
Wayne State University

Wayne State University Theses

1-1-2015

Evaluation Of An Architectural-Level Approach
For Finding Security Vulnerabilities
Mohammad Anamul Haque
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne
State University Theses by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Haque, Mohammad Anamul, "Evaluation Of An Architectural-Level Approach For Finding Security Vulnerabilities" (2015). Wayne
State University Theses. Paper 424.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F424&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F424&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F424&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F424&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F424&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F424&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_theses/424?utm_source=digitalcommons.wayne.edu%2Foa_theses%2F424&utm_medium=PDF&utm_campaign=PDFCoverPages

EVALUATION OF AN ARCHITECTURAL-LEVEL APPROACH FOR

FINDING SECURITY VULNERABILITIES

by

MOHAMMAD ANAMUL HAQUE

THESIS

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

2015

MAJOR: COMPUTER SCIENCE

Approved By:

Advisor Date

DEDICATION

To my Family and Friends

ii

ACKNOWLEDGEMENTS

This thesis is the summary of my work at SEVERE (SoftwarE Visualization and

Evolution REsearch) lab of Wayne State University, Detroit, MI. I would like to thank

and express my gratitude to all who supported me during my study.

First, I would like to thank and express my gratitude to my advisor Dr. Marwan

Abi-Antoun who offered me a great opportunity to work under his supervision when

I needed it most. Without his constant guidance and feedback, it would not have

been possible to accomplish this goal. I thank him for his patience and positive

criticism that helped me to understand the fundamentals of the research and shape

my thinking of new ideas. His constant encouragement inspired me to complete this

work with as much perfection as I can.

I am grateful to all the members of the thesis committee who happily accepted

my request putting aside their busy schedules. I am thankful to Dr. Vaclav Rajlich

and Dr. Alexander Kotov for their valuable comments, suggestions and feedback.

Disclaimer: Any remaining faults in this thesis are mine alone.

I would also like to thank all of my friends at Wayne State University whom I

met while pursuing my study. I thank to all of the members of the SEVERE group.

In particular, I thank Sumukhi Chandrashekar who read my thesis and suggested

many changes; Mohammad Ebrahim Khalaj, with whom I discussed new ideas; Yibin

Wang, for reading my drafts and providing me with important feedback. I would

like to extend my gratitude to my friends from other labs and departments: Faria

Mahnaz, Rajiur Rahman Raju, Abdullah-Ibn Mafiz and Tarique Hasan Khan who

always were very supportive.

I would like to extend my gratitude to the members of the Department of Com-

puter Science for their outstanding cooperation, providing me with the financial means

of my study. I would also like to thank all the professors whose courses I have taken;

iii

I was very lucky to learn from their teaching. I would also like to thank other faculty

members who supported me.

Last but not the least, I especially thank my mother, my father and my sisters

without whose inspiration and moral support I could have never reached to this

accomplishment. I also want to extend my gratitude to all of my friends and other

relatives who always helped me with mental support during my study.

iv

TABLE OF CONTENTS

Dedication . ii

Acknowledgements . iii

List of Tables . x

List of Figures . x

CHAPTER 1: INTRODUCTION . 1

1.1 Problem Description . 1

1.1.1 Coding Bugs and Architectural Flaws 1

1.1.2 Security Vulnerability and Architectural Flaw 2

1.2 Analysis Tools . 2

1.3 Thesis Statement . 3

1.3.1 Hypotheses . 3

1.4 Systems to Evaluate . 3

1.5 Results of the Subject Systems and Contribution 4

1.6 Outline . 4

CHAPTER 2: BACKGROUND . 6

2.1 Static Analysis . 6

2.1.1 Static vs Dynamic Analysis 6

2.1.2 Hierarchical Object Graph . 7

2.1.3 Extracting information from the Object Graph 7

2.2 The Scoria Approach . 8

2.2.1 Annotate the code . 8

2.2.2 Extracting the OGraph . 8

2.2.3 Refine the Annotations . 10

2.2.4 Write Constraints . 11

2.2.5 Trace Suspicious Edges . 12

2.2.6 Compute AF-Index . 12

v

CHAPTER 3: MUSPY . 14

3.1 Muspy Overview . 14

3.2 System Architecture . 15

3.2.1 DFD . 15

DFD Level-1 . 16

DFD Level-2 . 17

3.3 Annotation Process . 19

3.3.1 Design Intent . 19

3.3.2 Default Annotations . 20

3.3.3 Root Class and Manual Annotations 21

3.4 Object Graph Extraction . 22

3.5 Conformance with the DFD . 22

3.6 Refinement of the Annotations . 23

3.7 Constraints . 26

3.7.1 Constraint-1: Vulnerability regarding Android SHARED-

PREFERENCE . 26

Implementation . 27

Result . 28

3.7.2 Constraint-2: Vulnerability regarding Android system Log . . 29

Implementation . 31

Result and Injected Vulnerability 31

3.8 AF-index of the vulnerabilities . 33

3.9 Conclusion . 34

CHAPTER 4: ERMETE SMS . 35

4.1 Ermete SMS Overview . 35

4.2 System Architecture . 36

4.2.1 DFD . 36

vi

DFD Level-1 . 36

DFD Level-2 . 37

4.3 Annotation Process . 39

4.3.1 Design Intent . 39

4.3.2 Root Class and Manual Annotations 40

4.4 Object Graph Extraction . 41

4.5 Conformance with the DFD . 42

4.6 Refinement of the Annotations . 43

4.7 Constraints . 43

4.7.1 Constraint-1: Vulnerability of exporting confidential informa-

tion to untrusted destination 44

Implementation . 45

Result . 46

4.7.2 Constraint-2: Vulnerability regarding SQLiteDB 47

Implementation . 49

Result . 50

4.8 AF-index of the vulnerabilities . 51

4.9 Conclusion . 51

CHAPTER 5: WEBGOAT . 53

5.1 WebGoat Overview . 53

5.2 System Architecture . 53

5.2.1 DFD . 54

5.3 Annotation Process . 55

5.3.1 Design Intent . 55

5.3.2 Default Annotations . 56

5.3.3 Root Class and Manual Annotations 57

5.4 Object Graph Extraction . 58

vii

5.5 Conformance with the DFD . 60

5.6 Refinement of the Annotations . 60

5.7 Constraints: . 61

5.7.1 Constraint-1: Vulnerability regarding path based access control 62

Implementation . 62

Result . 63

5.7.2 Constraint-2: Log Spoofing 63

Implementation . 65

Result . 65

5.7.3 Constraint-3: Vulnerability regarding hidden field tampering . 65

Implementation . 67

Result . 68

5.8 AF-index of the vulnerabilities . 69

5.9 Conclusion . 69

CHAPTER 6: DISCUSSION . 70

6.1 AF-indexes of the vulnerabilities . 70

6.2 Precision of the results . 70

6.3 Scoria detects Common Android Architectural Flaws 71

6.4 Scoria detects Common Webapplication Architectural Flaws 71

6.5 Impact of Code implementation over Scoria approach 71

6.6 Estimated efforts of finding security vulnerabilities 72

6.7 Threats to Validity . 72

CHAPTER 7: RELATED WORK . 74

7.1 Evaluation of Static Analysis Tools 74

7.1.1 Tools that Focus on Coding Bugs 74

7.1.2 Tools that Focus on Architectural Flaws 76

7.2 Evaluation of Dynamic Analysis Tools 78

viii

CHAPTER 8: CONCLUSION . 79

8.1 Contribution . 79

8.2 Future Work . 79

References . 80

Abstract . 83

Autobiographical Statement . 84

ix

LIST OF TABLES

Table. 1.1 Statistics of the subject systems 4

Table. 6.1 AF-indexes of the constraints . 70

Table. 6.2 Accuracy of the result . 71

Table. 6.3 Estimated Effort of Muspy . 72

Table. 6.4 Estimated Effort of Ermete SMS 72

Table. 6.5 Estimated Effort of WebGoat . 73

x

LIST OF FIGURES

Figure. 2.1 Annotated main class of CourSys application 9

Figure. 2.2 Object Graph of CourSys application 10

Figure. 2.3 OOG of Coursys application . 10

Figure. 2.4 Scoria Features . 13

Figure. 3.1 Muspy DFD L-1 . 17

Figure. 3.2 Muspy DFD L-2 . 20

Figure. 3.3 Code modification: missing constructor 21

Figure. 3.4 Muspy OOG collapsed . 22

Figure. 3.5 Muspy OOG expanded view of MuspyClient 23

Figure. 3.6 Muspy DFD L-2 . 24

Figure. 3.7 Muspy DFD (L-2) conformance 25

Figure. 3.8 Muspy annotation refinement . 25

Figure. 3.9 Muspy SHAREDPREFERENCE attack 27

Figure. 3.10 Muspy SHAREDPREFERENCE vulnerability 28

Figure. 3.11 SHAREDPREFERENCE vulnerability (partial OGraph) 29

Figure. 3.12 Muspy constraint-1 . 30

Figure. 3.13 Muspy constraint-1 result . 30

Figure. 3.14 Muspy constraint-2 . 32

Figure. 3.15 Muspy constraint-2 injected vulnerability 32

Figure. 3.16 Injected vulnerability (partial OGraph) 33

Figure. 3.17 Muspy injected vulnerability result 33

Figure. 4.1 Ermete SMS DFD L-1 . 37

xi

Figure. 4.2 Ermete SMS DFD L-2 . 40

Figure. 4.3 Code refactoring: anonymous return object 41

Figure. 4.4 Ermete SMS OOG . 42

Figure. 4.5 Ermete SMS OOG conformance with DFD 44

Figure. 4.6 Ermete SMS refinement of the annotations 45

Figure. 4.7 Ermete SMS constraint-1 vulnerability 46

Figure. 4.8 Ermete SMS constraint-1 partial OGraph 47

Figure. 4.9 Ermete SMS constraint-1 result 47

Figure. 4.10 Ermete SMS constraint-2 vulnerability 49

Figure. 4.11 Ermete SMS constraint-2 OGraph 50

Figure. 4.12 Ermete SMS constraint-2 result 51

Figure. 5.1 WebGoat architecture . 54

Figure. 5.2 WebGoat DFD . 56

Figure. 5.3 WebGoat manual annotations 57

Figure. 5.4 WebGoat root class . 58

Figure. 5.5 WebGoat OOG . 59

Figure. 5.6 WebGoat OOG conformance diagram 60

Figure. 5.7 WebGoat refinement of annotations 61

Figure. 5.8 WebGoat constraint-1 vulnerability 63

Figure. 5.9 WebGoat constraint-1 partial OGraph 64

Figure. 5.10 WebGoat constraint-1 result . 64

Figure. 5.11 WebGoat constraint-2 vulnerability 65

Figure. 5.12 WebGoat constraint-2 partial OGraph 66

xii

Figure. 5.13 WebGoat constraint-2 result . 66

Figure. 5.14 WebGoat constraint-3 vulnerability 67

Figure. 5.15 WebGoat constraint-3 partial OGraph 68

Figure. 5.16 WebGoat constraint-3 result . 68

xiii

1

CHAPTER 1: INTRODUCTION

This chapter introduces the problem addressed in this thesis, the solution to the

problem, the thesis statement, and the subject systems that are used in the evaluation.

1.1 Problem Description

A wide number of software tools are available that look for coding bugs such

as a hard-coded password in a system .1 However, tools that look for architectural

flaws (e.g., storing unencrypted password) of the system are less mature. Such a

tool requires a thorough evaluation. The underlying analysis of the tool can be

dynamic or it can be static. Dynamic analysis runs on specific inputs whereas static

analysis exploits all possible paths in the program. Although static analysis explores

all possible paths, the tool may report more than the actual numbers of flaws in the

system (false positives). Moreover, an analysis tool also needs to be scalable to large

subject systems. Thus, such a tool requires a rigorous evaluation on large subject

systems of a variety of domains, such as Android and the Web.

1.1.1 Coding Bugs and Architectural Flaws

Architectural flaws account for 50% of the security vulnerabilities .2 Finding an

architectural flaw requires the tool to analyze a high-level representation of the system

rather than the code level. On the other hand, to find a coding bug, it only requires

to analyze one method of one class at a time and does not require to track the

transitive dataflow communication between objects. For instance, to find a hard-

coded IP address in the code, the analysis needs to scan through all the hard-coded

strings and match with the signature of the IP address. However, it is not sufficient

to explore a code statement that writes confidential information into a file and define

the statement as an architectural flaw. The security properties of the dataflow object

2

(e.g., the information) and the file object are also important to consider. An architect

assigns security properties to the source, the destination and the dataflow objects to

query the high-level representation of the system in order to find the flaw.

1.1.2 Security Vulnerability and Architectural Flaw

By definition, in computer security, a vulnerability is referred to a weakness that

allows an attacker to compromise the system’s security infrastructure 1. The exploita-

tion of a security vulnerability requires to pass through more than one process of the

system, at each of which the exploitation can be stopped.3 Some architectural flaws

can be significant enough to potentially compromise the system security. One of the

solutions for finding such an architectural flaw is Architectural Risk Analysis (ARA).

ARA generates a forest-level view of the system that contains runtime components

of a system and connections between them .4 The architects use the view to assign

security properties and check constraints. However, ARA is manual and can miss

some potential components and communication edges. Another proposed solution is

to extract a high-level diagram of the system called an Object Graph (OGraph). An

OGraph represents the abstract runtime structure of the system as a graph in which a

node is defined as an abstract object and an edge represents the communication be-

tween two objects. Architects find the vulnerabilities by assigning security properties

to the components (objects and edges) and writing security constraints .5

1.2 Analysis Tools

A few analysis tools that find security vulnerabilities are Coverity ,6 HP Fortify

,7 Cigital Secure Assist 8 etc. In this thesis, I evaluate a static analysis tool called

Scoria. Scoria is a Java-based analysis tool that finds the security vulnerabilities that

are architectural flaws of a system. Scoria generates a global sound hierarchical object

1http://en.wikipedia.org/wiki/Vulnerability (computing)

3

graph (OGraph). A sound abstract OGraph represents all the objects and dataflow

edges that may exist at runtime. A system architect finds the vulnerabilities by

querying the OGraph. Scoria was evaluated on a number of test cases. Some of

these test cases are Android-based small applications adopted from the DroidBench

9 benchmark and the rest of the test cases are devised. DroidBench is a micro-

benchmark that contains small test cases.

1.3 Thesis Statement

Scoria finds security vulnerabilities that are architectural flaws in medium to large

subject systems from different application domains and does not generate many false

positives.

1.3.1 Hypotheses

To support the thesis statement, I propose two hypotheses:

H1. Scoria finds security vulnerabilities that are architectural flaws in medium to

large subject systems from different application domains.

H2. Scoria does not generate many false positives.

1.4 Systems to Evaluate

I select a number of criteria to choose the subject systems: the type of the system

(in order to support the hypothesis H1), the code size (KLOC), and the object-

oriented properties of the system. Scoria was evaluated on a system named UPMA

(Universal Password Manager for Android) which is around 4 KLOC.10 I choose

three subject systems two of which are around 6 KLOC and one is around 25 KLOC.

I choose two Android applications: Muspy and Ermete SMS and one web application

(WebGoat) (Table 1.1). While WebGoat is a deliberately vulnerable application,

4
Table 1.1: Statistics of the subject systems

Subject App. Type KLOC (approx.) Packages Classes Interfaces Methods
Muspy Android 6 14 115 1 376

Ermete SMS Android 6 9 48 0 198
WebGoat Web 25 22 191 2 1509

the other two systems are also potentially vulnerable applications. Both of these

Android systems require user authentication, maintain user profiles and save confi-

dential information into local databases. All of the systems were implemented using

object-oriented programming techniques. Table 1.1 shows some metrics about the

subject systems and how they are consistent with the selection criteria.

1.5 Results of the Subject Systems and Contribution

I evaluate Scoria over three subject systems by annotating the code, typechecking

the annotations, extracting the OGraphs, refining the annotations and writing con-

straints. The results show that there are interesting security vulnerabilities in Muspy

and Ermete SMS that point to the common architectural flaws in Android devel-

opment. The results also show that Scoria detects security vulnerabilities in larger

systems. I discuss the precision of the analysis results with respect to the generated

false positives.

