two capture periods, twenty-
five were observed during three capture periods, 
and twenty-six were observed during all four 
capture periods. 

Model Mtbh was chosen as an ideal 
model for the data because time effects occur 
due to annual variation in flowering, behavioral 
effects occur because the visible flags make 
recapture easier in subsequent years, and 
heterogeneity effects occur because some plants 
have larger underground root systems which 
make them more likely to flower in a given year. 
Alexander, et al. used Program CAPTURE for 
the analysis (see http://www.mbr-
pwrc.usgs.gov/software. html for details), Model 
Mtbh was unavailable in Program CAPTURE at 
that time, and they ultimately found some 
reasonable, but non-ideal, options for 
simplifying the data to allow the other seven 
closed population models to be fit. 

Both Program MARK and WinBUGS v. 
1.4 were used to analyze the data set and to 
choose the proper model from using the AIC 
statistic in each case. Results are listed below in 
Tables 6 and 7. Note that in Program MARK, 
Mtb and Mtbh models were fit with behavioral 

Figure 1: Posterior Density of N for Model Mtb 
for Cottontail Dataset 
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effects additive across time periods and mixture 
groups. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparing the results, it is observed 
that in Program MARK, the AIC statistic favors 
Model Mtbh. This model has a very large upper 
bound for the confidence interval and thus a 
wide confidence interval for N. Model Mtb in 
Program MARK has an AIC statistic that is 
fairly close to that of Mtbh and the confidence 

interval for N is much narrower than that of 
Mtbh. 

The Bayesian AIC statistic favors Model 
Mtb, and Models Mth and Mtbh are other possible 
choices. The Bayesian Mtb model has a large 
interval width and a large 97.5th percentile of the 
posterior distribution of N. The competing 
Bayesian models Mth and Mtbh have equal point 
estimates of N, but Mtbh has a much larger 97.5th 
percentile of the posterior distribution of N, 
leading to a wider posterior 95% interval. 
 

Conclusion 
 
In summary, useful findings for closed 
population capture-recapture models have been 
established. Eight Bayesian capture-recapture 
models accounting for the known sources of 
variability in the capture probabilities of closed 
animal populations were developed. Using the 
WinBUGS v.1.4 software, these models were 
easy to fit to capture-recapture data sets, and 
MCMC estimates of the posterior density of N 
are easily obtained from the output. 
Additionally, the modified version of AIC works 
well as a model selection tool for capture-
recapture data sets, thus AIC is useful as a 
preliminary method of reducing the set of 
candidate models from eight down to a smaller 
subset worthy of further exploration to 
determine the best fitting model. The DIC 
criterion did not perform as well as AIC for 
capture-recapture data sets and the use of AIC 
over DIC is recommended. 

Further areas of exploration include 
examining whether informative priors improve 
estimation of N when capture probabilities are 
small. Negative bias in estimating N is common 
for populations with heterogeneity, particularly 
when a significant fraction of the population has 
small capture probabilities. The performance of 
the heterogeneity models (Mh, Mth, Mbh, Mtbh) 
when the finite mixture distribution F has r > 2 
mass points should also be examined. 
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Table 6: Program MARK Results for Mead’s 
Milkweed Dataset 

Estimator N̂  LCL UCL AIC 

M0 132 130 139 227.9 
Mh 

(2 mixture 
groups) 

135 132 144 218.7 

Mb 222 162 393 115.8 

Mt 129 130 135 80.2 
Mbh 

(2 mixture 
groups) 

945 230 6,769 109.7 

Mth 
(2 mixture 

groups) 
130 130 137 51.3 

Mtb 167 137 326 48.1 

Mtbh 1,228 233 11,769 38.4 
 

Table 7: Bayesian Model Results for Mead’s 
Milkweed Dataset 

Model N̂  2.5% 97.5% 
AIC Posterior 

Mean 
M0 133 130 138 263.4 

Mh 136 131 145 259.3 

Mb 270 172 2823 152.4 

Mt 130 130 133 119 

Mtb 632 336 2445 79.8 

Mbh 365 182 2823 149 

Mth 131 130 136 82.9 

Mtbh 131 130 632 85 
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