
Wayne State University
DigitalCommons@WayneState

Wayne State University Dissertations

1-1-2012

Throughput analysis and bottleneck management
of production lines
Hatice Ucar
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Ucar, Hatice, "Throughput analysis and bottleneck management of production lines" (2012). Wayne State University Dissertations.
Paper 482.

http://digitalcommons.wayne.edu?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/482?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F482&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

 

THROUGHPUT ANALYSIS AND BOTTLENECK MANAGEMENT OF 
PRODUCTION LINES 

 
by 

HATICE UCAR 

DISSERTATION 

Submitted to the Graduate School 

of Wayne State University, 

Detroit, Michigan 

in partial fulfillment of the requirements 

for the degree of 

DOCTOR OF PHILOSOPHY 

2012 

       MAJOR: INDUSTRIAL ENGINEERING 

       Approved by: 

 

Advisor                                          Date 

Co-Advisor                                    Date 

 

 

 

 



 

ii 

DEDICATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 To My Family… 

  



 

iii 

ACKNOWLEDGMENTS 

I need to thank many people who directly or indirectly helped me with the 

research presented in this dissertation. I offer my sincere appreciation and gratitude 

to all of those who I mention here or not. These words are not enough to represent 

their contributions but an attempt to thank them all.  

First of all, I cannot enough express my gratitude to my advisors Dr. Ratna 

Babu Chinnam and Dr. Alper Murat. Their original ideas, perfectionism, enthusiasm 

and the confidence they have shown in me, have not only directly contributed to the 

work presented in this dissertation, but have also meant a lot to me personally. I am 

forever grateful to both of them and feel very lucky to have such great mentors.  

I express my sincere appreciation to the committee members, Dr. Darin Ellis, 

Dr. Leslie Monplaisir, and Dr. Gene Coffman. I sincerely believe that their valuable 

inputs to this research make it diverse and successful. 

Special thanks go to Dr. Kenneth Chelst and Dr. Thomas Edwards, the 

“Mathematics Instruction using Decision Science and Engineering Tools” (MINDSET) 

project leaders, for being excellent examples as supervisors during my assistantship 

to them. My doctoral study at WSU was partially funded through this project by 

National Science Foundation.   

I would like to extend my sincerest thanks to Joe Lapres who was the director 

of “Bottleneck Identification and Throughput Management at Dearborn Truck Plant” 

project. A part of this work was funded by Ford Motor Company through this project. 

I would also like to thank all the members of the Department for making study 

a pleasure in such friendly work environment.  



 

iv 

I am more than grateful to my family and I would especially like to thank my 

parents for always giving me their unconditional support. I can only hope that I made 

them proud to complete this far away from home yet rewarding journey. I hope that I 

can manage to become such a good parent as them. 

I could not have finished this dissertation without the support of my husband 

Ali who has been with me all the time during these years of research. No words could 

thank him enough for his support and constant encouragements.  

Finally, a big thanks to my daughter Betul who was born during my study and 

brought joy to our family. 

Thank You! 

 

  



 

v 

TABLE OF CONTENTS 

 

Dedication ................................................................................................................... ii 

Acknowledgments ....................................................................................................... iii 

List of Tables ............................................................................................................. viii 

List of Figures .............................................................................................................xi 

CHAPTER I: INTRODUCTION ................................................................................... 1 

1. Motivation .............................................................................................................. 1 

2. Approach ............................................................................................................... 2 

3. Research Objectives ............................................................................................. 3 

2. Research Scope .................................................................................................... 3 

4. Organization of the Dissertation .......................................................................... 5 

CHAPTER II: ANTICIPATIVE PLANT-LEVEL MAINTENANCE DECISION 

SUPPORT SYSTEM ................................................................................................... 7 

1. Introduction ........................................................................................................... 7 

2. Literature Review ................................................................................................ 13 

3. Anticipative Plant-level Maintenance Decision Support System (APMDSS) . 17 

3.1. Bottleneck Simulator ...................................................................................... 19 

3.2. Maintenance Time Window Anticipator .......................................................... 21 

3.3. Machine Degradation Modeling ...................................................................... 22 

4. Industrial Case Study ......................................................................................... 23 

5. Simulation Analysis and Results ....................................................................... 26 

5.1. Impact of Initial Conditions on Productivity and Bottleneck Patterns .............. 27 



 

vi 

5.2. Corrective Maintenance Prioritization ............................................................. 34 

5.3. Preventive Maintenance Prioritization ............................................................ 37 

5.4. Combined CM, PM, and OM Prioritization in Model Mix Setting ..................... 41 

6. Conclusions and Future Research .................................................................... 46 

CHAPTER III: THROUGHPUT ANALYSIS OF A PRODUCTION SYSTEM WITH 

TWO DETERIORATING MACHINES AND A FINITE BUFFER ............................... 48 

1. Introduction ......................................................................................................... 48 

2. Literature Survey ................................................................................................ 50 

3. Model Description ............................................................................................... 51 

4. Performance Measures ....................................................................................... 53 

5. Solution Methodology ........................................................................................ 55 

5.1.  Analysis of Internal Equations ....................................................................... 55 

5.2. Analysis of Boundary Equations ..................................................................... 65 

6. Experimental Study ............................................................................................ 77 

7. Conclusions ........................................................................................................ 79 

CHAPTER IV: A HYBRID AGGREGATION-DECOMPOSITION ALGORITHM FOR 

PERFORMANCE EVALUATION OF UNRELIABLE PRODUCTION LINES WITH 

FINITE BUFFERS ..................................................................................................... 81 

1. Introduction ......................................................................................................... 81 

2. Literature Review ................................................................................................ 84 

3. Model Description and Assumptions ................................................................ 86 

4. Performance Measures ....................................................................................... 88 

5. Hybrid Aggregation-Decomposition Method .................................................... 89 



 

vii 

5.1. Bottleneck Identification ................................................................................. 89 

5.2. Aggregation of Non-Bottleneck Machines ...................................................... 91 

5.3. Decomposition of the Virtual Line ................................................................... 95 

6. Experimental Study ............................................................................................ 99 

6.1. Experimental Setting I: Cases 1-5 ................................................................ 100 

6.2. Experimental Setting II: Cases 6-10 ............................................................. 102 

6.3. Experimental Setting III: Cases 11-15 .......................................................... 104 

7. Conclusions ...................................................................................................... 106 

CHAPTER V: CONCLUSIONS & FUTURE RESEARCH....................................... 108 

Future Work ........................................................................................................... 109 

Appendices ............................................................................................................. 110 

Chapter II : Appendix 1 ........................................................................................ 110 

Chapter II : Appendix 2 ........................................................................................ 115 

Chapter III : Appendix 1 ....................................................................................... 119 

References .............................................................................................................. 123 

Abstract ................................................................................................................... 131 

Autobiographical Statement .................................................................................... 134 

 

  



 

viii 

LIST OF TABLES 

Table 1 : Distribution Parameters of the Stations in minutes .................................... 24 

Table 2 : Parameters of the Conveyors .................................................................... 25 

Table 3 : Impact of Initial Ages on Overall Bottleneck Patterns ................................. 31 

Table 4 : Impact of Initial Failures on Overall Bottleneck Patterns ............................ 32 

Table 5 : Impact of Initial Buffers on Overall Bottleneck Patterns ............................. 33 

Table 6 : Age Groups (based on time elapsed in working state since last PM, in 
minutes) .................................................................................................... 35 

Table 7 : Experimental Setting with Different Initial Failures (0: operational, 1: broken)
 .................................................................................................................. 35 

Table 8 : Superiority % of APMDSS compared to FCFS in CM Prioritization............ 36 

Table 9 : Superiority % of APMDSS compared to PMDSS in CM Prioritization ........ 36 

Table 10 : Superiority % of APMDSS compared to FCFS in CM Prioritization .......... 37 

Table 11 : Superiority % of APMDSS compared to PMDSS in CM Prioritization ...... 37 

Table 12 : Experimental Setting with Different Age Groups ...................................... 38 

Table 13 : RLT Values, †: The stations with failure alarms ........................................ 38 

Table 14 : Superiority % of APMDSS compared to Other Methods in PM Prioritization
 .................................................................................................................. 40 

Table 15 : Throughput Improvement % in Two-PM-Slot Case vs. One-PM-Slot Case
 .................................................................................................................. 40 

Table 16 : Superiority % of APMDSS compared to Other Methods in PM Prioritization
 .................................................................................................................. 41 

Table 17 : Experimental Setting for OM Prioritization, †: The stations with failure 
alarms ....................................................................................................... 42 



 

ix 

Table 18 : Superiority % of APMDSS based CM and PM over Others ..................... 42 

Table 19 : Hourly Buffer Averages ............................................................................ 43 

Table 20 : "At Least 50% Full Buffer" Probabilities ................................................... 43 

Table 21 : “At Least 25% Full Buffer” Probabilities .................................................... 44 

Table 22 : Estimated Opportunity Windows with 50% Safety Level .......................... 45 

Table 23 : Estimated Opportunity Windows with 25% Safety Level .......................... 45 

Table 24 : Estimated Opportunity Windows without Safety Buffer ............................ 45 

Table 1 : Experiment 1 with First Set of Cases ......................................................... 78 

Table 2 : Experiment 1 with Second Set of Cases .................................................... 78 

Table 3 Experiment 2 with First Set of Cases ........................................................... 79 

Table 1 : States of a Two -Machine Line Segment ................................................... 92 

Table 2 : Level of Aggregation while Bottlenecks are at the Beginning ................... 100 

Table 3 : Experimental Setting I: Cases 1-5 ............................................................ 101 

Table 4 : Comparison of Methods while Bottlenecks are at the Beginning ............. 102 

Table 5 : Level of Aggregation while Bottlenecks are in the Middle ........................ 103 

Table 6 : Experimental Setting II: Cases 6-10 ......................................................... 103 

Table 7 : Comparison of Methods while Bottlenecks are in the Middle ................... 104 

Table 8 : Level of Aggregation while Bottlenecks are at the End ............................ 104 

Table 9 : Experimental Setting III: Cases 11-15 ...................................................... 105 

Table 10 : Comparison of Methods while Bottlenecks are at the End ..................... 106 



 

x 

Table 1 : Impact of Model Mix on JPH and Overall Bottleneck Patterns ................. 116 

Table 2 : Impact of Model Mix on JPH and Overall Bottleneck Patterns (continued)
 ................................................................................................................ 117 

Table 3 : Impact of Model Mix on JPH and Overall Bottleneck Patterns (continued)
 ................................................................................................................ 118 

  



 

xi 

LIST OF FIGURES 

Figure 1 : North American History of Total Hours per Vehicle (Harbour Report, 2008)
 .................................................................................................................... 8 

Figure 2 : 2007-2008 Production Performance of the Body Shop ............................... 9 

Figure 3 : Framework for APMDSS ........................................................................... 18 

Figure 4 : Active and Inactive States of a Machine (Roser et al., 2001) .................... 19 

Figure 5 : Front Structure Lines in the Body Shop .................................................... 23 

Figure 6 : Impact of Initial Machine Ages on JPH under Different Initial Failure and 
Buffer Conditions ...................................................................................... 28 

Figure 7 : Impact of Initial Machine Failures on JPH under Different Initial Age and 
Buffer Conditions ...................................................................................... 28 

Figure 8 : Impact of Initial Buffer Levels on JPH under Different Initial Failure and Age 
Conditions ................................................................................................. 28 

Figure 1 : Two-Machine Line ..................................................................................... 49 

Figure 2 : State Transitions of Machine 1 and Machine 2 ......................................... 52 

Figure 3 : Operational and Non-operational States of Machine 2 ............................. 54 

Figure 1 : k-Machine Production Line ....................................................................... 82 

Figure 2 : Decomposition of a k-Machine Line .......................................................... 83 

Figure 3 : Aggregation of a k-Machine Line .............................................................. 84 

Figure 4 : Active and Inactive States of a Machine (Roser et al., 2001) .................... 90 

Figure 5 : Aggregation around the Bottleneck Machines .......................................... 92 

Figure 6 : State Transition Graph .............................................................................. 93 

Figure 7 : Decomposition of the Virtual Line ............................................................. 96 



 

xii 

Figure 1 : Impact of Initial Machine Ages on Bottleneck Status of LHA1 under 
Different Initial Conditions ....................................................................... 110 

Figure 2 : Impact of Initial Machine Ages on Bottleneck Status of Dash under 
Different Initial Conditions ....................................................................... 110 

Figure 3 : Impact of Initial Machine Failures on Bottleneck Status of LHA1 under 
Different Initial Conditions ....................................................................... 111 

Figure 4 : Impact of Initial Machine Failures on Bottleneck Status of Dash under 
Different Initial Conditions ....................................................................... 111 

Figure 5 : Impact of Initial Buffer Levels on Bottleneck Status of LHA1 under Different 
Initial Conditions...................................................................................... 111 

Figure 6 : Impact of Initial Buffer Levels on Bottleneck Status of Dash under Different 
Initial Conditions...................................................................................... 112 

Figure 7 : Impact of Initial Machine Ages on Bottleneck Status of LHA2 under 
Different Initial Conditions ....................................................................... 112 

Figure 8 : Impact of Initial Machine Ages on Bottleneck Status of RHA3 under 
Different Initial Conditions ....................................................................... 112 

Figure 9 : Impact of Initial Machine Ages on Bottleneck Status of Sta40 under 
Different Initial Conditions ....................................................................... 113 

Figure 10 : Impact of Initial Machine Failures on Bottleneck Status of LHA2 under 
Different Initial Conditions ....................................................................... 113 

Figure 11 : Impact of Initial Machine Failures on Bottleneck Status of RHA3 under 
Different Initial Conditions ....................................................................... 113 

Figure 12 : Impact of Initial Machine Failures on Bottleneck Status of Sta40 under 
Different Initial Conditions ....................................................................... 114 

Figure 13 : Impact of Initial Buffer Levels on Bottleneck Status of LHA2 under 
Different Initial Conditions ....................................................................... 114 

Figure 14 : Impact of Initial Buffer Levels on Bottleneck Status of RHA3 under 
Different Initial Conditions ....................................................................... 114 



 

xiii 

Figure 15 : Impact of Initial Buffer Levels on Bottleneck Status of Sta40 under 
Different Initial Conditions ....................................................................... 114 

  

 



1 

 

 

CHAPTER I: INTRODUCTION 

1. Motivation 

Arrival of foreign cars to the US market in the late 80s, as a result of 

globalization, forced auto manufacturers to improve their manufacturing excellence to 

stay competitive in the business environment. For instance, General Motors has 

started a throughput prediction and improvement project, which spanned a period of 

almost 20 years of implementation on its production lines in the late 1980s. Both 

analytical and simulation models were developed for estimating throughput 

performance, identifying bottlenecks, and optimizing buffer allocation in the simple 

and complex systems. They reported savings of over $2.1 billion from 30 assembly 

plants, 10 countries over several years, and won the Franz Edelman Prize for 

applying operations research techniques into throughput improvement (Alden et al., 

2006). There are additional such examples in the literature(e.g., Patchong et al., 

2003; Pfeil et al., 2000).  

The 2008 Harbour Report describes the labor productivity of the six auto 

manufacturers in North America (Harbour Report, 2008). According to the report, the 

Detroit Three (GM, Ford, and Chrysler) are closing the gap with their Asian rivals 

through productivity improvements, but there is still room for improvement. These 

success stories motivate our study.  

We were also approached by a US auto manufacturer to develop tools for 

estimating and improving throughput performance of production facilities. In order to 
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develop a better understanding for the issues, we made several visits to one of their 

assembly plants in Southeast Michigan. Even though the plant was running mornings 

and nights, it was experiencing throughput difficulties. It was falling behind the daily 

production targets many times due to unexpected machine breakdowns.  

2. Approach 

Maintenance operations should not be thought of separately while making 

productivity related decisions. In that regard, we decided to develop a strategic 

decision support system from which the maintenance and the production managers 

could benefit; it is a bottleneck-based decision support system called anticipative 

plant-level maintenance decision support system (APMDSS), which prioritizes the 

corrective, preventive, and opportunistic maintenance tasks based on the anticipated 

bottleneck ranks of the upcoming shift.  

It is proven that the bottleneck-driven approaches are the best for throughput 

prediction and improvement (Bukchin, 1998), which is another motivation for us.   

Even though automotive plants are very complex systems with highly interrelated 

machinery and dealing with the problems is complicated, bottlenecks gave us the 

opportunity to focus on key areas of the facility. We use bottleneck-based approach 

both in the development of a decision support system for maintenance management 

and throughput prediction of long production lines. 

We developed both simulation-based models and analytical models in our 

study. Simulation gave us the opportunity to model the complexity of the automotive 

plants and plant dynamics and make more detailed analysis. On the other hand, 

analytic models provide fast performance estimates, which are important for setting 
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up realistic system objectives, assessing the financial impact of production line 

reconfigurations, etc. With this motivation, we developed two analytic models: Former 

is an exact formula for measuring the throughput of a two-deteriorating machine 

system, which can be used as a building block for longer production lines. Latter is an 

approximate formula for measuring the performance of longer production lines.  

3. Research Objectives  

Our objective in broad terms is to develop methods for throughput prediction 

and improvement. For the purpose of throughput improvement, we want to develop a 

decision support system that enables maintenance supervisors to handle the 

complexity of maintenance operations and make maintenance related decisions.  

Another objective is to improve the accuracy and the speed of throughput 

prediction.  We add some details to the existing throughput prediction methods such 

as machine degradation, incomplete repair, and preventive maintenance in order to 

meet the objective of having accurate performance measures. We engage the two 

main throughput prediction approaches with an objective of improving the efficiency 

of the throughput prediction of long production lines. 

2. Research Scope 

We developed three models in the dissertation. The first model is a simulation-

based plant-level maintenance decision support system, which consists of four 

modules: 1) look-ahead bottleneck analyzer, 2) maintenance time window anticipator, 

3) machine degradation calculator, and 4) maintenance optimizer. The look-ahead 

bottleneck analyzer anticipates the bottlenecks of the upcoming shift by exploiting the 
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initial condition information, i.e., machine ages, operational status of machines, buffer 

levels, and model mix of that shift. The maintenance time window anticipator 

anticipates the buffer accumulations throughout the production lines so as to find out 

the potential time windows for opportunistic maintenance. This will assure that all 

tools and spare parts are prepared for preventive maintenance ahead of time. The 

machine degradation calculator estimates the levels of machine degradations using a 

statistical model. Finally, the maintenance optimizer generates a maintenance 

schedule which gives guidance on the corrective and preventive maintenance 

priorities and the right times to perform preventive maintenance. The decision 

support system is mainly developed for automotive assembly lines.  

In the model, corrective maintenance is carried out whenever a machine 

failure occurs. In case of simultaneous breakdowns, they are repaired in the order of 

their bottleneck ranking. Preventive maintenance is done on machines with failure 

alarms at lunch breaks or opportunistic times. Buffers are assumed to be reliable. 

The second model provides an exact analytical formula for the throughput 

prediction of two-machine production lines, which consist of two deteriorating 

machines and a finite buffer. The machines may fail with some probability while 

processing parts. Raw materials enter the system; they are processed on the first 

machine and transferred to the second machine passing through the buffer, and then 

leave the system.   

In the model, the machines degrade with usage and the reliability behavior of 

each machine changes depending on the machine’s health condition. Failed 

machines are either perfectly or imperfectly repaired and degraded machines can be 
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maintained. Unlike the literature, this model accounts for machine health degradation. 

The machine deterioration is common in industry because the performance of the 

machines degrades over time with usage due to wear out. This method can be used 

as a building block for the analysis of longer lines with deteriorating machines and 

finite buffers.  

Finally, the third model is a hybrid aggregation-decomposition method, which 

is also for throughput prediction. It approximates the throughput of serial production 

lines. The production line consists of ݇ machines (ܯଵ,ܯଶ,… ݇ ௞) andܯ, െ 1 buffers 

,ଵܤ) ,ଶܤ … ,  ;௞ିଵ). The machines may fail with some probability while processing partsܤ

buffers are reliable. A part enters from outside the system to ܯଵ and it moves to ܤଵ 

after it is processed, then it enters ܯଶ and it moves to ܤଶ after it is processed, and so 

forth until it leaves the system from ܯ௞.  

Aggregation and decomposition methods have been proposed in the literature 

for modeling throughput of production lines.  In an attempt to improve computational 

efficiency, we marry these two methods. The new method selectively aggregates the 

parts of the production line based on the location of bottleneck machines.  

4. Organization of the Dissertation 

The dissertation is organized as follows. In Chapter 2, we present a decision 

support system, which gives guidance to the maintenance supervisors on making 

corrective and preventive maintenance related decisions for the upcoming production 

shift. Chapter 3 proposes an exact analytical formula for predicting the throughput of 

a two-deteriorating machine and a finite buffer production line. We offer a hybrid 

aggregation-decomposition algorithm that approximates the throughput of longer 
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production lines in Chapter 4.  Finally, we conclude the study and propose directions 

for future research in Chapter 5. 
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CHAPTER II: ANTICIPATIVE PLANT-LEVEL MAINTENANCE DECISION 

SUPPORT SYSTEM 

 

Abstract  ̶  Global competition and increasing customer expectations have 

forced automobile manufacturers to improve their operations. Maintenance, being 

one of the most critical components of the automotive industry, has a direct impact on 

the improvement of the overall production performance. In this paper, we introduce 

an anticipative plant-level maintenance decision support system (APMDSS), which 

gives guidance on the corrective and preventive maintenance priorities and 

operational preventive maintenance schedule based on the equipment bottleneck 

ranks with the objective of improving daily plant throughput. APMDSS anticipates the 

plant dynamics (i.e., bottlenecks, hourly buffer levels, and machine health) of the 

upcoming shift by using initial state information such as machine ages, operational 

status of machines, buffer levels, and scheduled production model mix. We evaluated 

the performance of APMDSS using real data from an automotive body shop, which is 

experiencing routine throughput difficulties due to frequent machine breakdowns. The 

results are compared with other methods from the literature and found to be superior 

in many settings.  

1. Introduction 

With the arrival of foreign cars to the US market in the late 80s as a result of 

globalization, auto manufacturers started seeking ways to improve their 
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manufacturing excellence to remain competitive in the business environment (Alden 

et al., 2006; Patchong et al., 2003; Pfeil et al., 2000). The most recent publicly 

available 2008 Harbour Report describes the labor productivity of the six auto 

manufacturers in North America (Figure 1). According to the report, the Detroit Three 

(GM, Ford, and Chrysler) are closing the gap with their Asian rivals through 

productivity improvements. Even though the difference has disappeared recently, 

there is still gap in terms of labor and capital cost.  

 

Figure 1 : North American History of Total Hours per Vehicle (Harbour Report, 2008) 

While making productivity related decisions, maintenance operations should 

not be thought of separately; maintenance is essential for the well-being of 

production systems. Not surprisingly, maintenance costs constitute 15% to 70% of 

total production costs (Salonen and Deleryd, 2011). Without a good maintenance 

plan, the production system will be down for long periods due to frequent machine 

breakdowns and overdue repairs. On the other hand, on-time repair and 

maintenance increase the availability and the reliability of the machines, which in turn 

improves the production performance of the whole plant. Therefore, maintenance 
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tasks must be prioritized systematically to benefit from the scarce maintenance 

resources more efficiently.  

Our research was initiated at the request of a US automotive manufacturer in 

an attempt to improve productivity. Following that, we had several visits to one of 

their automotive stamping, body shop, and final assembly plants. Even though it was 

running three 8-hour shifts per day, it was experiencing severe throughput difficulties 

in the Body Shop*. It was falling behind the daily production targets many times due 

to frequent unexpected machine breakdowns. Figure 2 illustrates the yearly, monthly, 

weekly, and daily shortfalls. There are major fluctuations in day-to-day productivity. 

 

Figure 2 : 2007-2008 Production Performance of the Body Shop 

The plant management was aware of the root cause of the problem and gave 

more privileges to the maintenance manager on production related decisions. Now, 

the maintenance manager did not only have technical responsibilities but also more 

                                                       

* Body shops are the most upstream process in a typical assembly plant (The other shops are the paint shop and 
the final assembly). Many stamped metals are assembled through various welding operations to build up the 
body of a vehicle, called the Body-in-White. 

0

10

20

30

40

50

60

70

20
07

20
08

Ja
n
‐0
8

Fe
b
‐0
8

M
ar
‐0
8

A
p
r‐
08

M
ay
‐0
8

Ju
n
‐0
8

Ju
l‐
08

w
k 
05
/1
8/
08

w
k 
05
/2
5/
08

w
k 
06
/0
1/
08

w
k 
06
/0
8/
08

w
k 
06
/1
5/
08

w
k 
06
/2
2/
08

w
k 
06
/2
9/
08

w
k 
07
/0
6/
08

w
k 
07
/2
7/
08

w
k 
08
/0
3/
08

5/
19
/2
00
8

5/
20
/2
00
8

5/
21
/2
00
8

5/
22
/2
00
8

5/
23
/2
00
8

5/
27
/2
00
8

5/
28
/2
00
8

5/
29
/2
00
8

5/
30
/2
00
8

6/
2/
20
08

6/
3/
20
08

6/
4/
20
08

6/
5/
20
08

6/
6/
20
08

6/
7/
20
08

6/
9/
20
08

6/
10
/2
00
8

6/
11
/2
00
8

6/
12
/2
00
8

6/
13
/2
00
8

6/
16
/2
00
8

6/
17
/2
00
8

6/
18
/2
00
8

6/
19
/2
00
8

6/
20
/2
00
8

6/
21
/2
00
8

6/
23
/2
00
8

6/
24
/2
00
8

6/
25
/2
00
8

6/
26
/2
00
8

6/
27
/2
00
8

6/
30
/2
00
8

7/
1/
20
08

7/
2/
20
08

7/
3/
20
08

7/
21
/2
00
8

7/
22
/2
00
8

7/
23
/2
00
8

7/
24
/2
00
8

7/
25
/2
00
8

7/
28
/2
00
8

7/
29
/2
00
8

Jo
b
 p
e
r 
H
o
u
r 
(J
P
H
)

Yearly Avg Monthly Avg Weekly Avg Daily Avg Target

major loss

yearly 

trend



10 

 

strategic responsibilities. It was also important that the maintenance manager had 

good communication skills since he had to create a center of attention among the 

maintenance and the production staff. In reality, even though the daily reports for 

machine breakdowns and downtime were generated by the existing Factory 

Information System† (FIS), as a tradition, the repair and the maintenance activities 

were mostly carried out based on worker complaints or the consent of the production 

supervisors and the maintenance technicians rather than the maintenance schedules 

provided by the maintenance department. Automotive plants are very complex 

systems with highly automated and complex machinery and material handling 

systems. Body-shops are well-recognized as having the most complexity among 

OEM production facilities. Obviously, there was an immediate need for a strategic 

decision support from which the maintenance and the production manager could 

benefit. 

The random maintenance policies such as first-come-first-served (FCFS), 

complaint, or consent based policies, which are highly used in practice, may lead to 

huge production losses. The threat increases as the bottleneck machines wait longer 

in the work order list. It is proven that devoting special attention on the bottlenecks in 

case of simultaneously failed machines, results in higher system throughput. When 

such situations are encountered, bottleneck identification ensures timely response. 

With this in mind, we developed a bottleneck based decision support system called 

anticipative plant-level maintenance decision support system (APMDSS), which 

                                                       

† FIS is an information technology that monitors and archives asset operating attributes (cycling, blocking, 
starving, and down times) and fault conditions. It is mainly used for data management, representation, and report 
generation. 
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prioritizes the corrective, preventive, and opportunistic maintenance‡ tasks with the 

objective of improving the production throughput.  

The APMDSS consists of four modules: 1) look-ahead bottleneck analyzer, 2) 

maintenance time window anticipator, 3) machine degradation calculator, and 4) 

maintenance optimizer. The look-ahead bottleneck analyzer anticipates the 

bottlenecks of the upcoming shift by exploiting the initial condition information, i.e., 

machine ages and maintenance history, operational status of machines, buffer levels, 

and scheduled production model mix of that shift. The maintenance time window 

anticipator anticipates the buffer accumulations throughout the production lines so as 

to identify the potential time windows for opportunistic maintenance. This will assure 

that all tools and spare parts are prepared for preventive maintenance ahead of time. 

The machine degradation calculator estimates the levels of machine degradations 

using a statistical model. Finally, the maintenance optimizer generates a 

maintenance schedule that provides guidance on the corrective and preventive 

maintenance priorities and the right times to perform preventive maintenance.   

Discrete event simulation is used to model the system with the initial 

conditions of the subsequent shift. It has allowed us to detect the bottlenecks of the 

next shift, anticipate buffer accumulations, estimate machine degradation levels, and 

analyze different scenarios. We did our initial study in the Front Structure Area of the 

Body Shop and only one type of product had been produced in that section. The 

simulation model gave us the ability to do synthetic experiments for the analysis of 

                                                       

‡ Despite the corrective and preventive maintenance, traditionally, times for doing opportunistic maintenance is 
not scheduled beforehand. Instead, buffer contents that exceed a certain level give the opportunity to maintain 
the equipment with failure alarms. This type of maintenance is called opportunistic maintenance. 



12 

 

the model mix case. Modeling the complexity of the body shop and its dynamics 

would not be feasible with analytic models unless we had undue simplifying 

assumptions. We conducted our preliminary experiments using an existing and 

validated simulation model of the body shop with real data and compared the 

performance of our decision support system with Li et al.’s (2009) PMDSS and other 

traditional approaches. The APMDSS performs significantly better in many cases. 

The contribution of this study is three-fold: First, we developed an effective 

decision support system (DSS) which avoids the stable system behavior assumption. 

Instead of using historic bottleneck information, the developed DSS anticipates the 

bottlenecks of the upcoming shift by exploiting the initial condition information of the 

system. Second, the proposed DSS is also extended to work in the model mix 

environment. Third, using real data, we have tested the proposed DSS and 

demonstrated its value by throughput improvement compared to other methods used 

in practice and the literature. 

The rest of the paper is organized as follows: A selective survey of the related 

literature is given in Section 2. In Section 3, we introduce the APMDSS and its 

components. Section 4 presents a case study of an automotive body shop. An 

analysis of initial conditions and the experimental results of the case study to show 

the effectiveness of APMDSS under single model and model mix settings are shown 

in Section 5. Section 6 concludes the study and proposes directions for future 

research. 
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2. Literature Review 

While production equipment requires corrective maintenance at random 

moments due to failures and preventive maintenance at regular intervals, when not 

managed properly, these activities can disrupt production operations. Therefore, 

maintenance management requires making decisions that will lead to smooth 

production flow. There is a large body of literature related to the area of maintenance 

management; however, most studies deal with reliability issues or the maintenance 

planning and scheduling of individual machines. Here, we mention only the most 

relevant research to our study and refer the interested reader to look into surveys by 

Wang (2002), Garg and Deshmukh (2006), and Budai et al. (2008) for further 

information.  