1.6 Outline

The rest of the thesis is organized as follows: Chapter 2 gives some background

on available approaches and the underlying Scoria approach. Chapter 3 explains the

detailed subject system Muspy, the annotation process, the extraction of the OGraph

and the constraints writing. Chapter 4 describes Ermete SMS, the annotation process,

the extraction of the OGraph and the constraints. Chapter 5 explains the architecture

of WebGoat, the annotation process, the OGraph extraction, the refinement of the an-

5

notations and the constraints. Chapter 6 discusses and validates the thesis statement

by evaluating the results. Chapter 7 discusses related work that evaluated software

analysis tools. Chapter 8 discusses the contribution of the thesis along with possible

future work.

6

CHAPTER 2: BACKGROUND

This chapter gives some background on the underlying analysis type, i.e., the

static analysis, some advantages of static analysis over dynamic analysis, and the

process of applying the Scoria approach.

2.1 Static Analysis

To resolve potential security vulnerabilities, two types of analysis have been de-

veloped; static analysis and dynamic analysis. A static analysis is performed without

actually executing the programs. Although dynamic analysis can be successful by pre-

cisely identifying the system behavior on specific inputs, there are certain advantages

of static analysis over dynamic analysis.

2.1.1 Static vs Dynamic Analysis

A dynamic analysis is dependent on the program execution and deals with the

runtime values. It may also require loading of special libraries and recompilation of

the code. A dynamic analysis can detect the dynamic dependencies of a program. It

can extract a dynamic hierarchical object graph where a child object can be found

at the descendant level of its parent .10 A dynamic object graph may have thousands

of nodes; however, it requires extensive graph summarization to obtain an abstract

graph.

Moreover, dynamic analysis cannot guarantee the identification of the vulnerabil-

ities since all the input scenarios cannot be tested. On the contrary, a static analysis

is sound in the sense that it considers all the program execution paths and thus, it is

independent of the input.

Additionally, the exploitation of security vulnerabilities is not necessarily causes

by a malicious input. An attacker can exploit vulnerability by providing a valid

7

input. This is because an architectural flaw may exist due to a dataflow from a

source object to an untrusted destination which may not be detected by dynamic

analysis. For example, consider a web application that uses a hidden input field that

stores monetary values temporarily. Since the input field takes numeric values as

input, tampering the field will not be recognized by the dynamic analysis. A static

analysis, on the other hand, can find this vulnerability by analyzing the security

properties of the input object and the dataflow object that represents the monetary

values.

2.1.2 Hierarchical Object Graph

The static analysis tool, Scoria extracts a hierarchical abstract object graph

(OGraph) based on the annotations of the code and the abstract runtime structure of

the system. The elements of an OGraph are OObjects (abstract objects), ODomains

(conceptual group of objects) and OEdges, the dataflow communication edges be-

tween the objects. An ODomain can contain multiple OObjects and an OObject in

turn can have zero or more domains. An OGraph is sound in the aspect that it shows

all possible communication edges between two runtime objects. Soundness also guar-

antees that one particular runtime object cannot have two different representatives

in the OGraph.

2.1.3 Extracting information from the Object Graph

Using the OGraph, a security architect can visualize the domains (conceptual

grouping of objects), abstract objects, hierarchies of the objects and dataflow commu-

nication edges.10 The architect can reason about the transitive dataflow information

from a source to a destination through object hierarchy and object reachability and

can reason about a security vulnerability issue. There may also be a direct dataflow

edge between a source and a destination object for which an architect assigns secu-

8

rity properties to the connecting objects and edges to check if confidential information

flows to the untrusted destination.

2.2 The Scoria Approach

In this thesis I evaluate if Scoria can find security vulnerabilities.

The Scoria approach consists of a number of steps. These steps are annotate the

code, extracting the SecGraph, refine the annotations, write constraints and trace

suspicious edges. In the following sections I will discuss each one in turn.

2.2.1 Annotate the code

The first step of the Scoria approach is to annotate the source code. The an-

notations reflect the design intent of the architect. The architect annotates each

class, variable, field and method return type. After adding annotations, the architect

typechecks the annotations using a typechecker1. The typecheker shows a number

of warnings and their priorities. The architect needs to address the warnings by the

order of the priorities. A portion of the annotated code of the CourSys application is

shown in Fig. 2.1. CourSys is a samll java application that manages students, courses

and registration of courses of a schooling system.

2.2.2 Extracting the OGraph

Scoria extracts the OGraph from the annotated code and creates the SecGraph.

SecGraph is a wrapper of the OGraph that allows the architects to assign security

properties to the objects and the edges in order to query the graph. Depending on

the size of the system, the size of the OGraph may be very large. For a small sub-

ject system (e.g., an Android application in DroidBench benchmark), the generated

1The typechecker is currently integrated with eclipse, so all the work has to be done in IDE

9

class Main<"user", "logic", "data","owned"> {

Data<data <owned>> objData = null;

Logic<logic <data, owned>> objLogic = null;

Client<user<logic, owned>> objClient = null;

public void run(){

objData = new Data(studentFile, courseFile);

objLogic = new Logic(objData);

ILogic<logic> logic = objLogic;

objClient = new Client(logic);

objClient.execute();

}

public static void main(String<lent[shared]> args[]) {

String<shared> arg0 = args[0];

String<shared> arg1 = args[1];

try {

Main<lent> system = new Main(arg0, arg1);

system.run();

}

catch (Exception<lent> e) {

System.out.println("Unexpected exception");

}

}

}

Figure 2.1: Annotated main class of CourSys application

OGraph is usually small and easily interpretable. For large subject systems, however,

it may be difficult to follow the dataflow communication edges especially in the case

of object hierarchy and indirect communication. Hence, I extract and look at the

Ownership Object Graph (OOG) of the annotated system. OOG is the hierarchical

representation of the abstract runtime structure that provides a collapsed view of

the system in which objects of a domain are nested into the parent object that is

the owner of the domain. OGraph is the internal representation of the OOG. As an

example, the OGraph and the OOG of the CourSys application are shown in Fig. 2.2

and Fig. 2.3 respectively. In this example, objLogic:Logic has log:Logging and

lock:RWLock objects in its owning domain (Fig. 2.2), however, in the OOG, these

two objects are collapsed in the objLogic:Logic (Fig. 2.3).

10

SHARED

system:

Main

date:

Date

inputStreamReader:

InputStreamReader

fileReaderCourses:

FileReader

objTokenizer:

StringTokenizer

file1:

File

objReader:

BufferedReader

Unexpected exception:

data

objData:

Data

objData

logic

objLogic:

Logic

objLogic user

objClient:

Client

objClient

owned

delimiters str

student:

Student

Unexpected exception:String

in in

vRegistered:Sequence_Student_ student:Student vRegistered:Sequence_Course_ course:CourseUnexpected exception:String

course:

Course

Unexpected exception:String student:Student

Unexpected exception:String course:Course

vRegistered:

Sequence<Course>

vCourse course:Course

vRegistered:

Sequence<Student>

student:Student vStudent

dataNode Unexpected exception:String

owned

log:

Logging

log

lock:

RWLock

lock

Unexpected exception:Stringcourse:Course

owned

logFileWriter:

FileWriter

logFileWriter owned

_mutex:

Object

_mutex

Unexpected exception:StringlogicNode

vCompleted:

Sequence<String>

iters

owned

cons:

Cons<String>

head

iterator:

SequenceIterator<String>

current

obj

cons:Cons_String_

sCID Unexpected exception:String sInstructor sName sDays sSection

vRegistered:Sequence_Student_ Unexpected exception:String

vRegistered student:Student

sProgram Unexpected exception:String sSIDsName

vCompleted:Sequence_String_ Unexpected exception:String vRegistered:Sequence_Course_

Unexpected exception:String vCompletedcourse:Course vRegistered

owned

cons:

Cons<Course>

head

iters

obj

iterator:

SequenceIterator<Course>

cons:Cons_Course_current

iters

owned

cons:

Cons<Student>

head

iterator:

SequenceIterator<Student>

current

obj

cons:Cons_Student_

Figure 2.2: OGraph of the Coursys application

Main::logic Main::dataMain::user

Main::owned

objLogic(+):

Logic

objData:

Data

vCourse(+):

Sequence<Course>

vStudent(+):

Sequence<Student>

objClient:

Client

course:

Course

vCompleted(+):

Sequence<String>

student:

Student

Figure 2.3: OOG of the Coursys application (nested boxes)

2.2.3 Refine the Annotations

An architect may need to refine the annotations for two types of scenarios: a) keep

the annotations consistent with the design intent and code and b) prevent objects

from getting merged by the analysis. The architect can modify the annotations to

keep the analysis consistent with the design intent and the code. For instance, object

o:O may be initially annotated in domain U. However, it can be found that o:O is an

important object that contain confidential information or a wrapper of an important

object. As a result, the architect modifies the annotation to domain D that may

11

usually contain the important objects. The architect can check the OOG, refine the

annotations and can re-extract the OOG and iterate the same process until the OOG

reflects the design intent. Second, some of the vulnerabilities may not be found due

to excessive merging (abstraction), and it is required to separate a target instance of

a particular type and annotate it in a distinct domain to prevent merging. Thus, the

separated object with relevant edges will appear in the OGraph and will be available

for the architect to assign security properties while writing constraints.

2.2.4 Write Constraints

Scoria has five different types of queries that help the architect to minimize the

effort of writing constraints to find vulnerabilities; Object Provenance, Object Tran-

sitivity, Object Hierarchy, Object Reachability and Indirect Communication. These

features are depicted in Fig. 2.4. The images are repeated here to make this document

more self-contained .10

Object Provenance is a query that returns a set of dataflow edges if same object

flows from two different set of sources to two different set of destinations. For instance,

if object o:O flows from a:A to b:B and it also flows from c:C to d:D, the analysis

will report two suspicious dataflow edges regarding the same flow object o:O (Fig. 2.4

(a)).

Object Transitivity is the communication that reflects the transitive flow of a

particular object in a communication path between two objects where the destination

object may be untrusted. For example, o:O can flow transitively from a:A to c:C in

which multiple objects can be found in the communication path between a:A and c:C

(Fig. 2.4 (b)).

Object Hierarchy is defined as the descendants and ancestors of an object o:O where

confidential information can be found in a descendant of o:O. However, instead of

passing the descendant object, o:O is passed from a source to an untrusted destination.

12

Thus, the destination has an access to the information (Fig. 2.4 (c)).

Object Reachability is defined as a path that exists between a flow object of one

path to a predefined object. For instance, flow object c:C of the communicating

objects a:A and b:B is reachable to the object o:O, if there is a path exists between

c:C to o:O (Fig. 2.4 (d)).

Indirect Communication refers to an indirect path that exists from a source a:A

to a destination b:B if a dataflow or creation edge exists from a descendant of a:A to

a descendant of b:B (Fig. 2.4 (e)).

2.2.5 Trace Suspicious Edges

The architect implements the constraints as test cases using the features of Scoria.

Running the test cases shows a number of suspicious communicating edges in the

console window (if any) that includes the corresponding lines of code of method

invocations or field writes. Thus, the architect can trace the lines of code responsible

for the edges. The analysis may warn about some irrelevant suspicious edges (false

positives) alongside the true edges.

2.2.6 Compute AF-Index

The security architect computes the Architectural Flaw Index (AF-index) of each

constraint that determines if a vulnerability is an architectural flaw or a coding bug.

The AF-index classifies security vulnerabilities along a continuum ranging from coding

bugs to architectural flaws.11 The AF-index attempts to classify each vulnerability as

an architectural flaw. In this thesis, the AF-index ranges from 1 to 10. Each Scoria

feature has a weight and the AF-index of a vulnerability is the weighted sum of the

values of all the features used in a constraint. Since object provenance and indirect

communication are difficult to reason about, a higher value 3 is assigned to these

13

a:A

b:B

c:C

d:D

o:O

o:O

o:O

(a) Object Provenance

a:A b:B c:C

o:O

o:O
o:O o:O

(b) Object Transitivity

a:A b:B
desc:D

anc:Anc

o:O

parent:P

o:O

child1:C1

o2:O2

child2:C2

(c) Object Hierarchy

b:B

c:C

c:C

a:A

d:D o:O

(d) Object Rechability

�:A

d:D

f:F

o:Oo:O

o:O

b:B

child1:C1

desc:D

(e) Indirect Communi-
cation

Legend

o:O

o:O

Object

Dataflow

Communication

Points-to

Communication

Dataflow refers to

object

Parent-child relation in
object hierarchy

o:O
Indirect

Communication

Figure 2.4: Scoria Features

features and a value of 2 is assigned to the object transitivity and object hierarchy.

Security properties are assigned a value of 1. The higher the weighted sum of the

used features in a constraint, the more likely a vulnerability is an architectural flaw.

The following chapters discuss the subject systems, the detailed process of ap-

plying the Scoria approach over the systems and the corresponding results of the

analysis.

14

CHAPTER 3: MUSPY

The chapter gives an overview of the first subject system, its functionality, its

architecture and constraints that find vulnerabilities in the system.

3.1 Muspy Overview

Muspy is a free Android application that notifies the users who expressed interest

when their favorite artists release new albums1. Muspy targets music lovers who do

not want to miss any album from their favorite artists or learn about new albums after

many days of their releases. Moreover, it saves the users’ from having to constantly

check the official websites of the artists.

Following are the features of Muspy:

1. Sign In and Sign Out: A user can create a new account by providing an email

id and a password. Email activation is required after which the user is allowed

to sign in to the system. The user can log out from the system by clicking

the sign out button and there is no internal caching functionality of the login

credentials.

2. Reset Password: In case of forgetting the password, a user can reset her pass-

word by providing the email address and Muspy sends a password reset link to

the email address.

3. Add and Remove Artists: A user can follow artists by searching for the artists

and adding them to the account and can unfollow them by clicking the remove

button. The user can also share information of each album release to social

media. Moreover, Muspy allows the users to achieve more information regarding

1https://muspy.com/

15

each album release through youtube, Last.FM, Wikipedia, Spotify, Amazon and

Discogs.

4. Import Artists: A user can add all or a portion of top artists (25%, 50%, 75%

and 100%) from their Last.FM profiles by inserting their Last.FM profiles’ user

names.

5. Notifications: A user gets an automatic email notification for each new album

release. Each new released album is also added to the list of albums of each

favorite artist of a user.

3.2 System Architecture

Muspy is 6 KLOC, so it is a mid-size Android system. I study the architecture of

the system reading the available documentation, browsing the code and by drawing

the dataflow diagram (DFD) by hand. I measure some code statistics (shown in

Table 1.1) of Muspy by running a tool named Metrics2.

3.2.1 DFD

I inspect the code to understand the architecture and manually draw (since there

is no documented DFD) the data flow diagram (DFD) of the system before starting

the Scoria analysis for Muspy. I draw two levels of DFDs (DFD Level-1 and DFD

Level-2) and manually check the conformance of the OOG with the DFD Level-2

to see if the extracted OOG matches the design intent, and is comparable to the

diagrams I drew.

2http://metrics2.sourceforge.net/

16

DFD Level-1

Muspy has five complex processes, two data storages and the external user. The

DFD shows the processes (Fig. 3.1), the data storage, the external user and the

corresponding communication edges between the processes.

1. Artist Activity: A complex activity that contains multiple single processes each

of which represents an activity relevant to an artist. An external interactor can

communicates with the complex process, “Service Manager” via each individual

process (Fig. 3.1).

2. Release Activity: “Release activity” shows detail information for each album

release of an artist. It communicates with the “Service Manager” and the

“external user” (Fig. 3.1).

3. User Account Activity: This complex process consists of all the account related

activities; the activities for signin, signup, reset password and user account

settings. User account activity communicates with the complex processes: the

“Service Manager” and the “Credential Manager”.

4. Service Manager: “Service Manager” consists of a client process, a utility pro-

cess and one user settings process. It provides HTTP services to other processes

to perform the GET and the POST operations. It is also responsible for com-

municating with the data storage (Fig. 3.1).

5. Credential Manager: This process encrypts and decrypts a user’s password

before storing into and retrieving from the data storage. (Fig. 3.1).

6. Unprotected Data: The unprotected data storage stores the insecure informa-

tion related to artists’ data. Data are pulled and pushed from this storage

through HTTP protocols.

17

Credential

Manager

Muspy User

Service

Manager

Release Activity

Protected Data

Response

Request

Response

Request

Response

Artist

Activity

Request(Unencrypted Data)

Response

Request(Unencrypted Data)

Response

Request(Unencrypted Data)

Decrypted Data Request(Unencrypted Data)

Unencrypted Data

Request(Unencrypted Data)

Write

Read

Unprotected Data

Write

Read

Unencrypted Data

User Account

Activity

Request

Multiple

Processes
Interactor

Account Data

Single

Process

Figure 3.1: Muspy DFD Level-1

7. Protected Data: This storage stores sensitive user information. Muspy uses a

local database (Android SharedPreference) to store the protected data. Pro-

tected data are saved and accessed through the “Credential Manager” process

(Fig. 3.1).

DFD Level-2

The DFD level-2 shows the decomposition of several components of the Level-1

DFD. Following are the components of the DFD Level-2:

1. My Artist Activity (Artist Activity): This activity takes the artist name as a

parameter and communicates with the “Muspy Client” process to fetch corre-

sponding artist’s data (Fig. 3.2). When a user is logged in to the system, this

activity populates the favorite artists of the user by default.

18

2. Search Artist Activity (Artist Activity): This activity passes an artist name as

a parameter and retrieves the data through the “Muspy Client” component of

the “Service Manager”.

3. Import Last FM activity (Artist Activity): This activity imports the list of

artists from a user’s Last.FM profile to Muspy through HTTP protocols.

4. Signup Activity (User Account Activity): This process sends user login creden-

tials to the “Service Manager” through HTTP request and simultaneously sends

it to the “Credential Manager” in order to store the data in the local database

(Fig. 3.2).

5. Signin Activity (User Account Activity): This activity takes the email and

the password and checks them against the locally stored data records before

allowing the user to login.

6. Reset Password Activity (User Account Activity): This activity sends the user’s

email address to the “Muspy Client” which in turn sends a link to the email

address to perform the reset operation (Fig. 3.2).

7. Settings Activity (User Account Activity): “Settings activity” allows the user

to change and save account settings and notifications.

8. Muspy Client (Service Manager): “Muspy client” is a service provider process

that works as a middleware and convey bidirectional communication with the

activity classes (in the UI) and the data storage. For instance, a user searches

for a favorite artist by providing an artist name to the “Muspy Client” and the

client performs HTTP get operation to retrieve the artists’ information.

9. Utils (Service Manager): This utility class is responsible to retrieve a user cre-

dentials stored in local data storage.

19

10. User Settings (Service Manager): “Muspy Client” gets each user’s settings as an

object of the “User Settings” class. It extracts necessary information from the

object (e.g., notification settings) to perform relevant operations (e.g., notify

the user if sending notification is enabled).

11. Muspy Application (Credential Manager): “Muspy Application” is the top level

process of the “Credential Manager” that maintains the dataflow communica-

tion between the processes of the “Service Manager”, the user account activity

processes and with the local data storage. It also communicates with the “Sim-

ple Crypto” process in order to encrypt and decrypt the password.

12. Simple Crypto (Credential Manager): This process encrypts/decrypts the pass-

word and receives/pass it from/to the “Muspy Application” (Fig. 3.2).

3.3 Annotation Process

The first step of the Scoria Analysis is to annotate the code. I import the Muspy

system into Eclipse as an Android application and annotate the code. After adding

the annotations, I run the typechecker and address the typechecker warnings.

3.3.1 Design Intent

I use existing documentation and inspect the code of Muspy and the code seems

to follow the design intent as State-Logic-Display. The intent consists of three archi-

tectural tiers. I choose three top level domains to represent these architectural tiers;

UI (for Display), LOGIC (for Logic) and DATA (for State). The corresponding formal

domain parameters are U, L, and D allow the objects to share state across domains. I

use the owned domain to annotate strictly encapsulated objects, and annotate static

fields and string type variables into the shared domain.

20

Muspy User

Release Activity

Protected Data

Show Message

Valid Email

Message

Password(write)

Unprotected Data

Artists Names

MyArtist

Activity

Import Last.FM

Activity

Search Artist

Activity

Reset Password

Activity

Signup

Activity

Signin

Activity

Settings

Activity

Simple Crypto

Muspy Application

UserSettings

Utils

Muspy Client

Artists Names

Show Message
User Name

Show Message

Password Text Email, Password

Message Email, Password

Message

Email, Notifications

Show Message

Artist Name

Show Message

MBID

Release List

Artists Names

Password Text

Email, Password

Message

Email, Password

Message

Email

Password, UserID Email, User ID

User Settings

object

User Name

Show Message

Credentials

Credentials

Email, UserID

Password(Unencrypted)

Password(Encrypted)

Email, UserID

Password

HttpResponse
Artist Information

HttpRequest

Artist Information

Email, User ID

A�����

A�������

U��� A��	
n�

A�������

S������

M�n����

C���n���i

M�n����

Multiple
Process

Interactor

Account Data

LEGEND

Email, Album, Live

Single

Process

Figure 3.2: Muspy DFD Level-2

3.3.2 Default Annotations

During the annotation process, I use an existing tool named ArchDefault that

partially automates the annotation process considerably and reduces the overhead of

adding manual annotations. ArchDefault generates a map that contains a list of the

types and an architect needs to assign the required domains and domain parameters

to each type. I manually edit the map with corresponding values and properties and

21

public class MuspyApplication<U, L, D> extends Application<U,L,D>

{

//Added by ANAM

public MuspyApplication(){super();}

SimpleCryptoOld<D<D>> SCO = new SimpleCryptoOld();

SimpleCrypto<D<D>> SC = new SimpleCrypto();

String<shared> email = null;

}

Figure 3.3: Code modification: missing constructor

set the properties takedomainParams as ’true’ and propagateToSubTypes as ’true’

to propagate the domain parameters across subtypes. I validate the map using the

validation functionality of the tool before the default annotations.

3.3.3 Root Class and Manual Annotations

Although ArchDefault adds most of the annotations and propagates the domain

parameters to the subtypes, the architect may need to modify some of the existing

annotations and manually annotate the complex expressions that the tool does not

consider. This is because ArchDefault is not a smart inference tool. It may add

annotations that do not typecheck. I modify the annotations in order to preserve

its consistency with the design intent. I also add annotations that are missed by

the default tool especially in case of primitive types and types from the referenced

libraries. Based on the priority of the warnings generated by the typechecker, I

update the annotations. I minimize the number of warnings to 176 from around

5000 warnings. I modify the code in a few cases e.g., missing public constructor.

For example, MuspyApplication had a private constructor that prevents the type for

being instantiated (Fig. 3.3).

As the Scoria analysis starts from the entry point of a root class, I manually

prepare a root class by instantiating some of the uninstantiated objects. I also declare

the three top level domains (UI, LOGIC and DATA) in the root class.

22

��������T�

Main::LOGIC

Main::UI

�������
E�����

SC:

SimpleCrypto

SCO:

SimpleCryptoOld

artist:

Artist

releasesHolder:

ReleasesHolder

message:

Message

release(+):

R������

e:

Exception

passCryp:

String

userSettings:

UserSettings

ma:

MuspyApplication

sa(+):

Sett�� �!"�ivity

rpa(+):

ResetP���#���!"��c��$

���%&':
(���")!������!"��c��$

��%&'�
Releases!"��c��$

artistComparator:

ArtistComparator

��������%&':
N�#*�+��,(���"tedList����

b-�����
B-����

,��%&'�
.$!������!"��c��$"���

/-���mListAdapter

�-�%&':
(� �01!"��c��$

�"�%&'�
(� �+�!"��c��$

���%&'�
+,1���I���2,!"��c��y

-�
0����

log:

Log

������:
+�����

./%&':
.-�1$/�����

Figure 3.4: Muspy OOG (Three top-level domains and collapsed objects)

3.4 Object Graph Extraction

I extract the OOG of Muspy. I also extract the OGraph to observe the internal

representation of the OOG, and the dataflow communication edges between the ob-

jects. I manually study the conformance of the OOG with the extracted DFD Level-2

of the system.

The OGraph of Muspy is large enough to zoom in and follow the dataflow edges

between the objects. The expanded view of the OOG is also very large. The collapsed

view and the expanded view of one object (“MuspyClient”) of the OOG have been

shown in (Fig. 3.4), and (Fig. 3.5) respectively.

3.5 Conformance with the DFD

In the conformance diagram (Fig. 3.7), a black arrow represents a points to

edge, a red arrow shows an export edge, and a blue arrow represents an import

23

Main::UI

3456789ient::owned

defaultHttpClient:

DefaultHttpClient

jsonArray:

J:;<=>>?@

hGGHKLOG:
HttpKLOG

Q?OVW=XGh:
Y?OVW:WhZ[Z

hGGHKXG\
]GGHKXG

^?[Z_?`XZH?V>O\
LinkedList<BasicNameValuePair>

httpDelete:

HttpDelete

httpGet:

HttpGet

registry:

SchemeRegistry

url:

URL

jsonRelease:

JSONObject

uef:

UrlEncodedFormEntity

localContext:

BasicHttpContext

MC:

MuspyClient

Figure 3.5: Muspy OOG expanded view of MuspyClient

edge. The dotted boxes represent three top level domains. The diagram shows

the dataflow communication edges between RelseaseActivity and MuspyClient

in which ReleaseActivity sends ’MBID’ (unique MusicBrainzID of an artist) to

the MuspyClient (shown by an export edge) and MuspyClient returns the re-

leases information (shown by an import edge) of an artist that writes a field of the

ArtistActivity object. Similarly, there are both an import and an export data

communications edges from MuspyApplication to SharedPreference.

3.6 Refinement of the Annotations

Since String type objects are annotated in the shared domain by the default tool,

some of the strings are significant but get merged in the OGraph with less significant

24

Muspy User

Release Activity

Protected Data

dgjk lmoopqm

rptuv Email

Message

Password(write)

Unprotected Data

Artists Names

MyArtist

Activity

Import Last.FM

Activity

Search Artist

Activity

Reset Password

Activity

Signup

Activity

Signin

Activity

Settings

Activity

Simple Crypto

Muspy Application

UserSettings

Utils

Muspy Client

Artists Names

Show Message
User Name

Show Message

Password Text Email, Password

Message Email, Password

Message

Email, Notifications

Show Message

Artist Name

Show Message

MBID

Release List

Artists Names

Password Text

Email, Password

Message

Email, Password

Message

Email

Password, UserID Email, User ID

User Settings

object

User Name

Show Message

Credentials

Credentials

Email, UserID

Password(Unencrypted)

Password(Encrypted)

Email, UserID

Password

HttpResponse
Artist Information

HttpRequest

Artist Information

Email, User ID

wxyz{y

w|yz}zy~

�{�x w||��nt

w|yz}zy~

��x}z|�

Manager

Credential

Manager

Multiple
Process

Interactor

Account Data

LEGEND

Email, Album, Live

Single

Process

Figure 3.6: Muspy DFD (L-2)

objects. As a result, important dataflow edges relevant to a particular String object

may be missing. For instance, the ’password’ field of type MyspyApplication was

initially annotated in the shared domain. I modify the annotation to the DATA

domain to keep consistency with the design intent. The intent is that the DATA

domain should contain all the significant objects of the system including the login

credentials. Moreover, changing the annotation in one statement of the program may

lead to annotation warnings elsewhere. I modify the annotation of the “Password”

25

Figure 3.7: Muspy OOG Conformance L-2

class MuspyApplication<U, L, D> extends Application<U, L, D> {

String<shared> passCryp = null;

String<D> passCryp = new String();

passCryp = null;

passCryp = SC.encrypt(Constants.SECRET.SEED, pass);

}

class SimpleCrypto<D> {

String<D> encrypt(String<shared> seed, String<D> cleartext){

if(cleartext == null)

return null;

byte[]<shared> rawKey = getRawKey(seed.getBytes());

byte[]<shared> result = encrypt(rawKey, cleartext.getBytes());

return toHex(result);

}

}

Figure 3.8: Refinement of annotation: prevention of merging objects

field to the DATA domain which is set by a method invocation (encrypt method) of

the SimpleCrypto object (Fig. 3.8). Thus, the return type of the encrypt method

of SimpleCrypto is also required to assign in the DATA domain (Fig. 3.8).

26

3.7 Constraints

I implement two constraints for the subject system Muspy. The first constraint

evaluates if Scoria can detect an injected vulnerability regarding the Android log file.

The second constraint addresses one architectural flaw that is common in Android

application development.

3.7.1 Constraint-1: Vulnerability regarding Android

SHAREDPREFERENCE

Android SHAREDPREFERENCE. Android SHAREDPREFERENCE is an interface

to store and manipulate data locally of the device. SHAREDPREFERENCE is an xml

data structure that stores the data in key-value pairs. It allows primitive data types:

Boolean, Float, Int, Long and String. An Android developer can easily access an

instance of the SHAREDPREFERENCE by invoking the getSharedPreferences method.

Multiple SHAREDPREFERENCE objects can exist in a single application.

Device loss is common these days and attackers can get easy access to personal

as well as corporate data once they get hold of a device. Corporate data can contain

secret information that can lead an attacker to hack into significant resources. The

consequences of attacking a lost device can be worse if the device is rooted with

permission. There are a number of tools available to enroot a device that can allow

an attacker to access all locally stored data (e.g., TowelRoot, KlingoRoot etc.)3.

Hence, the local storage (SHAREDPREFERENCE) is vulnerable to attack. Encrypting

the confidential data can be an effective measure to secure the data.

The entire process of the SHAREDPREFERENCE attack (of a lost Android device)

includes two actors; an Android developer and an Attacker. The developer stores

sensitive data (e.g., user name, password) into the SHAREDPREFERENCE in an xml

3http://www.askvg.com/guide-how-to-root-android-mobile-phones-and-tablets/

27

Figure 3.9: Vulnerability of SHAREDPREFERENCE (attacker accesses the local storage)

format. On the other hand, an attacker can enroot the device (if not rooted), and

access the contents of the SHAREDPREFERENCE (Fig. 3.9). In this example, the attacker

can access the contents of the “username” and “password” fields that have the values

’kepLar01’, and ’kepL@r0!’ respectively (Fig. 3.9).

Implementation

While signing in, a user provides the user name and the password and Muspy

stores the encrypted password into SHAREDPREFERENCE. SignHandler (private class

of SignInActivity) passes the un-encrypted credentials to the MuspyApplication

(Fig. 3.10). Although MuspyApplication encrypts the password, there may be an

execution in which SHAREDPREFERENCE can receive an un-encrypted password to store

(Catch block, Fig. 3.10).

I draw a partial OGraph showing the objects and the edges related to the

vulnerability in order to depict the vulnerability regarding SHAREDPREFERENCE

(Fig. 3.11). ma:MuspyApplication imports (blue edge) the password

(passCryp:String) from act:SignInActivity and exports (red edge) it to

the editor:SharedPreference.Editor (Fig. 3.11). Both ma:MuspyApplication

and editor:SharedPreference.Editor are annotated to be in the DATA domain.