In many studies, production and maintenance planning decisions are made 

together based on the optimization of production and maintenance rates of the 

machines under consideration. Boukas and Yang (1996) address the problem of 

controlling production and preventive maintenance rates of a single machine whose 

failure probability is an increasing function of its age. Gharbi and Kenne (2005) 

propose an approach for controlling the production and preventive maintenance rates 

of a multiple machine production system so as to reduce the inventory and 

maintenance costs. They use discrete event simulation to model the dynamics of the 

system.  Kenne and Nkeungoue (2008) consider the control of corrective and 

preventive maintenance rates simultaneously in a manufacturing system consisting of 

one machine producing a single product. Many other extensions of this type of 

problem can be found in the literature (e.g., Song, 2009; Kianfar, 2005). Control of 
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the preventive maintenance rate can be achieved by being more proactive; but 

controlling the production rate is not easy in the short term. Chang et al. (2007) 

present a more realistic alternative. They introduce a feedback control mechanism 

which uses the results of a playback simulation to iteratively adjust the parameters of 

the bottlenecks.  They choose the control parameters as the initial buffer levels of the 

bottleneck machines and their repair rates, which can be adjusted during operations.  

Another area of literature related to our research examines the optimal time for 

doing preventive maintenance. Dedopoulos and Smeers (1998) consider a single 

machine which works in a continuous mode of operation characterized by an 

increasing failure rate. Any machine breakdown is repaired minimally. They 

determine the optimal time to do preventive maintenance in a time horizon of interest 

and the required extent to do preventive maintenance by means of age reduction.  

Cavory et al. (2001) study the preventive maintenance scheduling on the machines of 

a production line with the goal of increased throughput. Simulation is used repeatedly 

by the optimizer module to evaluate different scenarios. They focus their attention on 

setting the parameters of a genetic algorithm used by the optimizer.  

Preventive maintenance can be carried out at the moments when production is 

interrupted by other operations. These moments are called opportunity windows. 

Some researchers contribute to this end, for instance, Van der Duyn Schouten and 

Vanneste (1995) use the buffer levels to identify opportunity to do preventive 

maintenance in a one machine – one buffer environment. The machine has to satisfy 

a constant demand. The decision to start preventive maintenance depends on the 

condition of the equipment and the buffer content. Iravani and Duenyas (2002) 
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extend their model with a stochastic demand and production process. Zequeira et al. 

(2008) include imperfect production in their study in addition to the determination of 

optimal buffer content to satisfy demand during maintenance times. Chang et al. 

(2007) study the opportunistic maintenance of a multiple machine system. Kenne et 

al. (2007) study the effect of preventive maintenance and machine age on optimal 

safety stock levels which are kept to cope with unexpected failures.  

Since maintenance resources are scarce, prioritizing maintenance tasks is 

essential. Dekker and Smeitink (1994) deal with the problem of setting priorities for 

the execution of preventive maintenance tasks at randomly occurring opportunities. 

They defined an opportunity as a short period of time that occurs when a production 

unit is shut down for any reason. Since the opportunities are of restricted duration, 

each maintenance task is split into smaller packages. They propose a model for 

determining the optimal execution time for these maintenance packages. An 

operational decision support system for the optimization of maintenance activities, 

called PROMPT, is developed in a later study by Dekker and van Rijn (1996) using 

many techniques developed in Dekker and Smeitink (1994). Dekker (1995) exploits 

penalty functions, which are expressed in average maintenance costs, to determine 

the preventive maintenance priorities. Khanlari et al. (2008) uses fuzzy logic for 

assigning maintenance priorities by interpreting the verbal explanations of 

maintenance experts regarding the condition of the equipment.  

Recently, there has been a trend in the study of bottleneck-based 

maintenance scheduling (e.g., Langer et al., 2010; Li et al., 2009; Chang et al., 

2007). These studies suggest prioritizing the maintenance tasks in accordance with 
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the long-term or the short-term bottleneck orders. If the long-term bottleneck orders 

are adopted, the past few weeks’ or months’ data is retrieved to determine the 

maintenance priorities, which are kept constant during the selected operational 

period. If the short-term bottleneck orders are adopted, then the past few shifts’ or 

days’ bottleneck data determines the priorities.  

As seen from the literature, most of the research covers a portion of 

maintenance management. They either consider the reliability of an equipment or 

prioritization of preventive or corrective maintenance of single or multiple machine 

systems. If both preventive and corrective maintenance are considered together, then 

it is either a single machine problem or has many simplifying assumptions which 

make the problem impractical.  

The paper closest to ours is by Li et al. (2009). They introduce a real-time 

plant-level maintenance decision support system (PMDSS) for a single product 

manufacturing system. It prioritizes the corrective, preventive, and opportunistic 

maintenance tasks based on the bottleneck ranks that are obtained from the most 

recent data. The maintenance priorities are reset intermittently as more recent data is 

collected. In the case study of an automotive assembly line, the PMDSS achieved 

about 12% throughput improvement over the FCFS based corrective maintenance 

strategy. However, it extracts the bottleneck information from the historic data, so it 

implicitly assumes that the latest system behavior will be repeated in the subsequent 

time period. On the other hand, the system dynamics will change due to the 

stochastic nature of the manufacturing environment. The machine degradation by 

that time will cause the production line to confront more frequent failures. This may 
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cause the location of the bottleneck to shift to other machines or develop additional 

bottlenecks. Finally, the change of the bottleneck order can create control problems 

for the shop floor personnel.  

In this paper, we propose a more effective decision support system, which 

avoids the stable system behavior assumption. The APMDSS anticipates the 

bottlenecks of the upcoming shift by exploiting the initial condition information of the 

system, i.e., machine ages, operational status of machines, buffer levels, and model 

mix of that shift. The machines requiring preventive maintenance are determined 

from their degradation level. Buffer accumulations throughout the production lines are 

anticipated so as to determine the potential time windows for opportunistic 

maintenance, which will assure that all tools and spare parts are prepared for 

preventive maintenance beforehand. Lastly, the APMDSS generates a maintenance 

schedule which gives guidance on the corrective and preventive maintenance 

priorities and the right times to perform preventive maintenance.   

3. Anticipative Plant-level Maintenance Decision Support System (APMDSS) 

APMDSS enables maintenance supervisors to handle the complexity of 

maintenance operations and make maintenance related decisions, which help reach 

the production throughput targets. It anticipates the bottlenecks and hourly buffer 

buildups in the upcoming shift by looking at the initial state of the production system 

and estimates machine degradations using a statistical model. Then, the information 

is put into the maintenance optimizer, which generates reports on corrective (CM) 

and preventive maintenance (PM) priorities, and opportunistic times to do PM. The 

proposed framework is depicted in Figure 3.  
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In contrast to the conventional bottleneck analysis, APMDSS exploits the initial 

states, such as ages, buffer levels, initial failures, and model mix information of the 

production system instead of using the historic bottleneck data.  

 

Figure 3 : Framework for APMDSS 

APMDSS assumes that the probability of failure of machines increases with 

usage. Whenever a machine fails, it is repaired minimally with CM. All machines are 

preventively maintained when their ages (time since last PM) hit a threshold and they 

are assumed to behave as good as new after PM. PM can be done at predetermined 

time slots or at opportunistic times. Maintenance Time Window Anticipator tracks 

those opportunistic times by looking at the buffer accumulations throughout the 

system.  

Maintenance Optimizer aims to create maintenance schedules that lead to the 

highest shift throughput. It optimally assigns the bottleneck machines with failure 

alarms, the ones whose age hits the threshold, to opportunistic windows or 

predetermined time slots and prioritizes corrective work depending on their 
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bottleneck ranks. APMDSS is beneficial to the maintenance personnel as well as the 

production personnel on the shop floor.  

3.1. Bottleneck Simulator 

Identification of the bottlenecks greatly reduces the complexity of the plant 

throughput improvement problem. Since the bottlenecks are the binding constraints 

of the throughput maximization problem, their improvement directly improves the 

overall throughput. According to Bukchin (1998), bottlenecks are the best estimator 

for the production throughput. Wang et al. (2005) reviews the available bottleneck 

identification methods extensively. We adopted Toyota’s Average Active Period 

(AAP) method (Roser et al., 2001) because we found it to be very effective in 

detecting the short-term bottlenecks compared to the other identification methods.  

AAP classifies the states of a machine as active and inactive. A machine is 

inactive if it is blocked or starved; otherwise it is active. Consecutive active states are 

considered as one active state (see Figure 4). The machine with the highest average 

active period is the highest bottleneck. 

 

Figure 4 : Active and Inactive States of a Machine (Roser et al., 2001) 

Let  1 2, ,...,i i i inA a a a be the durations of the active states of machine ݅, based 

on a simulation run. തܽ௜ and ݏ௜ are the average and the standard deviation of AAP for 
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machine ݅, respectively. To improve accuracy, we also derive confidence intervals for 

AAP from ݉ simulation runs. If the number of active durations in a simulation run is 

݊௞, then the grand average of active durations for machine ݅	obtained from ݉ runs 

will be, 1 21 2
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Then, the confidence interval with ሺ1െ∝ሻ% confidence for the average of 

active durations for machine i can be written as, 
1 1

, 1 , 12 2

1 1

,  .m m

l l
l l

i i
i im mn n

l l
l l

S S
a t a t

n n
 

 
  

 

 
 
  
 
  
 

 
  

Based on the grand averages, ia the bottleneck ranks are determined. The 

confidence intervals help find any shifting bottleneck or ties between the machines by 

checking to see if there is any overlap between the confidence intervals. 
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3.2. Maintenance Time Window Anticipator 

Opportunistic maintenance (OM) is the preventive maintenance that is done at 

opportunistic times during production. The maintenance should not slow down the 

production flow so that the throughput is not degraded. On some occasions, buffer 

occupancies exceed some amount and the extra amount gives an opportunity to 

safely maintain the stations in need. 

It is important to determine the stations to be maintained and their 

opportunistic times beforehand in order to prepare all tools and spare parts ahead of 

time. The APMDSS estimates the OM times by anticipating the hourly buffer 

averages from a simulation model. Consumption time of any extra buffer in the 

downstream of a station that exceeds a certain level is counted toward the 

opportunity window if the buffer amount exceeds the safety level with 50% probability 

or more. The safety amounts are determined to be 50%, 25%, or 0% of the buffer 

capacities. The OM realization potential is also estimated from the total number of 

times that opportunity window realizes in all replications. It is important that enough 

opportunity window realizes with high probability so that the OM assignments can be 

guaranteed.  

The opportunity windows must be as long a time required for PM. PM will take 

place in the second half of an hour if the OM realization potential is higher than 50% 

and it improves the throughput. Modified from Chang et al. (2007), we formulate the 

opportunity window for the ith station as, 

∆ ௜ܶ ൌ ∑ ாሾ௑೔ሿିே೔∗௦%

ఓ೐೜ೡ

௞ିଵ
௜ െ ௦ܶ,								ܧሾ ௜ܺሿ ൒ ௜ܰ ∗ ݅					,%ݏ ൑ ݇ െ 1,  
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where E[Xi] is the expected level of the ith buffer, Ni is the capacity of the ith 

buffer, s% is the safety fraction that is kept for smooth production. We simply use the 

average production rate of the line as the equivalent processing rate, ߤ௘௤௩ of the 

downstream of machine i. Ts is the warm-up time of the line that allows product to 

flow smoothly once the station resumes working. It is the time it takes for the first 

finished part to leave the production line once the station is again operational (Chang 

et al., 2007). 

3.3. Machine Degradation Modeling 

We define a virtual age, as described in Basile et al. (2007), for each machine 

which represents the estimated age of that machine since its last PM. It increases as 

the machine produces parts and is updated hourly using the formula, ܣ௧ ൌ ௧ିଵܣ ൅

ܺ௧ିଵ,௧. Here, ܣ௧ିଵ is the age that is calculated at time t-1 and ܺ௧ିଵ,௧ is the busy time of 

that machine in the last hour. The probability of failure increases with age. TBF 

distributions of the machines are updated hourly based on the age updates. 

Conditional Weibull distribution is used as the TBF distribution of the machines. 

Hence, the TBF distribution is,   

݂ሺܺ|ܣ௧ሻ ൌ
ߚ
ߟ
൬
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APMDSS has two types of maintenance work: corrective (CM) and preventive 

(PM). In CM, a broken machine is minimally repaired and the machine age, ܣ௧  

remains the same as it was before the breakdown. PM takes place before a machine 

fails. The machine is renewed and its age, ܣ௧ is reset to zero after the maintenance. 

There is an age threshold for each machine which gives a failure alarm when it is 
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passed; this triggers a PM request. We use the term “repair” or “CM” for corrective 

work and “maintenance” or “PM” for preventive work interchangeably throughout the 

paper.  

4. Industrial Case Study 

At the request of the plant management, the preliminary experiments are done 

on the Front Structure Area of the Body Shop, which is regarded to be the bottleneck 

zone of the plant. In the Front Structure Area, left-hand apron, right-hand apron, 

dash, and bumper are welded and the finished item, “Front Structure,” is transferred 

to the Underbody Tack via the main line (Sta 60 to 120). Figure 5 shows the layout of 

the area. There are 13 aggregated stations, representing 79 machines, which are 

connected to each other with 12 conveyors. 

 

Figure 5 : Front Structure Lines in the Body Shop 

In Table 1, the distribution parameters of Time between Failures (TBF), Time 

to Repair (TTR), and Cycle Time (CT) of the stations are given. The last column of 

the table shows the synthetic cycle times that are used for the second product type in 
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the model mix case. Remember that the TBF distributions are Conditional Weibull 

and they are conditioned on the age of the station. The capacity and the moving 

speed of the conveyors are listed in Table 2.  

Table 1 : Distribution Parameters of the Stations in minutes 

Stations 
TBF 

Weibull 
(scale, shape) 

TTR 
Erlang 

(mean, shape) 
CT 

Synthetic 
CT 

LH Apron Cell 1 
(LHA1) 

(333, 1.5) (12.56, 3) 0.708 0.55 

LH Apron Cell 2 
(LHA2) 

(1496, 1.5) (12.36, 3) 0.667 0.6 

LH Apron Cell 3 
(LHA3) 

(333, 1.5) (8.35, 3) 0.592 0.72 

LH Apron Cell 4 
(LHA4) 

(1496, 1.5) (15.28, 3) 0.592 0.65 

LH Apron Cell 5 
(LHA5) 

(998, 1.5) (14.33, 3) 0.547 0.6 

RH Apron Cell 1 
(RHA1) 

(1496, 1.5) (4.95, 3) 0.624 0.65 

RH Apron Cell 2 
(RHA2) 

(2991, 1.5) (15.1, 3) 0.559 0.5 

RH Apron Cell 3 
(RHA3) 

(2991, 1.5) (26.5, 3) 0.653 0.71 

RH Apron Cell 4 
(RHA4) 

(2991, 1.5) (34.83, 3) 0.576 0.55 

RH Apron Cell 5 
(RHA5) 

(2991, 1.5) (18.03, 3) 0.605 0.59 

Dash Panel SA 
(Dash) 

(2991, 1.5) (10.67, 3) 0.706 0.64 

Frt Struct Sta 30 
(Sta30) 

(2991, 1.5) (34.72, 3) 0.59 0.62 

Frt Struct Sta 40 
(Sta40) 

(2991, 1.5) (45.57, 3) 0.632 0.57 

 

The following assumptions apply in the simulation: 

i. One maintenance worker is available for each PM and CM service. 

ii. If only one station requires a PM or CM service, it is responded immediately.  

iii. Both PM and CM services are non-preemptive. Once a service is started on a 

station, it cannot be interrupted.  
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iv. When many stations simultaneously break down, they will be repaired in the 

order of their priority that is determined by the repair policy. 

v. If there is more than one machine with a failure alarm, only one machine will 

be maintained in the available time slot and the others will be delayed to the 

next opportunity window. However, if the reliability threshold is already passed 

and there are still unmaintained machines available in the next shift, they will 

immediately be maintained at the beginning of the next shift in the order of 

their priority. 

vi. Conveyors are reliable. 

vii. The travel times are negligible. 

viii. The preventive maintenance takes 30 minutes.  

ix. The plant runs three 8-hour shifts per day, so there is no off-production hour 

except the two 30-minute lunch and coffee breaks. 

x. Two model types are produced in the model mix experiments: Model I and 

Model II. (Model I uses the cycle times written under the CT column and Model 

II uses the cycle times written under the Synthetic CT column of Table 1.) 

Table 2 : Parameters of the Conveyors 

Conveyor Capacity
Speed 

(minutes) 
LH Conveyor 1 

(LHConv1) 10 0.16 
LH Conveyor 2 

(LHConv2) 9 0.22 
LH Conveyor 3 

(LHConv3) 12 0.20 
LH Conveyor 4 

(LHConv4) 9 0.20 
LH Conveyor 5 

(LHConv5) 44 0.29 
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RH Conveyor 1 
(RHConv1) 9 0.37 

RH Conveyor 2 
(RHConv2) 15 0.71 

RH Conveyor 3 
(RHConv3) 12 0.63 

RH Conveyor 4 
(RHConv4) 8 0.18 

RH Conveyor 5 
(RHConv5) 33 0.67 

Dash Conveyor 
(DashConv) 18 0.42 
Main Line 

(Sta 60 to 120) 6 0.63 

5. Simulation Analysis and Results 

In this section, we analyze the impact of initial conditions of equipment and 

buffers at the beginning of the shift on the throughput and bottleneck patterns of a 

production shift. Then, we compare the performance of APMDSS in maintenance 

prioritization over other methods. We did the experiments using Simul8 simulation 

software. Each simulation run is set at 8 hours, typical of production shifts. The 

statistical analysis is done with 30 simulation replications and 95% confidence 

intervals are constructed for estimating the expected values and making inferences. 

Any experiment starts with some initial conditions such as machine ages, buffer 

levels, model mix, and operational status of the machines. We use actual plant data 

in the experiments. Synthetic data is also used to investigate the model mix setting. 

Buffer occupancy is guaranteed with a shift long warm-up period in the model mix 

case. The results showing the throughput improvement of APMDSS over the other 

methods are in percentages. Statistical significance is checked by comparing the 

confidence intervals and the significant results are shown with a star (*) in the tables. 
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This section is outlined as follows: Section 5.1 analyzes the impact of initial 

conditions on productivity and bottleneck patterns. Section 5.2 tests the performance 

of APMDSS in CM prioritization and Section 5.3 tests the performance of APMDSS in 

PM prioritization for both single model and model mix cases. A final experiment is 

done to evaluate the performance on a combination of CM, PM, and OM for a model 

mix setting in Section 5.4. 

5.1. Impact of Initial Conditions on Productivity and Bottleneck Patterns 

Initial conditions of a production shift may have significant impact on both the 

productivity and the bottleneck patterns of the manufacturing plants. We explored the 

possible effects with different initial settings for the Front Structure production lines. 

In the experiments, all machine ages are either set to zero (Zero Ages) or set to 

some representative initial ages (Higher Ages), which are obtained after running the 

simulation model for 30 shifts, PM is done on the equipment when necessary during 

this period. Buffer levels are either set to zero (Empty Buffer) or average levels 

(Average Buffers). Representative failure of LHA1, RHA2, and RHA5 (Few Failures) 

is compared with no equipment failure case (No failure).  

Our findings regarding the possible effects of initial machine ages, buffer 

levels, and operational status of the machines on the average number of jobs 

produced per hour (JPH) and the severity of bottlenecks have been illustrated with 

figures. Figure 6, Figure 7, and Figure 8 show the 95% confidence limits of the 

average number of jobs produced per hour (JPH). Here, we witness the interaction of 

different initial conditions and their impact on the JPH value. The first two figures 

demonstrate that, with older machines and/or with the occurrence of failures, the JPH 
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average reduces while its variability increases. On the other hand, increasing initial 

buffer levels increases the JPH value.  

No failures, empty buffers No failures, average 
buffers 

Few failures, empty 
buffers 

Few failures, average 
buffers 

 

Figure 6 : Impact of Initial Machine Ages on JPH under Different Initial Failure and 
Buffer Conditions 

Zero ages, empty buffers 
Higher ages, empty 

buffers 
Zero ages, average 

buffers 
Higher ages, average 

buffers 

 

Figure 7 : Impact of Initial Machine Failures on JPH under Different Initial Age and 
Buffer Conditions 

No failures, zero ages No failures, higher ages Few failures, zero ages Few failures, higher ages 

 

Figure 8 : Impact of Initial Buffer Levels on JPH under Different Initial Failure and Age 
Conditions 

We did two types of analysis for examining the effects of different initial 

conditions on the severity of bottlenecks: micro and macro. Micro analysis 
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investigates the impact on individual bottleneck stations. According to the analysis, 

the bottleneck severity and its variability increase with increasing machine ages and 

initial failures. Buffers behave differently on different stations based on the location 

and the strength of the bottlenecks. The graphs of the micro analysis can be seen in 

Appendix 1. 

Macro analysis evaluates the effect of the initial conditions on the bottleneck 

dynamics of the whole plant. The bar charts in Table 3, Table 4, and Table 5 show 

the bottleneck severities of all stations in the system. In the charts, the red bar shows 

the average bottleneck strength and the blue and the green bars show the 95% lower 

and upper limits, respectively. The data tables under the charts give statistical 

summary of the charts: each chart provides the average bottleneck strength (µ), the 

range between the upper and lower limits (R), and the bottleneck order (O) of the top 

five bottlenecks under different initial settings. The charts and the data tables on the 

right have one parameter change in initial setting compared to the tables and charts 

on the left. For example, in the graphs on the left hand side of Table 3, all initial 

machine ages are set to zero, whereas all the machines have some initial age in the 

graphs on the right hand side. Similarly, Table 4 tests the effect of initial breakdowns 

and  tests the effect of initial buffers. In the experiment, the three stations with initial 

breakdown are LHA1, RHA2, and RHA5, with only LHA1 being a severe bottleneck. 

In the macro analysis, initial ages and failures cause variability in the 

bottleneck strengths as in the micro analysis. It is interesting that the initial failures of 

LHA1, RHA2, and RHA5 propagates to other stations and increase their bottleneck 

severity and variability. The variability in bottleneck severity causes shifting 
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bottlenecks, as a result, the bottleneck order changes from time to time as seen on 

the graphs. It is also observed that initial buffers change the bottleneck order. 

Essentially, the main contributor to shifting bottlenecks is the model mix and, for this 

reason, we have also examined its impact. In the experiment, different mixes impact 

the bottleneck severity differently and create unexpected bottlenecks and shifting 

bottlenecks. The constructed charts for model mix can be seen in Appendix 2. 

System behavior of the next shift is not consistent anymore with the previous 

shift due to the changes in the bottleneck order. As a result, the maintenance 

priorities that are set based on the previous shift’s bottleneck order will be 

ineffectively assigned. This will cause the real bottleneck machine to wait 

unmaintained for longer periods, which will lower the plant throughput. Therefore, 

anticipating the bottlenecks of the upcoming shift in advance is crucial for 

maintenance dispatching. 
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Table 3 : Impact of Initial Ages on Overall Bottleneck Patterns 

 
 LHA1 LHA2 RHA3 Dash Sta40

µ 2.53 1.23 1.30 4.94 1.12 
R 0.29 0.06 0.06 0.12 0.02 
O 2 4 3 1 5 

 

 LHA1 LHA2 RHA3 Dash Sta40
µ 4.77 1.55 1.50 5.12 1.17 
R 4.46 0.60 0.97 0.92 0.23 
O 1-2 3-4 3-4-5 1-2 4-5 

 LHA1 LHA2 RHA3 Dash Sta40
µ 6.68 1.21 1.72 4.80 1.02 
R 3.44 0.21 0.79 0.69 0.42 
O 1 4-5 3 2 4-5 

 

 LHA1 LHA2 RHA3 Dash Sta40
µ 12.21 1.53 1.92 5.21 1.15 
R 11.25 0.55 1.18 1.16 0.49 
O 1 3-4 3-4 2 5 

 
 LHA1 LHA2 RHA3 Dash Sta40

µ 3.40 3.06 2.69 4.56 1.28 
R 0.23 0.10 0.15 0.08 0.01 
O 2 3 4 1 5 

 

 LHA1 LHA2 RHA3 Dash Sta40
µ 4.26 2.95 2.72 4.79 1.41 
R 1.23 0.60 0.63 0.73 0.44 
O 1-2 3-4 3-4 1-2 5 

 LHA1 LHA2 RHA3 Dash Sta40
µ 6.82 2.43 4.02 5.44 1.65 
R 2.24 0.59 1.27 0.97 0.74 
O 1 4 3 2 5 

 

 LHA1 LHA2 RHA3 Dash Sta40
µ 8.33 2.40 3.84 5.67 1.63 
R 4.07 0.78 1.35 1.10 0.59 
O 1 4 3 2 5 
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Table 4 : Impact of Initial Failures on Overall Bottleneck Patterns 

 LHA1 LHA2 RHA3 Dash Sta40
µ 2.53 1.23 1.30 4.94 1.12 
R 0.29 0.06 0.06 0.12 0.02 
O 2 4 3 1 5 

 

 LHA1 LHA2 RHA3 Dash Sta40
µ 6.68 1.21 1.72 4.80 1.02 
R 3.44 0.21 0.79 0.69 0.42 
O 1 4-5 3 2 4-5 

 LHA1 LHA2 RHA3 Dash Sta40
µ 4.77 1.55 1.50 5.12 1.17 
R 4.46 0.60 0.97 0.92 0.23 
O 1-2 3-4 3-4-5 1-2 4-5 

 

 LHA1 LHA2 RHA3 Dash Sta40
µ 12.21 1.53 1.92 5.21 1.15 
R 11.25 0.55 1.18 1.16 0.49 
O 1 3-4 3-4 2 5 

 
 LHA1 LHA2 RHA3 Dash Sta40

µ 3.40 3.06 2.69 4.56 1.28 
R 0.23 0.10 0.15 0.08 0.01 
O 2 3 4 1 5 

 

 LHA1 LHA2 RHA3 Dash Sta40
µ 6.82 2.43 4.02 5.44 1.65 
R 2.24 0.59 1.27 0.97 0.74 
O 1 4 3 2 5 

 
 LHA1 LHA2 RHA3 Dash Sta40

µ 4.26 2.95 2.72 4.79 1.41 
R 1.23 0.60 0.63 0.73 0.44 
O 1-2 3-4 3-4 1-2 5 

 

 LHA1 LHA2 RHA3 Dash Sta40
µ 8.33 2.40 3.84 5.67 1.63 
R 4.07 0.78 1.35 1.10 0.59 
O 1 4 3 2 5 
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Table 5 : Impact of Initial Buffers on Overall Bottleneck Patterns 

 LHA1 LHA2 RHA3 Dash Sta40
µ 2.53 1.23 1.30 4.94 1.12 
R 0.29 0.06 0.06 0.12 0.02 
O 2 4 3 1 5 

 

 LHA1 LHA2 RHA3 Dash Sta40
µ 3.40 3.06 2.69 4.56 1.28 
R 0.23 0.10 0.15 0.08 0.01 
O 2 3 4 1 5 

 
 LHA1 LHA2 RHA3 Dash Sta40

µ 4.77 1.55 1.50 5.12 1.17 
R 4.46 0.60 0.97 0.92 0.23 
O 1-2 3-4 3-4-5 1-2 4-5 

 

 LHA1 LHA2 RHA3 Dash Sta40
µ 4.26 2.95 2.72 4.79 1.41 
R 1.23 0.60 0.63 0.73 0.44 
O 1-2 3-4 3-4 1-2 5 

 
 LHA1 LHA2 RHA3 Dash Sta40

µ 6.68 1.21 1.72 4.80 1.02 
R 3.44 0.21 0.79 0.69 0.42 
O 1 4-5 3 2 4-5 

 

 LHA1 LHA2 RHA3 Dash Sta40
µ 6.82 2.43 4.02 5.44 1.65 
R 2.24 0.59 1.27 0.97 0.74 
O 1 4 3 2 5 

 

 
 LHA1 LHA2 RHA3 Dash Sta40

µ 12.21 1.53 1.92 5.21 1.15 
R 11.25 0.55 1.18 1.16 0.49 
O 1 3-4 3-4 2 5 

 

 LHA1 LHA2 RHA3 Dash Sta40
µ 8.33 2.40 3.84 5.67 1.63 
R 4.07 0.78 1.35 1.10 0.59 
O 1 4 3 2 5 
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5.2. Corrective Maintenance Prioritization  

As machines get older, the probability of observing simultaneous breakdowns 

increase and the CM prioritization becomes more important. In order to estimate the 

probability of simultaneous breakdowns, we conducted a simulation of 60 shifts of the 

calibrated/validated plant model with a warm-up period of 30 shifts. Results reveal 

that some 10.7% of the breakdowns constitute the simultaneous breakdowns of two 

or more stations. The number of simultaneous equipment breakdowns is counted by 

counting the number of stations that simultaneously require a CM service.  

Performance of APMDSS in prioritizing corrective maintenance tasks of the 

upcoming production shift is compared to the performance of FCFS and PMDSS in 

both single model and model mix settings. APMDSS prioritizes the corrective repairs 

based on the bottleneck orders of the upcoming shift. So, it uses the initial conditions 

of that shift to determine the bottlenecks. When FCFS policy is adopted, stations are 

repaired in the order of breakdowns; in case of simultaneously failed stations, the 

repair order is random. Use of PMDSS suggests prioritizing the corrective repairs of 

the upcoming shift based on the bottleneck orders of the previous shift. Therefore, 

instead of using the current shift’s initial conditions, the previous shift’s initial 

conditions are used for setting the priorities. The assumptions we have made for 

PMDSS are as follows: the initial station ages and model mix information (100% 

Model I) come from the previous shift, buffers are at average levels, and all stations 

are at operational state.  

In the experiments, the initial conditions of the upcoming shift are set from a 

combination of different age groups, operational status of stations, and buffer 
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occupancies.  The age groups and the operational states of the machines are as 

given in Table 6 and Table 7. Buffers are set to either empty or average levels. 

Table 6 : Age Groups (based on time elapsed in working state since last PM, in 
minutes)   

Stations Group 1 Group 2 

LHA  1 512 1107 
LHA  2 5632 3825 
LHA  3 916 820 
LHA  4 4931 2550 
LHA  5 386 3875 
RHA  1 5226 3212 
RHA  2 4616 8284 
RHA  3 5304 9513 
RHA  4 4769 8555 
RHA  5 4922 8832 
Dash 6091 10912 
Sta 30 4752 8511 
Sta 40 5089 9116 

 

Table 7 : Experimental Setting with Different Initial Failures (0: operational, 1: broken)  

 Failure Settings 
Stations A B C D E F G H 
LHA  1 0 1 0 1 1 1 0 0 
LHA  2 1 0 0 1 0 0 0 0 
LHA  3 0 0 0 0 0 0 1 0 
LHA  4 0 0 1 0 0 0 0 1 
LHA  5 0 0 1 0 0 0 0 0 
RHA  1 0 1 0 0 0 0 0 0 
RHA  2 0 0 0 0 0 0 1 0 
RHA  3 1 0 0 1 0 1 0 0 
RHA  4 0 0 1 0 0 0 0 1 
RHA  5 0 0 0 0 0 0 1 1 
Dash 0 0 0 1 1 1 0 0 
Sta 30 1 1 0 0 0 0 0 0 
Sta 40 0 0 0 1 1 1 0 0 
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5.2.1. Single Model Setting 

The average throughput improvement percentages of APMDSS compared to 

the other methods are shown in Table 8 and Table 9, respectively. Positive values 

indicate that APMDSS performs better than the other method or vice versa. Values 

higher than 1% are highlighted in bold and values lower than -1% are highlighted in 

dotted frames. The statistically significant improvement values are shown with a star 

(*).  

Table 8 : Superiority % of APMDSS compared to FCFS in CM Prioritization 

  A B C D E F G H 

A
ve

ra
ge

 
B

uf
fe

rs
 

Age Group 1 5.29* 3.97* 4.85* 1.38 -0.75 0.82 -0.72 -1.94 

Age Group 2 4.67* 4.20* 4.79* 0.06 -1.59 -0.16 -0.50 -1.89 

E
m

pt
y 

B
uf

fe
rs

 

Age Group 1 5.79* 6.74* 1.59 4.36 0.47 1.26 1.26 -0.74 

Age Group 2 5.55* 6.67* 1.56 3.39 0.42 1.77 -5.53* -0.11 
  

Table 9 : Superiority % of APMDSS compared to PMDSS in CM Prioritization 

  A B C D E F G H 

A
ve

ra
ge

 
B

uf
fe

rs
 

Age Group 1 1.78 -0.18 3.32 1.78 -0.27 -0.14 0.30 -1.56 

Age Group 2 1.50 -0.31 7.36* 1.38 -0.37 -0.26 0.31 -1.20 

E
m

pt
y 

B
uf

fe
rs

 

Age Group 1 2.23 0.00 -0.09 2.29 0.37 -0.56 -1.14 0.24 

Age Group 2 2.99 0.00 3.93* 1.62 0.20 -0.15 0.12 0.98 

5.2.2. Model Mix Setting 

The mix consists of 25% of Model I and 75% of Model II. The average 

throughput improvement percentages of APMDSS over the other methods are shown 
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in Table 10 and Table 11, respectively. Values higher than 1% (highlighted in bold) 

means APMDSS performs better than the corresponding method. Values lower than -

1% (highlighted in dotted frames) means APMDSS performs worse.  

Table 10 : Superiority % of APMDSS compared to FCFS in CM Prioritization 

  A B C D E F G H 

A
ve

ra
ge

 
B

uf
fe

rs
 

Age Group 1 4.20 1.28 -2.09 4.98 0.31 3.57 0.04 -4.03 

Age Group 2 5.13 1.23 2.21 4.69 -2.21 2.15 -0.46 -4.28 

E
m

pt
y 

B
uf

fe
rs

 

Age Group 1 5.18 6.53 -2.65 3.16 -0.08 2.23 -4.79 -0.88 

Age Group 2 4.09 3.86 -1.27 2.14 -0.29 4.92 -2.35 0.07 
 

Table 11 : Superiority % of APMDSS compared to PMDSS in CM Prioritization 

  A B C D E F G H 

A
ve

ra
ge

 
B

uf
fe

rs
 

Age Group 1 1.55 0.05 -3.88 6.87 2.00 3.97 -0.05 -4.03 

Age Group 2 1.30 -0.16 3.68 5.63 0.03 1.87 0.00 -3.72 

E
m

pt
y 

B
uf

fe
rs

 

Age Group 1 1.95 0.00 -4.17 1.89 0.15 0.55 0.00 -0.34 

Age Group 2 
2.67 -0.23 -0.13 2.33 -0.29 2.75 -0.11 0.27 

5.3. Preventive Maintenance Prioritization 

In the PM Prioritization experiments, the performance of a group of methods is 

tested by looking at the total throughput of two consecutive shifts. There are 10 

experiment sets with different initial age groups given in  

Table 12. The initial buffers are at average levels and all stations are initially 

operational. 
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Table 12 : Experimental Setting with Different Age Groups 

 Age Groups 

Stations 1 2 3 4 5 6 7 8 9 10 

LHA  1 1308 1302 1305 313 894 1272 481 1276 1304 1296 

LHA  2 5065 2708 4011 719 1264 1618 2148 2894 4032 1768 

LHA  3 423 1238 983 886 1364 268 732 1387 1077 578 

LHA  4 4437 1569 2713 5290 5767 6077 301 955 2878 6111 

LHA  5 4054 2979 4024 2204 2640 2922 3344 3941 4124 3049 

RHA  1 4700 2174 3386 6124 341 674 1166 1860 3389 785 

RHA  2 4154 7366 8437 10855 11301 11596 12029 244 8443 11634 

RHA  3 4769 8458 9689 12467 446 783 1281 1986 9703 975 

RHA  4 4292 7608 8714 11213 11674 11977 12423 568 8725 12016 

RHA  5 4429 7853 8995 11573 12050 12363 300 955 9004 12403 

Dash 5471 9700 11114 1889 2480 2864 3439 4248 11143 2913 

Sta 30 4269 7566 8668 11149 11608 11905 12352 474 8691 11951 

Sta 40 4572 8103 9285 11942 12433 168 646 1321 9309 268 

 
The remaining life before hitting the threshold (RLT) values of the stations are 

given in Table 13. At the beginning of the shift, any catastrophic station failures are 

anticipated by looking at RLTs; the stations with failure alarms are written in red and 

marked by (†)  in the table.  

Table 13 : RLT Values, †: The stations with failure alarms 

 RLTs 

Stations 1 2 3 4 5 6 7 8 9 10 

LHA  1 82† 88† 85† 1077 496 118† 909 114† 86† 94† 

LHA  2 1175 3532 2229 5521 4976 4622 4092 3346 2208 4472 

LHA  3 967 152† 407 504 26† 1122 658 3† 313 812 

LHA  4 1803 4671 3527 950 473 163† 5939 5285 3362 129† 

LHA  5 106† 1181 136† 1956 1520 1238 816 219 36† 1111 

RHA  1 1540 4066 2854 116† 5899 5566 5074 4380 2851 5455 

RHA  2 8326 5114 4043 1625 1179 884 451 12236 4037 846 

RHA  3 7711 4022 2791 13† 12034 11697 11199 10494 2777 11505 

RHA  4 8188 4872 3766 1267 806 503 57† 11912 3755 464 
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RHA  5 8051 4627 3485 907 430 117† 12180 11525 3476 77† 

Dash 7009 2780 1366 10591 10000 9616 9041 8232 1337 9567 

Sta 30 8211 4914 3812 1331 872 575 128† 12006 3789 529 

Sta 40 7908 4377 3195 538 47† 12312 11834 11159 3171 12212 

 

When there is a failure alarm, a PM is scheduled based on the scheduling 

method.  

 

Table 14 compares the performance of APMDSS with the Baseline, RLT, and 

PMDSS methods.  According to the Baseline method, the higher the ݁݃ܣ ⁄ܨܤܶܯ  ratio 

for a machine, the higher the PM priority. RLT method gives the highest priority to the 

machine with the smallest RLT. APMDSS and PMDSS both use the bottleneck ranks 

to assign the priorities. However, APMDSS exploits the bottleneck ranks of the 

upcoming shift while PMDSS uses the bottleneck ranks of the previous shift.  

We observed two cases for preventive maintenance: One-PM-Slot case and 

Two-PM-Slot case. In One-PM-Slot case, PM can be done only at lunch breaks, and 

in Two-PM-Slot case, it can be done at both coffee and lunch breaks. If a machine 

cannot be maintained in the first shift, it is maintained right at the start of the next shift 

if the machine age has already hit the threshold. Since its PM requirement is already 

anticipated at the previous shift, the necessary equipment and spare parts can be 

prepared ahead of time. 

5.3.1. Single Model Setting 

The average throughput improvement percentages of APMDSS compared to 

the other methods are shown in  
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Table 14. The highlighted cells show where APMDSS performs better than the 

corresponding method. The statistically significant improvement values are shown 

with a star (*). 

 

 

Table 14 : Superiority % of APMDSS compared to Other Methods in PM Prioritization 

  1 2 3 4 5 6 7 8 9 10

T
w

o 
P

M
 

S
lo

ts
 Baseline 0.0 0.0 0.1 0.0 3.9* 2.4* 0.0 7.9* -0.3 9.2*

RLT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.7* -0.3 -0.2
PMDSS 0.0 0.0 0.0 0.0 3.9* 2.3* 0.0 1.1 0.0 3.4*
No PM 94.2* 87.7* 92.9* 119.1* 320.7* 107.7* 111.1* 442.8* 124.1* 141.2*

O
ne

 P
M

  
S

lo
t 

Baseline 11.2* 0.0 11.8* 0.0 28.7* 0.2 0.0 0.0 4.4 5.7*
RLT 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 4.4 5.7*
PMDSS 0.0 0.0 0.0 0.0 28.7* 4.4* 0.0 55.2* 0.0 4.4*
No PM 92.8* 88.0* 92.9* 115.6* 306.0* 103.2* 110.6* 402.3* 110.3* 133.5*

 

The throughput results of the One-PM-Slot case and the Two-PM-Slot case 

are compared in Table 15. The throughput results of the Two-PM-Slot case is slightly 

better or much better than that of the One-PM-Slot case in some of the experiment 

sets because if there is a need for a second PM, it is responded early, so the 

throughput loss due to machine health degradation is avoided. In the Two-PM-Slot 

case, the second PM requirement can be met in the second PM slot of the first shift 

instead of delaying it to start of the next shift. The statistically significant values are 

shown with a star. 

Table 15 : Throughput Improvement % in Two-PM-Slot Case vs. One-PM-Slot Case 

 1 2 3 4 5 6 7 8 9 10 
APMDSS 0.7 -0.1 0.0 1.6 3.6 2.2* 0.2 8.1* 6.6* 3.3* 
Baseline 11.9* -0.1 11.7* 1.6 28.3* 0.0 0.2 0.1 11.6* 0.0 
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RLT 0.7 -0.1 0.0 1.6 3.6 2.4* 0.2 0.3 11.6* 9.4* 
PMDSS 0.7 -0.1 0.0 1.6 28.3* 4.3* 0.2 65.8* 6.6* 4.3* 

 

If there is no room for extra PM in a shift other than one PM slot, then the PM 

can be handled at some opportunistic times that arise during buffer accumulations. 

Consequently, lost throughput due to machine failures can be compensated.  

5.3.2. Model Mix Setting 

For these experiments, we assumed there is only one PM slot. The mix 

consists of 25% of Model I and 75% Model II. PMDSS uses the model mix 

information (100% Model I) of the previous shift. The average throughput 

improvement percentages of APMDSS over other methods are shown in Table 16. 

Values highlighted in bold where APMDSS performs better than the corresponding 

method. The statistically significant improvement values are shown with a star (*). 

Table 16 : Superiority % of APMDSS compared to Other Methods in PM Prioritization 

 1 2 3 4 5 6 7 8 9 10 

Baseline 2.5 0.0 4.3* 0.0 30.5* 0.7 0.0 0.0 0.0 0.8 

RLT 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.8 

PMDSS 0.0 0.0 0.0 0.0 30.5* 0.1 0.0 66.0* 10.1* 0.1 

No PM 123.2* 111.2* 118.3* 146.2* 348.3* 104.8* 114.0* 113225* 166.3* 110.1*
 

5.4. Combined CM, PM, and OM Prioritization in Model Mix Setting 

The experiments here are done using the initial condition information given in  
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Table 17. The RLT values written in red (†) belong to the stations with failure 

alarms. The mix consists of 25% of Model I and 75% Model II, but PMDSS uses the 

model mix information (100% Model I) of the previous shift. 

Table 17 : Experimental Setting for OM Prioritization, †: The stations with failure 
alarms 

Stations Age RLT Initial 
BreakDown 

LHA1 1304 86† 1 

LHA2 4032 2208 0 

LHA3 1077 313 0 

LHA4 2878 3362 0 

LHA5 4124 36† 0 

RHA1 3389 2851 1 

RHA2 8443 4037 0 

RHA3 9703 2777 0 

RHA4 8725 3755 0 

RHA5 9004 3476 0 

Dash 11143 1337 0 

Sta 30 8691 3789 1 

Sta 40 9309 3171 0 

 

Table 18 compares the CM and PM prioritization performance of APMDSS 

with others. APMDSS performs much better in most of the cases. The statistically 

significant improvement values are shown with a star (*).  

Table 18 : Superiority % of APMDSS based CM and PM over Others 

 A B C D E F G H 
FCFS based CM 1.98 2.50 -2.70 1.00 -0.62 -2.86 -4.38 -1.37 
PMDSS based 
CM 1.75 -0.40 2.06 2.16 1.43 0.45 -0.49 -1.96 
FCFS based CM 
+ PM on LHA1 20.45* 17.30* 14.85* 17.10* 18.02* 17.45* 16.80* 17.12*
FCFS based CM 
+ PM on LHA5 3.99* 0.44 -0.75 1.23 -0.52 1.94 -1.13 -3.12 
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PMDSS based 
CM and PM 18.00* 18.53* 16.19* 16.58* 19.76* 19.33* 20.66* 17.02*
 

The hourly buffer averages are calculated at every 30th, 90thminutes, and so 

on with one-hour intervals and are shown in Table 19. 

Table 19 : Hourly Buffer Averages 

  Minutes 

Conveyors 30th 90th 150th 210th 270th 330th 390th 450th 

LHConveyor 1 8.43 6.67 7.57 8.03 7.50 5.07 1.90 0.17 

LHConveyor 2 7.13 5.37 6.70 6.90 4.60 5.13 1.50 0.20 

LHConveyor 3 10.23 7.90 9.33 8.07 8.67 6.27 3.20 1.70 

LHConveyor 4 7.87 7.57 7.53 6.20 8.03 6.57 8.37 8.80 

LHConveyor 5 40.63 34.57 34.20 37.10 37.80 34.83 25.10 13.53 

RHConveyor 1 4.63 6.17 7.40 7.43 4.30 7.97 3.90 8.17 

RHConveyor 2 8.07 10.10 8.80 6.60 9.33 6.07 9.73 10.43 

RHConveyor 3 7.10 5.20 6.07 7.43 5.83 7.83 5.00 5.60 

RHConveyor 4 7.13 7.00 7.03 7.00 6.03 7.03 5.67 7.77 

RHConveyor 5 23.83 10.33 5.20 2.93 6.00 2.73 7.40 16.57 

DashConveyor 16.80 15.80 15.90 15.17 16.57 16.27 17.10 17.23 

 
The OM realization probabilities, that are calculated when 50% and 25% of the 

buffers are kept for safety, are presented in Table 20 and Table 21. 

Table 20 : "At Least 50% Full Buffer" Probabilities 

  Minutes 

Conveyors 30th 90th 150th 210th 270th 330th 390th 450th 

LHConveyor 1 0.87 0.77 0.87 0.93 0.73 0.57 0.17 0.03 

LHConveyor 2 0.80 0.83 0.77 0.70 0.77 0.63 0.27 0.03 

LHConveyor 3 0.97 0.73 0.83 0.80 0.90 0.60 0.33 0.17 

LHConveyor 4 0.97 0.97 1.00 0.93 1.00 1.00 0.97 1.00 

LHConveyor 5 1.00 0.83 0.87 1.00 0.97 0.93 0.60 0.30 

RHConveyor 1 0.27 0.80 0.97 0.93 0.27 1.00 0.27 1.00 

RHConveyor 2 0.77 0.80 0.67 0.30 0.80 0.20 0.90 0.87 

RHConveyor 3 0.60 0.33 0.53 0.80 0.43 0.87 0.33 0.37 
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RHConveyor 4 1.00 0.97 0.97 1.00 1.00 1.00 0.97 1.00 

RHConveyor 5 0.70 0.13 0.00 0.00 0.03 0.03 0.07 0.43 

DashConveyor 1.00 1.00 1.00 0.93 1.00 1.00 1.00 1.00 

 

Table 21 : “At Least 25% Full Buffer” Probabilities 

  Minutes 
Conveyors 30th 90th 150th 210th 270th 330th 390th 450th 

LHConveyor 1 0.93 0.87 0.87 0.93 0.83 0.63 0.23 0.03 

LHConveyor 2 0.93 0.93 0.93 1.00 0.83 0.67 0.27 0.03 

LHConveyor 3 1.00 1.00 1.00 1.00 0.90 0.77 0.37 0.20 

LHConveyor 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

LHConveyor 5 1.00 0.97 0.93 1.00 1.00 0.97 0.73 0.43 

RHConveyor 1 0.93 0.97 1.00 0.97 1.00 1.00 1.00 1.00 

RHConveyor 2 0.80 0.90 1.00 0.97 1.00 1.00 1.00 0.97 

RHConveyor 3 0.87 0.67 0.83 1.00 0.97 1.00 0.93 0.90 

RHConveyor 4 1.00 1.00 0.97 1.00 1.00 1.00 0.97 1.00 

RHConveyor 5 0.77 0.53 0.17 0.00 0.07 0.03 0.10 0.57 

DashConveyor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

It is assumed that a PM of a station takes 30 minutes, so the opportunity 

windows must be at least 30 minutes long. It is also assumed that PM will take place 

in the second half of an hour if the OM realization potential is higher than 50% and it 

improves the throughput. The predicted opportunistic windows are highlighted in 

Table 22, Table 23, and Table 24 

In the experimental setting that is shown in  

Table 17, LHA1 and LHA5 are the stations with failure alarm. APMDSS 

suggests doing PM on LHA5 during the lunch break, which is the only time that is 

allotted for PM. When there are opportunity windows for PM, LHA1 can also be 

maintained.  Doing PM on LHA1 in the opportunistic time window adds another 6.4% 
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improvement in JPH and increases the value added to JPH by PM from 24.2% up to 

30.6%.  

Table 22 : Estimated Opportunity Windows with 50% Safety Level 

Stations 30th 90th 150th 210th 270th 330th 390th 450th 
LHA  1 55.6 30.5 37.5 42.3 39.1 23.7 1.3 0.0 
LHA  2 49.1 27.8 32.8 36.7 34.6 24.4 2.1 0.0 
LHA  3 44.4 26.8 29.0 32.5 35.2 23.9 2.9 0.0 
LHA  4 42.7 29.3 28.4 31.7 37.1 27.7 11.1 5.5 
LHA  5 36.4 23.7 22.9 29.0 30.5 24.2 3.8 0.0 
RHA  1 12.2 2.3 2.2 2.5 0.0 4.5 0.0 7.2 
RHA  2 13.3 0.0 0.0 0.0 0.0 0.0 0.0 0.5 
RHA  3 13.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
RHA  4 18.2 2.5 2.5 2.5 0.4 2.5 0.0 4.1 
RHA  5 12.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Dash 13.5 11.4 11.6 10.0 13.0 12.4 14.1 14.4 
Sta 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sta 40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

Table 23 : Estimated Opportunity Windows with 25% Safety Level 

Stations 30th 90th 150th 210th 270th 330th 390th 450th 
LHA  1 95.0 69.9 76.8 81.7 78.4 63.2 24.4 0.0 
LHA  2 83.3 61.9 66.9 70.8 68.7 58.5 25.2 0.0 
LHA  3 73.8 56.2 58.4 61.9 64.6 53.3 26.0 0.0 
LHA  4 70.5 57.1 56.3 59.6 64.9 55.6 38.9 10.2 
LHA  5 59.5 46.8 46.0 52.1 53.6 47.3 26.9 0.0 
RHA  1 48.8 19.5 21.2 19.5 15.3 20.4 13.6 25.3 
RHA  2 44.8 12.3 11.4 9.7 12.0 9.4 11.1 13.9 
RHA  3 36.9 0.2 2.0 4.9 1.5 5.7 0.0 1.0 
RHA  4 39.7 6.7 6.7 6.7 4.6 6.7 3.9 8.3 
RHA  5 29.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Dash 22.9 20.8 21.0 19.5 22.4 21.8 23.6 23.8 
Sta 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sta 40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

Table 24 : Estimated Opportunity Windows without Safety Buffer 

Stations 30th 90th 150th 210th 270th 330th 390th 450th 
LHA  1 134.3 109.3 116.2 121.0 117.8 102.6 61.4 27.6 
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LHA  2 117.4 96.0 101.1 104.9 102.8 92.7 58.2 28.0 
LHA  3 103.2 85.6 87.8 91.3 94.0 82.7 55.8 28.4 
LHA  4 98.3 84.9 84.1 87.4 92.7 83.4 66.7 43.4 
LHA  5 82.6 69.9 69.1 75.2 76.7 70.4 50.0 25.7 
RHA  1 85.0 60.1 51.0 44.6 46.8 45.0 48.0 79.0 
RHA  2 76.3 48.2 36.5 30.0 38.8 29.3 40.8 62.8 
RHA  3 60.5 28.2 19.2 17.4 20.4 17.8 21.6 42.1 
RHA  4 61.2 32.6 21.9 17.0 21.4 16.7 23.6 47.3 
RHA  5 47.0 18.6 7.8 3.1 9.5 2.6 12.4 31.7 
Dash 32.4 30.3 30.5 28.9 31.9 31.3 33.0 33.3 
Sta 30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Sta 40 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 

6. Conclusions and Future Research 

Effective maintenance management is crucial in automotive manufacturing 

plants, which are often unable to reach throughput targets due to being down for long 

periods with machine breakdowns and overdue repairs. In this paper, we presented a 

DSS, which guides maintenance managers on making corrective and preventive 

maintenance related decisions for the upcoming production shift. It anticipates the 

dynamics (bottlenecks, hourly buffer levels, machine health) of the upcoming shift by 

exploiting the initial condition information. We showed that the initial conditions (i.e., 

machine ages, operational status of machines, buffer levels, and model mix) change 

the bottleneck patterns of the upcoming shift and the use of historic bottleneck data 

for maintenance task prioritization will not always perform well. We did the 

experiments using real data of an automotive body shop. We also used synthetic 

data to investigate the model mix case. The performance of APMDSS in CM, PM, 

and OM prioritization is compared with Li et al.’s (2009) PMDSS and other traditional 

approaches. The APMDSS performed significantly better in many of the cases. 
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In future work, we will extend our DSS to incorporate partial PM so as to 

benefit the most from the opportunity windows since it takes less time than a 

complete PM. Preemptive CM will also be integrated to let higher degree bottlenecks 

resume production without much delay.  
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CHAPTER III: THROUGHPUT ANALYSIS OF A PRODUCTION SYSTEM WITH 

TWO DETERIORATING MACHINES AND A FINITE BUFFER 

 

Abstract  ̶  The paper presents an analytical evaluation of the throughput of an 

identically deteriorating two-machine and a finite buffer production line. Unlike the 

previous studies, the machines degrade with usage and the reliability behavior of 

each machine changes depending on the machine’s health condition. Further, we 

account for cases where failed machines can be either perfectly or imperfectly 

repaired. The state transitions of the system are modeled using Markov chains. 

Geometric failure and repair/maintenance probabilities are defined for each state. 

The performance of the method is compared with existing methods which consider 

only perfect repair. 

1. Introduction 

Unreliable machines, finite buffers, varying processing times, etc. are the 

sources of variability in the production lines that make the throughput evaluation 

unpredictable. On the other hand, an accurate estimation of the production 

performance is important for the design and improvement of manufacturing systems. 

The estimation can be done using either simulation models or analytical models. 

Having an analytical formula is more desirable because the development and 

execution of simulation models can be time consuming. However, exact analytical 

models are only available for small systems such as two machine-one buffer or three 
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machine-two buffer systems with restrictive assumptions. The study of these simple 

systems is not trivial because they have been used as the building blocks for the 

analysis of longer lines or more complex production systems.  

In the paper, we derive an analytical formula for two-machine production lines, 

consisting of two deteriorating machines and a finite buffer. A two-machine system is 

depicted in Figure 1. Several models of two-machine lines have been studied over 

the last 50 years (Li et al., 2006). Gershwin (1994) presents a deterministic analytical 

model for two-machine finite buffer line with two machine states (operational, down) 

and perfect repairs. We relax this model’s assumptions and consider machine health 

degradation and perfect and imperfect repairs simultaneously. The machine 

deterioration is common in industry because the performance of the machines 

degrades over time due to wear out and is the motivation for this study. To the best of 

our knowledge, this paper is the first to analyze the production throughput for 

deteriorating systems.  

Figure 1 : Two-Machine Line 

The paper is organized as follows: Section 2 describes the related literature on 

analytical throughput prediction models. In Section 3, we introduce our proposed 

model and its assumptions. Section 4 presents performance measures of the model. 

In Section 5, we derive compact formulas for calculating the steady-state 

probabilities. The experimental results are presented in Section 6. Finally, we 

conclude the study and propose directions for future research in Section 7. 

M1 M2B 



50 

 

2. Literature Survey 

There have been many studies on the throughput prediction of production 

systems over the last 50 years (See the bibliography by Perros, 1983; literature 

reviews by Dallery and Gershwin, 1992; Papadopoulos and Heavey, 1996; Govil and 

Fu, 1999; and the monographs by Buzacott and Shantikumar, 1993; Gershwin, 1994; 

Altiok, 1997). The earliest and most popular work on a two-machine and a finite 

buffer system is done by Buzacott (1967). Even though there are few other studies 

done earlier than Buzacott’s model, they were difficult to understand by practitioners 

due to their mathematical representation (Lim et al., 1990).  

Throughput performance for both reliable and unreliable systems has been 

analyzed in literature. The two-machine line models with random failures and finite 

buffers can be divided into two categories depending on whether the processing time 

is random or deterministic. Papers which use random processing times assume 

exponential failures, where papers which use deterministic processing times assume 

geometric or Bernoulli failures. Gershwin and Berman (1981) provide a model with 

random processing times. Another classification is based on whether the failures are 

time-dependent or operation-dependent. Li and Meerkov (2003) model the two-

machine systems with time-dependent failures. Our model uses deterministic 

processing times and operation-dependent failures. Earlier models in this category 

are developed by Buzacott (1967) and Gershwin and Schick (1983). Tolio et al. 

(2002) extends the model in Gershwin and Schick (1983) for two-machine lines with 

multiple failure modes.  
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3. Model Description 

Consider a two-machine line as in Figure 1, where M1 and M2 represent the 

machines and B represents the buffer. As raw materials enter the system, they are 

first processed on Machine 1, transferred to Machine 2 passing through the buffer, 

and then leave the system. In the model, we characterize the machine states, which 

represent the health condition of each machine, with different failure and 

repair/maintenance probabilities. All degradation, failure, repair, and maintenance 

probabilities are assumed to be geometrically distributed and service times are 

assumed to be one time unit for each working machine. Buffer level, ݊ can take any 

discrete value from 0 to ܰ. 

Each machine can be in three possible states: 2 representing the “as good as 

new” state, 1 representing the “degraded, but operational” state, and 0 representing 

the “down” state. Machines degrade gradually from 2 to 0 with usage. Figure 2 shows 

the state transition probabilities of Machine 1 and Machine 2. If Machine 1 starts 

processing a part in state 2, there is a probability of ܽ݌ଶ	that it degrades to state 1 

and a probability of ܽ݌ଷ	that it fails in that cycle. If it starts processing in state 1, there 

is a probability of ܽ݌ଵ	that it fails in that cycle. If Machine 1 is down at the beginning of 

a cycle, there is a probability of ܽݎଵ that it is repaired to an “as bad as old” state 

(State 1) or a probability of ܽ߮ that it is repaired to an “as good as new” state (State 

2) in that cycle.	ܽݎଶ is a probability of maintaining Machine 1 from a “degraded, but 

operational” state to an “as good as new” state in that cycle. Same transitions apply 

for Machine 2. A parameter ∝௜ can be used to define the states of Machine ݅ ൌ 1, 2. 
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∝௜ൌ ൝
2,
1,
0,

						as	good	as	new	ሺoperationalሻ
degraded, but	operational
down																																							

 

 

 

Figure 2 : State Transitions of Machine 1 and Machine 2 

In total, we have 13 parameters to characterize the two-machine system: 

,ଵݎܽ ,ଶݎܽ ܽ߮, ,ଵ݌ܽ ,ଶ݌ܽ ,ଵݎܾ 	,ଷ݌ܽ ,ଶݎܾ ܾ߮, ,ଵ݌ܾ ,ଶ݌ܾ  ଷ and ܰ. We can show the state of݌ܾ

the system as ሺ݊, ∝ଵ, ∝ଶሻ, and the probability of being in that state with ܲሺ݊, ∝ଵ, ∝ଶሻ.   

The model is based on the following assumptions: 

 The machines are identical. 

 Service times are one time unit for each of working state of the machines. 

 All degradation, failure, repair, and maintenance probabilities are 

geometrically distributed. 

 The buffer has finite capacity. At most one part enters and one part exits 

the buffer in a time unit. 

 Machine 1 is blocked when the buffer is full and Machine 2 is starved when 

the buffer is empty. 

 Machine 1 is never starved, Machine 2 is never blocked. 
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 Degradations and failures are operation-dependent, i.e., the machines 

degrade or fail by usage. Further, machines do not fail when they are 

starved or blocked.  

 No part is scrapped. 

 Part transfer time is negligible. 

 Machine degradations, failures, and repairs occur at the beginning of time 

units, buffer level changes at the end of time units.  

 The analysis is done under steady-state. 

4. Performance Measures 

The most important performance measure of the two-machine system is the 

throughput or production rate, ܧ௜. It is the parts produced per unit time by machine	݅. 

Because no parts are scrapped or destructed, we have ܧଵ ൌ   .ଶ in steady stateܧ

The probability of blocking, ௕ܲ ൌ ܲሺܰ, 1,0ሻ ൅ ܲሺܰ, 2,0ሻ 
(1)  

The probability of starving, ௦ܲ ൌ ܲሺ0,0,1ሻ ൅ ܲሺ0,0,2ሻ 
(2)  

ଵܧ ൌ ݁ଵሺ1 െ ௕ܲሻ (3)  

ଶܧ ൌ ݁ଶሺ1 െ ௦ܲሻ (4)  

 

The isolated production rate, ݁௜ is the fraction of time that Machine i would be 

in an operational state if it was in isolation and it was never starved or blocked.  