28

class SignInActivity<U,L,D> extends AbstractActivity<U, L, D>{

private class SignHandler<U, L, D> extends Handler<U, L, D>{

void handleMessage(Message<D> msg) {

MuspyApplication<D<U,L,D>> muspyApplication = (MuspyApplication)

getActivity().getApplication();

String<D> pass = getActivity().passwordEditText.getText().toString();

String<shared> email = getActivity().emailEditText.getText().toString();

String<shared> userID = getActivity().userSettings.getId();

muspyApplication.setCredentials(email, pass, userID);

}

}

}

class MuspyApplication<U,L,D> extends Application<U,L,D>{

void setCredentials(){

String<D> passCryp = new String();

Editor<D<U,L,D>> editor = new Editor();

try {

if (Build.VERSION.SDK_INT < Constants.API_421) {

passCryp = SCO.encrypt(Constants.SECRET.SEED, pass);

}

else{

passCryp = SC.encrypt(Constants.SECRET.SEED, pass);

}

catch (Exception<shared> e){

passCryp = pass;

}

editor.putString(Constants.PREF_PASS, passCryp);

editor.putString(Constants.PREF_USERID, userID);

editor.commit();

}

}

Figure 3.10: Unencrypted password is stored while executing catch statement)

Result

I use the object provenance and object transitivity features of Scoria to address

this vulnerability and implement the constraint. According to the object prove-

nance, the sensitive object (passCryp:String) that flows from act:SignInActivity

to ma:MuspyApplication should not also flow from ma:MuspyApplication to

editor:SharedPreference.Editor. The implementation of the constraint (as a

JUnit test) is shown in Fig. 3.12. I run the test case and Scoria finds the sus-

picious edge with no false positive. Scoria shows the suspicious export edge from

ma:MuspyApplication to editor:SharedPreference.Editor with the flow object

29

Figure 3.11: SHAREDPREFERENCE vulnerability (partial OGraph)

passCryp:String due to the method invocation editor.putString() (Fig. 3.13).

3.7.2 Constraint-2: Vulnerability regarding Android system

Log

An Android developer can use the default logging functionality of the android.util

package to store the system logs. Although Android log files are not generally visible,

the Android logging system allows a developer to access and view the stack traces

of the system failures and all system messages that help the developer to debug the

errors (using LogCat). LogCat is a command-line functionality that allows the user

to search for logs of various programs. LogCat can be used with adb (Android Debug

Bridge) command shell (e.g.,[adb] logcat [option] ... [filter-spec] ...,).

Moreover, a number of tools are available to visually look into the contents of the

log files (e.g., aLogCat, LogViewer etc.) that make the Android logs more vulnerable.

30

@Test

void CheckPasswordVulnerabilityObjectProvenance() {

Set<IObject> cryptos = secGraph.getObjectsByCond(new InstanceOf(

"com.danielme.muspyforandroid.activities.SignInActivity.SignHandler"));

Set<IObject> muspyApps = secGraph.getObjectsByCond(new InstanceOf(

"com.danielme.muspyforandroid.MuspyApplication"));

Set<IObject> logs = secGraph.getObjectsByCond(new InstanceOf(

"com.danielme.muspyforandroid.Editor"));

Assert.assertFalse(cryptos.isEmpty());

Assert.assertFalse(muspyApps.isEmpty());

Assert.assertFalse(logs.isEmpty());

boolean isSecure = true;

for (IObject cp : cryptos){

for (IObject mu : muspyApps){

for (IObject lg : logs){

Set<DataFlowEdge> sEdges = secGraph.checkObjectProvenance(

cp, mu, mu, lg);

scoria.displayWarnings(sEdges);

isSecure = isSecure && sEdges.isEmpty();

}

}

}

if (!isSecure)

System.out.println("Information disclosure found for unencrypted password");

else

System.out.println("No information disclosure found for unencrypted password");

}

Figure 3.12: Mupsy constraint1: JUnit test

Sanity Check Visitor

Sanity Check: Null getParent(): O_world

Copying the OGraph into a SecGraph

Suspicious edge : ma:MuspyApplication -> editor:Editor [passCryp:String]

MuspyApplication setCredentials editor.putString(Constants.PREF_PASS,passCryp)

Information disclosure found for unencrypted password

Figure 3.13: Mupsy constraint1: output of JUnit test

Additionally, the Android debugging tool named DDMS 4 provides a log file viewer.

With a device emulator and a connected Android device, DDMS shows the system

logs of the connected device in an Eclipse window.

4DDMS stands for Dalvik Debug Monitor Server

31

Moreover, research shows that the Android log is not a trusted source to store

confidential information. Security researchers at IBM reported multiple vulnerabili-

ties when the Firefox application on Android writes the directory name of the user’s

profile in the system log .12 Although the profile directory name is randomly gener-

ated to prevent unwanted directory access, researchers were able to bypass one profile

directory name using the brute force method. I write a constraint to verify if Muspy

writes any significant information into the Android log and Scoria did not find such

a vulnerability. So, I inject a vulnerability to check if Scoria can detect the injected

vulnerability regarding the log file.

Implementation

I use the checkFlowIntoSink functionality of Scoria to check if any suspicious

edge is found regarding the flow of the confidential information to the untrusted

sink (i.e., the Log). To implement this test case, the trust level property of the

android.util.Log object is defined as low and all the String objects of the DATA

domain are labeled as confidential. The sink and the flow properties are passed to

the getFlowIntoSink method.

Result and Injected Vulnerability

The initial results of the constraint show that Muspy does not store any confiden-

tial information in the log file. I inject a vulnerability by creating a custom exception

class (InjectException inherited from the default Java Exception class). For stor-

ing the sensitive information, I retrieve the password and the email address of a Muspy

user and store it in the log file. The annotated version of the InjectException class

has been shown in (Fig. 3.15). I instantiate the InjectException in some places of

the code (Fig. 3.15).

Due to the method invocations (ma.getPass() and ma.getEmail()) in the type

32

@Test

public void checkUntrustedSinkforConfidentialData() {

// Log object is not trustworthy

secGraph.setObjectProperty(TrustLevelType.Low, new InstanceOf(new Type(

"android.util.Log")));

// All strings in domain ’DATA’ are confidential

secGraph.setObjectProperty(IsConfidential.True, new IsInDomain("DATA",

new Type(String.class.getName())));

Property[] snkProps = { TrustLevelType.Low };

Property[] flwProps = { IsConfidential.True };

if (secGraph.checkFlowIntoSink(snkProps, flwProps)) {

System.err.println("Information disclosure exists.");

Set<SecEdge> sEdges = secGraph.getFlowIntoSink(snkProps, flwProps);

SecurityAnalysis.getInstance().displayWarnings(sEdges);

scoria.displayWarnings(sEdges);

} else {

System.out.println("No information disclosure found.");

}

}

Figure 3.14: Test case to verify if sensitive information is passed to Android system log

class InjectException<U, L, D> extends Exception<U, L, D> {

public InjectException() {

MuspyApplication<D<U, L, D>> ma = new MuspyApplication();

String<D> pass = ma.getPass();

String<shared> email = ma.getEmail();

Log<L> l = new Log();

l.e("Password: ", pass);

}

}

class ResetPasswordActivity<U, L, D> {

void run() {

try{

boolean<shared> isValid = resetPassword(this.emailEditText.getText());

}

catch (InjectException ex) {

throw new InjectException();

}

}

}

Figure 3.15: Custom expception (InjectException) class leaks password to log file.

InjectException, IE:InjectException retrieves the password and the email from

ma:MuspyApplication. Import edges in the partial OGraph reflect the field writes

in IE:InjectException class (Fig. 3.16). Method invocation l.e() creates an ex-

port edge from IE:InjectException to l:Log shows a flow of the confidential object

33

Figure 3.16: Injected vulnerability (partial OGraph)

Sanity Check Visitor

Sanity Check: Null getParent(): O_world

Copying the OGraph into a SecGraph

Suspicious edge : IE:InjectException -> l:Log [pass:String]

InjectException InjectException l.e("Password:", pass)

Information disclosure exists

Figure 3.17: Constraint-2 (JUnit Test Case Output: Suspicious Edge(s))

pass:String (Fig. 3.16). I use object transitivity that is implemented using ob-

ject provenance. After running the constraint, Scoria finds the suspicious edges by

checking the transitive dataflow communication (Fig. 3.17).

3.8 AF-index of the vulnerabilities

Since both constraints use object transitivity and object provenance, the weighted

sum for both of these constraints are 5 in the AF-index. Thus, both of these vul-

34

nerabilities rank high on the AF-index scale and are more likely to be architectural

flaws.

3.9 Conclusion

The Scoria analysis of the subject system Muspy concludes two important points;

First, Android SHAREDPREFERENCE is not trustworthy data storage to store sensitive

unencrypted information (e.g., email, password, user name, etc.). Muspy stores unen-

crypted password in the SHAREDPREFERENCE. Second, Scoria successfully reports the

non-existence of any suspicious edge when there is no vulnerability. Besides, it reports

the suspicious edge when a vulnerability is injected and confidential information is

saved in the log file.

35

CHAPTER 4: ERMETE SMS

This chapter gives an overview of the Ermete SMS, its architecture, the vulnera-

bilities and some Scoria constraints that find some potential vulnerabilities.

4.1 Ermete SMS Overview

Ermete SMS is an Android application that allows the user to send free SMS via

web protocols. It is a free distribution in Google Market and available to download

from the F-Droid1 repository. Ermete SMS allows only Vodafone and TIM (Telecom

Italia Mobile) users to exchange messages with their contacts. Besides, it stores

history of messaging including message content for each account.

Ermete SMS has following features:

1. Create and Modify Accounts: A user can create a new account using a user

name and a password for the providers Vodafone and TIM. The user can also

modify the existing account information.

2. Multiple Accounts: A user can have multiple accounts and she can switch be-

tween her accounts.

3. Reset Password: In case of forgetting password, the user can reset the password

by providing the email address, and Ermete SMS sends a reset link to the email

address.

4. Send Message: A user can send a message to multiple contacts. The messages

are stored in a local storage.

5. User Notification: Ermete SMS allows the user to get notification of received

messages.

1https://f-droid.org/repository/browse/

36

4.2 System Architecture

Ermete SMS is 6 KLOC, so it is a mid-size Android system. I run a metrics tool

named Stan2 in order to investigate the code statistics (shown in Table 1.1) of Ermete

SMS.

4.2.1 DFD

To understand the system, I inspect the code, run the system and use existing

software documentation. I manually draw two DFDs, a level-1 and a level-2, and

manually analyze the conformance of the Level-2 DFD with the extracted OOG.

DFD Level-1

The Level-1 DFD of Ermete SMS has three major components; complex pro-

cess, data storage and external user. Level-1 DFD contains three complex pro-

cesses, two storages and the external user (Fig. 4.1). Ermete SMS uses SQLiteDB

and Sharedpreference as data storages.

1. Account Activities: This complex process contains account related activities:

create, modify and update an account information for the telephony providers

TIM and Vodafone.

2. Account Manager: The “Account Manager” connects and manages the engine to

communicate with the TIM and the Vodafone servers through HTTP protocols.

3. SMS Service: The “SMS service” consists of an account service and processes

relevant to messaging and conversation. It also has a notification manager that

notifies the users of new incoming and outgoing messages.

2http://stan4j.com/

37

SQLite DB(Secure Data)

Shared

Preference(Insecure Data)

External User

Account Activities

Account Manager
SMS service

Login/Logout/Overview/Modification

Request

Account Operation

Options

Account info

Account Information

Insecure Data(Sender

position in list)

Insecure Data(Notification

Vibration)

SMS Data

Notification Message

Unencrypted Data(Account Info)

Unencrypted Data(Account Info)

Unencrypted Data(SMS Info)

Unencrypted Data(SMS Info)

Account Info

Insecure Data (Notification Vibration)

Figure 4.1: Ermete SMS DFD L-1

DFD Level-2

The DFD Level-2 shows the decomposition of each complex process of the Level-1

DFD.

1. Account Overview Activity: “Account overview activity” shows the default

screen of the system that allows the user to select the account type and redirect

the user to either AccountCreateActivity or AccountModifyActivity.

2. Account Create Activity: It creates a new account object (wrapped with the

user name, the password and the provider information) and passes the object

38

to the AccountModifyActivity.

3. Account Modify Activity: This activity gets existing account information from

the local storage (Sharedpreference) and verifies with the information entered

by the user. In order to update the information to the database, it communicates

with the AccountManager activity. The important dataflow edges are shown as

red color in Fig. 4.2.

4. Account Display Activity: This process shows the accounts basic information

(including the available contacts) to the user after successful login and modifica-

tion. It also shows the properties related to the user account. It communicates

with the “Account Manager” activity in order to retrieve the list of contacts of

a user. The corresponding dataflow edge (in Fig. 4.2) shows that the “Account

Manager” sends a list of accounts to the “account display activity”.

5. Compose Activity: “Compose Activity” is a part of the “SMS Service” process

and it provides the functionality of composing a new message and forwards the

composed message to the “Account Service”. It is also responsible to store

message related information (e.g., index of the message sender position into a

list).

6. Account Service: This service process is the middle layer between the “Compose

Activity” and the “Conversation Manager” in which the compose activity sends

the SMS object to the “Account Service” and it in turn sends the SMS object

to the “Conversation Manager”. It also sends the account information to the

“Account Manager”.

7. Conversation Manager: “Conversation Manager” exports the SMS to the

senders through HTTP protocol. Besides, it stores the history of messaging

to the local SQLiteDB database.

39

8. Notification Manager: This class notifies the user about new incoming and

outgoing messages. It communicates with the “Account Service” process to get

the contents of the notification messages.

9. Account Manager: “Account Manager” communicates with the “SMS Service”

and with the account activity processes. It sends and receives data from the

SQLite database (Fig. 4.2).

10. Account: “Account Manager” sends the account information (e.g., User Name,

Password) to the “Account” process and receives the account object in return.

11. Account Connector: “Account Connector” sends the HttpClient object to the

account object as a field write of the account that is used later to send the SMS

to the receivers.

4.3 Annotation Process

I do not use the default annotation tool and annotate the Ermete SMS entirely

by hand.

4.3.1 Design Intent

Since the software documentation of the Ermete SMS is lacking, it is difficult to

get an architectural overview of the system. A few online resources explain the usage

of the Ermete SMS from the user point of view, however, most of the resources are

available only in Italian. I inspect the code and it seems that the code follows the

State-Logic-Display architectural style. So, I represent these tiers using three top

level domains; State as DATA domain, Logic as LOGIC and Display represents the UI.

Like Muspy, I put uninteresting objects into the shared domain and owned domain

to strictly encapsulate objects into the owning domain of an object.

40

Account Overview

Activity

Account Modify

Activity

Account C�eate

��ti�it�

�����nt �i���a�

��ti�it�

��te�na� U�e�

�����nt O�ti�n� �e��e�t

�����nt O�ti�n�

�ta�t ��ti�it�

�e� �����nt �e��e�t

�e� �����nt In����ati�n

�����nt In�� ��ta�t ��ti�it��

L��in C�e�entia�

�����nt O�e�ati�n�

O�ti�n�

C�����e ��ti�it�

��ti�i�ati�n

Mana�e�

�����nt

�e��i�e

C�n�e��ati�n

Mana�e�

C�����e Me��a�e
��ti�i�ati�n �e��a�e�

�M�

�e��a�e

��ti�i�ati�n

�e��a�e

�����nt
�����nt

C�nne�t��

�����nt

Mana�e�

��a�e�
��e�e�en�e�In�e���e �ata�

�tt� C�ient

�����nt In��

�����nt In��
�e���n�e

��Lite � ��e���e �ata�

Unen����te� �ata������nt In���

Unen����te� �ata������nt In���

Unen����te� �ata��M� In���

Unen����te� �ata��M� in���

�����nt in��

�����nt In�� ���

��e�ati�n

�����nt Li�t

����i�e��

Li�t

In�e���e �ata�

��ti�i�ati�n¡�i¢�ati�n�

�e���e �ata

SMS ser ice

ccount

cti ities

ccount

Manager

�M�

�e��a�e

C����e�

����e�� Inte�a�t��

�ata £���

LEGEND

�in��e

����e��

In�e���e �ata�
��ti�i�ati�n¡�i¢�ati�n�

Figure 4.2: Ermete SMS DFD L-2

4.3.2 Root Class and Manual Annotations

I manually annotate all the types and the subtypes of Ermete SMS with corre-

sponding domains and domain parameters. I create a root class (Main) and declare

three top level domains. After annotating the code manually, I typecheck the an-

notations. Typechecker shows a number of warnings with their priorities. I address

the warnings according to the priorities. I stop fixing the typechecker warnings when

numbers of warnings were reaches around 150. Most of the remaining warnings are

related to static variables and fields for which the typechecker always shows warnings.