Figure 3 classifies the operational and non-operational states of Machine 2. Same 

classification is also possible for Machine 1.  
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Figure 3 : Operational and Non-operational States of Machine 2 

From the steady-state probabilities of being in each state (0, 1, and 2), we can 

write ݁௜  for Machine i=1, 2 as, 

݁௜ ൌ
௜ݎ

௜ݎ ൅ ௜݌
 

(5)  

ଵݎ ൌ ଵݎܽ ൅ ܽ߮ 
(6)  

ଶݎ ൌ ଵݎܾ ൅ ܾ߮ 
(7)  

ଵ݌ ൌ
ଶ݌ଵሺܽ߮ܽ݌ܽ ൅ ଵݎଷܽ݌ܽ ൅ ଶሻ݌ଵܽݎܽ ൅ ଶݎଵܽݎଷሺܽ݌ܽ ൅ ଵ݌ܽ߮ܽ ൅ ଶሻݎܽ߮ܽ

ଶ݌ܽ߮ܽ ൅ ଵݎଷܽ݌ܽ ൅ ଶ݌ଵܽݎܽ ൅ ଶݎଵܽݎܽ ൅ ଵ݌ܽ߮ܽ ൅ ଶݎܽ߮ܽ
 

(8)  

ଶ݌ ൌ
ଶ݌ଵሺܾܾ߮݌ܾ ൅ ଵݎଷܾ݌ܾ ൅ ଶሻ݌ଵܾݎܾ ൅ ଶݎଵܾݎଷሺܾ݌ܾ ൅ ଵ݌ܾܾ߮ ൅ ଶሻݎܾܾ߮

ଶ݌ܾܾ߮ ൅ ଵݎଷܾ݌ܾ ൅ ଶ݌ଵܾݎܾ ൅ ଶݎଵܾݎܾ ൅ ଵ݌ܾܾ߮ ൅ ଶݎܾܾ߮
 

(9)  

 

Another important performance measure is the average work-in-process 

(buffer level, inventory). The steady-state average buffer level can be written as, 

ത݊ ൌ ෍ ෍ ෍ ݊ܲሺ݊, ∝ଵ, ∝ଶሻ

ଶ

∝భୀ଴

ଶ

∝మୀ଴

ே

௡ୀ଴

 (10)

 

In order to measure the performance of the system, we need to know all the 

steady-state probabilities. 
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5. Solution Methodology 

The system that we are modeling has ܯ	 ൌ 	3ଶሺܰ ൅ 1ሻ states. Therefore, we 

need to solve ܯ linear transition equations in ܯ unknowns to find the steady-state 

probabilities. However, this method becomes impractical when ܰ is large. Gershwin 

(1994) describes a structure of the deterministic processing time model, which we will 

exploit to solve the deteriorating machines case of the two-machine problem. 

According to Gershwin (1994), it is possible that ܲሺ݊, ∝ଵ, ∝ଶሻ is a linear combination 

of ℓ vectors, ߦଵ, … ܯ ℓ, which satisfies at leastߦ െ ℓ of the transition equations.  

Firstly, we will surmise a form of the internal state probabilities. Then, using 

this form, we identify a set of solutions for the resulting internal equations. If a linear 

combination of these solutions also satisfies the boundary equations, then the 

solution procedure becomes complete.   

5.1.  Analysis of Internal Equations 

Internal states include the states in which the buffer level, ݊ has the condition 

of 2 ൑ ݊ ൑ ܰ െ 2. Transition equations for internal states are given in the subsection 

below. 

5.1.1. Internal equations for ૛ ൑ ࢔ ൑ ࡺ െ ૛ 

ܲሺ݊, 0,0ሻ ൌ ሺ1 െ ଵݎܽ െ ܽ߮ሻሺ1 െ ଵݎܾ െ ܾ߮ሻܲሺ݊, 0,0ሻ ൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾ݌ଵܲሺ݊, 0,1ሻ

൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾ݌ଷܲሺ݊, 0,2ሻ ൅ ଵሺ1݌ܽ െ ଵݎܾ െ ܾ߮ሻܲሺ݊, 1,0ሻ

൅ ,ଵܲሺ݊݌ଵܾ݌ܽ 1,1ሻ ൅ ,ଷܲሺ݊݌ଵܾ݌ܽ 1,2ሻ ൅ ଷሺ1݌ܽ െ ଵݎܾ െ ܾ߮ሻܲሺ݊, 2,0ሻ

൅ ,ଵܲሺ݊݌ଷܾ݌ܽ 2,1ሻ ൅ ,ଷܲሺ݊݌ଷܾ݌ܽ 2,2ሻ 

(11)
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ܲሺ݊, 0,1ሻ ൌ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾݎଵܲሺ݊ ൅ 1,0,0ሻ ൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻሺ1 െ ଶݎܾ െ ଵሻܲሺ݊݌ܾ ൅ 1,0,1ሻ

൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾ݌ଶܲሺ݊ ൅ 1,0,2ሻ ൅ ଵܲሺ݊ݎଵܾ݌ܽ ൅ 1,1,0ሻ

൅ ଵሺ1݌ܽ െ ଶݎܾ െ ଵሻܲሺ݊݌ܾ ൅ 1,1,1ሻ ൅ ଶܲሺ݊݌ଵܾ݌ܽ ൅ 1,1,2ሻ

൅ ଵܲሺ݊ݎଷܾ݌ܽ ൅ 1,2,0ሻ ൅ ଷሺ1݌ܽ െ ଶݎܾ െ ଵሻܲሺ݊݌ܾ ൅ 1,2,1ሻ

൅ ଶܲሺ݊݌ଷܾ݌ܽ ൅ 1,2,2ሻ 

(12)

  

ܲሺ݊, 0,2ሻ ൌ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾ߮ܲሺ݊ ൅ 1,0,0ሻ ൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾݎଶܲሺ݊ ൅ 1,0,1ሻ

൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻሺ1 െ ଶ݌ܾ െ ଷሻܲሺ݊݌ܾ ൅ 1,0,2ሻ ൅ ଵܾ߮ܲሺ݊݌ܽ ൅ 1,1,0ሻ

൅ ଶܲሺ݊ݎଵܾ݌ܽ ൅ 1,1,1ሻ ൅ ଵሺ1݌ܽ െ ଶ݌ܾ െ ଷሻܲሺ݊݌ܾ ൅ 1,1,2ሻ

൅ ଷܾ߮ܲሺ݊݌ܽ ൅ 1,2,0ሻ ൅ ଶܲሺ݊ݎଷܾ݌ܽ ൅ 1,2,1ሻ ൅ ଷሺ1݌ܽ െ ଶ݌ܾ

െ ଷሻܲሺ݊݌ܾ ൅ 1,2,2ሻ 

(13)

  

ܲሺ݊, 1,0ሻ ൌ ଵሺ1ݎܽ െ ଵݎܾ െ ܾ߮ሻܲሺ݊ െ 1,0,0ሻ ൅ ଵܲሺ݊݌ଵܾݎܽ െ 1,0,1ሻ ൅ ଷܲሺ݊݌ଵܾݎܽ െ 1,0,2ሻ

൅ ሺ1 െ ଶݎܽ െ ଵሻሺ1݌ܽ െ ଵݎܾ െ ܾ߮ሻܲሺ݊ െ 1,1,0ሻ

൅ ሺ1 െ ଶݎܽ െ ଵܲሺ݊݌ଵሻܾ݌ܽ െ 1,1,1ሻ ൅ ሺ1 െ ଶݎܽ െ ଷܲሺ݊݌ଵሻܾ݌ܽ െ 1,1,2ሻ

൅ ଶሺ1݌ܽ െ ଵݎܾ െ ܾ߮ሻܲሺ݊ െ 1,2,0ሻ ൅ ଵܲሺ݊݌ଶܾ݌ܽ െ 1,2,1ሻ

൅ ଷܲሺ݊݌ଶܾ݌ܽ െ 1,2,2ሻ 

(14)

  

ܲሺ݊, 1,1ሻ ൌ ,ଵܲሺ݊ݎଵܾݎܽ 0,0ሻ ൅ ଵሺ1ݎܽ െ ଶݎܾ െ ,ଵሻܲሺ݊݌ܾ 0,1ሻ ൅ ,ଶܲሺ݊݌ଵܾݎܽ 0,2ሻ

൅ ሺ1 െ ଶݎܽ െ ,ଵܲሺ݊ݎଵሻܾ݌ܽ 1,0ሻ ൅ ሺ1 െ ଶݎܽ െ ଵሻሺ1݌ܽ െ ଶݎܾ െ ,ଵሻܲሺ݊݌ܾ 1,1ሻ

൅ ሺ1 െ ଶݎܽ െ ,ଶܲሺ݊݌ଵሻܾ݌ܽ 1,2ሻ ൅ ,ଵܲሺ݊ݎଶܾ݌ܽ 2,0ሻ

൅ ଶሺ1݌ܽ െ ଶݎܾ െ ,ଵሻܲሺ݊݌ܾ 2,1ሻ ൅ ,ଶܲሺ݊݌ଶܾ݌ܽ 2,2ሻ 

(15)
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ܲሺ݊, 1,2ሻ ൌ ,ଵܾ߮ܲሺ݊ݎܽ 0,0ሻ ൅ ,ଶܲሺ݊ݎଵܾݎܽ 0,1ሻ ൅ ଵሺ1ݎܽ െ ଶ݌ܾ െ ,ଷሻܲሺ݊݌ܾ 0,2ሻ

൅ ሺ1 െ ଶݎܽ െ ,ଵሻܾ߮ܲሺ݊݌ܽ 1,0ሻ ൅ ሺ1 െ ଶݎܽ െ ,ଶܲሺ݊ݎଵሻܾ݌ܽ 1,1ሻ

൅ ሺ1 െ ଶݎܽ െ ଵሻሺ1݌ܽ െ ଶ݌ܾ െ ,ଷሻܲሺ݊݌ܾ 1,2ሻ ൅ ,ଶܾ߮ܲሺ݊݌ܽ 2,0ሻ

൅ ,ଶܲሺ݊ݎଶܾ݌ܽ 2,1ሻ ൅ ଶሺ1݌ܽ െ ଶ݌ܾ െ ,ଷሻܲሺ݊݌ܾ 2,2ሻ 

(16)

 

ܲሺ݊, 2,0ሻ ൌ ܽ߮ሺ1 െ ଵݎܾ െ ܾ߮ሻܲሺ݊ െ 1,0,0ሻ ൅ ଵܲሺ݊݌ܾ߮ܽ െ 1,0,1ሻ ൅ ଷܲሺ݊݌ܾ߮ܽ െ 1,0,2ሻ

൅ ଶሺ1ݎܽ െ ଵݎܾ െ ܾ߮ሻܲሺ݊ െ 1,1,0ሻ ൅ ଵܲሺ݊݌ଶܾݎܽ െ 1,1,1ሻ

൅ ଷܲሺ݊݌ଶܾݎܽ െ 1,1,2ሻ ൅ ሺ1 െ ଶ݌ܽ െ ଷሻሺ1݌ܽ െ ଵݎܾ െ ܾ߮ሻܲሺ݊ െ 1,2,0ሻ ൅ ሺ1

െ ଶ݌ܽ െ ଵܲሺ݊݌ଷሻܾ݌ܽ െ 1,2,1ሻ ൅ ሺ1 െ ଶ݌ܽ െ ଷܲሺ݊݌ଷሻܾ݌ܽ െ 1,2,2ሻ 

(17)

 

ܲሺ݊, 2,1ሻ ൌ ,ܲሺ݊	ଵݎܾ߮ܽ 0,0ሻ ൅ ܽ߮ሺ1 െ ଶݎܾ െ ଵ݌ܾ ሻܲሺ݊, 0,1ሻ ൅ ଶ݌ܾ߮ܽ ܲሺ݊, 0,2ሻ

൅ ,ܲሺ݊	ଵݎܾ	ଶݎܽ 1,0ሻ ൅ ൅ܽݎଶ	ሺ1 െ ଶݎܾ െ ,ሻܲሺ݊	ଵ݌ܾ 1,1ሻ ൅ ,ܲሺ݊	ଶ݌ܾ	ଶݎܽ 1,2ሻ

൅ ሺ1 െ ଶ݌ܽ െ ,ܲሺ݊	ଵݎଷሻܾ݌ܽ 2,0ሻ ൅ ሺ1 െ ଶ݌ܽ െ ሻሺ1	ଷ݌ܽ െ ଶݎܾ

െ ,ሻܲሺ݊	ଵ݌ܾ 2,1ሻ ൅ ሺ1 െ ଶ݌ܽ െ ଶ݌ଷሻܾ݌ܽ ܲሺ݊, 2,2ሻ 

(18)

  

ܲሺ݊, 2,2ሻ ൌ ܾܽ߮߮ܲሺ݊, 0,0ሻ ൅ ,ଶܲሺ݊ݎܾ߮ܽ 0,1ሻ ൅ ܽ߮ሺ1 െ ,ଶሻܲሺ݊݌ܾ 0,2ሻ ൅ ,ଶܾ߮ܲሺ݊ݎܽ 1,0ሻ

൅ ,ଶܲሺ݊ݎଶܾݎܽ 1,1ሻ ൅ ଶሺ1ݎܽ െ ଶ݌ܾ െ ,ଷሻܲሺ݊݌ܾ 1,2ሻ ൅ ሺ1 െ ଶ݌ܽ

െ ,ଷሻܾ߮ܲሺ݊݌ܽ 2,0ሻ ൅ ሺ1 െ ଶ݌ܽ െ ,ଶܲሺ݊ݎଷሻܾ݌ܽ 2,1ሻ ൅ ሺ1 െ ଶ݌ܽ െ ଷሻሺ1݌ܽ

െ ଶ݌ܾ െ ,ଷሻܲሺ݊݌ܾ 2,2ሻ 

(19)

 

5.1.2. Solution of the Internal Equations 

The steady-state probability distribution for internal states can be shown as, 

ܲሺ݊, ∝ଵ, ∝ଶሻ ൌ ∑ ,௝ሺ݊ߦ௝ܥ ∝ଵ, ∝ଶሻ
ℓ
௝ୀଵ , where 
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,ሺ݊ߦ  ∝ଵ, ∝ଶሻ ൌ ܺ௡߶ሺ∝ଵ, ∝ଶሻ.  If we substitute ߦሺ݊, ∝ଵ, ∝ଶሻ with ܺ௡߶ሺ∝ଵ, ∝ଶሻ in 

the internal equation, we get the following equations: 

߶ሺ0,0ሻ ൌ ሺ1 െ ଵݎܽ െ ܽ߮ሻሺ1 െ ଵݎܾ െ ܾ߮ሻ߶ሺ0,0ሻ ൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾ݌ଵ߶ሺ0,1ሻ

൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾ݌ଷ߶ሺ0,2ሻ ൅ ଵሺ1݌ܽ െ ଵݎܾ െ ܾ߮ሻ߶ሺ1,0ሻ ൅ ଵ߶ሺ1,1ሻ݌ଵܾ݌ܽ

൅ ଷ߶ሺ1,2ሻ݌ଵܾ݌ܽ ൅ ଷሺ1݌ܽ െ ଵݎܾ െ ܾ߮ሻ߶ሺ2,0ሻ ൅ ଵ߶ሺ2,1ሻ݌ଷܾ݌ܽ

൅  ଷ߶ሺ2,2ሻ݌ଷܾ݌ܽ

(20)

  

ܺିଵ߶ሺ0,1ሻ ൌ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾݎଵ߶ሺ0,0ሻ ൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻሺ1 െ ଶݎܾ െ ଵሻ߶ሺ0,1ሻ݌ܾ

൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾ݌ଶ߶ሺ0,2ሻ ൅ ଵ߶ሺ1,0ሻݎଵܾ݌ܽ ൅ ଵሺ1݌ܽ െ ଶݎܾ െ ଵሻ߶ሺ1,1ሻ݌ܾ

൅ ଶ߶ሺ1,2ሻ݌ଵܾ݌ܽ ൅ ଵ߶ሺ2,0ሻݎଷܾ݌ܽ ൅ ଷሺ1݌ܽ െ ଶݎܾ െ ଵሻ߶ሺ2,1ሻ݌ܾ

൅  ଶ߶ሺ2,2ሻ݌ଷܾ݌ܽ

(21)

  

ܺିଵ߶ሺ0,2ሻ ൌ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾ߮߶ሺ0,0ሻ ൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾݎଶ߶ሺ0,1ሻ ൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻሺ1

െ ଶ݌ܾ െ ଷሻ߶ሺ0,2ሻ݌ܾ ൅ ଵܾ߮߶ሺ1,0ሻ݌ܽ ൅ ଶ߶ሺ1,1ሻݎଵܾ݌ܽ ൅ ଵሺ1݌ܽ െ ଶ݌ܾ

െ ଷሻ߶ሺ1,2ሻ݌ܾ ൅ ଷܾ߮߶ሺ2,0ሻ݌ܽ ൅ ଶ߶ሺ2,1ሻݎଷܾ݌ܽ ൅ ଷሺ1݌ܽ െ ଶ݌ܾ

െ  ଷሻ߶ሺ2,2ሻ݌ܾ

(22)

  

ܺ߶ሺ1,0ሻ ൌ ଵሺ1ݎܽ െ ଵݎܾ െ ܾ߮ሻ߶ሺ0,0ሻ ൅ ଵ߶ሺ0,1ሻ݌ଵܾݎܽ ൅ ଷ߶ሺ0,2ሻ݌ଵܾݎܽ

൅ ሺ1 െ ଶݎܽ െ ଵሻሺ1݌ܽ െ ଵݎܾ െ ܾ߮ሻ߶ሺ1,0ሻ ൅ ሺ1 െ ଶݎܽ െ ଵ߶ሺ1,1ሻ݌ଵሻܾ݌ܽ

൅ ሺ1 െ ଶݎܽ െ ଷ߶ሺ1,2ሻ݌ଵሻܾ݌ܽ ൅ ଶሺ1݌ܽ െ ଵݎܾ െ ܾ߮ሻ߶ሺ2,0ሻ ൅ ଵ߶ሺ2,1ሻ݌ଶܾ݌ܽ

൅  ଷ߶ሺ2,2ሻ݌ଶܾ݌ܽ

(23)
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߶ሺ1,1ሻ ൌ ଵ߶ሺ0,0ሻݎଵܾݎܽ ൅ ଵሺ1ݎܽ െ ଶݎܾ െ ଵሻ߶ሺ0,1ሻ݌ܾ ൅ ଶ߶ሺ0,2ሻ݌ଵܾݎܽ

൅ ሺ1 െ ଶݎܽ െ ଵ߶ሺ1,0ሻݎଵሻܾ݌ܽ ൅ ሺ1 െ ଶݎܽ െ ଵሻሺ1݌ܽ െ ଶݎܾ െ ଵሻ߶ሺ1,1ሻ݌ܾ

൅ ሺ1 െ ଶݎܽ െ ଶ߶ሺ1,2ሻ݌ଵሻܾ݌ܽ ൅ ଵ߶ሺ2,0ሻݎଶܾ݌ܽ

൅ ଶሺ1݌ܽ െ ଶݎܾ െ ଵሻ߶ሺ2,1ሻ݌ܾ ൅  ଶ߶ሺ2,2ሻ݌ଶܾ݌ܽ

(24)

 
 

߶ሺ1,2ሻ ൌ ଵܾ߮߶ሺ0,0ሻݎܽ ൅ ଶ߶ሺ0,1ሻݎଵܾݎܽ ൅ ଵሺ1ݎܽ െ ଶ݌ܾ െ ଷሻ߶ሺ0,2ሻ݌ܾ

൅ ሺ1 െ ଶݎܽ െ ଵሻܾ߮߶ሺ1,0ሻ݌ܽ ൅ ሺ1 െ ଶݎܽ െ ଶ߶ሺ1,1ሻݎଵሻܾ݌ܽ

൅ ሺ1 െ ଶݎܽ െ ଵሻሺ1݌ܽ െ ଶ݌ܾ െ ଷሻ߶ሺ1,2ሻ݌ܾ ൅ ଶܾ߮߶ሺ2,0ሻ݌ܽ ൅ ଶ߶ሺ2,1ሻݎଶܾ݌ܽ

൅ ଶሺ1݌ܽ െ ଶ݌ܾ െ  ଷሻ߶ሺ2,2ሻ݌ܾ

(25)

 

ܺ߶ሺ2,0ሻ ൌ ܽ߮ሺ1 െ ଵݎܾ െ ܾ߮ሻ߶ሺ0,0ሻ ൅ ଵ߶ሺ0,1ሻ݌ܾ߮ܽ ൅ ଷ߶ሺ0,2ሻ݌ܾ߮ܽ

൅ ଶሺ1ݎܽ െ ଵݎܾ െ ܾ߮ሻ߶ሺ1,0ሻ ൅ ଵ߶ሺ1,1ሻ݌ଶܾݎܽ ൅ ଷ߶ሺ1,2ሻ݌ଶܾݎܽ ൅ ሺ1 െ ଶ݌ܽ

െ ଷሻሺ1݌ܽ െ ଵݎܾ െ ܾ߮ሻ߶ሺ2,0ሻ ൅ ሺ1 െ ଶ݌ܽ െ ଵ߶ሺ2,1ሻ݌ଷሻܾ݌ܽ ൅ ሺ1 െ ଶ݌ܽ

െ  ଷ߶ሺ2,1ሻ݌ଷሻܾ݌ܽ

(26)

 

߶ሺ2,1ሻ ൌ ߶ሺ0,0ሻ	ଵݎܾ߮ܽ ൅ ܽ߮ሺ1 െ ଶݎܾ െ ଵ݌ܾ ሻ߶ሺ0,1ሻ ൅ ଶ݌ܾ߮ܽ ߶ሺ0,2ሻ ൅ ߶ሺ1,0ሻ	ଵݎଶܾݎܽ

൅ ሺ1	ଶݎܽ െ ଶݎܾ െ ሻ߶ሺ1,1ሻ	ଵ݌ܾ ൅ ଶ߶ሺ1,2ሻ݌ܾ	ଶݎܽ

൅ ሺ1 െ ଶ݌ܽ െ ߶ሺ2,0ሻ	ଵݎଷሻܾ݌ܽ ൅ ሺ1 െ ଶ݌ܽ െ ଷሻሺ1݌ܽ െ ଶݎܾ െ ሻ߶ሺ2,1ሻ	ଵ݌ܾ

൅ ሺ1 െ ଶ݌ܽ െ ଶ݌ଷሻܾ݌ܽ ߶ሺ2,2ሻ 

(27)

  

߶ሺ2,2ሻ ൌ ܾܽ߮߮߶ሺ0,0ሻ ൅ ଶ߶ሺ0,1ሻݎܾ߮ܽ ൅ ܽ߮ሺ1 െ ଶሻ߶ሺ0,2ሻ݌ܾ ൅ ଶܾ߮߶ሺ1,0ሻݎܽ

൅ ଶ߶ሺ1,1ሻݎଶܾݎܽ ൅ ଶሺ1ݎܽ െ ଶ݌ܾ െ ଷሻ߶ሺ1,2ሻ݌ܾ ൅ ሺ1 െ ଶ݌ܽ െ ଷሻܾ߮߶ሺ2,0ሻ݌ܽ

൅ ሺ1 െ ଶ݌ܽ െ ଶ߶ሺ2,1ሻݎଷሻܾ݌ܽ ൅ ሺ1 െ ଶ݌ܽ െ ଷሻሺ1݌ܽ െ ଶ݌ܾ െ  ଷሻ߶ሺ2,2ሻ݌ܾ

(28)

 

Now, we surmise that ߶ሺ∝ଵ, ∝ଶሻ has the following form: 



60 

 

߶ሺ0,0ሻ ൌ 1 

߶ሺ1,0ሻ ൌ ଵܻ 

߶ሺ0,1ሻ ൌ ଶܻ 

߶ሺ2,0ሻ ൌ ଷܻ 

߶ሺ0,2ሻ ൌ ସܻ 

 

߶ሺ1,1ሻ ൌ ଵܻ ଶܻ 

߶ሺ1,2ሻ ൌ ଵܻ ସܻ 

߶ሺ2,1ሻ ൌ ଶܻ ଷܻ 

߶ሺ2,2ሻ ൌ ଷܻ ସܻ 

Substituting these expressions into equations (20)-(28) and factoring, we 

obtain, 

1 ൌ ሺ1 െ ଵݎܽ െ ܽ߮ ൅ ଵ݌ܽ ଵܻ ൅ ଷ݌ܽ ଷܻሻሺ1 െ ଵݎܾ െ ܾ߮ ൅ ଵ݌ܾ ଶܻ ൅ ଷ݌ܾ ସܻሻ (29)

ܺ ଵܻ ൌ ሺܽݎଵ ൅ ሺ1 െ ଶݎܽ െ ଵሻ݌ܽ ଵܻ ൅ ଶ݌ܽ ଷܻሻሺ1 െ ଵݎܾ െ ܾ߮ ൅ ଵ݌ܾ ଶܻ ൅ ଷ݌ܾ ସܻሻ (30)

ܺିଵ ଶܻ ൌ ሺ1 െ ଵݎܽ െ ܽ߮ ൅ ଵ݌ܽ ଵܻ ൅ ଷ݌ܽ ଷܻሻሺܾݎଵ ൅ ሺ1 െ ଶݎܾ െ ଵሻ݌ܾ ଶܻ ൅ ଶ݌ܾ ସܻሻ (31)

ܺ ଷܻ ൌ ሺܽ߮ ൅ ଶݎܽ ଵܻ ൅ ሺ1 െ ଶ݌ܽ െ ଷሻ݌ܽ ଷܻሻሺ1 െ ଵݎܾ െ ܾ߮ ൅ ଵ݌ܾ ଶܻ ൅ ଷ݌ܾ ସܻሻ (32)

ܺିଵ ସܻ ൌ ሺ1 െ ଵݎܽ െ ܽ߮ ൅ ଵ݌ܽ ଵܻ ൅ ଷ݌ܽ ଷܻሻሺܾ߮ ൅ ଶݎܾ ଶܻ ൅ ሺ1 െ ଶ݌ܾ െ ଷሻ݌ܾ ସܻሻ  (33)

ଵܻ ଶܻ ൌ ሺܽݎଵ ൅ ሺ1 െ ଶݎܽ െ ଵሻ݌ܽ ଵܻ ൅ ଶ݌ܽ ଷܻሻሺܾݎଵ ൅ ሺ1 െ ଶݎܾ െ ଵሻ݌ܾ ଶܻ ൅ ଶ݌ܾ ସܻሻ  (34)

ଵܻ ସܻ ൌ ሺܽݎଵ ൅ ሺ1 െ ଶݎܽ െ ଵሻ݌ܽ ଵܻ ൅ ଶ݌ܽ ଷܻሻሺܾ߮ ൅ ଶݎܾ ଶܻ ൅ ሺ1 െ ଶ݌ܾ െ ଷሻ݌ܾ ସܻሻ  (35)

ଶܻ ଷܻ ൌ ሺܽ߮ ൅ ଶݎܽ ଵܻ ൅ ሺ1 െ ଶ݌ܽ െ ଷሻ݌ܽ ଷܻሻሺܾݎଵ ൅ ሺ1 െ ଶݎܾ െ ଵሻ݌ܾ ଶܻ ൅ ଶ݌ܾ ସܻሻ  (36)

ଷܻ ସܻ ൌ ሺܽ߮ ൅ ଶݎܽ ଵܻ ൅ ሺ1 െ ଶ݌ܽ െ ଷሻ݌ܽ ଷܻሻሺܾ߮ ൅ ଶݎܾ ଶܻ ൅ ሺ1 െ ଶ݌ܾ െ ଷሻ݌ܾ ସܻሻ  (37)

 

To find out the solutions for ܺ, ଵܻ, ଶܻ, ଷܻ, and ସܻ, we need to solve the nonlinear 

system of equations in (29)-(37). There are four solution sets to the problem. To 

simplify the problem, we write the following equalities by exploiting the common 

factors in equations (29)-(37). Three of the solutions are obtained using the equalities 

below: 
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ܺିଵ ൌ ሺ1 െ ଵݎܽ െ ܽ߮ ൅ ଵ݌ܽ ଵܻ ൅ ଷ݌ܽ ଷܻሻ݇ଵ 

ܺ ൌ ሺ1 െ ଵݎܾ െ ܾ߮ ൅ ଵ݌ܾ ଶܻ ൅ ଷ݌ܾ ସܻሻ݇ଶ 

ଵܻ ൌ ሺܽݎଵ ൅ ሺ1 െ ଶݎܽ െ ଵሻ݌ܽ ଵܻ ൅ ଶ݌ܽ ଷܻሻ݇ଵ 

ଶܻ ൌ ሺܾݎଵ ൅ ሺ1 െ ଶݎܾ െ ଵሻ݌ܾ ଶܻ ൅ ଶ݌ܾ ସܻሻ݇ଶ 

ଷܻ ൌ ሺܽ߮ ൅ ଶݎܽ ଵܻ ൅ ሺ1 െ ଶ݌ܽ െ ଷሻ݌ܽ ଷܻሻ݇ଵ 

ସܻ ൌ ሺܾ߮ ൅ ଶݎܾ ଶܻ ൅ ሺ1 െ ଶ݌ܾ െ ଷሻ݌ܾ ସܻሻ݇ଶ 

From equation (29), 

݇ଵ݇ଶ ൌ 1  

When ݇ଵଵ ൌ ݇ଶଵ ൌ 1, the first solution set for equations (29)-(37) will be, 

  

ଵܻଵ ൌ 	
ଷ݌ଵܽݎܽ ൅ ଶ݌ܽ߮ܽ ൅ ଶ݌ଵܽݎܽ
ଷ݌ଵܽ݌ܽ ൅ ଶݎଷܽ݌ܽ ൅ ଶ݌ଵܽ݌ܽ

 

ଶܻଵ ൌ 	
ଷ݌ଵܾݎܾ ൅ ଶ݌ܾܾ߮ ൅ ଶ݌ଵܾݎܾ
ଷ݌ଵܾ݌ܾ ൅ ଶݎଷܾ݌ܾ ൅ ଶ݌ଵܾ݌ܾ

 

ଷܻଵ ൌ 	
ଵ݌ܽ߮ܽ ൅ ଶݎܽ߮ܽ ൅ ଶݎଵܽݎܽ
ଵ݌ଷܽ݌ܽ ൅ ଶݎଷܽ݌ܽ ൅ ଶ݌ଵܽ݌ܽ

 

ସܻଵ ൌ 	
ଵ݌ܽ߮ܽ ൅ ଶݎܽ߮ܽ ൅ ଶݎଵܽݎܽ
ଵ݌ଷܾ݌ܾ ൅ ଶݎଷܾ݌ܾ ൅ ଶ݌ଵܾ݌ܾ

 

ଵܺ ൌ 1 

(38)

Another solution set is, 

ଵܻଶ ൌ 	 ሺሺܽ߮ܽ݌ଶ െ ଵݎܽ ൅ ଶ݌ܽ	ଵݎܽ ൅ ଵݎܽ ଷ݌ܽ ሻ݇ଵ
ଶ ൅ ݇ଵ ଵሻ/ሺ1ݎܽ

൅ ሺ1 െ ଶݎܽ െ ଶ݌ܽ ൅ ଵ݌ܽ	ଶ݌ܽ െ ଵ݌ܽ െ ଷ݌ܽ ൅ ଶݎܽ	ଷ݌ܽ ൅ ሻ݇ଵ	ଵ݌ܽ	ଷ݌ܽ
ଶ

൅ ሺെ2 ൅ ଶݎܽ ൅ ଵ݌ܽ ൅ ଷ݌ܽ ൅  ሻ݇ଵሻ	ଶ݌ܽ

 