I also instantiate the uninstantiated types in the root class. I use the ArchMetrics

41

SSLSocketFactory<D<U, L, D>> createCustomKeyStoreSSLSocketFactory() {

try {

KeyStore<D> keystore = KeyStore.getInstance("BKS");

//return new CustomKeyStoreSSLSocketFactory(keystore);

CustomKeyStoreSSLSocketFactory<D<U, L, D>> CSSF = new

CustomKeyStoreSSLSocketFactory(keystore);

return CSSF; //Refactored

} catch (Exception<lent> e) {

throw new AssertionError(e);

}

}

Figure 4.3: Code refactoring: anonymous return object

tool to extract the uninstantiated types.

Moreover, there are few annotation warnings due to anonymous classes of the

objects. I refactor the code and convert the anonymous classes into inner classes.

As an example in (Fig. 4.3), Moreover, there are few annotation warnings due to

anonymous instantiation of the objects. I refactor the code and instantiate them

with corresponding variable names. As an example in (Fig. 4.3), the return value of

the createCustomKeyStoreSSLSocketFactory is anonymous. I create an instance

of CustomKeyStoreSSLSocketFactory with a variable name “CSSF” and return it.

4.4 Object Graph Extraction

I extract the OOG of Ermete SMS and inspect it by expanding the nested boxes

of the OOG to verify that it matches the design intent (Fig. 4.4).

I also extract the OGraph that shows the internal representation of the OOG. the

top level domains and the corresponding OObjects: UI contains the OObjects of the

user interface (e.g., CA:ComposeActivity, intent:Intent etc.), LOGIC contains the

OObjects that deal with the business logic of the system. The rest of the OObjects are

related to the sensitive data (e.g., account, sms) and they belong to the DATA domain.

42

S¤¥¦§¨

LOGIC

UI

¨¥©¥

intentFilter:

ªntentFilter

preferences:

SharedPreferences

«S¬®:
«ccountSer¯ice

=?: String con¯ersationManager¬®:
Con¯ersationManager«ndroid

ACO: AccountOverviewActivity

C«¬®:
Compose«cti¯ity

sms: SMS

«C«:
«ccountCreate«cti¯ity

context

«D«¬®:
«ccountDisplay«cti¯ity

context

«M«:
«ccountModify«cti¯ity

context

«CO¬®:
«ccountO¯er¯iew«cti¯ity

context

¯alues:
ContentValues

=?: String

sms¬®:
SMS

recv: Receiver

notificationManager:

NotificationManager

preferences

sms: SMS

notification: Notification

notification: Notification

recv: Receiver

=?: String

preferences

whereClause: String

accountService

messageWatcher: MessageTextWatcher

context

context

context

context

sortedRecei¯ers:
Lin°edList<Recei¯er>

recv: Receiver

whereClause:

String

=?: String

«M«nd¬®:
«ccountManager«ndroid

accountManager

t¬®:
±im

account

t¬®:
±elephony

account

ocListªmp:
OnClic°Listenerªmp²

ACA: AccountCreateActivity

aca

nextButton: Button

accountManager

nextButton: Button

accountManager

whereClause: String

nextButton: Button

whereClause: String

t: Tim

oldAccount

newAccount

ocListªmp³:
OnClic°Listenerªmp³

aca

ACA: AccountCreateActivity

intent: Intent

=?: String

accountManager

connector: AccountConnectorAndroid

connector: AccountConnectorAndroid

rec¯:
Recei¯er

whereClause: String

=?: String

whereClause: String

number

whereClause: String

db:

S´LiteDatabase

recv: Receiver

obj

recv: Receiver

pro¯iders:
«rrayList<«ccount>

t: Telephony

t: Tim

t: Tim

obj

obj

providers: ArrayList<Account>

context

providers: ArrayList<Account>

providers: ArrayList<Account>

providers: ArrayList<Account>

providers: ArrayList<Account>

context

=?: String

whereArgs: String[]

t: Telephony

dbOpenHelper: DBOpenHelper

whereClause: String

connector:

«ccountConnector«ndroid

connector

d: Date

watcher:

±extµatcherªmp

=?: String

=?: String

whereClause: String

whereClause: String

whereClause: String

=?: String

recv: Receiver

username

whereClause: String

pattern: long[]

data: byte[]

senderList:

Lin°edList<String>

whereClause: String

CSHC:

Custom¶eyStoreHttpClient

request: HttpGet

re·uestData:
«rrayList<NameValuePair>

NVP: BasicNameValuePair

NVP:

BasicNameValuePair

obj

sortedReceivers: LinkedList<Receiver>

sortedReceivers: LinkedList<Receiver>

whereClause: String

recv: Receiver

message

sortedReceivers: LinkedList<Receiver>

captchaText: String

sortedReceivers: LinkedList<Receiver>

context

context

context

context

context

CSA: CookieStoreAndroid

ACO: AccountOverviewActivity

CSA: CookieStoreAndroid

obj

context

context

context

context

context

AMA: AccountModifyActivity

=?: String

context

whereClause: String

=?: String

whereClause: String

context

provider

d: Date

whereClause: String

httpClient

AMA: AccountModifyActivity

a:

«nnotation

obj

main:

Main

preferences

context

context

context

context

=?: String

=?: String

obj

Figure 4.4: Ownership Object Graph (OOG) of Ermete SMS

4.5 Conformance with the DFD

Since, the OGraph is large enough to follow the dataflow edges, I use a tool named

ArchDoc that maps the dataflow edges to the corresponding lines of code. The

43

conformance diagram shows the important OObjects, points to edges and the dataflow

edges. In the conformance diagram (Fig. 4.5), three top-level container domains

are shown by the dotted lines. The boxes represent the objects, the black arrows

represent the points to edges, and the blue and red edges represent the import, and

export dataflow communications respectively. An example of the conformance can be

observed by following the dataflow edges between AMAnd:AccountManagerAndroid

(subtype of the AccountManager type in DFD) and ADA:AccountDisplayActivity.

AMAnd exports a list of accounts to the ADA. The field providers:List<Account> of

AMAnd is the flow object of the corresponding communication edge.

4.6 Refinement of the Annotations

I refine the annotations because some of the important dataflow edges were miss-

ing. The developers of the Ermete SMS use complex expressions that have typechecker

warnings, and as a result some important edges are missing from the OGraph. An

example is shown in Fig. 4.6. The receiver object is anonymously created (while

invoking the method addReceiver) and passed to the sms:SMS object that causes

a missing dataflow edge. I refactor the code by creating a new instance of type

Receiver separately and pass the object as a parameter to the method invocation.

Moreover, some important objects (especially array of String object) are not ini-

tialized with the new keyword and are missed from the OGraph along with the cor-

responding edges. I modify the code by initializing the object with the new keyword

(Fig. 4.6).

4.7 Constraints

The following sections discuss the implementation of two constraints that find

security vulnerabilities of Ermete SMS.

44

S¸¹º»¼

LOGIC

UI

¼¹½¹

intentFilter:

¾ntentFilter

preferences:

SharedPreferences

¿SÀÁÂ:
¿ccountSerÃice

=?: String conÃersationManagerÀÁÂ:
ConÃersationManager¿ndroid

ADA: AccountDisplayActivity

¿C¿:
¿ccountCreate¿ctiÃity

context

C¿ÀÁÂ:
Compose¿ctiÃity

sms: SMS

¿D¿ÀÁÂ:
¿ccountDisplay¿ctiÃity

context

¿COÀÁÂ:
¿ccountOÃerÃiew¿ctiÃity

context

¿M¿:
¿ccountModify¿ctiÃity

context

smsÀÁÂ:
SMS

recv: Receiver

Ãalues:
ContentValues

=?: String

notificationManager:

NotificationManager

=?: String

sms: SMS

notificationManager

=?: String

recv: Receiver

nextButton: Button

¿M¿ndÀÁÂ:
¿ccountManager¿ndroid

accountManager

=?: String

preferences

conversationManager

accountService

watcher2: TextWatcherImp3MA

context

context

context

accountManager

whereClause:

String

=?: String
sortedReceiÃers:

LinÄedList<ReceiÃer>

recv: Receiver

tÀÁÂ:
Åelephony

account

tÀÁÂ:
Åim

account

AMAnd: AccountManagerAndroid

accountManager

ocList¾mpÆ:
OnClicÄListener¾mpÆ

aca

ACA: AccountCreateActivity

rb: RadioButton

accountManager

=?: String

connector: AccountConnectorAndroid

connector: AccountConnectorAndroid

ocList¾mp:
OnClicÄListener¾mpÇ

aca

ACA: AccountCreateActivity

whereClause: String

AMAnd: AccountManagerAndroid

t: Tim

=?: String

connector: AccountConnectorAndroid

connector: AccountConnectorAndroid

CSHC:

CustomÈeyStoreHttpClient

context

context

context

context

context

ACA: AccountCreateActivity

whereClause: String

sms: SMS

whereClause: String

data: byte[]

message

receivers

sortedReceivers: LinkedList<Receiver>

sortedReceivers: LinkedList<Receiver>

proÃiders:
¿rrayList<¿ccount>

t: Tim

t: Telephony

t: Tim

obj

obj

connector:

¿ccountConnector¿ndroid
context

context

context

context

context

AMA: AccountModifyActivity

CSHC: CustomKeyStoreHttpClient

BHC: BasicHttpContext

watcher:

ÅextÉatcher¾mp

a:

¿nnotation

providers: ArrayList<Account>

providers: ArrayList<Account>

context

context

providers: ArrayList<Account>

providers: ArrayList<Account>

t: Tim

connector

AMA: AccountModifyActivity whereClause: String

d: Date

db:

SÊLiteDatabase

values: ContentValues

whereClause: String

recÃ:
ReceiÃer

whereClause: String

=?: String

=?: String

number

whereClause: String

recv: Receiver

obj

recv: Receiver

senderList:

LinÄedList<String>

obj

=?: String

whereClause: String

=?: String

context

whereClause: String

=?: String

httpClient

whereClause: String

provider

whereClause: String

BHC: BasicHttpContext

reËuestData:
¿rrayList<NameValuePair>

NVP:

BasicNameValuePair
obj

=?: String

whereClause: String

=?: String

whereClause: String

=?: String

whereClause: String

BHC: BasicHttpContext

data: byte[]

=?: String

sender

recv: Receiver

senderList

NVP: BasicNameValuePair

=?: String

obj

main:

Main

=?: String

context

context
context

=?: String

=?: String

obj

Figure 4.5: OOG conformance diagram with respect to DFD L-2

4.7.1 Constraint-1: Vulnerability of exporting confidential

information to untrusted destination

AccountDisplayActivity shows the basic information of the account to the user

interface of the Ermete SMS. It communicates with the AccountManager and receives

45

//sms.addReceiver(new Receiver(address));

Receiver<D<D>> r = new Receiver(address);

sms.addReceiver(r); // Refactored

String[]<shared[shared]> projection;

//String[] projection = { CLASS, LABEL, USERNAME, PASSWORD, SENDER, COUNT, COUNT_DATE };

projection = new String[] {CLASS, LABEL, USERNAME, PASSWORD, SENDER, COUNT,

COUNT_DATE }; // Refactored

Figure 4.6: Ermete SMS refinement of the annotations

a list of account objects. While it is only responsible to show the account name in

a label and logo of the account in an image placeholder, the account object contains

the sensitive information (e.g., password, user name etc.) alongside with the account

name and the logo.

Architecturally, the display object should not contain confidential infor-

mation, and I implement a constraint to evaluate if Scoria can detect

this vulnerability. The code view (of this vulnerability) shows (Fig. 4.7)

that the field accounts:List<Account> of ADA:AccountDisplayActivity is

set by the method invocation accountManager.getAccounts() of object

accountManager:AccountManager. The code view is obtained by tracing back to

the code using ArchDoc from the selected edge of interest. The suspicious edge of

interest is shown in the console after running the constraint.

Implementation

I use ArchDoc to hide the nodes that are irrelevant to the constraint. I manu-

ally draw a partial OGraph showing the relevant objects and edges of the constraint.

The partial OGraph of the constraint shows three top level domains: UI, LOGIC and

DATA (Fig. 4.8). DATA contains accountmanager:AccountManager object that exports

providers:ArrayList<Account> to ADA:AccountDisplayActiviy. Instead of send-

ing the necessary display-only information of the accounts (account name, logo etc.),

it sends the entire account object that also contains the password and the username

46

List<Account><D<D<U, L, D>>> accounts = accountManager.getAccounts();

for (Account<D<U, L, D>> account : accounts) {

TextView<lent> listItemLabel = (TextView)

listItem.findViewById(R.id.list_item_label);

TextView<lent> listItemSender = (TextView)

listItem.findViewById(R.id.list_item_sender);

ImageView<U<U, L, D>> listItemLogo = (ImageView)

listItem.findViewById(R.id.list_item_logo);

String<shared> label = account.getLabel();

if (label == null || label.equals(""))

label = getString(R.string.no_label_text);

listItemLabel.setText(label);

listItemSender.setText(account.getSender());

Figure 4.7: Entire account object is exported that contains sensitive information.

of the accounts. An export edge from accountmanager:AccountManager to the un-

trusted destination (ada:AccountDisplayActivity) is shown in red (Fig. 4.8). The

idea is to evaluate if Scoria analysis can identify this vulnerability (suspicious edge)

of the flow of the confidential data.

Result

I implement the constraint using the object transitivity feature of Scoria. In this

constraint, the flow object contains sensitive information and thus, the security prop-

erty is set as confidential. On the other hand, the sink ada:AccountDisplayActivity

is assigned as untrusted. I implement the constraint as a test case and run the test case

in JUnit. The result shows that Scoria detects the suspicious edge and reports it in

the console output of Eclipse (Fig. 4.9). However, Scoria generates a false positive by

detecting a communicating edge between accountmanager:AccountManagerAndroid

to ama:AccountModifyActivity as suspicious.

47

main:

Main

Providers:

ArrayList Account

UI LOGIC

ADA

AccountDisplayActivity
accountmanager

AcountManagerAndroid

bundle:

Bundle

Providers

SHARED

Figure 4.8: Vulnerability regarding account object (partial OGraph)

Suspicious edge : AMAnd:AccountManagerAndroid -> ADA:AccountDisplayActivity

[providers:ArrayList<Account>]

AccountDisplayActivity refreshAccountsList accountManager.getAccounts()

Suspicious edge : AMAnd:AccountManagerAndroid -> AMA:AccountModifyActivity

[providers:ArrayList<Account>]

AccountModifyActivity chooseLabel accountManager.getAccounts()

Figure 4.9: Suspicious edges identified by Scoria.

4.7.2 Constraint-2: Vulnerability regarding SQLiteDB

Ermete SMS uses SQLite database to store sensitive information of the user.

However, while investigating the possible vulnerabilities regarding the architectural

features of Ermete, I learn that storing sensitive information in SQLiteDB is not quite

48

safe (especially without encryption).

Android SQLiteDB. SQLite is an open source light-weight SQL database that

comes with the default Android distribution. It stores the data in a structured for-

mat and supports the regular relational database’s features. The database has an

extension of .db/.sqlite. The Android package android.database.sqlite contains

the sqlite class.

By default, SQLiteDB is not accessible from other applications since every Android

application has only access to its own private SQLite databases. However, an attacker

can gain access to any sqlite database by performing some bypass operations through

available Android development features for the developers. Android DDMS allows the

attacker to explore the files and folders of an Android device including the databases

of each application. Using DDMS, the attacker can also copy a particular file into an

external disk. An attacker can further query the sqlite database to fetch information

from it. There are a number of online resources available that explain how to hack

sqlite database13 of an Android application. One of the solutions to this problem is

to encrypt sensitive data.

I investigate and find that Ermete SMS sends sensitive yet unencrypted data to the

SQLite database. The object of type AccountManager extracts sensitive information

and saves the information inside a wrapper object of type ContentValues. Since

Sqlite only contains structured data, the ContentValues is used to store the data in

key-value pairs in which the key represents the table column and the value represents

the content of a cell of a row. The corresponding vulnerability is shown in Fig. 4.10.