(39)
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ଶܻଶ ൌ 	 ሺሺܾܾ߮݌ଶ െ ଵݎܾ ൅ ଶ݌ܾ	ଵݎܾ ൅ ଵݎܾ ଷ݌ܾ ሻ݇ଶ
ଶ ൅ ݇ଶ ଵሻ/ሺ1ݎܾ

൅ ሺ1 െ ଶݎܾ െ ଶ݌ܾ ൅ ଵ݌ܾ	ଶ݌ܾ െ ଵ݌ܾ െ ଷ݌ܾ ൅ ଶݎܾ	ଷ݌ܾ ൅ ሻ݇ଶ	ଵ݌ܾ	ଷ݌ܾ
ଶ

൅ ሺെ2 ൅ ଶݎܾ ൅ ଵ݌ܾ ൅ ଷ݌ܾ ൅  ሻ݇ଶሻ	ଶ݌ܾ

 

ଷܻଶ ൌ 	 ሺሺܽݎଶܽ߮ ൅ ଵݎଶܽݎܽ ൅ ଵܽ߮݌ܽ െ ܽ߮ሻ݇ଵ
ଶ ൅ ݇ଵܽ߮ሻ/ሺ1

൅ ሺ1 െ ଶݎܽ െ ଶ݌ܽ ൅ ଵ݌ଶܽ݌ܽ െ ଵ݌ܽ െ ଷ݌ܽ ൅ ଶݎଷܽ݌ܽ ൅ ଵሻ݇ଵ݌ଷܽ݌ܽ
ଶ

൅ ሺെ2 ൅ ଶݎܽ ൅ ଵ݌ܽ ൅ ଷ݌ܽ ൅  ଶሻ݇ଵሻ݌ܽ

 

ସܻଶ ൌ ሺሺܾݎଶܾ߮ ൅ ଵݎଶܾݎܾ ൅ ܾ߮	ଵ݌ܾ െ ܾ߮ሻ݇ଶ
ଶ ൅ ݇ଶܾ߮ሻ/ሺ1

൅ ሺ1 െ ଶݎܾ െ ଶ݌ܾ ൅ ଵ݌ଶܾ݌ܾ െ ଵ݌ܾ െ ଷ݌ܾ ൅ ଶݎܾ	ଷ݌ܾ ൅ ଵሻ݇ଶ݌ܾ	ଷ݌ܾ
ଶ

൅ ሺെ2 ൅ ଶݎܾ ൅ ଵ݌ܾ ൅ ଷ݌ܾ ൅  ଶሻ݇ଶሻ݌ܾ

 

ܺଶ ൌ
ଶܻଶ ൅ ସܻଶ

ଵܻଶ ൅ ଷܻଶ
 

 

݇ଵଶ

ൌ

1
6 ൫36	ܧܥܤ െ ଶܧܣ	108 െ ଷܥ	8 ൅ ܧଷܤ	4√	3	√12 െ ଶܥଶܤ െ ܣܧܥܤ	18 ൅ ଶܧଶܣ	27 ൅ ൯ܧ	ଷܥܣ	4

ܧ

െ

2
3 ሺ3	ܧܤ െ ଶሻܥ

൫36	ܧܥܤ െ ଶܧܣ	108 െ ଷܥ	8 ൅ ܧଷܤ	4√	3	√12 െ ଶܥଶܤ െ ܣܧܥܤ	18 ൅ ଶܧଶܣ	27 ൅ ൯ܧ	ଷܥܣ	4
ଵ
ଷ

െ
1
3
ܥ
ܧ

 

݇ଶଶ ൌ
1
݇ଵଶ
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Explicit expressions for ܣ, ,ܤ  are given in Appendix I. The third	ܧ and ,ܥ

solution set is, 

 

ଵܻଷ ൌ 	 ሺሺܽ߮ܽ݌ଶ െ ଵݎܽ ൅ ଶ݌ܽ	ଵݎܽ ൅ ଵݎܽ ଷ݌ܽ ሻ݇ଶ
ଶ ൅ ݇ଶܽݎଵሻ/ሺ1

൅ ሺ1 െ ଶݎܽ െ ଶ݌ܽ ൅ ଵ݌ܽ	ଶ݌ܽ െ ଵ݌ܽ െ ଷ݌ܽ ൅ ଶݎܽ	ଷ݌ܽ ൅ ሻ݇ଶ	ଵ݌ܽ	ଷ݌ܽ
ଶ

൅ ሺെ2 ൅ ଶݎܽ ൅ ଵ݌ܽ ൅ ଷ݌ܽ ൅  ሻ݇ଶሻ	ଶ݌ܽ

 

ଶܻଷ ൌ 	 ሺሺܾܾ߮݌ଶ െ ଵݎܾ ൅ ଶ݌ܾ	ଵݎܾ ൅ ሻ݇ଵ	ଷ݌ܾ	ଵݎܾ
ଶ ൅ ݇ଵܾݎଵሻ/ሺ1

൅ ሺ1 െ ଶݎܾ െ ଶ݌ܾ ൅ ଵ݌ܾ	ଶ݌ܾ െ ଵ݌ܾ െ ଷ݌ܾ ൅ ଶݎܾ	ଷ݌ܾ ൅ ሻ݇ଵ	ଵ݌ܾ	ଷ݌ܾ
ଶ

൅ ሺെ2 ൅ ଶݎܾ ൅ ଵ݌ܾ ൅ ଷ݌ܾ ൅  ሻ݇ଵሻ	ଶ݌ܾ

 

ଷܻଷ ൌ 	 ሺሺܽݎଶܽ߮ ൅ ଵݎଶܽݎܽ ൅ ଵܽ߮݌ܽ െ ܽ߮ሻ݇ଶ
ଶ ൅ ݇ଶܽ߮ሻ/ሺ1

൅ ሺ1 െ ଶݎܽ െ ଶ݌ܽ ൅ ଵ݌ଶܽ݌ܽ െ ଵ݌ܽ െ ଷ݌ܽ ൅ ଶݎଷܽ݌ܽ ൅ ଵሻ݇ଶ݌ଷܽ݌ܽ
ଶ

൅ ሺെ2 ൅ ଶݎܽ ൅ ଵ݌ܽ ൅ ଷ݌ܽ ൅  ଶሻ݇ଶሻ݌ܽ

 

ସܻଷ ൌ ሺሺܾݎଶܾ߮ ൅ ଵݎଶܾݎܾ ൅ ܾ߮	ଵ݌ܾ െ ܾ߮ሻ݇ଵ
ଶ ൅ ݇ଵܾ߮ሻ/ሺ1

൅ ሺ1 െ ଶݎܾ െ ଶ݌ܾ ൅ ଵ݌ଶܾ݌ܾ െ ଵ݌ܾ െ ଷ݌ܾ ൅ ଶݎܾ	ଷ݌ܾ ൅ ଵሻ݇ଵ݌ܾ	ଷ݌ܾ
ଶ

൅ ሺെ2 ൅ ଶݎܾ ൅ ଵ݌ܾ ൅ ଷ݌ܾ ൅  ଶሻ݇ଵሻ݌ܾ

 

ܺଷ ൌ
ଶܻଷ ൅ ସܻଷ

ଵܻଷ ൅ ଷܻଷ
 

݇ଵଷ ൌ ݇ଶଶ 

݇ଶଷ ൌ ݇ଵଶ	

 

(40)

Finally the fourth solution set is, 
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ଵܻସ ൌ 	 ൬
ଵݔ

ሺݔଵ ൅ ଶݔ
൰ ൬

ଵݎ ൅ ଶݎ െ ଶݎଵݎ െ ଶ݌ଵݎ
ଵ݌ ൅ ଶ݌ െ ଶ݌ଵ݌ െ ଶݎଵ݌

൰ 

 

ଶܻସ ൌ 	 ൬
ଵݕ

ሺݕଵ ൅ ଶݕ
൰ ൬

ଵݎ ൅ ଶݎ െ ଶݎଵݎ െ ଶݎଵ݌
ଵ݌ ൅ ଶ݌ െ ଶ݌ଵ݌ െ ଶ݌ଵݎ

൰ 

 

ଷܻସ ൌ 	 ൬
ଶݔ

ሺݔଵ ൅ ଶݔ
൰ ൬

ଵݎ ൅ ଶݎ െ ଶݎଵݎ െ ଶ݌ଵݎ
ଵ݌ ൅ ଶ݌ െ ଶ݌ଵ݌ െ ଶݎଵ݌

൰ 

 

ସܻଷ ൌ ൬
ଶݕ

ሺݕଵ ൅ ଶݕ
൰ ൬

ଵݎ ൅ ଶݎ െ ଶݎଵݎ െ ଶݎଵ݌
ଵ݌ ൅ ଶ݌ െ ଶ݌ଵ݌ െ ଶ݌ଵݎ

൰ 

 

ܺସ ൌ
ଶܻସ ൅ ସܻସ

ଵܻସ ൅ ଷܻସ
 

(41)

where ݔଵ, ,ଶݔ	  :ଶ are as followsݕ	 and	ଵ,ݕ

ଵݔ ൌ ଶ݌ܽ߮ܽ ൅ ଵݎଷܽ݌ܽ ൅  ଶ݌ଵܽݎܽ

ଶݔ ൌ ଶݎଵܽݎܽ ൅ ଵ݌ܽ߮ܽ ൅  ଶݎܽ߮ܽ

ଵݕ ൌ ଶ݌ܾܾ߮ ൅ ଵݎଷܾ݌ܾ ൅  ଶ݌ଵܾݎܾ

ଶݕ ൌ ଶݎଵܾݎܾ ൅ ଵ݌ܾܾ߮ ൅  ଶݎܾܾ߮

Now, we can write the complete form of the internal probabilities: 

ܲሺ݊, 0,0ሻ ൌ෍ܥ௝ ௝ܺ
௡

ସ

௝ୀଵ

 

ܲሺ݊, 1,0ሻ ൌ෍ܥ௝ ௝ܺ
௡

ସ

௝ୀଵ

ଵܻ௝ 

ܲሺ݊, 0,1ሻ ൌ෍ܥ௝ ௝ܺ
௡

ସ

௝ୀଵ

ଶܻ௝ 

ܲሺ݊, 2,0ሻ ൌ෍ܥ௝ ௝ܺ
௡

ସ

௝ୀଵ

ଷܻ௝ 

ܲሺ݊, 0,2ሻ ൌ෍ܥ௝ܺ௡
ସ

௝ୀଵ

ସܻ௝ 

ܲሺ݊, 1,1ሻ ൌ෍ܥ௝ ௝ܺ
௡

ସ

௝ୀଵ

ଵܻ௝ ଶܻ௝ 

ܲሺ݊, 1,2ሻ ൌ෍ܥ௝ ௝ܺ
௡

ସ

௝ୀଵ

ଵܻ௝ ସܻ௝ 

ܲሺ݊, 2,1ሻ ൌ෍ܥ௝ ௝ܺ
௡

ସ

௝ୀଵ

ଶܻ௝ ଷܻ௝ 

ܲሺ݊, 2,2ሻ ൌ෍ܥ௝ ௝ܺ
௡

ସ

௝ୀଵ

ଷܻ௝ ସܻ௝ 
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We also need to find the probabilities at the boundary which are of the form 

ܲሺ݊, ∝ଵ, ∝ଶሻ, where ݊ ൌ 0, 1, ܰ െ 1, or ܰ. 

5.2. Analysis of Boundary Equations 

5.2.1. Transient States 

Some of the boundary states are transient because they cannot be reached 

from other states, but may only be reached from other transient states. In thesteady-

state, transient states have zero probability. The states ሺ0,1,0ሻ	and ሺ0,2,0ሻ	are 

transient because they can only be reached from each other. The states 

ሺ0,1,1ሻ, ሺ0,1,2ሻ, ሺ0,2,1ሻ,	 and ሺ0,2,2ሻ are transient because they can only be reached 

from each other.	ሺ0,0,0ሻ is transient because it can only be reached from itself, 

ሺ0,1,0ሻ, or ሺ0,2,0ሻ. The states ሺ1,1,0ሻ and ሺ1,2,0ሻ are transient because they can be 

reached only from ሺ0,0,0ሻ, ሺ0,1,0ሻ, or ሺ0,2,0ሻ. Similarly,ሺN, 0,0ሻ,	ሺN, 0,1ሻ, ሺN, 0,2ሻ, 

ሺN, 1,1ሻ, ሺN, 1,2ሻ, ሺN, 2,1ሻ, ሺN, 2,2ሻ, ሺN െ 1,0,1ሻ,	 and ሺN െ 1,0,2ሻ are transient. 

In the following two subsections, the transition equations are written for the 

lower and upper boundary states. 

5.2.2. Lower Boundary Equations for ࢔ ൑ ૚ 

ܲሺ0,0,1ሻ ൌ ሺ1 െ ଵݎܽ െ ܽ߮ሻሺ1 െ ଶሻܲሺ0,0,1ሻݎܾ ൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾݎଵܲሺ1,0,0ሻ

൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻሺ1 െ ଶݎܾ െ ଵሻܲሺ1,0,1ሻ݌ܾ ൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾ݌ଶܲሺ1,0,2ሻ

൅ ଵሺ1݌ܽ െ ଶݎܾ െ ଵሻܲሺ1,1,1ሻ݌ܾ ൅ ଶܲሺ1,1,2ሻ݌ଵܾ݌ܽ

൅ ଷሺ1݌ܽ െ ଶݎܾ െ ଵሻܲሺ1,2,1ሻ݌ܾ ൅  ଶܲሺ1,2,2ሻ݌ଷܾ݌ܽ

(42)
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ܲሺ0,0,2ሻ ൌ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾݎଶܲሺ0,0,1ሻ ൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻܲሺ0,0,2ሻ

൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾ߮ܲሺ1,0,0ሻ ൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾݎଶܲሺ1,0,1ሻ

൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻሺ1 െ ଶ݌ܾ െ ଷሻܲሺ1,0,2ሻ݌ܾ ൅ ଶܲሺ1,1,1ሻݎଵܾ݌ܽ ൅ ଵሺ1݌ܽ

െ ଶ݌ܾ െ ଷሻܲሺ1,1,2ሻ݌ܾ ൅ ଶܲሺ1,2,1ሻݎଷܾ݌ܽ ൅ ଷሺ1݌ܽ െ ଶ݌ܾ െ  ଷሻܲሺ1,2,2ሻ݌ܾ

(43)

  

ܲሺ1,0,0ሻ ൌ ሺ1 െ ଵݎܽ െ ܽ߮ሻሺ1 െ ଵݎܾ െ ܾ߮ሻܲሺ1,0,0ሻ ൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾ݌ଵܲሺ1,0,1ሻ

൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾ݌ଷܲሺ1,0,2ሻ ൅ ଵܲሺ1,1,1ሻ݌ଵܾ݌ܽ ൅ ଷܲሺ1,1,2ሻ݌ଵܾ݌ܽ

൅ ଵܲሺ1,2,1ሻ݌ଷܾ݌ܽ ൅  ଷܲሺ1,2,2ሻ݌ଷܾ݌ܽ

(44)

  

ܲሺ1,0,1ሻ ൌ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾݎଵܲሺ2,0,0ሻ ൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻሺ1 െ ଶݎܾ െ ଵሻܲሺ2,0,1ሻ݌ܾ

൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾ݌ଶܲሺ2,0,2ሻ ൅ ଵܲሺ2,1,0ሻݎଵܾ݌ܽ

൅ ଵሺ1݌ܽ െ ଶݎܾ െ ଵሻܲሺ2,1,1ሻ݌ܾ ൅ ଶܲሺ2,1,2ሻ݌ଵܾ݌ܽ ൅ ଵܲሺ2,2,0ሻݎଷܾ݌ܽ

൅ ଷሺ1݌ܽ െ ଶݎܾ െ ଵሻܲሺ2,2,1ሻ݌ܾ ൅  ଶܲሺ2,2,2ሻ݌ଷܾ݌ܽ

(45)

  

ܲሺ1,0,2ሻ ൌ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾ߮ܲሺ2,0,0ሻ ൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾݎଶܲሺ2,0,1ሻ ൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻሺ1

െ ଶ݌ܾ െ ଷሻܲሺ2,0,2ሻ݌ܾ ൅ ଵܾ߮ܲሺ2,1,0ሻ݌ܽ ൅ ଶܲሺ2,1,1ሻݎଵܾ݌ܽ ൅ ଵሺ1݌ܽ െ ଶ݌ܾ

െ ଷሻܲሺ2,1,2ሻ݌ܾ ൅ ଷܾ߮ܲሺ2,2,0ሻ݌ܽ ൅ ଶܲሺ2,2,1ሻݎଷܾ݌ܽ ൅ ଷሺ1݌ܽ െ ଶ݌ܾ

െ  ଷሻܲሺ2,2,2ሻ݌ܾ

(46)

 

ܲሺ1,1,1ሻ ൌ ଵሺ1ݎܽ െ ଶሻܲሺ0,0,1ሻݎܾ ൅ ଵܲሺ1,0,0ሻݎଵܾݎܽ ൅ ଵሺ1ݎܽ െ ଶݎܾ െ ଵሻܲሺ1,0,1ሻ݌ܾ

൅ ଶܲሺ1,0,2ሻ݌ଵܾݎܽ ൅ ሺ1 െ ଶݎܽ െ ଵሻሺ1݌ܽ െ ଶݎܾ െ ଵሻܲሺ1,1,1ሻ݌ܾ

൅ ሺ1 െ ଶݎܽ െ ଶܲሺ1,1,2ሻ݌ଵሻܾ݌ܽ ൅ ଶሺ1݌ܽ െ ଶݎܾ െ ଵሻܲሺ1,2,1ሻ݌ܾ

൅  ଶܲሺ1,2,2ሻ݌ଶܾ݌ܽ

(47)
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ܲሺ1,1,2ሻ ൌ ଶܲሺ0,0,1ሻݎଵܾݎܽ ൅ ଵܲሺ0,0,2ሻݎܽ ൅ ଵܾ߮ܲሺ1,0,0ሻݎܽ ൅ ଶܲሺ1,0,1ሻݎଵܾݎܽ ൅ ଵሺ1ݎܽ

െ ଶ݌ܾ െ ଷሻܲሺ1,0,2ሻ݌ܾ ൅ ሺ1 െ ଶݎܽ െ ଶܲሺ1,1,1ሻݎଵሻܾ݌ܽ ൅ ሺ1 െ ଶݎܽ െ ଵሻሺ1݌ܽ

െ ଶ݌ܾ െ ଷሻܲሺ1,1,2ሻ݌ܾ ൅ ଶܲሺ1,2,1ሻݎଶܾ݌ܽ ൅ ଶሺ1݌ܽ െ ଶ݌ܾ െ  ଷሻܲሺ1,2,2ሻ݌ܾ

(48)

 

ܲሺ1,2,1ሻ ൌ ܽ߮ሺ1 െ ଶሻܲሺ0,0,1ሻݎܾ ൅ ଵܲሺ1,0,0ሻݎܾ߮ܽ ൅ ܽ߮ሺ1 െ ଶݎܾ െ ଵሻܲሺ1,0,1ሻ݌ܾ

൅ ଶܲሺ1,0,2ሻ݌ܾ߮ܽ ൅ ଶሺ1ݎܽ െ ଶݎܾ െ ଵሻܲሺ1,1,1ሻ݌ܾ ൅ ଶܲሺ1,1,2ሻ݌ଶܾݎܽ

൅ ሺ1 െ ଶ݌ܽ െ ଷሻሺ1݌ܽ െ ଶݎܾ െ ଵሻܲሺ1,2,1ሻ݌ܾ ൅ ሺ1 െ ଶ݌ܽ

െ  ଶܲሺ1,2,2ሻ݌ଷሻܾ݌ܽ

(49)

  

ܲሺ1,2,2ሻ ൌ ଶܲሺ0,0,1ሻݎܾ߮ܽ ൅ ܽ߮ܲሺ0,0,2ሻ ൅ ܾܽ߮߮ܲሺ1,0,0ሻ ൅ ଶܲሺ1,0,1ሻݎܾ߮ܽ ൅ ܽ߮ሺ1 െ ଶ݌ܾ

െ ଷሻܲሺ1,0,2ሻ݌ܾ ൅ ଶܲሺ1,1,1ሻݎଶܾݎܽ ൅ ଶሺ1ݎܽ െ ଶ݌ܾ െ ଷሻܲሺ1,1,2ሻ݌ܾ

൅ ሺ1 െ ଶ݌ܽ െ ଶܲሺ1,2,1ሻݎଷሻܾ݌ܽ ൅ ሺ1 െ ଶ݌ܽ െ ଷሻሺ1݌ܽ െ ଶ݌ܾ

െ  ଷሻܲሺ1,2,2ሻ݌ܾ

(50)

 

ܲሺ2,1,0ሻ ൌ ଵሺ1ݎܽ െ ଵݎܾ െ ܾ߮ሻܲሺ1,0,0ሻ ൅ ଵܲሺ1,0,1ሻ݌ଵܾݎܽ ൅ ଷܲሺ1,0,2ሻ݌ଵܾݎܽ

൅ ሺ1 െ ଶݎܽ െ ଵܲሺ1,1,1ሻ݌ଵሻܾ݌ܽ ൅ ሺ1 െ ଶݎܽ െ ଷܲሺ1,1,2ሻ݌ଵሻܾ݌ܽ

൅ ଵܲሺ1,2,1ሻ݌ଶܾ݌ܽ ൅  ଷܲሺ1,2,2ሻ݌ଶܾ݌ܽ

(51)

 

ܲሺ2,2,0ሻ ൌ ܽ߮ሺ1 െ ଵݎܾ െ ܾ߮ሻܲሺ1,0,0ሻ ൅ ଵܲሺ1,0,1ሻ݌ܾ߮ܽ ൅ ଷܲሺ1,0,2ሻ݌ܾ߮ܽ

൅ ଵܲሺ1,1,1ሻ݌ଶܾݎܽ ൅ ଷܲሺ1,1,2ሻ݌ଶܾݎܽ ൅ ሺ1 െ ଶ݌ܽ െ ଵܲሺ1,2,1ሻ݌ଷሻܾ݌ܽ ൅ ሺ1

െ ଶ݌ܽ െ  ଷܲሺ1,2,2ሻ݌ଷሻܾ݌ܽ

(52)
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5.2.3. Upper Boundary Equations for ࢔ ൒ ࡺ െ ૚ 

ܲሺܰ െ 2,0,1ሻ ൌ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾݎଵܲሺܰ െ 1,0,0ሻ ൅ ଵܲሺܰݎଵܾ݌ܽ െ 1,1,0ሻ

൅ ଵሺ1݌ܽ െ ଶݎܾ െ ଵሻܲሺܰ݌ܾ െ 1,1,1ሻ ൅ ଶܲሺܰ݌ଵܾ݌ܽ െ 1,1,2ሻ

൅ ଵܲሺܰݎଷܾ݌ܽ െ 1,2,0ሻ ൅ ଷሺ1݌ܽ െ ଶݎܾ െ ଵሻܲሺܰ݌ܾ െ 1,2,1ሻ

൅ ଶܲሺܰ݌ଷܾ݌ܽ െ 1,2,2ሻ 

(53)

  

ܲሺܰ െ 2,0,2ሻ ൌ ሺ1 െ ଵݎܽ െ ܽ߮ሻܾ߮ܲሺܰ െ 1,0,0ሻ ൅ ଵܾ߮ܲሺܰ݌ܽ െ 1,1,0ሻ

൅ ଶܲሺܰݎଵܾ݌ܽ െ 1,1,1ሻ ൅ ଵሺ1݌ܽ െ ଶ݌ܾ െ ଷሻܲሺܰ݌ܾ െ 1,1,2ሻ

൅ ଷܾ߮ܲሺܰ݌ܽ െ 1,2,0ሻ ൅ ଶܲሺܰݎଷܾ݌ܽ െ 1,2,1ሻ ൅ ଷሺ1݌ܽ െ ଶ݌ܾ

െ ଷሻܲሺܰ݌ܾ െ 1,2,2ሻ 

(54)

  

ܲሺܰ െ 1,0,0ሻ ൌ ሺ1 െ ଵݎܽ െ ܽ߮ሻሺ1 െ ଵݎܾ െ ܾ߮ሻܲሺܰ െ 1,0,0ሻ

൅ ଵሺ1݌ܽ െ ଵݎܾ െ ܾ߮ሻܲሺܰ െ 1,1,0ሻ ൅ ଵܲሺܰ݌ଵܾ݌ܽ െ 1,1,1ሻ

൅ ଷܲሺܰ݌ଵܾ݌ܽ െ 1,1,2ሻ ൅ ଷሺ1݌ܽ െ ଵݎܾ െ ܾ߮ሻܲሺܰ െ 1,2,0ሻ

൅ ଵܲሺܰ݌ଷܾ݌ܽ െ 1,2,1ሻ ൅ ଷܲሺܰ݌ଷܾ݌ܽ െ 1,2,2ሻ 

(55)

  

ܲሺܰ െ 1,1,0ሻ ൌ ଵሺ1ݎܽ െ ଵݎܾ െ ܾ߮ሻܲሺܰ െ 2,0,0ሻ ൅ ଵܲሺܰ݌ଵܾݎܽ െ 2,0,1ሻ

൅ ଷܲሺܰ݌ଵܾݎܽ െ 2,0,2ሻ ൅ ሺ1 െ ଶݎܽ െ ଵሻሺ1݌ܽ െ ଵݎܾ െ ܾ߮ሻܲሺܰ െ 2,1,0ሻ

൅ ሺ1 െ ଶݎܽ െ ଵܲሺܰ݌ଵሻܾ݌ܽ െ 2,1,1ሻ ൅ ሺ1 െ ଶݎܽ െ ଷܲሺܰ݌ଵሻܾ݌ܽ െ 2,1,2ሻ

൅ ଶሺ1݌ܽ െ ଵݎܾ െ ܾ߮ሻܲሺܰ െ 2,2,0ሻ ൅ ଵܲሺܰ݌ଶܾ݌ܽ െ 2,2,1ሻ

൅ ଷܲሺܰ݌ଶܾ݌ܽ െ 2,2,2ሻ 

(56)
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ܲሺܰ െ 1,1,1ሻ ൌ ଵܲሺܰݎଵܾݎܽ െ 1,0,0ሻ ൅ ሺ1 െ ଶݎܽ െ ଵܲሺܰݎଵሻܾ݌ܽ െ 1,1,0ሻ

൅ ሺ1 െ ଶݎܽ െ ଵሻሺ1݌ܽ െ ଶݎܾ െ ଵሻܲሺܰ݌ܾ െ 1,1,1ሻ

൅ ሺ1 െ ଶݎܽ െ ଶܲሺܰ݌ଵሻܾ݌ܽ െ 1,1,2ሻ ൅ ଵܲሺܰݎଶܾ݌ܽ െ 1,2,0ሻ

൅ ଶሺ1݌ܽ െ ଶݎܾ െ ଵሻܲሺܰ݌ܾ െ 1,2,1ሻ ൅ ଶܲሺܰ݌ଶܾ݌ܽ െ 1,2,2ሻ

൅ ሺ1 െ ,ଵܲሺܰݎଶሻܾݎܽ 1,0ሻ 

(57)

 

ܲሺܰ െ 1,1,2ሻ ൌ ଵܾ߮ܲሺܰݎܽ െ 1,0,0ሻ ൅ ሺ1 െ ଶݎܽ െ ଵሻܾ߮ܲሺܰ݌ܽ െ 1,1,0ሻ

൅ ሺ1 െ ଶݎܽ െ ଶܲሺܰݎଵሻܾ݌ܽ െ 1,1,1ሻ

൅ ሺ1 െ ଶݎܽ െ ଵሻሺ1݌ܽ െ ଶ݌ܾ െ ଷሻܲሺܰ݌ܾ െ 1,1,2ሻ ൅ ଶܾ߮ܲሺܰ݌ܽ െ 1,2,0ሻ

൅ ଶܲሺܰݎଶܾ݌ܽ െ 1,2,1ሻ ൅ ଶሺ1݌ܽ െ ଶ݌ܾ െ ଷሻܲሺܰ݌ܾ െ 1,2,2ሻ ൅ ሺ1

െ ,ଶሻܾ߮ܲሺܰݎܽ 1,0ሻ 

(58)

ܲሺܰ െ 1,2,0ሻ ൌ ܽ߮ሺ1 െ ଵݎܾ െ ܾ߮ሻܲሺܰ െ 2,0,0ሻ ൅ ଵܲሺܰ݌ܾ߮ܽ െ 2,0,1ሻ

൅ ଷܲሺܰ݌ܾ߮ܽ െ 2,0,2ሻ ൅ ଶሺ1ݎܽ െ ଵݎܾ െ ܾ߮ሻܲሺܰ െ 2,1,0ሻ

൅ ଵܲሺܰ݌ଶܾݎܽ െ 2,1,1ሻ ൅ ଷܲሺܰ݌ଶܾݎܽ െ 2,1,2ሻ ൅ ሺ1 െ ଶ݌ܽ

െ ଷሻሺ1݌ܽ െ ଵݎܾ െ ܾ߮ሻܲሺܰ െ 2,2,0ሻ ൅ ሺ1 െ ଶ݌ܽ െ ଵܲሺܰ݌ଷሻܾ݌ܽ െ 2,2,1ሻ

൅ ሺ1 െ ଶ݌ܽ െ ଷܲሺܰ݌ଷሻܾ݌ܽ െ 2,2,2ሻ 

(59)

 

ܲሺܰ െ 1,2,1ሻ ൌ ଵܲሺܰݎܾ߮ܽ െ 1,0,0ሻ ൅ ଵܲሺܰݎଶܾݎܽ െ 1,1,0ሻ

൅ ଶሺ1ݎܽ െ ଶݎܾ െ ଵሻܲሺܰ݌ܾ െ 1,1,1ሻ ൅ ଶܲሺܰ݌ଶܾݎܽ െ 1,1,2ሻ

൅ ሺ1 െ ଶ݌ܽ െ ଵܲሺܰݎଷሻܾ݌ܽ െ 1,2,0ሻ

൅ ሺ1 െ ଶ݌ܽ െ ଷሻሺ1݌ܽ െ ଶݎܾ െ ଵሻܲሺܰ݌ܾ െ 1,2,1ሻ

൅ ሺ1 െ ଶ݌ܽ െ ଶܲሺܰ݌ଷሻܾ݌ܽ െ 1,2,2ሻ ൅ ,ଵܲሺܰݎଶܾݎܽ 1,0ሻ ൅ ,ଵܲሺܰݎܾ 2,0ሻ 

(60)
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ܲሺܰ െ 1,2,2ሻ ൌ ܾܽ߮߮ܲሺܰ െ 1,0,0ሻ ൅ ଶܾ߮ܲሺܰݎܽ െ 1,1,0ሻ ൅ ଶܲሺܰݎଶܾݎܽ െ 1,1,1ሻ

൅ ଶሺ1ݎܽ െ ଶ݌ܾ െ ଷሻܲሺܰ݌ܾ െ 1,1,2ሻ ൅ ሺ1 െ ଶ݌ܽ െ ଷሻܾ߮ܲሺܰ݌ܽ െ 1,2,0ሻ

൅ ሺ1 െ ଶ݌ܽ െ ଶܲሺܰݎଷሻܾ݌ܽ െ 1,2,1ሻ

൅ ሺ1 െ ଶ݌ܽ െ ଷሻሺ1݌ܽ െ ଶ݌ܾ െ ଷሻܲሺܰ݌ܾ െ 1,2,2ሻ ൅ ,ଶܾ߮ܲሺܰݎܽ 1,0ሻ

൅ ܾ߮ܲሺܰ, 2,0ሻ 

(61)

 

ܲሺܰ, 1,0ሻ ൌ ଵሺ1ݎܽ െ ଵݎܾ െ ܾ߮ሻܲሺܰ െ 1,0,0ሻ

൅ ሺ1 െ ଶݎܽ െ ଵሻሺ1݌ܽ െ ଵݎܾ െ ܾ߮ሻܲሺܰ െ 1,1,0ሻ

൅ ሺ1 െ ଶݎܽ െ ଵܲሺܰ݌ଵሻܾ݌ܽ െ 1,1,1ሻ ൅ ሺ1 െ ଶݎܽ െ ଷܲሺܰ݌ଵሻܾ݌ܽ െ 1,1,2ሻ

൅ ଶሺ1݌ܽ െ ଵݎܾ െ ܾ߮ሻܲሺܰ െ 1,2,0ሻ ൅ ଵܲሺܰ݌ଶܾ݌ܽ െ 1,2,1ሻ

൅ ଷܲሺܰ݌ଶܾ݌ܽ െ 1,2,2ሻ ൅ ሺ1 െ ଶሻሺ1ݎܽ െ ଵݎܾ െ ܾ߮ሻܲሺܰ, 1,0ሻ 

(62)

 

ܲሺܰ, 2,0ሻ ൌ ܽ߮ሺ1 െ ଵݎܾ െ ܾ߮ሻܲሺܰ െ 1,0,0ሻ ൅ ଶሺ1ݎܽ െ ଵݎܾ െ ܾ߮ሻܲሺܰ െ 1,1,0ሻ

൅ ଵܲሺܰ݌ଶܾݎܽ െ 1,1,1ሻ ൅ ଷܲሺܰ݌ଶܾݎܽ െ 1,1,2ሻ

൅ ሺ1 െ ଶ݌ܽ െ ଷሻሺ1݌ܽ െ ଵݎܾ െ ܾ߮ሻܲሺܰ െ 1,2,0ሻ ൅ ሺ1 െ ଶ݌ܽ

െ ଵܲሺܰ݌ଷሻܾ݌ܽ െ 1,2,1ሻ ൅ ሺ1 െ ଶ݌ܽ െ ଷܲሺܰ݌ଷሻܾ݌ܽ െ 1,2,2ሻ

൅ ଶሺ1ݎܽ െ ଵݎܾ െ ܾ߮ሻܲሺܰ, 1,0ሻ ൅ ሺ1 െ ଵݎܾ െ ܾ߮ሻܲሺܰ, 2,0ሻ 

(63)

 

5.2.4. Solution of the Boundary Equations 

Let’s start with solving the lower boundary equations. If we sum up the 

equations (42) to (52) excluding (45) and (46), we find: 

ܲሺ2,1,0ሻ ൅ ܲሺ2,2,0ሻ ൌ ܲሺ1,0,1ሻ ൅ ܲሺ1,0,2ሻ 
(64)
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From equations (45) and (46), we see that ܲሺ1,0,1ሻ and ܲሺ1,0,2ሻ can be written 

in the internal form. Then, 

ܲሺ1,0,1ሻ ൌ෍ܥ௝

ସ

௝ୀଵ

௝ܺ ଶܻ௝ 

ሺ1,0,2ሻ݌ ൌ෍ܥ௝

ସ

௝ୀଵ

௝ܺ ସܻ௝ 

When these results are written in Equation (64), it will be, 

 ∑ ௝ܥ ௝ܺ௝ ቀ ௝ܺ൫ ଵܻ௝ ൅ ଷܻ௝൯ െ ൫ ଶܻ௝ ൅ ସܻ௝൯ቁ ൌ 0.   