The method InsertAccountObject of AccountModifyActivity passes the account

object to the accountManager:AccountManagerAndroid. Later, insert method of

AccountManagerAndroid sets the wrapper object (of ContentValues) and pass it to

the db:SQLiteDatabase object. In this entire path, the confidential information was

not encrypted.

49

private void InsertAccountObject(Account<D<U, L, D>> acc){

AccountModifyActivity<D<U, L, D>> AMA = new AccountModifyActivity();

accountManager = new AccountManagerAndroid(AMA);

accountManager.insert(acc);

}

public void insert(Account<D<U, L, D>> newAccount) {

ContentValues<D> values = new ContentValues();

values.put(CLASS, newAccount.getClass().getName());

values.put(LABEL, newAccount.getLabel());

values.put(USERNAME, newAccount.getUsername());

values.put(PASSWORD, newAccount.getPassword());

SQLiteDatabase<D<U, L, D>> db = new SQLiteDatabase();

db = dbOpenHelper.getWritableDatabase();

String<shared> NullColumnHack = "";

db.insert(TABLE_NAME, NullColumnHack, values);

db.close();

}

Figure 4.10: Confidential unencrypted information is passed to SQLiteDatabase object.

Before implementing the constraint, I manually verify the vulnerability related

to the SQLitedatabase. I check the vulnerability using an Android device, a device

emulator and DDMS in Eclipse. I explore the data folders, copy the database of

Ermete SMS and query through the tables to extract sensitive information (e.g., User

Name, Password, etc.).

Implementation

I draw the partial OGraph to depict the relevant objects and edges of

the constraint. In the OGraph, the top-level domain UI contains the object

AMA:AccountModifyActivity, LOGIC contains account:AccountManagerAndroid

and DATA contains the database object db:SQLiteDatabase. The confidential in-

formation flows from the UI to the DATA domain without going through an en-

cryption object. account:AccountManagerAndroid imports (blue edge) the ac-

count object (oldAccount:Account), extracts the information and wraps into the

50

main:

Main

UI LOGIC DATA

AMA:

AccountModifyActivity

db:

SQLiteDatabase

accountmanager :

AcountManagerAndroid

oldAccount:Account

SHARED

CV:ContentValues
values :

ContentValues

Figure 4.11: Vulnerability regarding SQLiteDatabase (partial OGraph)

cv:ContentValues object and exports (red object) to the db:SQLiteDatabase

(Fig. 4.11).

Result

I implement the constraint using the object transitivity and indirect communica-

tion features of Scoria. In object transitivity, all dataflow edges in a path refer to

the same flow object. Although, the information of the account object is extracted

and wrapped into another object in the middle of the path, the information remains

the same (unencrypted) on the entire path. I verify if there is any suspicious edge

exists from AMA:AccountModifyActivity to AccountManagerAndroid and if such a

suspicious edge contains a flow object of type Account, I further check if any tran-

sitive flow exists from AccountManagerAndroid to SQliteDatabase that contains a

51

Suspicious edge : AMA:AccountModifyActivity -> AMAnd:AccountManagerAndroid [t:Tim]

AccountModifyActivity InsertAccountObject accountManager.insert(acc)

AccountModifyActivity DeleteAccountObject accountManager.delete(acc)

Suspicious edge : AMAnd:AccountManagerAndroid -> db:SQLiteDatabase [=?:String]

AccountManagerAndroid insert db.insert(TABLE_NAME,NullColumnHack,values)

AccountManagerAndroid delete db.delete(TABLE_NAME,whereClause,whereArgs)

Figure 4.12: Suspicious edges identified by Scoria.

flow object of type ContentValues.

The result shows that Scoria detects the suspicious edges (Fig. 4.12) along with a

false positive. Scoria detects an additional communication due to the delete operation.

This communication is false positive since it does not store any sensitive information

to the SqliteDB.

4.8 AF-index of the vulnerabilities

The weighted sum of the Scoria features of Constraint-1 is 4 that include the

object transitivity and adding security properties. Constraint-2 has a weighted sum

of value 5 that use object transitivity and indirect communication. In both cases, the

AF-index values convey that the vulnerabilities are more likely to be architectural

flaws than coding bug.

4.9 Conclusion

In Ermete SMS, the first constraint can be considered to be a common architec-

tural flaw whereas the second constraint points to an important aspect of the Android

software development. Most developers are not concerned about the security issues

(regarding destination) while passing sensitive data as an argument. If the UI layer is

not supposed to show the confidential information, only non-confidential information

should be sent. Secondly, SQLitedatabase is not a trusted source to store sensitive

52

unencrypted information. An attacker can get access to the database and query the

information using a number of available tools. Scoria detects both of these constraints

successfully and reports suspicious edges along with a few false positives.

53

CHAPTER 5: WEBGOAT

This chapter gives some overview of the third subject system, its architecture, its

vulnerabilities and three constraints.

5.1 WebGoat Overview

WebGoat deliberately highlights security vulnerabilities in web applications. It is

designed to illustrate the security flaws and provides a platform for the software testers

to test an application in the context of Application Security Assessment. WebGoat

is developed by Open Web Application Security Project (OWASP) group.

WebGoat contains a number of categories where each category may have multiple

lessons. Each lesson may include more than one task where each task is related to a

vulnerability. In some cases, multiple lessons create one vulnerability as a whole. A

WebGoat user has to demonstrate the understanding of a vulnerability by completing

each task.

5.2 System Architecture

I run the code statistics of WebGoat (using Metrics) and it shows that the system

has 25 KLOC. I inspect the code and study the documentations. WebGoat is a

Java-based web application developed using Model-View-Controller (MVC) pattern.

In the controller, there is a generic HammerHead controller class that extends from

HttpServlet base class which is further extended by other controller classes. MODEL

contains the ActionHandler classes and a webSession class. ActionHandler classes are

the lesson objects of a category. MODEL also contains the data objects responsible

to push and pull data from and to the database. WebSession class is a middle layer

class that communicates with both MODEL and VIEW objects. An architectural

54

Browse
r

Controller
HammerHea

d
Servlet

View
main.jsp

Model
ActionHandlers

WebSession

Database

Request

Response

Forward

Delegate

Figure 5.1: WebGoat architecture

overview diagram is downloaded from the official website of OWASP (Fig. 5.1).

5.2.1 DFD

I draw a simplified version of the DFD to check the conformance with the extracted

OOG. Since WebGoat is a big application, in these two diagrams, I emphasize on the

objects and the dataflow edges that are part of the constraints. The DFD (Fig. 5.2)

shows three architectural tiers: MODEL, VIEW and CONTROLLER. Each object is

considered as a single process of the DFD. Following are the components of the DFD:

1. View: This layer consists of two types of objects of the presentation layer such

as UI (HTML) objects and view objects that communicates with the controller

objects and UI objects. For instance, Input, TD and PRE are the HTML objects

and HiddenFieldTampering, LogSpoofing and PathBasedAccessControl are

the corresponding view objects.

2. Controller: The Controller layer is composed of the controller objects including

the Websession that is responsible to maintain the web sessions. Each lesson

object in the MODEL layer implements the createContent method that takes

55

the websession object as a parameter and creates the content of the webpage.

ParameterParser takes the parameters from the HTTP requests, parse the

parameters in each method implementation. The CreateDB object creates the

database, relevant database tables and inserts the default values to the tables

in order to initialize the database. SoapRequest implements the methods of

LessonAdapter class including getFirstName, getLastName and getLoggedIn-

Count.

3. Model: This layer consists of the business objects and other data objects (util-

ities) that communicate with the database. As an example, in the DFD,

the Course is a model that maintains the learning progress of the user of

each lesson. The Encoding object encodes and decodes sensitive data. The

DatabaseUtilities class performs the database related utility actions, i.e., get

database connection, make connection etc. The StringElement is a wrapper

class and used to wrap multiple String objects.

5.3 Annotation Process

I use the ArchDefault tool in order to add default annotations and reduce the

overhead of manually annotating the entire system.

5.3.1 Design Intent

The design intent of the WebGoat is State-Logic-Display (can be represented by

the DATA-LOGIC-UI domains) that is identical to the three tier architecture of the

system. State is the MODEL, Logic is the CONTROLLER and Display is the VIEW

layer. While adding annotations, alongside three top level domains, I use the shared

domain to annotate static objects, the unique domain to annotate objects of unshared

reference and the lent to annotate the objects inside of a method scope.

56

VIEW

CONTROLLER

MODEL

LogSpoofing
ÌÍÎÎÏÐÑÍÏÒÎÓa

ÔÕÏÖing ×ØÙÚÛØÜÏÎÝÞ

ÞÏÜÜßàÐÙÖàl

áÐÕâÙ ×ãäÓå

WebSession

ßàâÖÜÏ

ParaÔÏÙÏÖ×ar

set

äÐÞàÎÍng

æçèéêëì íîçï

ðñòóôõôöñ ÷òøùúûüõôùò

ýüþôÿôùoó �ùòõñòõ
ýüþôÿôùoó �ùòõñòõ

íîçï Uë�e

íîç Uë�ç

Dç�ê�ç� � ïç�ìêïy ë��ïçîî

String

äÒÏÔent

Dç�ê�ç�

String

String ��ç�çnt(Dç�ê�ç� í��)

Më� � ous Address

åØÙØ�ØÜÏ	tiliti

es

íîçï Uë�e

Mçîîëéç

�çîîêL Lë�e

�çîîêL Lë�e

Mçîîëéç

íîçï
çy

ßÖÏØÙÏ

DB

Soap

Request

D� �êLLç�ì êL
D� �êLLç�ì êL

�çîîêL Uë�e

�çîîêL Lë�e

Figure 5.2: WebGoat DFD

5.3.2 Default Annotations

I use ArchDefault tool to add the default annotations. ArchDefault generates

the starter map, and I make necessary changes in the map. I specify the domains,

formal domain parameters and unique identifiers for each row in the map. I also set

TakeDomainParams and PropagateToSubType properties as true in order to allow

domain parameters to propagate to the subtypes. I validate the map and run the

tool to add default annotations. The default tool adds most of the annotations and

after typechecking the annotations, the number of warnings are reduced to around

9K and require further manual annotations.

57

class DOMInjection<U, L, D> extends LessonAdapter<U, L, D> {

static Integer DEFAULT_RANKING<shared> = new Integer(10);

String<shared> KEY = "key";

A<shared<U, L, D>> a = new A();

String<D> key = new String("K1JFWP8BSO8HI52LNPQS8F5L01N");

Con<D> getCon(String<lent> user, WebgoatContext<L<U, L, D>> context) {

Con<D> conn = connections.get(user);

if (conn != null && !conn.isClosed())

return conn;

conn = makeConnection(user, context);

connections.put(user, conn);

if (dbBuilt.get(user) == null){

CreateDB<lent<U, L, D>> createDB = new CreateDB();

createDB.makeDB(conn);

dbBuilt.put(user, Boolean.TRUE);

}

return conn;

}

Element<U<U, L, D>> createContent(WebSession<L<U,L,D>> s){

ElementContainer <U<U, L, D>> ec = new ElementContainer();

String[]<shared[shared]> allowedSelect = new String[]{"foo", "bar"};

}

Figure 5.3: WebGoat manual annotations

5.3.3 Root Class and Manual Annotations

All the String objects are annotated in the shared domain by the tool, however,

I realize that I need to place some objects of interest into distinct domains. Besides,

ArchDefault misses adding annotations for complex expressions (e.g., anonymous

object creation inside method invocations). Moreover, typechecker shows warnings

for statically initialized variables. To address these issues, I address the warnings by

priority. In some cases, I modify the code to add/modify annotations. Fig. 5.3 shows

some examples’ code changes and modification of default annotations.

The first code snippet shows that I modify the annotation of interesting String

object (“key”) by assigning it to the DATA domain although the default tool annotated

it in the Shared domain. The second code snippet shows the refactoring of the code

and adding corresponding annotations of the new instance of CreateDB to address

58

@Domains({"UI", "LOGIC", "DATA"})

class WebGoatAnalysisMain {

public void Run() {

instantiateMissingObjects();

}

public void instantiateMissingObjects() {

SqlModifyData<UI<UI, LOGIC, DATA>> sqlModifyData = new SqlModifyData();

LogSpoofing<UI<UI, LOGIC, DATA>> logSpoofing = new LogSpoofing();

WebSessionLOGIC<UI, LOGIC, DATA> wSession = new WebSession(new

WebgoatContext(new HttpServlet() { }), new Servlet().getServletContext());

ForgotPassword<DATA<UI, LOGIC, DATA>> forgotPassword = new ForgotPassword();

ParameterParser<LOGIC<UI, LOGIC, DATA>> parameterParser =

wSession.getParser();

DatabaseUtilities<DATA<UI, LOGIC, DATA>> dbUtilities = new

DatabaseUtilities();

}

static void main(String[]<lent[shared]> args) {

WebGoatAnalysisMain<shared> WGAMain = new WebGoatAnalysisMain();

WGAMain.instantiateMissingObjects();

}

}

Figure 5.4: WebGoat root class

the typechecker warning of anonymous object creation. The third code snippet shows

the modification of the code to address the annotation error due to static initialization

of the String[]. I address most of the annotation warnings and reduce the number

of warnings from around 9K to around 1K.

I use the ArchMetrics tool to get the list of uninitialized types. I create a root

class (WebGoatAnalysisMain), annotate three top-level domains in it and initialize

the un-initialized types. A portion of the root class is shown in (Fig. 5.4).

5.4 Object Graph Extraction

I extract both the OOG and the OGraph, however, like other systems, both of

these graphs are large enough to visualize the entire set of OObjects and follow the

dataflow edges. The unexpanded view of the OOG is shown in (Fig. 5.5).

59

SHARED

I

LOGIC

DATA

input:

Input

TARGET_USERID:
String

watcher:

ThreadWatcher

SE:

StringElement

PARAMETER_TAMPERING:
Category

AJAX_SECURITY

td:

TD

form2:
Form

tr:

TR

ec:

ElementContainer

acMatrix�+�:
AccessControlMatrix

content

content

category

content

content

content

content

webgoatContext:

WebgoatContext

webgoatContext

WGAMain:
WebGoatAnalysisMain

streamHandlerLock

course�+�:
Course

webgoatContext

WGProperties:
WebgoatPropertiesproperties

myParser:

ParameterParser

exec�+�:
Exec

logSpoofing�+�:
LogSpoofing

content

content

category

content

content

content

content

webgoatContext

streamHandlerLock

wSession�+�:
WebSession

course

myParser

webgoatContext

lessonSession:

LessonSession
obj

cookiesOnLastRequest:
ArrayList<Cookie>

cookiesOnLastRequest

objVal

LT�+�:
LessonTracker

closeLock

soapRequest�+�:
SoapRequest

content

content

category

content

content

content

content

webgoatContext

streamHandlerLock

results:

ExecResults

pathBasedAccessControl�+�:
PathBasedAccessControl

content

content

category

content

content

content

content

webgoatContext

streamHandlerLock

hiddenFieldTampering�+�:
HiddenFieldTampering

content

content

category

content

content

content

content

webgoatContext

streamHandlerLock

sqlModifyData�+�:
SqlModifyData

content

TARGET_USERID

content

category

content

content

content

content

webgoatContext

streamHandlerLock

result:

String

databasePassword

strng:

String

realConnectionString

SLT�+�:
SequentialLessonTracker

closeLock

parm:

RequestParameter

dbUtilities�+�:
DatabaseUtilities

resultSet:

jdbcResultSet

jdbcStmnt:

jdbcStatement

forgotPassword�+�:
ForgotPassword

content

content

category

content

content

content

content

webgoatContext

streamHandlerLock

sqlStrInjection�+�:
SqlStringInjection

content

content

category

content

content

content

content

webgoatContext

streamHandlerLock

enc�+�:
Encoding

content

content

category

content

content

content

content

webgoatContext
streamHandlerLockSE:

StringElement

pre:

PRE

obj

Figure 5.5: WebGoat Ownership Object Graph (collapsed view)

60

input:

Input

hiddenFieldTa����ing (+):

HiddenFieldTampering

td:

TD

logSpoofing(+):

LogSpoofing

pre:

PRE

pathBasedAccessControl :

PathBasedAccessControl

myParser:

ParameterParser

ws(+):

WebSession

db:

CreateDB

soapRequest :

SoapRequest

SE:

StringElement

dbUtilities:

DatabaseUtilities

Enc(+):

Encoding

Course(+):

Course

Figure 5.6: OOG conformance diagram

5.5 Conformance with the DFD

The conformance diagram (Fig. 5.6) has three tiers representing the three top

level domains: UI, LOGIC and DATA. Each domain contains a number of ob-

jects and relevant communication edges: the blue edge represents an import edge,

the red edge shows an export edge and the black arrow represents a field refer-

ence. To observe an example of the conformance with the DFD (Fig. 5.2), it

can be seen that PathBasedAccessControl process sends a decoded URL object

to the UI element TD. Analogously, there is an export communication edge from

pathBasedAccessControl:PathBasedAccessControl to td:TD.