The first solution set for the internal equations does not satisfy this equation; 

therefore, ܥଵ equals 0. The remaining lower boundary probabilities we need to find 

are ܲሺ0,0,1ሻ, ܲሺ0,0,2ሻ, ܲሺ1,0,0ሻ, ܲሺ1,1,1ሻ,	 ܲሺ1,1,2ሻ, ܲሺ1,2,1ሻ,	and ܲሺ1,2,2ሻ. 

Let’s start with summing up equations (42) and (43): 

ሺܽݎଵ ൅ ܽ߮ሻሺܲሺ0,0,1ሻ ൅ ܲሺ0,0,2ሻሻ

ൌ ሺ1 െ ଵݎܽ െ ܽ߮ሻሺܾݎଵ ൅ ܾ߮ሻܲሺ1,0,0ሻ ൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻሺ1 െ ଵሻܲሺ1,0,1ሻ݌ܾ

൅ ሺ1 െ ଵݎܽ െ ܽ߮ሻሺ1 െ ଷሻܲሺ1,0,2ሻ݌ܾ ൅ ଵሺ1݌ܽ െ ଵሻܲሺ1,1,1ሻ݌ܾ ൅ ଵሺ1݌ܽ

െ ଷሻܲሺ1,1,2ሻ݌ܾ ൅ ଷሺ1݌ܽ െ ଵሻܲሺ1,2,1ሻ݌ܾ ൅ ଷሺ1݌ܽ െ  ଷሻܲሺ1,2,2ሻ݌ܾ

(65)

 

Summation of (47), (48), (49), and (50) equals, 

ܲሺ1,1,1ሻ ൅ ܲሺ1,1,2ሻ ൅ ܲሺ1,2,1ሻ ൅ ܲሺ1,2,2ሻ

ൌ ሺܽݎଵ ൅ ܽ߮ሻሺ൫ܲሺ0,0,1ሻ ൅ ܲሺ0,0,2ሻ൯ ൅ ሺܽݎଵ ൅ ܽ߮ሻሺܾݎଵ ൅ ܾ߮ሻܲሺ1,0,0ሻ

൅ ሺܽݎଵ ൅ ܽ߮ሻሺ1 െ ଵሻܲሺ1,0,1ሻ݌ܾ ൅ ሺܽݎଵ ൅ ܽ߮ሻሺ1 െ ଷሻܲሺ1,0,2ሻ݌ܾ

൅ ሺ1 െ ଵሻሺ1݌ܽ െ ଵሻܲሺ1,1,1ሻ݌ܾ ൅ ሺ1 െ ଵሻሺ1݌ܽ െ ଷሻܲሺ1,1,2ሻ݌ܾ

൅ ሺ1 െ ଷሻሺ1݌ܽ െ ଵሻܲሺ1,2,1ሻ݌ܾ ൅ ሺ1 െ ଷሻሺ1݌ܽ െ  ଷሻܲሺ1,2,2ሻ݌ܾ

 



72 

 

 

After plugging (65) into the above equality, we get 

 

ଵܲሺ1,1,1ሻ݌ܾ ൅ ଷܲሺ1,1,2ሻ݌ܾ ൅ ଵܲሺ1,2,1ሻ݌ܾ ൅ ଷܲሺ1,2,2ሻ݌ܾ

ൌ ሺܾݎଵ ൅ ܾ߮ሻܲሺ1,0,0ሻ ൅ ሺ1 െ ଵሻܲሺ1,0,1ሻ݌ܾ ൅ ሺ1 െ  ଷሻܲሺ1,0,2ሻ݌ܾ
(66)

 

If we decompose (66), we can write, 

ଵܲሺ1,1,1ሻ݌ܾ ൌ
ଵݔ

ଵݔ ൅ ଶݔ
൫ܾݎଵܲሺ1,0,0ሻ ൅ ሺ1 െ ଵሻܲሺ1,0,1ሻ൯ (67)݌ܾ

  

ଷܲሺ1,1,2ሻ݌ܾ ൌ
ଵݔ

ଵݔ ൅ ଶݔ
൫ܾ߮ܲሺ1,0,0ሻ ൅ ሺ1 െ ଷሻܲሺ1,0,2ሻ൯ (68)݌ܾ

  

ଵܲሺ1,2,1ሻ݌ܾ ൌ
ଶݔ

ଵݔ ൅ ଶݔ
൫ܾݎଵܲሺ1,0,0ሻ ൅ ሺ1 െ ଵሻܲሺ1,0,1ሻ൯ (69)݌ܾ

  

ଷܲሺ1,2,2ሻ݌ܾ ൌ
ଶݔ

ଵݔ ൅ ଶݔ
൫ܾ߮ܲሺ1,0,0ሻ ൅ ሺ1 െ  ଷሻܲሺ1,0,2ሻ൯݌ܾ

(70)

 

We can write equation (44) as, 

ሺܽݎଵ ൅ ܽ߮ ൅ ଵݎܾ ൅ ܾ߮ െ ሺܽݎଵ ൅ ܽ߮ሻሺܾݎଵ ൅ ܾ߮ሻሻܲሺ1,0,0ሻ

ൌ ሺ1 െ ଵݎܽ െ ܽ߮ሻሺܾ݌ଵܲሺ1,0,1ሻ ൅ ଷܲሺ1,0,2ሻሻ݌ܾ ൅ ଵܲሺ1,1,1ሻ݌ଵሺܾ݌ܽ

൅ ଷܲሺ1,1,2ሻሻ݌ܾ ൅ ଵܲሺ1,2,1ሻ݌ଷሺܾ݌ܽ ൅  ଷܲሺ1,2,2ሻሻ݌ܾ

(71)

 

Plugging (67)-(70) into (71) leads to, 
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ܲሺ1,0,0ሻ 	ൌ 	 ቀ൫ሺܾ݌ଵܽ߮ ൅ ଵݎଵܽ݌ܾ ൅ ሺܽ݌ଵ െ 1ሻܾ݌ଵ െ ଵݔଵሻ݌ܽ
൅ ሺܾ݌ଵܽ߮ ൅ ଵݎଵܽ݌ܾ ൅ ሺെ1 ൅ ଵ݌ଷሻܾ݌ܽ െ ଶ൯ܲሺ1,0,1ሻݔଷሻ݌ܽ
൅ ܲሺ1,0,2ሻ൫ሺܾ݌ଷܽ߮ ൅ ଵݎଷܽ݌ܾ ൅ ሺܽ݌ଵ െ 1ሻܾ݌ଷ െ ଵݔଵሻ݌ܽ
൅ ሺܾ݌ଷܽ߮ ൅ ଵݎଷܽ݌ܾ ൅ ሺെ1 ൅ ଷ݌ଷሻܾ݌ܽ െ ଶ൯ቁݔଷሻ݌ܽ

/ ቀ൫ሺെ1 ൅ ଵݎܾ ൅ ܾ߮ሻܽ߮ ൅ ሺെ1 ൅ ଵݎܾ ൅ ܾ߮ሻܽݎଵ ൅ ሺܾݎଵ ൅ ܾ߮ሻሺܽ݌ଵ െ 1ሻ൯ݔଵ
൅ ଶ൫ሺെ1ݔ ൅ ଵݎܾ ൅ ܾ߮ሻܽ߮ ൅ ሺെ1 ൅ ଵݎܾ ൅ ܾ߮ሻܽݎଵ
൅ ሺܾݎଵ ൅ ܾ߮ሻሺെ1 ൅  ଷሻ൯ቁ݌ܽ

 
Using the values for ܲሺ1,0,0ሻ, ܲሺ1,1,1ሻ, ܲሺ1,1,2ሻ, ܲሺ1,2,1ሻ, and ܲሺ1,2,2ሻ, we 

can easily write expressions for ܲሺ0,0,1ሻ	and ܲሺ0,0,2ሻ. Solution of lower boundary 

equations is complete.  

 

Now, we will solve the upper boundary equations. From equations (56) and 

(59), we see that ܲሺܰ െ 1,1,0ሻ and ܲሺܰ െ 1,2,0ሻ are of internal form. Then, 

 

ܲሺܰ െ 1,1,0ሻ ൌ෍ܥ௝

ସ

௝ୀଵ
௝ܺ
ேିଵ

ଵܻ௝ 

ܲሺܰ െ 1,2,0ሻ ൌ෍ܥ௝

ସ

௝ୀଵ
௝ܺ
ேିଵ

ଷܻ௝ 

The remaining upper boundary probabilities we need to find are ሺܰ െ

1,1,0ሻ, ܲሺܰ െ 1,2,0ሻ, ܲሺܰ െ 1,0,0ሻ, ܲሺܰ െ 1,1,1ሻ, ܲሺܰ െ 1,1,2ሻ, ܲሺܰ െ 1,2,1ሻ, and 

ܲሺܰ െ 1,2,2ሻ. 

If we sum up equations (62) and (63), we get 
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ሺܾݎଵ ൅ ܾ߮ሻሺܲሺܰ, 1,0ሻ ൅ ܲሺܰ, 2,0ሻሻ

ൌ ሺܽݎଵ ൅ ܽ߮ሻሺ1 െ ଵݎܾ െ ܾ߮ሻܲሺܰ െ 1,0,0ሻ

൅ ሺ1 െ ଵሻሺ1݌ܽ െ ଵݎܾ െ ܾ߮ሻܲሺܰ െ 1,1,0ሻ ൅ ሺ1 െ ଵܲሺܰ݌ଵሻܾ݌ܽ െ 1,1,1ሻ

൅ ሺ1 െ ଷܲሺܰ݌ଵሻܾ݌ܽ െ 1,1,2ሻ ൅ ሺ1 െ ଷሻሺ1݌ܽ െ ଵݎܾ െ ܾ߮ሻܲሺܰ െ 1,2,0ሻ

൅ ሺ1 െ ଵܲሺܰ݌ଷሻܾ݌ܽ െ 1,2,1ሻ ൅ ሺ1 െ ଷܲሺܰ݌ଷሻܾ݌ܽ െ 1,2,2ሻ 

(72)

 

Addition of equations (57), (58), (60), and (61) makes 

ܲሺܰ െ 1,1,1ሻ ൌ ଵܲሺܰݎଵܾݎܽ െ 1,0,0ሻ ൅ ሺ1 െ ଶݎܽ െ ଵܲሺܰݎଵሻܾ݌ܽ െ 1,1,0ሻ

൅ ሺ1 െ ଶݎܽ െ ଵሻሺ1݌ܽ െ ଶݎܾ െ ଵሻܲሺܰ݌ܾ െ 1,1,1ሻ

൅ ሺ1 െ ଶݎܽ െ ଶܲሺܰ݌ଵሻܾ݌ܽ െ 1,1,2ሻ ൅ ଵܲሺܰݎଶܾ݌ܽ െ 1,2,0ሻ

൅ ଶሺ1݌ܽ െ ଶݎܾ െ ଵሻܲሺܰ݌ܾ െ 1,2,1ሻ ൅ ଶܲሺܰ݌ଶܾ݌ܽ െ 1,2,2ሻ

൅ ሺ1 െ ,ଵܲሺܰݎଶሻܾݎܽ 1,0ሻ 

 

After plugging equation (72), we get 

ଵܲሺܰ݌ܽ െ 1,1,1ሻ ൅ ଷܲሺܰ݌ܽ െ 1,2,1ሻ ൅ ଵܲሺܰ݌ܽ െ 1,1,2ሻ ൅ ଷܲሺܰ݌ܽ െ 1,2,2ሻ

ൌ ሺܽݎଵ ൅ ܽ߮ሻܲሺܰ െ 1,0,0ሻ ൅ ሺ1 െ ଵሻܲሺܰ݌ܽ െ 1,1,0ሻ ൅ ሺ1

െ ଷሻܲሺܰ݌ܽ െ 1,2,0ሻ 

(73)

 

If we decompose (73), we can write, 

ଵܲሺܰ݌ܽ െ 1,1,1ሻ ൌ
ଵݕ

ଵݕ ൅ ଶݕ
൫ܽݎଵܲሺܰ െ 1,0,0ሻ ൅ ሺ1 െ ଵሻܲሺܰ݌ܽ െ 1,1,0ሻ൯ 

(74)

  

ଵܲሺܰ݌ܽ െ 1,1,2ሻ ൌ
ଶݕ

ଵݕ ൅ ଶݕ
൫ܽݎଵܲሺܰ െ 1,0,0ሻ ൅ ሺ1 െ ଵሻܲሺܰ݌ܽ െ 1,1,0ሻ൯ 

(75)

  

ଷܲሺܰ݌ܾ െ 1,2,1ሻ ൌ
ଵݕ

ଵݕ ൅ ଶݕ
൫ܽ߮ܲሺܰ െ 1,0,0ሻ ൅ ሺ1 െ ଷሻܲሺܰ݌ܽ െ 1,2,0ሻ൯ 

(76)
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ଷܲሺܰ݌ܾ െ 1,2,2ሻ ൌ
ଶݕ

ଵݕ ൅ ଶݕ
൫ܽ߮ܲሺܰ െ 1,0,0ሻ ൅ ሺ1 െ ଷሻܲሺܰ݌ܽ െ 1,2,0ሻ൯ (77)

 

Equation (55) can be written as, 

ሺܽݎଵ ൅ ܽ߮ ൅ ଵݎܾ ൅ ܾ߮ െ ሺܽݎଵ ൅ ܽ߮ሻሺܾݎଵ ൅ ܾ߮ሻሻܲሺܰ െ 1,0,0ሻ

ൌ ሺ1 െ ଵݎܾ െ ܾ߮ሻሺܽ݌ଵܲሺܰ െ 1,1,0ሻ ൅ ଷܲሺܰ݌ܽ െ 1,2,0ሻሻ

൅ ଵܲሺܰ݌ଵሺܽ݌ܾ െ 1,1,1ሻ ൅ ଷܲሺܰ݌ܽ െ 1,2,1ሻሻ ൅ ଵܲሺܰ݌ଷሺܽ݌ܾ െ 1,1,2ሻ

൅ ଷܲሺܰ݌ܽ െ 1,2,2ሻሻ 

(78)

 

Using the equations (74)-(77), we can reformulate the equation (78) as, 

ܲሺܰ െ 1,0,0ሻ 	ൌ 	 ൬൫ሺܾ߮ܽ݌ଵ ൅ ଵ݌ଵܽݎܾ ൅ ሺെ1 ൅ ଵ݌ଵሻܽ݌ܾ െ ଵݕଵሻ݌ܾ

൅ ଵ݌ଶሺܾ߮ܽݕ ൅ ଵ݌ଵܽݎܾ ൅ ሺെ1 ൅ ଵ݌ଷሻܽ݌ܾ െ ,ଷሻ൯ܲሺܰ݌ܾ 1,0ሻ

൅ 	ܲሺܰ, 2,0ሻ ቀሺെܾ݌ଵ ൅ ଷ݌ଵܾ݌ܾ െ ଷ݌ܽ ൅ ଷ݌ଵܽݎܾ ൅ ଵݕଷሻ݌ܾܽ߮

൅ ଷ݌ଶሺܾݕ
ଶ െ ଷ݌ܾ ൅ ଷ݌ଵܽݎܾ െ ଷ݌ܽ ൅ ଷሻ൯൰݌ܾܽ߮

/ ቀ൫ሺܽݎଵ ൅ ܽ߮ െ 1ሻܾ߮ ൅ ሺܽݎଵ ൅ ܽ߮ െ 1ሻܾݎଵ ൅ ሺെ1 ൅ ଵݎଵሻሺܽ݌ܾ ൅ ܽ߮ሻ൯ݕଵ

൅ ൫ሺܽݎଵ ൅ ܽ߮ െ 1ሻܾ߮ ൅ ሺܽݎଵ ൅ ܽ߮ െ 1ሻܾݎଵ ൅ ሺെ1 ൅ ଵݎଷሻሺܽ݌ܾ ൅ ܽ߮ሻ൯ݕଶቁ 

 

 

Finally, using the values for ܲሺܰ െ 1,0,0ሻ, ܲሺܰ െ 1,1,1ሻ, ܲሺܰ െ 1,1,2ሻ,

ܲሺܰ െ 1,2,1ሻ,  and ܲሺܰ െ 1,2,2ሻ, we can easily write expressions for ܲሺܰ, 1,0ሻ	and 

ܲሺܰ, 2,0ሻ. 

As stated previously, the internal and the boundary probabilities are linear 

combination of ℓ vectors and in the form of ∑ ,௝ሺ݊ߦ௝ܥ ∝ଵ, ∝ଶሻ
ℓ
௝ୀଵ . We have found 
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expressions for all states. These expressions must satisfy all the transition equations. 

Some of equations are automatically satisfied, but some are not. These errors will be 

eliminated with the choice of coefficient ܥ௝s. We have found that ܥଵ ൌ 0. We need 

three equations of ܥ௝s to find their values. One equation we can use is the 

normalization equation (80), which requires that the sum of all steady-state 

probabilities must equal to 1.  

 

෍ ෍ ෍ ܲሺ݊,∝ଵ, ∝ଶሻ ൌ 1

ଶ

∝మୀ଴

ଶ

∝భୀ଴

ே

௡ୀ଴

 
(79)

 

We also obtain the equations (80) and (81) by substituting the boundary 

probabilities into equations (51), (52), (53) and (54). 

෍ܥ௝ ௝ܺ
ଶ

ସ

௝ୀଶ

ଵܻ௝ ൅෍ܥ௝ ௝ܺ
ଶ

ସ

௝ୀଶ

ଷܻ௝

ൌ ሺܽݎଵ ൅ ܽ߮ሻሺ1 െ ଵݎܾ െ ܾ߮ሻܲሺ1,0,0ሻ ൅ ሺܽݎଵ ൅ ܽ߮ሻܾ݌ଵ෍ܥ௝ ௝ܺ

ସ

௝ୀଶ

ଶܻ௝

൅ ሺܽݎଵ ൅ ܽ߮ሻܾ݌ଷ෍ܥ௝ ௝ܺ

ସ

௝ୀଶ

ସܻ௝ ൅ ሺ1 െ ଵܲሺ1,1,1ሻ݌ଵሻܾ݌ܽ

൅ ሺ1 െ ଷܲሺ1,1,2ሻ݌ଵሻܾ݌ܽ ൅ ሺ1 െ ଵܲሺ1,2,1ሻ݌ଷሻܾ݌ܽ ൅ ሺ1 െ  ଷܲሺ1,2,2ሻ݌ଷሻܾ݌ܽ

(80)
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෍ܥ௝ ௝ܺ
ேିଶ

ସ

௝ୀଶ

ଶܻ௝ ൅෍ܥ௝ ௝ܺ
ேିଶ

ସ

௝ୀଶ

ସܻ௝

ൌ ሺ1 െ ଵݎܽ െ ܽ߮ሻሺܾݎଵ ൅ ܾ߮ሻܲሺܰ െ 1,0,0ሻ ൅ ଵݎଵሺܾ݌ܽ ൅ ܾ߮ሻ෍ܥ௝ ௝ܺ
ேିଵ

ସ

௝ୀଶ

ଵܻ௝

൅ ଵሺ1݌ܽ െ ଵሻܲሺܰ݌ܾ െ 1,1,1ሻ ൅ ଵሺ1݌ܽ െ ଷሻܲሺܰ݌ܾ െ 1,1,2ሻ ൅ ଵݎଷሺܾ݌ܽ

൅ ܾ߮ሻ෍ܥ௝ ௝ܺ
ேିଵ

ସ

௝ୀଶ

ଷܻ௝ ൅ ଷሺ1݌ܽ െ ଵሻܲሺܰ݌ܾ െ 1,2,1ሻ

൅ ଷሺ1݌ܽ െ ଷሻܲሺܰ݌ܾ െ 1,2,2ሻ 

(81)

 

By solving this linear system of equations in (79)-(81), we can find the values 

for ܥ௝s. Finally, we can calculate the steady-state probabilities and the performance 

measures. 

6. Experimental Study 

We have performed two experiments to demonstrate that the modeling of 

degradation, imperfect repair and preventive maintenance leads to better evaluation 

of the throughput of the two-machine production lines. In Experiment 1, we compare 

our throughput results (ܧ) to the one described in Gershwin (1994) for deterministic 

two machine lines (ܧ௘௤௩) using equivalent repair and failure probabilities that are 

obtained in equations (6), (7) (8), and (9). With the equivalent failure and repair 

probabilities, the different operational states of the machines can be represented with 

a single operational state. In this case, the isolated efficiencies are also preserved.  

We have used two sets of cases which are given in Table 1 and Table 2. The 

“%Error” column shows the error introduced by using equivalent parameters. The 
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percentage error values are higher in the cases given in Table 2. These errors are 

due to wrong variances. 

Table 1 : Experiment 1 with First Set of Cases 

Cases ar1 ar2 aϕ ap1 ap2 ap3 N E Eeqv %Error 

1 0.3 0.1 0.2 0.03 0.1 0.05 4 0.8906 0.8904 0.023 

2 0.3 0.1 0.2 0.03 0.1 0.05 5 0.8965 0.8965 -0.003 

3 0.3 0.1 0.2 0.03 0.1 0.05 10 0.9102 0.9105 -0.038 

4 0.3 0.1 0.2 0.08 0.1 0.05 4 0.8330 0.8329 0.009 

5 0.3 0.1 0.2 0.08 0.1 0.05 5 0.8415 0.8417 -0.028 

6 0.3 0.1 0.2 0.08 0.1 0.05 10 0.8611 0.8615 -0.052 

7 0.3 0.1 0.2 0.03 0.06 0.05 4 0.8863 0.886 0.035 

8 0.3 0.1 0.2 0.03 0.06 0.05 5 0.8923 0.8924 -0.008 

9 0.3 0.1 0.2 0.03 0.06 0.05 10 0.9064 0.9068 -0.042 

 

Table 2 : Experiment 1 with Second Set of Cases 

Cases ar1 ar2 aϕ ap1 ap2 ap3 N E Eeqv %Error 

10 0.2 0.005 0.05 0.1 0.05 0.005 4 0.6861 0.6774 1.272 

11 0.2 0.005 0.05 0.1 0.05 0.005 5 0.6918 0.6882 0.526 

12 0.2 0.005 0.05 0.1 0.05 0.005 10 0.7278 0.7201 1.063 

13 0.2 0.005 0.05 0.1 0.05 0.005 20 0.7296 0.7451 -2.131 

14 0.05 0.005 0.2 0.1 0.05 0.005 4 0.7921 0.8127 -1.279 

15 0.05 0.005 0.2 0.1 0.05 0.005 5 0.7944 0.8318 -2.332 

16 0.05 0.005 0.2 0.1 0.05 0.005 10 0.8024 0.7803 1.493 

17 0.05 0.005 0.2 0.1 0.05 0.005 20 0.8128 0.7885 0.738 

 
Experiment 2 tests the impact of ignoring the fact of the availability of one of 

the operational states. In the experiment, the second state of the machines is ignored 

and only ܽݎଵ, ,ଵ݌ܽ ,ଵݎܾ  .’ܧ ,ଵ and ܰ parameters are used to calculate the throughput݌ܾ

Note that we use all parameters to calculate ܧ. As seen in Table 3, higher errors are 

introduced when the impact of degradation, preventive maintenance, and perfect 

repair are ignored. 
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Table 3 Experiment 2 with First Set of Cases 

Cases ar1 ar2 aϕ ap1 ap2 ap3 N E E' %Error 

1 0.3 0.1 0.2 0.03 0.1 0.05 4 0.8906 0.8541 4.10 

2 0.3 0.1 0.2 0.03 0.1 0.05 5 0.8965 0.8605 4.01 

3 0.3 0.1 0.2 0.03 0.1 0.05 10 0.9102 0.8784 3.49 

4 0.3 0.1 0.2 0.08 0.1 0.05 4 0.8330 0.6933 16.77 

5 0.3 0.1 0.2 0.08 0.1 0.05 5 0.8415 0.7048 16.24 

6 0.3 0.1 0.2 0.08 0.1 0.05 10 0.8611 0.7365 14.46 

7 0.3 0.1 0.2 0.03 0.06 0.05 4 0.8863 0.8541 3.63 

8 0.3 0.1 0.2 0.03 0.06 0.05 5 0.8923 0.8605 3.57 

9 0.3 0.1 0.2 0.03 0.06 0.05 10 0.9064 0.8784 3.09 

 

Our model behaves in the experiments the following way: When buffer size, ܰ 

increases, the throughput increases. The throughput also increases in increasing 

repair probability and decreasing failure probability. In the Cases 10-17, the perfect 

and imperfect repair probabilities are interchanged. According to these cases, when 

the machines are in state 2, the failures are less frequent. The results showed that 

making perfect repair increases the throughput of the system. The model behaves 

consistent with intuition in the experiments.  

7. Conclusions 

We proposed an analytical model to analyze the performance of an identically 

deteriorating two-machine system. The model gives exact results for the throughput 

of the system. The experiments showed that the results are consistent with intuition.  

We compared our results with those models proposed in literature which does 

not model the degradation, imperfect repair and preventive maintenance. The 

comparative results demonstrate that neglecting the degradation and imperfect 

repairs introduces significant throughput estimation errors. We also showed that 
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calculating the throughput with equivalent reliability parameters is not as accurate as 

studying the machine health states explicitly. 

As future research, a model that studies non-identically deteriorating two 

machine systems is recommended. The method can be used as a building block for 

the analysis of longer lines. 
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CHAPTER IV: A HYBRID AGGREGATION-DECOMPOSITION ALGORITHM FOR 

PERFORMANCE EVALUATION OF UNRELIABLE PRODUCTION LINES WITH 

FINITE BUFFERS 

 

Abstract   ̶  Aggregation and decomposition methods have been proposed in 

the literature for modeling throughput of production lines. In an attempt to improve the 

computational efficiency of the decomposition method, we offer a hybrid method that 

selectively aggregates parts of the production line based on the locations of 

bottleneck machines. The performance of the method is compared with the existing 

aggregation and decomposition methods. The results show that the hybrid approach 

provides very promising solutions for the throughput analysis of long lines. 