5.6 Refinement of the Annotations

I refine the annotations to reflect my design intent and to prevent the objects of

interest from getting merged. An OOG is inconsistent with the design intent if it

61

Element<U<U,L,D>> doStage6(WebSession<L<U,L,D>> s){

StringElement<U<U,L,D>> SE = new StringElement("not yet");

return SE;

}

Element<U<U,L,D>> createContent(WebSession<L<U,L,D>> s) {

String<D> listing = " <p>"+getLabelManager().get("CurrentDirectory")+"

" + enc.urlDecode(dir) +

"

"+getLabelManager().get("ChooseFileToView")+"</p>";

StringElement<D> SE = new StringElement();

SE.addElement(listing);

td.addElement(SE);

}

Figure 5.7: Refinement of annotations (preventing objects from excessive merging)

misses some desired objects and edges due to incorrect annotations. As the type-

checker cannot recognize anonymously instantiated objects, those objects are missing

in the OGraph. Hence, code refactoring is needed. Examples are shown in Fig. 5.3.

In order to prevent some desired objects from being merged, I annotate those objects

in distinct domains. For instance, one particular instance of StringElement object

is annotated in the DATA domain while regular StringElement objects are not sig-

nificant and annotated in the UI domain (Fig.5.7). This is because listing:String

contains the sensitive data which is wrapped by SE:StringElement and thus, the

wrapper object becomes significant.

5.7 Constraints:

WebGoat contains around 66 injected vulnerabilities divided into 20 categories. I

hand select three vulnerabilities from three categories: Access Control Flaws, Injec-

tion Flaws and Parameter Tampering. I implement three constraints of three potential

architectural flaws in WebGoat to evaluate if Scoria can detect these vulnerabilities.

62

5.7.1 Constraint-1: Vulnerability regarding path based ac-

cess control

Many web applications allow the users to access specific files from the disk rather

than making a copy of the file in the application’s temporary directory. Sometimes,

the directory address of the file is stored in a variable or into a hidden field that can

be exploited by an attacker to understand the file system and get access to other files.

The lesson Path Based Access Control lists a number of files in a dropdown

menu to which the user is allowed to access. However, the corresponding disk location

is also stored in a variable. A user can copy the address in a browser, get the list of

available files in the directory and get access to other files.

To understand this vulnerability from the code implementation of the Web-

Goat (Fig. 5.8), it can be noticed that enc:Encoding object sends the decoded url

(listing:String) to PathBasedAccessControl. Later, PathBasedAccessControl

wraps the flow object into SE:StringElement. Finally, the confidential object

SE:StringElement is sent to UI element td:TD that shows the decoded url to the

front end screen.

Implementation

Partial OGraph shows the interacting objects of this vulner-

ability (Fig. 5.9). An import edge from enc:Encoding object

shows that pathBasedAccessControl:PathBasedAccessControl is re-

ceiving the decoded url object, listing:String. It also shows

that pathBasedAccessControl:PathBasedAccessControl exports the

SE:StringElement object to the UI element td:TD.

63

class PathBasedAccessControl<U, L, D> extends LessonAdapter<U, L, D>{

Element<U<U,L,D>> createContent(WebSession<L<U,L,D>> s){

Encoding<unique<U,L,D>> enc = new Encoding();

TD<U<U,L,D>> td = new TD();

try

{

String<D> dir = s.getContext().getRealPath("/lesson_plans/en");

String<D> listing = " <p>"+getLabelManager().get("CurrentDirectory")+"

" + enc.urlDecode(dir) + "

"+getLabelManager().get("ChooseFileToView")+"</p>";

StringElement<D> SE = new StringElement();

SE.addElement(listing);

td.addElement(SE);

}

}

}

Figure 5.8: SE:StringElment is sent to td:TD

Result

I implement the constraint using the object provenance and object transi-

tivity features of Scoria. In this constraint, the flow object contains sensitive

information and thus, it is set as confidential. On the other hand, the sink

ada:AccountDisplayActivity is considered as untrusted. Scoria successfully iden-

tifies the suspicious edge and reports it in the console output of eclipse (Fig. 5.10).

5.7.2 Constraint-2: Log Spoofing

One of the common vulnerabilities of web applications is the spoofing of the log

file. A web application can store each user interaction’s success/failure message into

the system log. A common example of the logging event is the user authentication

system that stores the time of user’s signing in and signing out information along

with a message. While creating the message, a developer can use the content of the

input boxes to dynamically create the message content. Hence, an attacker with keen

HTML knowledge can exploit the HTML input box to manipulate the content of the

64

WGAMain:

WebGoatAnalysisMain

LOGIC UI DATA

wSession :

WebSession

S�:

StringElement

td:

TD

listing:

String

pathBasedAccessControl :

PathBasedAccessControl
e��:

Encoding

dir:

String
dir�String

listing�String

���String����ent

Figure 5.9: pathBasedAccessControl:PathBasedAccessControl exports
SE:StringElement to td:TD

Information disclosure exists.

Suspicious edge : pathBasedAccessControl:PathBasedAccessControl -> td:TD [SE:StringElement]

PathBasedAccessControl createContent td.addElement(SE)

Suspicious edge : pathBasedAccessControl:PathBasedAccessControl -> td:TD [SE:StringElement]

PathBasedAccessControl createContent td.addElement(SE)

Figure 5.10: Suspicious edges identified by Scoria

message and thus, can misguide the system administrator when she checks the logged

messages to trace a system failure.

Code inspection shows that ParameterParser object sends the content of

the “UserName” input field to the LogSpoofing object which in turn sends the

inputUserName:String to an UI element pre:PRE. In WebGoat, PRE is an UI el-

65

class LogSpoofing<U, L, D> extends LessonAdapter<U, L, D>{

Element<U<U,L,D>> createContent(@Domain("L<U,L,D>") WebSession<L<U,L,D>> s){

String<U> inputUsername = s.getParser().getRawParameter(USERNAME, "");

// Representative of Log. File: ’PRE’

PRE<D> pre = new PRE(getLabelManager().get("LoginFailedForUserName")+": " +

inputUsername);

pre.addElement(inputUsername);

}

}

Figure 5.11: inputUsername:String is sent to pre:PRE

ement that shows the modified logged information and acts as a representative of the

log file (Fig. 5.11).

Implementation

(Fig. 5.12) illustrates the partial OGraph of the Log Spoofing and shows

a transitive dataflow of the confidential object inputUsername:String from

myParser:ParameterParser to the destination object pre:PRE.

Result

I implement this constraint using the object transitivity and object provenance

features of Scoria and Scoria successfully identifies the suspicious edges due to the

import and export of the confidential object inputUsername:String (Fig. 5.13).

5.7.3 Constraint-3: Vulnerability regarding hidden field

tampering

The use of a hidden field for storing sensitive information temporarily is a common

practice in web development. However, attackers can be intelligent enough to quickly

verify if an web application uses a hidden field to store any information. Once such

66

UI LOGIC DATA

name

String

ser

ParameterParser

i���!"#$%N&'$*

String

pre

logSp

LogSp
i���!"#$%name*

String

WGAMain

WebGoatAnalysisMain

Figure 5.12: logSpoofing:LogSpoofing exports inputUsername:String to pre:PRE

Suspicious Edge exporting malicious object to Log:

Suspicious edge : myParser:ParameterParser -> logSpoofing:LogSpoofing [:String]

LogSpoofing createContent s.getParser().getRawParameter(USERNAME,"")

Suspicious edge : logSpoofing:LogSpoofing -> pre:PRE [inputUsername:String]

LogSpoofing createContent pre.addElement(inputUsername)

Figure 5.13: Suspicious edges identified by Scoria

a vulnerability is found, they can tamper the content of the hidden field to commit

a potential harm to the application. In WebGoat, a hidden field is used to store a

cumulative figure of money transactions of an e-commerce shopping cart. An attacker,

who intends to buy a list of items of $3000, can send a cumulative figure of $1000

67

class HiddenFieldTampering<U, L, D> extends LessonAdapter<U, L, D>{

String<D> PRICE_TV = new String("2999.99");

Element<U<U,L,D>> createContent(WebSession<L<U,L,D>> s){

float quantity, total;

String<lent> price = PRICE_TV;

DecimalFormat<lent> money = new DecimalFormat("$0.00");

try{

price = s.getParser().getRawParameter(PRICE, PRICE_TV);

quantity = s.getParser().getFloatParameter("QTY", 1.0f);

total = quantity * Float.parseFloat(price);

} catch (Exception<lent> e){

s.setMessage(getLabelManager().get("Invaild data") + this.getClass().getName());

price = PRICE_TV;

quantity = 1.0f;

total = quantity * Float.parseFloat(PRICE_TV);

}

if (price.equals(PRICE_TV)) {

Input<U<U,L,D>> input = new Input(Input.HIDDEN, PRICE, PRICE_TV);

input.addElement(PRICE_TV);

}

}

}

Figure 5.14: PRICE TV is send to the input element

to the server while checking out the items by tampering the hidden field. Thus, a

hidden field should not be used as a temporary storage of the sensitive information.

The code-view (Fig. 5.14) of the HiddenFieldTampering class shows that

hiddenFieldTampering:HiddenFieldTampering sends sensitive data (PRICE TV)

to the hidden type input object (input:Input).

Implementation

Partial OGraph shows the insecure dataflow (export edge) to the

input:Input from hiddenFieldTampering:HiddenFieldTampering (Fig. 5.15).

PRICE TV:String is the confidential flow object that is tampered by the attacker

when tv price is stored in the hidden field.

68

UI LOGIC DATA

:

String

input:

SHARED

hiddenFieldTampering :

HiddenFieldTampering :

String

WGAMain :

WebGoatAnalysisMain

myParser:

ParameterParser

Figure 5.15: Vulnerability regarding hidden field tampering (partial OGraph)

Vulnerability found regarding Tampering of Hidden Input Field.

Suspicious edge : hiddenFieldTampering:HiddenFieldTampering -> input:Input [PRICE_TV:String]

HiddenFieldTampering createContent input.addElement(PRICE_TV)

Figure 5.16: Suspicious edges identified by Scoria

Result

I implement the constraint using the object transitivity feature of Scoria. I also

add two security properties. Scoria finds the suspicious communication edges as

shown in the output (Fig. 5.16).

69

5.8 AF-index of the vulnerabilities

Constraint-1 and Constraint-2 have a weighted sum of 5 due to the object transi-

tivity and object provenance features of Scoria. Constraint-3 uses object transitivity

and security properties and has an index value of 4. The AF-index of these constraints

represents significance of the vulnerabilities in the continuum of architectural flaws.

5.9 Conclusion

These three selected vulnerabilities are important and significant in the context of

architectural flaws in web applications. Scoria identifies all the three vulnerabilities

(mentioned above) without generating any false positive.

70
Table 6.1: AF-indexes of the constraints

Constraint Obj.
Provenance. (3)

Obj.
Transitivity. (2)

Ind.
Comm. (3)

Sec.
Prop. (1)

AF-Index (1-10)

Shared Pref. X X 5
Android Log X X 5
Inf. Disclosure X X(2) 4
SQLite DB X X 5
Path-based Acc. Ctrl. X X 5
Log Spoofing X X 5
Hidden Fld. Tampr. X X(2) 4

CHAPTER 6: DISCUSSION

This chapter summarizes the AF-index of the vulnerabilities, discusses the preci-

sion of the results, estimated efforts of the subject systems and threats to validity of

the approach.

6.1 AF-indexes of the vulnerabilities

I summarize the AF-indexes of all the vulnerabilities of the three subject systems.

Table 6.1 shows that the vulnerabilities regarding Android sharedpreference and An-

droid log file have an AF-index value of 5. The constraint Information Disclosure has

a value of 4 and SQLiteDB has an AF-index value of 5. Path-based Access Control

and Log Spoofing have a value of 5 and Hidden Field Tampering has a value of 4.

Since the AF-indexes of all the constraints are in the middle of the AF-index scale,

the vulnerabilities are closer to being architectural flaws than coding bugs.

6.2 Precision of the results

Figure 6.2 shows the precision of the results in terms of the TP (True Positive),

FP (False Positive), TN (True Negative) and FN (False Negative). A TP defines that

Scoria detects the vulnerability, FP defines that Scoria reports a false vulnerability,

TN is the true reporting when the vulnerability is absent in the system and FN is

71
Table 6.2: Accuracy of the result

System KLOC No. of Constraints TP TN FP FN
Muspy 6 2 2 1 0 0

Ermete SMS 6 2 2 0 2 0
WebGoat 25 3 3 0 0 0

defined by not reporting of the vulnerability when it exists. We compute the Precision

as TP/(TP+FP) and it is around 80%.

6.3 Scoria detects Common Android Architectural Flaws

From the analyses and results, I observe two common architectural flaws in An-

droid application development. First, SharedPreference should not be considered as

trusted data storage although SharedPreference storage is application independent in

an Android device. Second, SQLiteDB also cannot be a trusted source for storing

data since the database is accessible through DDMS. Scoria analysis detects both of

these vulnerabilities and shows that both Muspy and Ermete SMS is vulnerable as

they do not encrypt the sensitive data before storing in the SharedPreference and

SQLiteDB.

6.4 Scoria detects Common Webapplication Architectural

Flaws

Scoria detects three important architectural flaws of a web application; path-based

access control, log spoofing and hidden field tampering. All of the three vulnerabilities

are significant in web applications.

6.5 Impact of Code implementation over Scoria approach

Refinement of the annotations is impacted by different approaches of coding prac-

tices of different subject systems. The typechecker shows warnings if it cannot handle

72

Table 6.3: Estimated Effort of Muspy

Phase Estimated Effort Percent %
Annotations and object graph extraction 13 hours 46.5
Extraction 5 minutes less than 1
DFD and OOG conformance 4 hours 14
Refine object graph 4 hours 14
Writing constraints 7 hours 25.4
Total 28 hours 100%

Table 6.4: Estimated Effort of Ermete SMS

Phase Estimated Effort Percent %
Annotations and object graph extraction 15 hours 56
Extraction 3 minutes less than 1
DFD and OOG conformance 4 hours 15
Refine object graph 3 hours 11
Writing constraints 5 hours 18
Total 28 hours 100%

some code constructs while checking the consistency of the annotations with the code.

To address these warnings, code refactoring may be needed. For example, in some

coding practice, an anonymous object can be created rather than creating an actual

instance of a type. However, the typechecker expects a named instance of a type.

6.6 Estimated efforts of finding security vulnerabilities

The estimated effort of the three subject systems for finding security vulnerabilities

are shown in Tables 6.3, 6.4 and 6.5. The efforts are computed in terms of Phase,

Effort and Percentage of the effort of each phase. The tables show that estimated

effort is higher in WebGoat since it is larger in size (KLOC) than other two systems

whereas Muspy and Ermete SMS took similar effort.

6.7 Threats to Validity

I inject a vulnerability since the subject system Muspy does not contain any

vlunerability regarding Android log. Despite the vulnerability being injected, it allows

73

Table 6.5: Estimated Effort of WebGoat

Phase Estimated Effort Percent %
Annotations and object graph extraction 40 hours 60
Extraction 6 minutes less than 1
DFD and OOG conformance 7 hours 10
Refine object graph 3 hours 12
Writing constraints 12 hours 18
Total 67 hours 100%

us to understand that Scoria could detect if there is a vulnerability of the Android

log. Secondly, the design intent of the security architect can have a significant impact

over the approach. The security architect may not be the system architect. Moreover,

if the documentation of the system is not sufficient, the security architect may choose

different annotations that lead Scoria to extract different OOGs and OGraphs. Such

an OGraph may contain objects in unexpected domains. As a result, while writing

constraints, security architect may not find the significant vulnerabilities. Also, the

analysis may generate more false positives.

74

CHAPTER 7: RELATED WORK

This chapter discusses related work and comparative studies of the evaluation of

different tools that find security vulnerabilities.

7.1 Evaluation of Static Analysis Tools

I divide the related work that highlight the evaluation of static analysis tools into

ones that focus on coding bugs and those that focus on architectural flaws.

7.1.1 Tools that Focus on Coding Bugs

Nathaniel et al. evaluate most downloaded open source static analysis tool named

FindBugs. FindBugs detects common coding bugs, e.g., null pointer dereferencing

and overflow of an array .14 According to the authors, Google used FindBugs and

identified 70 null pointer errors in their code. While evaluating FindBugs, alongside

positive testing, the authors also perform negative testing for which FindBugs cannot

report all the vulnerabilities. Moreover, the authors find that FindBugs misses null

pointer dereferencing errors if a particular path of the program is executed. The

authors reason that FindBugs does not compute the feasibility of the path.

Nathan et al. evaluate a vulnerability analysis framework named MINESTRONE

that detects coding bugs especially memory corruption, null pointer dereferencing,

resource drain and number handling errors .15 The authors explain the four com-

ponents of the MINESTRONE: DYBOC (detects buffer overflows and underflows),

REASSURE (for error recovery mechanism), ResMon and IOC number handling.

ResMon detects the vulnerabilities related to the resource leakage. IOC number

handling identifies the incorrect numeric value handling errors (e.g., unsafe unsigned-

to-signed conversion). According to the authors, MINESTRONE is able to analyze

large projects up to 200 KLOC. The authors create two test suites each of which

75

consists of a number of test cases. The first suite contains 340 hand written vul-

nerable programs and second suite contains a number of open source projects. Each

of the test cases consists of a good and bad I/O pairs. The analysis is marked as

passed for one test case if it passes for both the I/O pairs. The authors show that

MINESTRONE reports 80% of the errors effectively.

Mamun et al. publish a paper on comparative evaluation of four static analy-

sis tools (Coverity Prevent, Jtest, FindBugs and JLint) that find concurrency bugs.

The authors aim to find if the commercial tools are better performed than the open

source tools.16 They discuss the working mechanism of each of the tools and different

types of concurrency bugs and patterns. According to the authors, non-determinism

of the concurrency issues trigger a number of bugs including data races, atomicity

violations, synchronization defects, deadlocks and livelocks. The authors use an ex-

isting benchmark of 87 unique Java concurrency bug patterns. The results show that

the commercial tool JTest performs better in detecting java concurrency bugs with

a relatively higher number of false positives. On the other hand, Coverity Prevent

detects lowest number of bugs although it produces less false positives.

Vorobyov and Krishnan evaluates two different types of tools: a Model Checking

tool named CBMC and a static analysis tool named Parafit .17 According to the

authors, a model checker generates the run time states of the program and for a

finite number of states a model checker performs an exhaustive analysis. If the model

fails to verify a certain specified property, the result will be a failed verification.

The authors evaluate the results with a set of criteria: false Positive, false Negative,

execution time and resource consumed. They evaluate the tools using the test cases

from three existing benchmarks: Iowa, SAMATE and Cigital. The results show that

although CBMC shows greater accuracy (97%) and zero false positive, the analysis

took significant amount of execution time (19 hours) and consumes significant memory

(2.5 GB at the peak). The authors also conclude that for larger systems CBMC is

76

not quite feasible.

Gomes et al. perform an extensive study over a number of available static analysis

tools to evaluate the tools and their performance in different scenarios. According to

the authors, some static analysis tools are language specific and some are not. FxCop,

StyleCop and CodeIt are specific to the Microsoft .Net framework whereas PMD and

JLint are Java-specific. SPlint, PloySpace, CodeSonar and HP Code Advisor are

specific for C and C++.18 Coverity Prevent, Klockwork Insight, Hammurapi, RATS

and Understand support C,C++, C# and Java. The authors evaluate the tools

with 14 different test cases collected from benchmarks of SM, BIND and WU-FTPD

regarding buffer overflow where each test case contains two constraints; a “BAD”

case and an “OK” case. A tool passes one test case only if it satisfies both of the

constraints. The authors show that the top perform tools in terms of generating true

positives is SPlint and PolySpace with a success rate of 87% and 57% respectively.

7.1.2 Tools that Focus on Architectural Flaws

Vanciu et al. perform a comparative evaluation of a code level approach, Flow-

Droid, and an architectural level approach, Scoria. Although these two approaches

are different, the evaluation focuses on the precision and recall11 of the results. The

authors explain the Scoria approach and the steps that a Security Information Worker

(SIW) is required to follow to perform analysis using Scoria. The authors also explain

different code level approaches such as Fortify and AppScan. According to the au-

thors, Scoria uses an object graph whereas FlowDroid uses a precomputed call graph.

The authors design a few test cases and hand selects a number of test cases from

existing benchmarks (DroidBench and SAMATE) and divide them into a number of

equivalent classes. The authors show that FlowDroid detects the vulnerabilities that

are more related to coding bugs whereas Scoria shows better precision and recall in

detecting architectural flaws.

77

Zeineb et al. evaluate four static software analysis tools: MOPS, SPlint, Graph-

Match and Fortify.19 The authors explain the detailed methodologies of these tools.

MOPS is a model checking approach, SPlint is a dataflow analysis tool, GraphMatch

creates a SDG (system dependence graph) that is an extension of a program depen-

dence graph (PDG), and Fortify uses control flow and dataflow analyses, and runs on

multiple environments (Windows, Linux and Mac). While MOPS, SPlint and Graph-

Match analyze C program, Fortify supports multiple programming languages. The

authors show that among these tools only GraphMatch and Fortify detect security

vulnerabilities for the selected test cases.

Zitsar et al. assess five static analysis tools: ARCHER, BOON, PloySpace, SPlint

and UNO. They use 14 predesigned test cases regarding buffer overflows of three

existing software; BIND, SendMail and WU-FTPD .20 The authors perform two

types of evaluation; ability of the tools to analyze the application as a whole, ability

of detecting the buffer overflow vulnerabilities separately. The authors input the

entire SendMail application (+145 KLOC) and observe that none of the tools has

finished the analysis. The authors then evaluate the tools over individual test cases.

Based on the results, the authors draw an ROC (Receiver Operating Characteristic)

curve that shows that PloySpace is more successful in detecting the vulnerabilities

as well as generating less false positives than that of other tools. PolySpace shows

p(d) = 0.85 (detection of vulnerabilities) and p(f) = 0.50 (false positives) whereas

the closest result to the PolySpace has been shown by SPlint with values of p(d) =

0.60, and p(f) = 0.43 respectively.

Pomorova and Ivanchyshyn perform an assessment of four commercial static anal-

ysis tools; PVS Studio, PC-Lint, Goanna Studio and Cppcheck .21 These tools are

suggested by US National Institute of Standards and Technology for static program

analysis. The authors evaluate these tools using 25 different test cases of the follow-

ing categories: Race Condition, Input Validation, Exception, SQL Injection, Buffer

78

Overflow, Stack Overflow and Integer overflow. The results show that CppCheck has

higher precision and recall in combined whereas both PVS-Studio and Goanna have

higher precision than CppCheck individually, however, recall is significantly lower

than that of CppCheck.

7.2 Evaluation of Dynamic Analysis Tools

Egele et al. perform a comprehensive study of dynamic analysis tools in the con-

text of malware detection .22 According to the authors, the evasion techniques (self

modification of the code) employed by a malicious software thwarts static analysis

tools and lead to choosing dynamic analysis to find the vulnerabilities. The authors

explain different categories of malwares: Worm, Virus, Trojan horse, Spyware, Bot

and Rootkit. They also explain different features of malware analysis: Function

Call Monitoring, Function parameter analysis, Information Flow Tracking, Instruc-

tion Trace and Autostart extensibility points. The authors discuss the techniques

of addressing these features and the underlying implementation details of the tools.

They also show a behavioral grouping of the tools based on the similarity of the

implementation, i.e., addressing a family of malware evasion techniques.

79

CHAPTER 8: CONCLUSION

This chapter discusses the contribution of the research and the prospects of the

future work.

8.1 Contribution

The contribution of this work is twofold. First, I hypothesize that Scoria detects

the architectural flaws in large applications from different application domains. I show

the results and explain that Scoria analysis detects the architectural flaws in large

Android applications as well as in web application with few false positives. Secondly,

Scoria detects a few vulnerabilities that are both common and significant in Android

application development.

8.2 Future Work

WebGoat has more than 60 injected vulnerabilities and I implement three con-

straints. More constraints can be implemented for WebGoat. Scoria can be evaluated

on more desktop applications. One area of future work is the comparative evaluation

with other approaches that also aims to find architectural flaws in systems.23 Scoria

can also be evaluated micro test cases relevant to web application security from the

benchmark SecuriBenchMicro.24

80

REFERENCES

[1] List of tools for static code analysis. 2015; http://en.wikipedia.org/wiki/List of

tools for static code analysis, Software Analysis Tools.

[2] McGraw, G. Software Security: Building Security In; Addison-Wesley Profes-

sional, 2006.

[3] Shuo Chen, Z. K., Jun Xu; Iyer, R. K. Security Vulnerabilities: From Analysis

to Detection and Masking Techniques. IEEE Intl. Working Conference on Source

Code Analysis and Manipulation (SCAM). 2006.

[4] Swiderski, F.; Snyder, W. Threat Modeling ; Microsoft Press: Redmond, WA,

USA, 2004.

[5] Abi-Antoun, M.; Aldrich, J. Static Extraction of Sound Hierarchical Runtime

Object Graphs. Proceedings of the 4th International Workshop on Types in

Language Design and Implementation. New York, NY, USA, 2009; pp 51–64.

[6] Coverity. Static Application Security. 2013; http://www.coverity.com/security/

#SAST, Coverity.

[7] Fortify Static Code Analyzer. 2014; http://www8.hp.com/us/en/

software-solutions/static-code-analysis-sast/, HP Fortify.

[8] Software Security Built for Developers. 2014; http://www.cigital.com/services/

code-review/secure-code-review/secureassist/, Cigital SecureAssist.

[9] Arzt, S.; Rasthofer, S.; Fritz, C.; Bodden, E.; Bartel, A.; Klein, J.; Le Traon, Y.;

Octeau, D.; McDaniel, P. FlowDroid: Precise Context, Flow, Field, Object-

sensitive and Lifecycle-aware Taint Analysis for Android Apps. Proceedings of

the 35th ACM SIGPLAN Conference on Programming Language Design and

Implementation. New York, NY, USA, 2014; pp 259–269.

[10] Vanciu, L. R. Static Extraction of Dataflow Communication for Security. Ph.D.

thesis, Wayne State University, Detroit, MI 48201, 2014.

[11] Vanciu, R.; Khalaj, E.; Abi-Antoun, M. Comparative Evaluation of Architectural

81

and Code-Level Approaches for Finding Security Vulnerabilities. Proceedings of

the 2014 ACM Workshop on Security Information Workers. New York, NY, USA,

2014; pp 27–34.

[12] Kumar, M. Multiple vulnerabilities in Firefox for Android Leak

Sensitive Information. 2014; http://thehackernews.com/2014/03/

multiple-vulnerabilities-in-firefox-for.html, Android Log Leak Firefox.

[13] Institute, I. Insecure Local Storage. 2014; http://resources.infosecinstitute.

com/android-hacking-security-part-10-insecure-local-storage/, SqlliteDB tuto-

rial hack.

[14] Ayewah, N.; Hovemeyer, D.; Morgenthaler, J. D.; Penix, J.; Pugh, W. IEEE

Software 2008, 25, 22–29, Special issue on software development tools, Septem-

ber/October (25:5).

[15] Evans, N. S.; Benameur, A.; Elder, M. C. Large-scale Evaluation of a Vulnerabil-

ity Analysis Framework. Proceedings of the 7th USENIX Conference on Cyber

Security Experimentation and Test. Berkeley, CA, USA, 2014; pp 3–3.

[16] Mamun, M. A. A.; Khanam, A.; Grahn, H.; Feldt, R. Comparing Four Static

Analysis Tools for Java Concurrency Bugs. Proc. of the Third Swedish Workshop

on Multi-Core Computing (MCC-10). 2010; pp 143–146.

[17] K. Vorobyov, P. K. Comparing Model Checking and Static Program Analysis: A

Case Study in Error Detection Approaches. 2010; pp 1–7.

[18] Gomes Ivo, G. T., Morgado Pedro; Rodrigo, M. Faculdade de Engenharia da

Universidade do Porto

[19] Zhioua, Z.; Short, S.; Roudier, Y. Static code analysis for software security veri-

fication: Problems and approaches. STPSA 2014, 9th IEEE International Work-

shop on Security, Trust and Privacy for Software Applications, in COMPSAC

2014, 21-25 July 2014. 2014.

[20] Zitser, M.; Lippmann, R.; Leek, T. SIGSOFT Softw. Eng. Notes 2004, 29, 97–

82

106.

[21] Pomorova, O. V.; Ivanchyshyn, D. O. Assessment of the source code static analy-

sis effectiveness for security requirements implementation into software develop-

ing process. IEEE 7th International Conference on Intelligent Data Acquisition

and Advanced Computing Systems, IDAACS 2013, Berlin, Germany, September

12-14, 2013. 2013; pp 640–645.

[22] Egele, M.; Scholte, T.; Kirda, E.; Kruegel, C. ACM Comput. Surv. 2008, 44,

6:1–6:42.

[23] Almorsy, M.; Grundy, J.; Ibrahim, A. S. Automated Software Architecture Se-

curity Risk Analysis Using Formalized Signatures. Proceedings of the 2013 In-

ternational Conference on Software Engineering. Piscataway, NJ, USA, 2013; pp

662–671.

[24] Johnson, A.; Waye, L.; Moore, S.; Chong, S. Exploring and Enforcing Security

Guarantees via Program Dependence Graphs. Proceedings of the 36th ACM

SIGPLAN Conference on Programming Language Design and Implementation.

New York, NY, USA, 2015; pp 291–302.

83

ABSTRACT

EVALUATION OF AN ARCHITECTURAL-LEVEL APPROACH FOR

FINDING SECURITY VULNERABILITIES

by

MOHAMMAD ANAMUL HAQUE

August 2015

Advisor: Dr. Marwan Abi-Antoun

Major: Computer Science

Degree: Master of Science

The cost of security vulnerabilities of a software system is high. As a result,

many techniques have been developed to find the vulnerabilities at development time.

Of particular interest are static analysis techniques that can consider all possible

executions of a system. But, static analysis can suffer from a large number of false

positives.

A recently developed approach, Scoria, is a semi-automated static analysis that

requires security architects to annotate the code, typecheck the annotations, extract a

hierarchical object graph and write constraints in order to find security vulnerabilities

in a system.

This thesis evaluates Scoria on three systems (sizes 6 KLOC, 6 KLOC and

25 KLOC) from different application domains (Android and Web) and confirms that

Scoria can find security vulnerabilities in those systems without an excessive number

of false positives.

84

AUTOBIOGRAPHICAL STATEMENT

MOHAMMAD ANAMUL HAQUE

EDUCATION

• Master of Science (Computer Science), August 2015
Wayne State University, Detroit, MI, USA

• Bachelor of Engineering (Computer Science and Engineering), June 2009
Jahangirnagar University, Bangladesh

	Wayne State University
	1-1-2015
	Evaluation Of An Architectural-Level Approach For Finding Security Vulnerabilities
	Mohammad Anamul Haque
	Recommended Citation

	thesis.dvi