1. Introduction 

Production lines are of great economic importance in the mass production 

environments. Companies with these types of manufacturing systems, in particular 

automotive companies, put great emphasis on having high production rates to stay 

competitive in today’s global market. In order to improve the throughput, accurate 

throughput estimates are needed. Due to unreliable machines, finite buffers, varying 

processing times, etc. the throughput prediction is difficult. A common approach is to 

either develop simulation models or resort to analytical models. Whereas a more 

detailed and realistic analysis can be done with simulation models, it can be time-

consuming. Analytical models, while more efficient, are subject to errors due to the 
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simplifying assumptions. Due to the large state space, exact analytical models are 

only available for two-machine or three-machine systems. Instead, approximate 

analytical methods such as aggregation or decomposition methods are proposed for 

the analysis of longer lines or more complex production systems. The exact analytical 

model for the two-machine lines constitutes the building block for these approximate 

models. 

In the paper, we offer a hybrid aggregation-decomposition algorithm for 

throughput prediction of a ݇-machine production line as shown in Figure 1. The 

algorithm selectively aggregates parts of the line based on the location of the 

bottlenecks, which are the best estimators of the throughput (Bukchin, 1998). In our 

model, we employ the aggregation method of Terracol and David (1987) and the 

decomposition method of Burman (1995) which is the continuous model extension of 

the Dallery-David-Xie (DDX). The basic idea of hybridizing these two throughput 

evaluation approaches is to simultaneously benefit from the speed of the aggregation 

method and the accuracy of the decomposition method.  

 

Figure 1 : k-Machine Production Line 

In general, the execution of the decomposition methods is as follows: The 

original production line is broken down into ݇ െ 1 two-machine line segments as 

illustrated in Figure 2. The buffer in ݁݊݅ܮ	݅ shows the same behavior as the original 

line buffers and the pseudo-machines of ݁݊݅ܮ	݅ show the aggregate behavior of the 

line upstream (subscript ݑ) and the line downstream (subscript ݀)  of the buffer, ܤ௜. 
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The pseudo-machines of ݁݊݅ܮ	݅ are characterized by 6 unknown parameters 

,௨ሺ݅ሻߤ) ,௨ሺ݅ሻݎ ,௨ሺ݅ሻ݌ ,ௗሺ݅ሻߤ ,ௗሺ݅ሻݎ  ௗሺ݅ሻ). Therefore, the connection between the݌

subsystems can be established through 6ሺ݇ െ 1ሻ equations.  

 

Figure 2 : Decomposition of a k-Machine Line 

The aggregation methods, beginning with from the first or the last machine, 

replace a buffer and two machines of the ݇-machine line with a single equivalent 

machine, and this is done repeatedly until a single equivalent machine is left (See 

Figure 3). The remaining single equivalent machine has the same up and down times 

and processing rate of the production line. The details of the aggregation and 

decomposition methods are given in Section 5 for non-bottleneck machines. 
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Figure 3 : Aggregation of a k-Machine Line 

The remainder of the paper is structured as follows: Section 2 describes the 

related literature which includes only analytical models of production lines. In Section 

3, we introduce our model and the modeling assumptions. Section 4 presents 

performance measures of the model. In Section 5, we define our solution approach. 

The experimental results are shown in Section 6. Finally, we conclude the study and 

propose directions for future research in Section 7. 

2. Literature Review 

Performance evaluation of production systems has been studied over the last 

50 years (See the bibliography by Perros, 1983; literature reviews by Dallery and 

Gershwin, 1992; Papadopoulos and Heavey, 1996; Govil and Fu, 1999, Li et al., 
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2009, Bergeron el al., 2010; and the monographs by Buzacott and Shantikumar, 

1993; Gershwin, 1994; Altiok, 1997).  

Aggregation and decomposition methods have been used in the literature to 

approximately model the throughput of production lines. The principles of 

decomposition were established by Zimmern (1956) and Sevastyanov (1962). While 

Sevastyanov (1962) analyzes the continuous material systems, Zimmern (1956) 

analyzes the discrete material systems with the continuous material assumption. 

Alvarez-Vargas et al. (1994) explains in what cases the continuous flow model is a 

good approximation. In another study from Suri and Fu (1994), the advantages of 

using a continuous flow model for discrete flow systems are explained.  

The papers which use decomposition technique to approximate k-machine 

production lines are Buzacott (1967), Gershwin (1987), Dallery, David, and Xie 

(1988),  Choong and Gershwin (1987), Hong, Glassey, and Seong (1992), and 

Burman (1995). Gershwin (1987) proposed a deterministic processing time model for 

production lines with unreliable machines and finite buffers. He used geometric 

distribution for failure and repair probabilities. Soon after this study, Dallery, David, 

and Xie (1988) provided a more robust and efficient algorithm (called DDX algorithm). 

Choong and Gershwin (1987) analyzed production lines with unreliable machines, 

random processing times, and finite buffers. They used exponential processing, 

failure, and repair rates. Hong, Glassey, and Seong (1992) offered a simpler and 

more efficient method using a continuous material flow model for a system that is 

analyzed in Choong and Gershwin (1987). Finally, Burman (1995) extended the DDX 
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algorithm to a continuous flow model and developed an accelerated version of the 

DDX algorithm (ADDX), which converges in most of the cases tested. 

Aggregation methods are mainly used to study more complex systems. De 

Koster (1988), Terracol and David (1987), Lim et al. (1990), and Chiang et al. (2000) 

are some of the authors who analyzed the production lines using this technique. 

Previous studies using this technique used forward, backward, or hybrid aggregation 

methods in order to approximate the throughput of the line, which is similar to a one-

step decomposition method. Lim et al. (1990) and Chiang et al. (2000) improved the 

accuracy of the method with iterative backward and forward aggregation steps. 

3. Model Description and Assumptions 

We consider a serial production line as shown in Figure 1. The line consists of 

݇ machines (ܯଵ,ܯଶ, … ݇ ௞) andܯ, െ 1 buffers (ܤଵ, ,ଶܤ … ,  ௞ିଵ). A part enters fromܤ

outside the system to ܯଵ and it moves to ܤଵ after it is processed, then it enters ܯଶ 

and it moves to ܤଶ after it is processed, and so forth until it exits the system after 

being processed in ܯ௞.  

Machines can be in two states: up or down. When a machine is up and not 

starved or blocked, it either processes a part with a probability of ߤ௜ݐߜ,	or it may fail 

with a probability of	݌௜ݐߜ during the time interval ሺݐ, ݐ ൅  is an infinitesimal ݐߜ ሻ, whereݐߜ

duration. When it fails, it has a probability of	ݎ௜ݐߜ of getting repaired during the time 

interval ሺݐ, ݐ ൅  ሻ. The parts are modeled as continuous fluids; therefore, theݐߜ

machine’s processing rate and failure rate behaves differently when it is blocked or 

starved. The buffer level, ݔ௜, is continuous and can take any value from 0 to ௜ܰ.  

A parameter ∝௜ can be used to define the states of Machine ݅ ൌ 1, 2, … ݇. 
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∝௜ൌ ൜1
0
			
݈ܽ݊݋݅ݐܽݎ݁݌݋					
 ݎ݅ܽ݌݁ݎ	ݎ݁݀݊ݑ			

The state of the system can be represented by the instantenous buffer levels 

and the states of machines, e.g., ሺݔଵ, ,ଶݔ … , ,௞ିଵݔ ∝ଵ, ∝ଶ, … ∝௞ሻ. In a two-machine line, 

given that ݔ is continuous, the probability can be defined with mass functions for the 

boundary states, ܲሺݔ, ∝ଵ, ∝ଶሻ and density functions for the internal states, 

݂ሺݔ, ∝ଵ, ∝ଶሻ. The model is based on the following assumptions: 

 Discrete parts are produced in the system. 

 The isolated service times, 1/ߤ௜ are deterministic and non-homogeneous.  In 

other words, the isolated processing rates are constant, but differ from 

machine to machine.  

 If ߤ௜ ൏  ௜. Similarly, ifߤ ௜ is empty, both machines operate at a rate ofܤ ௜ାଵ andߤ

௜ߤ ൐  .௜ାଵߤ ௜ is full, both machines operate at a rate ofܤ ௜ାଵ andߤ

 The failure rate, ݌௜	and repair rate, ݎ௜ of each machine are exponentially 

distributed. If ߤ௜ ൏  ௜ାଵܯ ௜ andܯ ௜ is empty, the failure rates forܤ ௜ାଵ andߤ

become ݌௜ and ቀ ఓ೔
ఓ೔శభ

ቁ ௜ߤ ௜ାଵ, respectively. If݌ ൐  ௜ is full, the failureܤ ௜ାଵ andߤ

rates for ܯ௜ and ܯ௜ାଵ become ቀఓ೔శభ
ఓ೔
ቁ   .௜ାଵ, respectively݌ ௜ and݌

 The buffers are finite.  

 Machine, ܯ௜ is blocked when the buffer, ܤ௜ is full and it is starved when the 

buffer, ܤ௜ିଵ is empty. 

 First machine is never starved and last machine is never blocked. 

 Failures are operation-dependent, e.g., the machines do not fail when they are 

starved or blocked.  
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 No part is created or destroyed during the processing. 

 Buffers are reliable and part transfer times are negligible. 

 The analysis is done under steady-state. 

4. Performance Measures 

The most important performance measures of the production lines are the 

efficiency, the production rate and the average buffer levels. To calculate them, we 

need to calculate the isolated efficiency and the steady-state probabilities for 

idleness. The isolated efficiency for ܯ௜ is the fraction of time it is operational and can 

be calculated from, 

݁௜ ൌ
௜ݎ

௜ݎ ൅ ௜݌
 

The isolated production rate for ܯ௜ is the production rate of ܯ௜ when it is in 

isolation and not be impeded by other machines. It can be shown as, 

௜ߩ ൌ  ௜݁௜ߤ

The efficiency, ܧ௜ is the probability that ܯ௜ processes a part. It can be 

calculated using, 

௜ܧ ൌ ݁௜ሺ1 െ ௦ܲ െ ௕ܲሻ 

where ௕ܲ and ௦ܲ are the probability of blocking and the probability of starving, 

respectively. Gershwin (1994) defines these probabilities as follows: 

௕ܲ ൌ ܲሺܰ, 1,0ሻ ൅ ቀ1 െ ఓమ
ఓభ
ቁ ܲሺܰ, 1,1ሻ. If ߤଶ ൐ ,ଵߤ ܲሺܰ, 1,1ሻ ൌ 0 

௦ܲ ൌ ܲሺ0,0,1ሻ ൅ ቀ1 െ ఓభ
ఓమ
ቁܲሺ0,1,1ሻ. If ߤଵ ൐ ,ଶߤ ܲሺ0,1,1ሻ ൌ 0 
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The production rate, ௜ܲ is the parts produced per unit time by machine ܯ௜ and 

it equals, 

௜ܲ ൌ ௜ሺ1ߩ െ ௦ܲ െ ௕ܲሻ 

Finally the average level of the buffer ܤ௜ is, 

௜ݔ̅ ൌ ෍ ෍ ቈන ,௜ݔ௜݂ሺݔ ∝ଵ, ∝ଶሻ݀ݔ௜ ൅
ே

଴
௜ܰܲሺ ௜ܰ, ∝ଵ, ∝ଶሻ቉

ଵ

∝భୀ଴

ଵ

∝మୀ଴

 

5. Hybrid Aggregation-Decomposition Method 

Derivation of exact analytical solutions for a ݇-machine line is impossible 

because of the size of the state space. The dimension of the discrete state space is, 

	ܯ ൌ 	2௞ ∏ ሺ ௜ܰ ൅ 1ሻ௞ିଵ
௜ୀଵ  and it gets larger as the buffer sizes ( ௜ܰ) increases or the line 

gets longer. Instead, we use an approximate solution algorithm, which consists of 

three steps: 

 Identify the line bottlenecks  

 Aggregate the contiguous non-bottleneck machines while leaving the 

immediate neighboring buffers of the bottlenecks outside the aggregation 

 Decompose the virtual ℓ-machine system into ℓ െ 1 two-machine subsystems 

In the aggregation and decomposition steps, we have used the steady-state 

probabilities that are provided for the continuous two-machine lines by Gershwin 

(1994).   

5.1. Bottleneck Identification 

Identification of the bottlenecks greatly reduces the complexity of the plant 

throughput improvement problem. Since the bottlenecks are the binding constraints 
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of the throughput maximization problem, their improvement directly improves the 

overall throughput. According to Bukchin (1998), bottlenecks are the best estimator 

for the production throughput. Wang et al. (2005) reviews the available bottleneck 

identification methods extensively. We adopted Toyota’s Average Active Period 

(AAP) method (Roser et al., 2001) because we found it to be very effective in 

detecting the short-term bottlenecks compared to the other identification methods.  

AAP classifies the states of a machine as active and inactive. A machine is 

inactive if it is blocked or starved; otherwise it is active. Consecutive active states are 

considered as one active state (see Figure 4). The machine with the highest average 

active period is the highest bottleneck. 

 

Figure 4 : Active and Inactive States of a Machine (Roser et al., 2001) 

Let  1 2, ,...,i i i inA a a a be the durations of the active states of machine ݅, based 

on a simulation run. തܽ௜ and ݏ௜ are the average and the standard deviation of AAP for 

machine ݅, respectively. To improve accuracy, we also derive confidence intervals for 

AAP from ݉ simulation runs. If the number of active durations in a simulation run is 

݊௞, then the grand average of active durations for machine ݅	obtained from ݉ runs 

will be, 1 21 2

1 2

...
. 

...
i i imm

i

m

n a n a n a
a

n n n

  


  
The total variability in the active duration data can 
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be described by total sum of squares, totalSS  and equals _ _total between runs within runSS SS SS   

where,  

 _within runSS  explains the deviation of each active duration data of machine i from 

the average within each run,  2 2 2
_ 1 1 2 2( 1) ( 1) ... ( 1) .within run i i m imSS n s n s n s        

_between runsSS   explains the deviation of average active duration of each simulation 

run from the grand average, 2 2 2
1 2_ 1 2( ) ( ) ... ( ) .i i imbetween runs i i m iSS n a a n a a n a a        

The standard deviation of active durations for machine i obtained from m runs 

will be, 

1

.
1

total
i m

l
l

SS
S

n





 

Then, the confidence interval with ሺ1െ∝ሻ% confidence for the average of 

active durations for machine i can be written as, 
1 1

, 1 , 12 2

1 1

,  .m m

l l
l l

i i
i im mn n

l l
l l

S S
a t a t

n n
 

 
  

 

 
 
  
 
  
 

 
  

Based on the grand averages, ia the bottleneck ranks are determined. The 

confidence intervals help find any shifting bottlenecks or ties between the machines 

by checking to see if there is any overlap between the confidence intervals. 

 
5.2. Aggregation of Non-Bottleneck Machines 

We use the aggregation method introduced by Terracol and David (1987) in 

our hybrid algorithm. After identifying the bottlenecks, we aggregated the non-

bottleneck machines into a single equivalent machine and leave the neighboring 

buffers of bottlenecks outside the aggregation. Figure 5 shows the aggregation 

process. The bottlenecks are highlighted in green in the figure. We replace one buffer 
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and the two surrounding machines by a single equivalent machine until we aggregate 

all non-bottleneck machines. In Figure 5, the 7-machine line is reduced to a 5-

machine line (virtual line) with aggregation.  

 

Figure 5 : Aggregation around the Bottleneck Machines 

Let the states of each two-machine line segment of the production line be as in 

Table 1 and the probability of being in state ௝ܵ be ݎ݌௝. For ߤଵ ൌ ଶߤ ൌ  the state ,ߤ

transitions will be as in Figure 6. When we replace the two-machine and a buffer with 

an equivalent machine, these states reduces to two states: productive and 

unproductive states.   

Table 1 : States of a Two -Machine Line Segment 

States ࢏ࡹ ࢏ࡹ ࢏࡮ା૚ 

S1 1 1 ݔ 

S2 0 1 ݔ 

S3 1 0 ݔ 

S4 0 0 ݔ 

S5 ܰ 1 1 

S6 ܰ 1 (blocked) 0 

S7 0 0 1 (starved) 

S8 0 1 1 
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Figure 6 : State Transition Graph 

The definition of an equivalent machine differs based on the side of the view. 

To find the parameters of the equivalent machine from downstream view, we classify 

the productive and unproductive states of the second machine ܯ௜ାଵ. Figure 6 

encircles the productive states of the second machine. The probability of the second 

machine being in productive state is shown with ܲݎሺܣௗሻ and being in unproductive 

state is shown with ܲݎሺܰௗሻ. Then, ܲݎሺܣௗሻ equals ݎ݌ଵ ൅ ଷݎ݌ ൅ ହݎ݌ ൅ ݎ଼݌  and ܲݎሺܰௗሻ 

equals ݎ݌ଶ ൅ ସݎ݌ ൅ ଺ݎ݌ ൅ ଵଶߤ ଻.  The equivalent processing rate will beݎ݌
ௗ 	ൌ  From .ߤ

the balance equations, we can then find ଵܶ and ଶܶ. 

The ݎଵଶ
ௗ  is the rate of the equivalent machine going from an unproductive state 

to a productive state. Then, we can write ܲݎሺܣௗሻ݌ଵଶௗ ൌ ଶ݌ଵݎ݌ ൅ ଶ݌ଷሺݎ݌ ൅ ଶܶሻ ൅ ଶ݌ହݎ݌ ൅ ݎ଼݌ ሺ݌ଵ ൅

ଵଶ݌ ଶሻ. The݌
ௗ  is the rate of the equivalent machine going from a productive state to an 

unproductive state. Then, we can write ܲݎሺܰௗሻݎଵଶ
ௗ ൌ 2ݎ2ݎ݌ ൅ 2ݎ4ݎ݌ ൅ 2ݎ6ݎ݌ ൅  The .1ݎ7ݎ݌

parameters of an equivalent machine from the downstream view are all defined. Now, 

the production rate, ߩଵଶ
ௗ  will be equal to ߤଵଶ

ௗ ௥భమ
೏

௥భమ
೏ ା௣భమ

೏ . Other parameters can be 
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calculated similarly. Interested readers can see Terracol and David (1987) for details. 

We give all parameter equations below: 

When ࣆ૚ ൌ ૛ࣆ ൌ  ࣆ

௨ሻܣሺݎܲ 	ൌ ଵݎ݌	 ൅ ଶݎ݌ ൅ ହݎ݌ ൅ ݎ଼݌  

ሺܰ௨ሻݎܲ ൌ ଷݎ݌	 ൅ ସݎ݌ ൅ ଺ݎ݌ ൅ 	଻ݎ݌

ଵଶ݌
௨ 	ൌ

ଵ݌ଵݎ݌ ൅ ଵ݌ଶሺݎ݌ ൅ ଵܶሻ ൅ ଵ݌ହሺݎ݌ ൅ ଶሻ݌ ൅ ݎ଼݌ ଵ݌
௨ሻܣሺݎܲ

 

ଵଶݎ
௨ 	ൌ

ଵݎଷݎ݌ ൅ ଵݎସݎ݌ ൅ ଶݎ଺ݎ݌ ൅ ଵݎ଻ݎ݌
ሺܰ௨ሻݎܲ

 

ଵଶߤ
௨ 	ൌ  ߤ

ଵܶ ൌ
ଶݎ଺ݎ݌ െ ଶ݌ହݎ݌

ଶݎ݌
 

ௗ൯ܣ൫ݎܲ ൌ ଵݎ݌ ൅ ଷݎ݌ ൅ ହݎ݌ ൅ ݎ଼݌  

൫ܰௗ൯ݎܲ 	ൌ ଶݎ݌	 ൅ ସݎ݌ ൅ ଺ݎ݌ ൅ 	଻ݎ݌

ଵଶ݌
ௗ 	ൌ

ଶ݌ଵݎ݌ ൅ ଶ݌ଷሺݎ݌ ൅ ଶܶሻ ൅ ଶ݌ହݎ݌ ൅ ݎ଼݌ ሺ݌ଵ ൅ ଶሻ݌
ௗሻܣሺݎܲ

 

ଵଶݎ
ௗ 	ൌ

ଶݎଶݎ݌ ൅ ଶݎସݎ݌ ൅ ଶݎ଺ݎ݌ ൅ ଵݎ଻ݎ݌
ሺܰௗሻݎܲ

 

ଵଶߤ
ௗ 	ൌ  ߤ

ଶܶ ൌ
ଵݎ଻ݎ݌ െ ݎ଼݌ ଵ݌

ଷݎ݌
 

 

When ࣆ૚ ൐  ૛ࣆ

௨ሻܣሺݎܲ ൌ ଵݎ݌ ൅ ଶݎ݌ ൅ ௗሻܣሺݎܲ     ହݎ݌ ൌ ଵݎ݌ ൅ ଷݎ݌ ൅  ହݎ݌

ሺܰ௨ሻݎܲ				 ൌ ଷݎ݌ ൅ ସݎ݌ ൅ ଺ݎ݌ ൅ ଻    ܲሺܰௗሻݎ݌ ൌ ଶݎ݌ ൅ ସݎ݌ ൅ ଺ݎ݌ ൅  ଻ݎ݌

ଵଶߤ
௨ ൌ

ଵݎ݌ଵሺߤ ൅ ଶሻݎ݌ ൅ ହݎ݌ଶߤ
௨ሻܣሺݎܲ

 
ଵଶߤ    

ௗ ൌ  ଶߤ

ଵଶ݌
௨ ൌ

ଵ݌ଵݎ݌ ൅ ଵ݌ଶሺݎ݌ ൅ ଵܶሻ ൅ ହݎ݌ ቀ
ଶߤଵ݌
ଵߤ

൅ ଶቁ݌

௨ሻܣሺݎܲ
 

ଵଶ݌
ௗ ൌ

ሺݎ݌ଵ݌ଶ ൅ ଶ݌ଷሺݎ݌ ൅ ଶܶሻ ൅ ଶሻ݌ହݎ݌

ௗሻܣሺݎܲ
 

ଵଶݎ
௨ ൌ

ሺݎ݌ଷݎଵ ൅ ଵݎସݎ݌ ൅ ଶݎ଺ݎ݌ ൅ ଵሻݎ଻ݎ݌

ሺܰ௨ሻݎܲ
ଵଶݎ 

ௗ ൌ
ሺݎ݌ଶݎଶ ൅ ଶݎସݎ݌ ൅ ଶݎ଺ݎ݌ ൅ ଵሻݎ଻ݎ݌

ሺܰௗሻݎܲ
 

ଵܶ ൌ
ଶݎ଺ݎ݌ െ ଶ݌ହݎ݌

ଶݎ݌
 ଶܶ ൌ

ଵݎ଻ݎ݌
ଷݎ݌
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When ࣆ૚ ൏  ૛ࣆ

௨ሻܣሺݎܲ ൌ ଵݎ݌ ൅ ଶݎ݌ ൅ ݎ଼݌ ௗሻܣሺݎܲ ൌ ଵݎ݌ ൅ ଷݎ݌ ൅ ݎ଼݌ 	

ሺܰ௨ሻݎܲ ൌ ଷݎ݌ ൅ ସݎ݌ ൅ ଺ݎ݌ ൅ ଻ݎ݌ ሺܰௗሻݎܲ ൌ ଶݎ݌ ൅ ସݎ݌ ൅ ଺ݎ݌ ൅ ଻ݎ݌

ଵଶߤ
௨ ൌ  ଵߤ

ଵଶߤ
ௗ ൌ

ଵݎ݌ଶሺߤ ൅ ଷሻݎ݌ ൅ ݎ଼݌ଵߤ
ௗሻܣሺݎܲ

 

ଵଶ݌
௨ ൌ

ሺݎ݌ଵ݌ଵ ൅ ଵ݌ଶሺݎ݌ ൅ ଵܶሻ ൅ ݎ଼݌ ଵሻ݌

௨ሻܣሺݎܲ
 

ଵଶ݌
ௗ ൌ

ଶ݌ଵݎ݌ ൅ ଶ݌ଷሺݎ݌ ൅ ଶܶሻ ൅ ݎ଼݌ ቀ݌ଵ ൅
ଵߤଶ݌
ଶߤ

ቁ

ௗሻܣሺݎܲ
 

ଵଶݎ
௨ ൌ

ଵݎଷݎ݌ ൅ ଵݎସݎ݌ ൅ ଶݎ଺ݎ݌ ൅ ଵݎ଻ݎ݌
ሺܰ௨ሻݎܲ

ଵଶݎ 
ௗ ൌ

ଶݎଶݎ݌ ൅ ଶݎସݎ݌ ൅ ଶݎ଺ݎ݌ ൅ ଵݎ଻ݎ݌
ሺܰௗሻݎܲ

 

ଵܶ ൌ
ଶݎ଺ݎ݌
ଶݎ݌

 ଶܶ ൌ
ଵݎ଻ݎ݌ െ ݎ଼݌ ଵ݌

ଷݎ݌
 

5.3. Decomposition of the Virtual Line  

We use the continuous model extension of the Dallery-David-Xie (DDX) 

decomposition method that is introduced by Burman (1995). After the aggregation of 

the non-bottleneck machines, we decompose the virtual ℓ-machine system into ℓ െ 1 

two-machine subsystems (Figure 7).  
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Figure 7 : Decomposition of the Virtual Line 

The pseudo-machines of each two-machine systems are characterized by 6 

unknown parameters (ߤ௨ሺ݅ሻ, ,௨ሺ݅ሻݎ ,௨ሺ݅ሻ݌ ,ௗሺ݅ሻߤ ,ௗሺ݅ሻݎ  ௗሺ݅ሻ). Therefore, we need݌

6ሺℓ െ 1ሻ equations to find out the unknown parameters. These equations are derived 

by using some characteristics of the production lines. These characteristics are 

summarized in the following subsections. Interested readers can see Burman (1995) 

for details. 

5.3.1. Conservation of Flow 

Since no part is created or destroyed, the production flow will be conserved. 

ܲሺ݅ሻ ൌ ܲሺ1ሻ ݅ ൌ 2,… , ℓ െ 1 	
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5.3.2. Flow Rate-Idle Time Relationship 

The production rate of each machine in the line is less than its isolated 

production rate because it is impeded by other machine due to blocking and starving.   

ܲሺ݅ሻ ൌ ݁௜ߤ௜൫1 െ ௦ܲሺ݅ െ 1ሻ െ ௕ܲሺ݅ሻ൯ ݅ ൌ 2,… , ℓ െ 1  

5.3.3. Interruption of Flow 

If ܯ௨ሺ݅ሻ is down, this is due to a failure of ܯ௜ or a starvation of ܤ௜ିଵ and a 

failure of ܯ௨ሺ݅ െ 1ሻ simultaneously. 

ݐߜ௨ሺ݅ሻ݌ ൌ ܲሺܯ௜	݅ݏ	݊ݓ݋݀	ݎ݋	ሺݔ௜ିଵ ൌ ௨ሺ݅ܯ	݀݊ܽ	0 െ 1ሻ	݅ݏ	݊ݓ݋݀ሻ	ܽݐ	ݐ

൅ ௜ݔ	݀݊ܽ	݌ݑ	ݏ݅	௨ሺ݅ሻܯ	|	ݐߜ ൏ ௜ܰ	ܽݐ	ݐሻ	 

Similarly, if ܯௗሺ݅ሻ is down, this is due to a failure of ܯ௜ or a blockage of ܤ௜ାଵ 

and a failure of ܯௗሺ݅ ൅ 1ሻ simultaneously. 

ݐߜௗሺ݅ሻ݌ ൌ ܲሺܯ௜	݅ݏ	݊ݓ݋݀	ݎ݋	ሺ	ܯௗሺ݅ ൅ 1ሻ	݅ݏ	݊ݓ݋݀	݀݊ܽ	ݔ௜ାଵ ൌ ௜ܰାଵሻ	ܽݐ	ݐ

൅ ௜ݔ	݀݊ܽ	݌ݑ	ݏ݅	ௗሺ݅ሻܯ	|ݐߜ ൐  ሻݐ	ݐܽ	0

5.3.4. Resumption of Flow 

Remember that the conditions that ܯ௨ሺ݅ሻ and ܯௗሺ݅ሻ are down from the 

interruption of flow definition. Recovery from this condition leads to the derivation of 

resumption of flow equations. We write the equations for the resumption of ܯ௨ሺ݅ሻ 

below. Similar equations can be written for the resumption of ܯௗሺ݅ሻ.   

ݐߜ௨ሺ݅ሻݎ ൌ ሺ݅ܣ െ 1ሻܺሺ݅ሻ ൅ ݅ ሺ݅ሻܺᇱሺ݅ሻܤ ൌ 2,… , ℓ െ 1 

where, 

ሺ݅ܣ െ 1ሻ ൌ ܲሺܯ௜	݅ݏ	݌ݑ	ܽ݊݀	ܱܰܶሺݔ௜ିଵ ൌ ௨ሺ݅ܯ	݀݊ܽ	0 െ 1ሻ	݅ݏ	݊ݓ݋݀ሻܽݐ	ݐ ൅ ௜ିଵݔ|ݐߜ

ൌ ௨ሺ݅ܯ	݀݊ܽ	0 െ 1ሻ	݅ݏ	݊ݓ݋݀	ݐܽ	ݐሻ ൌ ௨ሺ݅ݎ െ 1ሻݐߜ	
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ሺ݅ሻܤ ൌ ܲሺܯ௜	݅ݏ	݌ݑ	ܽ݊݀	ܱܰܶሺݔ௜ିଵ ൌ ௨ሺ݅ܯ	݀݊ܽ	0 െ 1ሻ	݅ݏ	݊ݓ݋݀ሻܽݐ	ݐ ൅ ሻݐ	ݐܽ	݊ݓ݋݀	ݏ݅	௜ܯ|ݐߜ

ൌ  ݐߜ௜ݎ

ܺሺ݅ሻ ൌ ܲሺݔ௜ିଵ ൌ ௨ሺ݅ܯ	݀݊ܽ	0 െ 1ሻ	݅ݏ	݊ݓ݋݀	ݐܽ	ܯ|ݐ௜	݅ݏ	݊ݓ݋݀	ݎ݋	ሺݔ௜ିଵ

ൌ ௨ሺ݅ܯ	݀݊ܽ	0 െ 1ሻ	݅ݏ	݊ݓ݋݀ሻ	ܽݐ	ݐሻ	

ܺᇱሺ݅ሻ ൌ 1 െ ܺሺ݅ሻ 

5.3.5. Summary of Equations 

The equations for ߤ௨ሺ݅ሻ and ߤௗሺ݅ሻ can be derived jointly from the conservation 

of flow and flow rate-idle time relationships. We can summarize all the decomposition 

equations as below: 

Boundary Equations  

௨ሺ1ሻݎ ൌ ௗሺℓݎ ଵݎ െ 1ሻ ൌ  ℓݎ

௨ሺ1ሻ݌ ൌ ௗሺℓ݌ ଵ݌ െ 1ሻ ൌ  ℓ݌

௨ሺ1ሻߤ ൌ ௗሺℓߤ ଵߤ െ 1ሻ ൌ  ℓߤ

 
Upstream Equations ݅ ൌ 2,… , ℓ െ 1 

௨ሺ݅ሻ݌ ൌ ௜݌ ൭1 ൅
௜ܲିଵሺ0,1,1ሻߤ௨ሺ݅ሻ
ܲሺ݅ െ 1ሻ

ቆ
ሺ݅�ߤ െ 1ሻ
ௗሺ݅ߤ െ 1ሻ

െ 1ቇ൱ ൅ ௜ܲିଵሺ0,0,1ሻߤ௨ሺ݅ሻ
ܲሺ݅ െ 1ሻ

௨ሺ݅ݎ െ 1ሻ 

௨ሺ݅ሻݎ ൌ ௨ሺ݅ݎ െ 1ሻ ௜ܲିଵሺ0,0,1ሻݎ௨ሺ݅ሻߤ௨ሺ݅ሻ
௨ሺ݅ሻܲሺ݅݌ െ 1ሻ

൅ ௜ݎ ቆ1 െ
௜ܲିଵሺ0,0,1ሻݎ௨ሺ݅ሻߤ௨ሺ݅ሻ
௨ሺ݅ሻܲሺ݅݌ െ 1ሻ

ቇ 

௨ሺ݅ሻߤ ൌ
1

݁௨ሺ݅ሻ
൮

1
1

ܲሺ݅ െ 1ሻ ൅
1
݁௜ߤ௜

െ 1
݁ௗሺ݅ െ 1ሻߤௗሺ݅ െ 1ሻ

൲ 
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Downstream Equations  ݅ ൌ 1,… , ℓ െ 2 

ௗሺ݅ሻ݌ ൌ ௜ାଵ݌ ൭1 ൅
௜ܲାଵሺ ௜ܰାଵ, 1,1ሻߤௗሺ݅ሻ

ܲሺ݅ ൅ 1ሻ
ቆ
ௗሺ݅ߤ ൅ 1ሻ

௨ሺ݅ߤ ൅ 1ሻ
െ 1ቇ൱

൅ ௜ܲାଵሺ ௜ܰାଵ, 1,0ሻߤௗሺ݅ ൅ 1ሻ

ܲሺ݅ ൅ 1ሻ
ௗሺ݅ݎ ൅ 1ሻ 

ௗሺ݅ሻݎ ൌ ௗሺ݅ݎ ൅ 1ሻ ௜ܲାଵሺ ௜ܰାଵ, 1,0ሻݎௗሺ݅ሻߤௗሺ݅ሻ

ௗሺ݅ሻܲሺ݅݌ ൅ 1ሻ
൅ ௜ାଵݎ ቆ1 െ

௜ܲାଵሺ ௜ܰାଵ, 1,0ሻݎௗሺ݅ሻߤௗሺ݅ሻ

ௗሺ݅ሻܲሺ݅݌ ൅ 1ሻ
ቇ 

ௗሺ݅ሻߤ ൌ
1

݁ௗሺ݅ሻ
൮

1
1

ܲሺ݅ ൅ 1ሻ ൅
1

݁௜ାଵߤ௜ାଵ
െ 1
݁௨ሺ݅ ൅ 1ሻߤ௨ሺ݅ ൅ 1ሻ

൲ 

6. Experimental Study 

In the experiments, we tested the effectiveness and the efficiency of the hybrid 

aggregation-decomposition algorithm. We experimented with three variants of the 

hybrid aggregation-decomposition method with different levels of aggregation. We 

compared the results with pure aggregation (Terracol and David, 1987) and 

decomposition methods (Burman, 1995) using assembly lines published in Alvarez-

Vargas et al. (1994), actual lines from the automotive industry, and synthetically 

generated lines. We also evaluated our hybrid algorithm’s performance by comparing 

the results to the throughput averages that are obtained by simulation. Effectiveness 

of the methods is measured in number of standard deviations from the simulation 

averages. We implemented all of our algorithms and methods in Matlab R2007b and 

executed them on a Celeron M machine (with CPU 1.4 GHz and 512 MB RAM) 

running Microsoft Windows XP operating system. 
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We used both synthetic and real data in the experiments. The experiment sets 

consist of non-homogeneous production lines, in which the processing rates of each 

machine are different. We categorized the experiments into three groups (Cases 1-5, 

Cases 6-10, and Cases 11-16) based on the location of the bottleneck.  In the 

remainder, we denote Hybrid Aggrregation-Decomposition Method results by HAD, 

whole aggregation method results by AGG, and whole decomposition method by 

DEC.  

6.1. Experimental Setting I: Cases 1-5 

In this set of five experiments, the bottleneck machine is in the beginning of 

the line (Table 3). Case 1 is taken from Alvarez-Vargas et al. (1994). Case 2 belongs 

to a framing line of an automotive body shop. The other cases are synthetically 

generated. HAD1, HAD2, and HAD3 show different hybrid method implementations 

with varying degree of aggregation. For example, in HAD1, the bottleneck machine 

 are left outside the aggregation and  the rest of (ଵܤ) and its neighboring buffer (ଵܯ)

the line (ܯଶ,…  ଵ଴) is replaced with an aggregate machine. Similarly, machines 3-10ܯ,

and 4-10 are replaced with aggregate machines in HAD2 and HAD3. Table 2 shows 

the level of aggregations in the methods. 

Table 2 : Level of Aggregation while Bottlenecks are at the Beginning 

AGG  whole aggregation 
HAD1  1 2-10 
HAD2  1 2 3-10 
HAD3  1 2 3 4-10 
DEC whole decomposition 
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Table 3 : Experimental Setting I: Cases 1-5 

St. #  St#1  St#2  St#3 St#4 St#5 St#6 St#7  St#8  St#9 St#10 

Case 
1 

µ  0.5 1.2 2.5 2 1.5 0.8 0.9 1.1 0.7 1.4 

p  0.02 0.04 0.06 0.05 0.08 0.01 0.03 0.05 0.01 0.04 

r  0.1 0.2 0.1 0.08 0.15 0.05 0.09 0.1 0.04 0.2 

N  10 15 18 22 12 16 18 30 20    

e  0.417 1 1.563 1.231 0.978 0.667 0.675 0.733 0.56 1.167 

St. #  St#10  St#20  St#30 St#40 St#50 St#60 St#70  St#80  St#90 St#100 

Case 
2 

µ  1.28 3.82 1.87 8.16 1.53 8.03 7.58 7.84 7.23 7.87 

p  0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 

r  0.45 0.34 0.35 0.26 0.21 0.31 0.4 0.4 0.4 0.23 

N  3 3 3 3 3 3 3 3 3   

e  1.27 3.779 1.856 8.071 1.508 7.948 7.528 7.786 7.18 7.769 

St. #  St#10  St#9  St#8 St#7 St#6 St#5 St#4  St#3  St#2 St#1  

Case 
3 

µ  5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 

p  0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 

r  0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

N  3 3 3 3 3 3 3 3 3    

e  5.446 5.941 6.436 6.931 7.426 7.921 8.416 8.911 9.406 9.901 

St. #  St#1  St#2  St#3 St#4 St#5 St#6 St#7  St#8  St#9 St#10 

Case 
4 

µ  0.4 1 1.8 2.5 5 3.1 2.3 1.8 1.2 0.9 

p  0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

r  0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

N  3 3 3 3 3 3 3 3 3    

e  0.333 0.833 1.5 2.083 4.167 2.583 1.917 1.5 1 0.75 

St. #  St#1  St#2  St#3 St#4 St#5 St#6 St#7  St#8  St#9 St#10 

Case 
5 

µ  0.8 4.5 2 5 1.5 3 2 7 2.5 4 

p  0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 

r  0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

N  3 3 3 3 3 3 3 3 3    

e  0.787 4.429 1.969 4.921 1.476 2.953 1.969 6.89 2.461 3.937 
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Table 4 compares the performance of the algorithms. Even though AGG is the 

most efficient, it does not always provide consistent throughput estimates. (e.g., it is 

far away from the average throughput in Case 1.) HAD1 is not only efficient but also 

has reasonable accuracy in all cases. HAD1 outperforms DEC in all cases but Case 

2 where the difference is small. As the level of aggregation decreases, the hybrid and 

decomposition methods become less efficient. We note that HAD2, HAD3, and DEC 

predicted efficiencies are very far away from the simulated average throughput in 

Case 5. We also note that the accuracy is not monotone in the degree of aggregation 

as accuracy going from HAD1 to HAD2, HAD3 and DEC is first decreasing and then 

increasing. 

Table 4 : Comparison of Methods while Bottlenecks are at the Beginning 

 Case Number 

Number of Deviations from the Mean CPU 

1 2 3 4 5 1 2 3 4 5 

AGG 7.25 3.78 1.69 5.04 1.86 0.17 0.13 0.19 0.13 0.15 

HAD1 1 2.79 1.73 1.41 1.31 0.64 0.63 0.99 0.85 0.80 

HAD2 2.84 3.63 1.37 0.55 41.99 2.66 10.59 8.79 1.77 44.61 

HAD3 3.74 4.64 1.08 3.27 54.58 45.55 47.48 12.94 43.51 46.32 

DEC 6.51 2.06 5.19 5.72 15.98 64.25 64.41 54.79 57.47 57.39 

 

6.2. Experimental Setting II: Cases 6-10 

In this set of experiments, the bottleneck is in the middle of the line. Case 6 is 

modified from Alvarez-Vargas et al. (1994), Case 7 belongs to a front structure line of 

an automotive body shop. The other cases are synthetic. The level of aggregation of 

the methods are shown in Table 5. 
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Table 5 : Level of Aggregation while Bottlenecks are in the Middle 

AGG  whole aggregation 
HAD1  1-4 5 6-10 
HAD2  1-3 4 5 6 7-10 
HAD3  1-2 3 4 5 6 7 8-10 
DEC whole decomposition 

 

Table 6 : Experimental Setting II: Cases 6-10 

St. #  St#5  St#2  St#3 St#4 St#1 St#6 St#7  St#8  St#9 St#10 

Case 
6 

µ  1.5 1.2 2.5 2 0.5 0.8 0.9 1.1 0.7 1.4 
p  0.08 0.04 0.06 0.05 0.02 0.01 0.03 0.05 0.01 0.04 
r  0.15 0.2 0.1 0.08 0.1 0.05 0.09 0.1 0.04 0.2 
N  10 15 18 22 12 16 18 30 20    
e  0.978 1 1.563 1.231 0.417 0.667 0.675 0.733 0.56 1.167

St. #  St#10  10R8  St#20 20R8 St#30 40R8 St#50  St#60  St#70 St#80 

Case 
7 

µ  4.48 8.44 1.45 6.21 1.36 3.35 8.12 7.32 2.56 8.28 
p  0.003 0.002 0.003 0.003 0.003 0.003 0.002 0.002 0.003 0.002

r  0.27 0.27 0.31 0.31 0.31 0.31 0.28 0.28 0.32 0.26 
N  3 3 3 3 3 3 3 3 3    
e  4.438 8.362 1.439 6.151 1.344 3.318 8.049 7.256 2.537 8.204

St. #  St#1  St#2  St#3 St#4 St#5 St#6 St#7  St#8  St#9 St#10 

Case 
8 

µ  10 9 8 7 6 5 6 7 8 9 
p  0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

r  0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
N  3 3 3 3 3 3 3 3 3    
e  9.901 8.911 7.921 6.931 5.941 4.95 5.941 6.931 7.921 8.911

St. #  St#1  St#2  St#3 St#4 St#5 St#6 St#7  St#8  St#9 St#10 

Case 
9 

µ  5.5 7.5 10 8 4 8 10 7.5 5.5 5 
p  0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

r  0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
N  3 3 3 3 3 3 3 3 3    
e  5.446 7.426 9.901 7.921 3.96 7.921 9.901 7.426 5.446 4.95 
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St. #  St#1  St#2  St#3 St#4 St#5 St#6 St#7  St#8  St#9 St#10 

Case 
10 

µ  1.5 4.5 2 5 0.8 3 2 7 2.5 4 
p  0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

r  0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 
N  3 3 3 3 3 3 3 3 3    
e  1.476 4.429 1.969 4.921 0.787 2.953 1.969 6.89 2.461 3.937

 

The performance of the algorithms is given in Table 7. Again, the AGG is the 

most efficient, but the throughput estimates are not consistent, e.g., it is far away 

from the average throughput in Case 1. HAD1 is fast and consistently accurate in all 

cases. As the level of aggregation decreases, the methods get slower. HAD2, HAD3, 

and DEC struggle in some cases.  

Table 7 : Comparison of Methods while Bottlenecks are in the Middle 

 Case Number 

 Number of Deviations from the Mean CPU 

6 7 8 9 10 6 7 8 9 10 

AGG 7.08 0.1 1.03 0.03 0.22 0.17 0.17 0.42 0.17 0.17 

HAD1 1.18 0.25 0.84 0.06 0.82 1.41 1.21 7.50 2.71 1.37 

HAD2 0.6 19.97 1.04 11.87 16.37 43.95 44.02 24.16 54.37 43.99 

HAD3 1.33 19.54 4.45 23.96 3.72 46.98 55.87 29.17 52.95 48.16 

DEC 0.71 26.38 4.64 9.8 11.62 51.70 60.76 57.59 58.66 57.89 

 

6.3. Experimental Setting III: Cases 11-15 

The bottleneck is at the end of the line in this experiment set. Case 11 is 

modified from Alvarez-Vargas et al. (1994), Case 12 modified from the framing line 

data that is used in Case 2. The other cases are synthetic. The level of aggregation 

of the methods are shown in Table 8. 

Table 8 : Level of Aggregation while Bottlenecks are at the End 
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AGG  whole aggregation
HAD1  1-9 10 
HAD2  1-8 9 10 
HAD3  1-7 8 9 10 
DEC whole decomposition

 

Table 9 : Experimental Setting III: Cases 11-15 

St. #  St#10  St#2  St#3 St#4 St#5 St#6 St#7  St#8  St#9 St#1 

Case 
11 

µ  1.4 1.2 2.5 2 1.5 0.8 0.9 1.1 0.7 0.5

p  0.04 0.04 0.06 0.05 0.08 0.01 0.03 0.05 0.01 0.02

r  0.2 0.2 0.1 0.08 0.15 0.05 0.09 0.1 0.04 0.1

N  10 15 18 22 12 16 18 30 20   

e  1.167 1 1.563 1.231 0.978 0.667 0.675 0.733 0.56 0.417

St. #  St#100  St#90  St#80 St#70 St#60 St#50 St#40  St#30  St#20 St#10 

Case 
12 

µ  7.87 7.23 7.84 7.58 8.03 1.53 8.16 1.87 3.82 1.28 
p  0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.004

r  0.23 0.4 0.4 0.4 0.31 0.21 0.26 0.35 0.34 0.45 
N  3 3 3 3 3 3 3 3 3    
e  7.769 7.18 7.786 7.528 7.948 1.508 8.071 1.856 3.779 1.27 

St. #  St#1  St#2  St#3 St#4 St#5 St#6 St#7  St#8  St#9 St#10 

Case 
13 

µ  10 9.5 9 8.5 8 7.5 7 6.5 6 5.5 
p  0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

r  0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
N  3 3 3 3 3 3 3 3 3    
e  9.901 9.406 8.911 8.416 7.921 7.426 6.931 6.436 5.941 5.446

St. #  St#1  St#2  St#3 St#4 St#5 St#6 St#7  St#8  St#9 St#10 

Case 
14 

µ  0.9 1.2 1.8 2.3 3.1 5 2.5 1.8 1 0.4 
p  0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
r  0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
N  3 3 3 3 3 3 3 3 3    
e  0.75 1 1.5 1.917 2.583 4.167 2.083 1.5 0.833 0.333

St. #  St#1  St#2  St#3 St#4 St#5 St#6 St#7  St#8  St#9 St#10 

Case 
15 

µ  4 4.5 2 5 1.5 3 2 7 2.5 0.8 
p  0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
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r  0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 
N  3 3 3 3 3 3 3 3 3    
e  3.937 4.429 1.969 4.921 1.476 2.953 1.969 6.89 2.461 0.787

 

The performance of the algorithms is compared in Table 10.  AGG is the most 

efficient and has reasonable accuracy. HAD1 is fast in all cases, but the throughput 

estimate for Cases 14 and 15 are far from the simulation average. However, in Case 

15, we calculated the 95% confidence interval for simulation throughput as (0.7838, 

0.7887). The throughput estimate of HAD1 is 0.7731 and within the interval with a 

relative error of 1.67%, which is reasonable. The throughput estimate of HAD1 for 

Case 14 is 0.3169 and the 95% confidence interval for simulation throughput as 

(0.3282, 0.3388). The relative error makes 4.97% for this case. As the level of 

aggregation decreases, the methods get slower. HAD3 and DEC struggle in some 

cases.  

Table 10 : Comparison of Methods while Bottlenecks are at the End 

 Case Number 

Number of Deviations from the Mean CPU 

11 12 13 14 15 11 12 13 14 15 

AGG 2.2 1.13 2.6 3.99 1.64 0.16 0.17 0.13 0.17 0.16 

HAD1 2.38 3.24 1.93 6.14 10.52 0.67 0.71 0.78 2.54 0.82 

HAD2 3.21 5.7 1.5 4.73 3.8 3.86 3.46 6.25 2.62 4.35 

HAD3 3.47 25.56 1.28 30.73 525.96 5.10 4.30 10.98 45.54 41.24 

DEC 12.4 22.24 4.79 41.79 335 51.50 59.06 59.09 58.61 57.91 

 

7. Conclusions 

We proposed a hybrid aggregation-decomposition algorithm that approximates 

the throughput of longer production lines.  The algorithm selectively aggregates the 
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parts of the line based on the location of the bottlenecks and uses decomposition 

method for approximate analysis of the resulting virtual line.  

We compared our results with the aggregation and decomposition methods. 

The experiments showed that the aggregation method provides fast, but inconsistent 

results. The decomposition method requires longer CPU time in case of long 

production lines. On the other hand, the hybrid method provides consistently 

accurate results in all cases in much less CPU time than the decomposition method 

and is comparable to those of the aggregation method. 

As future research, the level of aggregation in the hybrid method can be 

studied with the construction of error bounds. The analysis of the bottleneck behavior 

in throughput prediction is recommended. 
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CHAPTER V: CONCLUSIONS & FUTURE RESEARCH 

 

The dissertation proposes analytical methods for throughput evaluation and a 

decision support system for throughput improvement in production facilities. While 

making productivity related decisions, maintenance operations should not be thought of 

separately. Effective management of maintenance operations is crucial in production 

facilities, which are often unable to reach throughput targets due to being down for long 

periods with machine breakdowns and overdue repairs.  

We first present a decision support system (APMDSS), which guides 

maintenance managers in making corrective and preventive maintenance related 

decisions for the upcoming production shift. The APMDSS anticipates the dynamics 

(bottlenecks, hourly buffer levels, machine health) of the upcoming shift by exploiting 

the initial condition information. We show that the initial conditions (such as, time since 

last machine preventive maintenance cycle, operational status of machines, inventory 

buffer levels, and scheduled production model mix) change the bottleneck patterns of 

the upcoming shift and the use of historic bottleneck data for maintenance task 

prioritization will not always perform well. We did the experiments using real data from a 

body shop of a major automotive company. We also used synthetic data to investigate 

production lines that handle multiple products (model mix case). The results are very 

promising when we compared the performance of APMDSS with methods from the 

literature and practice.  
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Secondly, we offer an exact analytical formula that estimates the throughput 

performance of an identically deteriorating two-machine system. The experiments show 

that the results are consistent with intuition. In the model, we consider degradation, 

imperfect repair and preventive maintenance. Our results show the importance of 

considering these details. We also show that calculating the throughput with equivalent 

reliability parameters is not as accurate as studying the machine health states explicitly. 

Thirdly, we propose a hybrid aggregation-decomposition algorithm that 

approximates the throughput of longer production lines.  The algorithm selectively 

aggregates the parts of the line based on the location of the bottlenecks. We compared 

our results with the existing aggregation and decomposition methods. The experiments 

show that the hybrid method provides reasonable solutions. The results are obtained in 

less CPU time than the decomposition method and they are consistent and more 

accurate than the aggregation method. 

Future Work 

Future research can consider extending APMDSS to incorporate partial PM to 

benefit from the short opportunity windows and to incorporate preemptive CM to let 

higher degree bottlenecks resume production without much delay.  

A model that studies non-identically deteriorating two machine systems is also 

recommended. The method can be used as a building block for the analysis of longer 

lines.  

Another future study can be the construction of error bounds to determine the 

level of aggregation in the hybrid method. The analysis of the bottleneck behavior in 

throughput prediction is also recommended. 



110 

 

APPENDICES 

Chapter II : Appendix 1 

Figure 1 through Figure 6 show the 95% confidence limits of the average 

active periods of the top two most severe bottlenecks under different initial 

conditions. As seen in the figures, the severity and the variability of these bottlenecks 

increase with increasing ages and failures in general. Buffers may have different 

impact on the bottleneck severity based on the location of the bottlenecks (see Figure 

5 and Figure 6). They do not have much impact on the variability of the bottlenecks.  

 

No failures, empty buffers No failures, average 
buffers 

Few failures, empty 
buffers 

Few failures, average 
buffers 

 

Figure 1 : Impact of Initial Machine Ages on Bottleneck Status of LHA1 under 
Different Initial Conditions 
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Figure 2 : Impact of Initial Machine Ages on Bottleneck Status of Dash under 
Different Initial Conditions 
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buffers buffers buffers 

 

Figure 3 : Impact of Initial Machine Failures on Bottleneck Status of LHA1 under 
Different Initial Conditions 
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Figure 4 : Impact of Initial Machine Failures on Bottleneck Status of Dash under 
Different Initial Conditions 

No failures, zero ages No failures, higher ages Few failures, zero ages Few failures, higher ages 

 

Figure 5 : Impact of Initial Buffer Levels on Bottleneck Status of LHA1 under Different 
Initial Conditions 
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Figure 6 : Impact of Initial Buffer Levels on Bottleneck Status of Dash under Different 
Initial Conditions 

If we group the bottlenecks as primary, secondary, and tertiary bottlenecks 

based on their severity, LHA1 and Dash belong to the first category and LHA2, 

RHA3, and Sta40 belong to the second category under given conditions. The 

variability of the secondary bottlenecks increases with higher initial ages and initial 

failures; their severity increases with buffers.  
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Figure 7 : Impact of Initial Machine Ages on Bottleneck Status of LHA2 under 
Different Initial Conditions 
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Figure 8 : Impact of Initial Machine Ages on Bottleneck Status of RHA3 under 
Different Initial Conditions 
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Figure 9 : Impact of Initial Machine Ages on Bottleneck Status of Sta40 under 
Different Initial Conditions 
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Figure 10 : Impact of Initial Machine Failures on Bottleneck Status of LHA2 under 
Different Initial Conditions 
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Figure 11 : Impact of Initial Machine Failures on Bottleneck Status of RHA3 under 
Different Initial Conditions 
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Figure 12 : Impact of Initial Machine Failures on Bottleneck Status of Sta40 under 
Different Initial Conditions 
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Figure 13 : Impact of Initial Buffer Levels on Bottleneck Status of LHA2 under 
Different Initial Conditions 
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Figure 14 : Impact of Initial Buffer Levels on Bottleneck Status of RHA3 under 
Different Initial Conditions 
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Figure 15 : Impact of Initial Buffer Levels on Bottleneck Status of Sta40 under 
Different Initial Conditions  
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Chapter II : Appendix 2 

The mix percentages are written on the title of each table column. Different mixes 

create unexpected bottlenecks and lead to shifting bottlenecks. 



 

 

Table 1 : Impact of Model Mix on JPH and Overall Bottleneck Patterns 

 75%-25% 50%-50% 25%-75% 
    

Age 
Group 

1 

 
LowJPH 31.97 
JPH 33.15 
HighJPH 34.33 

 

 
LowJPH 32.88
JPH 34.07
HighJPH 35.25

 

 
LowJPH 32.80
JPH 34.09
HighJPH 35.37

 

    

Age 
Group 

2 

 
LowJPH 33.78 
JPH 34.88 
HighJPH 35.97 

 

 
LowJPH 33.29
JPH 34.63
HighJPH 35.98

 

 
LowJPH 35.32
JPH 36.37
HighJPH 37.42
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Table 2 : Impact of Model Mix on JPH and Overall Bottleneck Patterns (continued) 

 75%-25% 50%-50% 25%-75% 
    

Age 
Group 

3 

 
LowJPH 32.80 
JPH 33.99 
HighJPH 35.18 

 

 
LowJPH 33.87
JPH 35.03
HighJPH 36.20

 
LowJPH 33.76
JPH 35.01
HighJPH 36.26

    

Age 
Group 

4 

 
LowJPH 27.63 
JPH 31.38 
HighJPH 35.12 

 

 
LowJPH 26.89
JPH 30.78
HighJPH 34.67

 
LowJPH 26.32
JPH 30.34
HighJPH 34.35
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Table 3 : Impact of Model Mix on JPH and Overall Bottleneck Patterns (continued) 

 75%-25% 50%-50% 25%-75% 
    

Age 
Group 

5 

 
LowJPH 15.74  
JPH 16.80  
HighJPH 17.87  

 

 
LowJPH 15.80  
JPH 17.11  
HighJPH 18.42  

 
LowJPH 14.68  
JPH 16.01  
HighJPH 17.34  

    

Age 
Group 

6 

 
LowJPH 33.66  
JPH 35.65  
HighJPH 37.65  

 

 
LowJPH 33.82  
JPH 35.78  
HighJPH 37.75  

 
LowJPH 34.06  
JPH 35.93  
HighJPH 37.80  

 

0.00

10.00

20.00

30.00

0.00

20.00

40.00

60.00

0.00

50.00

100.00

150.00

0.00

2.00

4.00

6.00

0.00

1.00

2.00

3.00

4.00

0.00

1.00

2.00

3.00

4.00

1
1
8



119 

 

Chapter III : Appendix 1 

ܣ ൌ 	 ൫ሺ1 െ ଷ݌ܾ െ ଶ݌ܾ െ ଵݎଶሻܾݎܾ ൅ ሺ1 െ ଵ݌ܾ െ ଶ݌ܾ െ ଶሻܾ߮ݎܾ ൅ ሺ1 െ ଶ݌ଵሻܾ݌ܾ

െ ሺെ1 ൅ ଶݎଷሻሺܾ݌ܾ ൅ ଵ݌ܾ െ 1ሻ൯ܽݎଵ

൅ ൫ሺ1 െ ଷ݌ܾ െ ଶ݌ܾ െ ଵݎଶሻܾݎܾ ൅ ሺ1 െ ଵ݌ܾ െ ଶ݌ܾ െ ଶሻܾ߮ݎܾ ൅ ሺ1 െ ଶ݌ଵሻܾ݌ܾ

െ ሺെ1 ൅ ଶݎଷሻሺܾ݌ܾ ൅ ଵ݌ܾ െ 1ሻ൯ܽ߮ ൅ ሺܾ݌ଶ ൅ ଷ݌ܾ െ 1 ൅ ଵݎଶሻܾݎܾ ൅ ܾ߮ሺܾݎଶ

൅ ଶ݌ܾ ൅ ଵ݌ܾ െ 1ሻ 
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ܤ ൌ	ቀ൫ሺ2 െ ଶݎܽ െ ଷ݌ܽ െ ଶ݌ଶሻܾ݌ܽ ൅ ሺ2 െ ଶݎܽ െ ଷ݌ܽ െ ଶݎଶሻܾ݌ܽ ൅ ሺ1 െ ଶ݌ଷሻܽ݌ܾ

൅ ሺ1 െ ଶݎଷሻܽ݌ܾ ൅ ሺ2 െ ଷ݌ଷሻܾ݌ܽ െ 3 ൅ ଵݎଷ൯ܾ݌ܽ

൅ ൫ሺ2 െ ଶݎܽ െ ଷ݌ܽ െ ଶ݌ଶሻܾ݌ܽ ൅ ሺ2 െ ଶݎܽ െ ଷ݌ܽ െ ଶݎଶሻܾ݌ܽ ൅ ሺ1 െ ଶ݌ଵሻܽ݌ܾ

൅ ሺ1 െ ଶݎଵሻܽ݌ܾ ൅ ሺ2 െ ଵ݌ଷሻܾ݌ܽ െ 3 ൅ ଷ൯ܾ߮݌ܽ

൅ ൫ሺ1 െ ଶ݌ଵሻܽ݌ܾ ൅ ሺ1 െ ଶݎଵሻܽ݌ܾ ൅ ሺ1 െ ଵ݌ଷሻܾ݌ܽ െ 2 ൅ ଶ݌ଷ൯ܾ݌ܽ
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Companies are improving their manufacturing excellence in order to stay 

competitive in global markets. Manufacturing facilities are becoming more complex 

due to increasing product variety, shrinking product life-cycles, and novel production 

technologies and processes. The design and operation of manufacturing systems is 

of greater importance today than it was in the past. Many studies have been carried 

out on the design and operation of manufacturing systems by academicians and 

practitioners over the years, however, there is still no agreement on how to best 

predict, manage, and improve the factory performance. The studies are based on 

either analytical approaches or simulation-based approaches. Success stories from 

some companies that applied these techniques in combination motivate our study.  

In the dissertation, our main focus is on the effective management and 

improvement of complex production facilities, such as those encountered in the 

automotive industry (e.g., body shops and assembly facilities). Maintenance, being a 
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critical component of production facilities, has a direct impact on the improvement of 

the overall production performance. In this dissertation, we develop methods and 

tools to manage the efficiency of plant operations. 

We introduce an anticipative plant level maintenance decision support system 

(APMDSS), which gives guidance in prioritizing and scheduling the corrective and the 

preventive maintenance activities. APMDSS does this based on the dynamic 

bottleneck ranks (i.e., equipment that most constrain the throughput) with an 

objective of improving the throughput of a plant. Unlike the previous bottleneck 

management approaches, APMDSS anticipates the system dynamics (i.e., 

bottlenecks, hourly buffer levels, and machine health) for the upcoming shifts by 

using initial state information from the beginning of the product shift (such as, time 

since last machine preventive maintenance cycle, operational status of machines, 

inventory buffer levels, and scheduled production model mix). In order to improve the 

accuracy of anticipating plant dynamics, we rely on discrete event simulation models. 

We also propose two analytical models for throughput evaluation. First model 

addresses deteriorating two-machine systems. In the model, the machines degrade 

with usage and the reliability behavior of each machine changes depending on the 

machine’s health condition. The model considers both perfect and imperfect repairs, 

simultaneously. The second model is based on a hybrid aggregation-decomposition 

algorithm that approximates the throughput of longer production lines. The algorithm 

selectively aggregates parts of the production line based on the location of the 

bottlenecks. In this model, we combine the existing aggregation and decomposition 
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methods based on their relative strengths. The basic idea is to benefit from the speed 

of the aggregation method and the accuracy of the decomposition method.   

Extensive experiments based on synthetic production lines and real production 

lines from a major automotive company confirm the superior performance of the 

proposed APMDSS and hybrid aggregation-decomposition method under certain 

conditions. 
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