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Aligned Rank Tests for Interactions in Split-Plot Designs: 
Distributional Assumptions and Stochastic Heterogeneity 

 
T. Mark Beasley Bruno D. Zumbo 

University of Alabama at Birmingham University of British Columbia 
 

 
Three aligned rank methods for transforming data from multiple group repeated measures (split-plot) 
designs are reviewed. Univariate and multivariate statistics for testing the interaction in split-plot designs 
are elaborated. Computational examples are presented to provide a context for performing these ranking 
procedures and statistical tests. SAS/IML and SPSS syntax code to perform the procedures is included in 
the Appendix. 
 
Key words: nonparametrics, aligned ranks, split-plot design, repeated measures, stochastic heterogeneity. 
 
 

Introduction 
 
Measuring pre-treatment or baseline levels of 
behavior, aptitude, achievement, or pre-existing 
status is often necessary as a means of assessing 
the internal validity of applied research (Cook & 
Campbell, 1979). Therefore, repeated measures 
designs involving two or more independent 
groups (split-plot designs) are among the most 
common experimental designs in educational, 
psychological, developmental, and many other 
fields of scientific research (e.g., Keselman et 
al., 1998; Koch, Amara, Stokes, & Gillings, 
1980). Various statistical procedures have been 
suggested for analyzing data from split-plot 
designs when parametric model assumptions are 
violated. The focus here is aligned rank 
procedures for testing the interaction. 

The effects of ranking on data and the 
resultant test statistics for one- and two-factor 
designs involving only between-subjects factors  
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(e.g., Blair, Sawilowsky, & Higgins, 1987; 
Sawilowsky, Blair, & Higgins, 1989; Vargha & 
Delaney, 1998; Toothaker & Newman, 1994; 
Wilcox, 1993; Zimmerman, 1996) and single 
sample within-subjects designs (e.g., Agresti & 
Pendergast, 1986; Harwell & Serlin, 1994, 1997; 
Zimmerman & Zumbo, 1993) are well known. 
However, there have been fewer investigations 
concerning the effects of ranking in split-plot 
designs (e.g., Akritas & Arnold, 1994; Beasley, 
2000, in press; Brunner & Langer, 2001; 
Higgins & Tashtoush, 1994; Koch, 1969). 
 

Methodology 
 
Parametric Models for Split-Plot Designs: 
Univariate Approach 

The univariate analysis of variance 
(ANOVA) approach to the split-plot design 
employs the following linear model: 
 

( ) ( )***

 

i   

ijk

j k jk ijki j k j

Y =

μ + β +π + τ + βτ + τπ +ε  

(1) 
 
where, j is referenced to the J groups of the 
between-subjects factor, i is referenced to the nj 
subjects nested within the jth group, k is 
referenced to the K levels of the within-subjects 
(repeated measures) factor, εijk is a random 
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error vector,  and N = Σnj is the total number of 
subjects. The interaction of the between-subjects 
(i.e., independent grouping or treatment 
variable) and the within-subjects (i.e., repeated 
measures) factors is of interest in many 
applications (Boik, 1993; Koch et al., 1980). In 
educational experiments, the interaction 
typically represents differential gains in 
achievement for a treatment group. In 
psychological and developmental research, the 
interaction indicates that independent groups do 
not have parallel profiles or do not exhibit 
identical growth curves (Winer, Brown, & 
Michels, 1991). In genetics experiments, the 
interaction typically indicates differential growth 
rates for organisms of different genotypes 
(Lynch & Walsh, 1998). 

The interaction is tested with an F-ratio, 
F(Y),  that   is  distributed   approximately  as  
F[(J-1)(K-1),(N-J)(K-1)]  under   the  null  hypothesis: 
 

2

1 1
0( x ) ( )  0H : =

J K

j k
J K jk

= =

βτ                (2) 

 
In using the parametric F-ratio for testing the 
interaction, the random error components (εijk) 
are assumed to be independent and identically 
distributed with a mean of zero, a common 
variance (  σε

2 ), and normal shape for each of the 

JK cells (i.e., NID[0,  σε
2 ] for all j and k). By 

requiring identical error distributions, it can be 
assured that a rejection of the null hypothesis in 
(2) is due to shifts (differences) among location 
parameters. Furthermore, by assuming normal 
error distributions means as estimates of location 
will yield the maximum statistical power for 
rejecting (2). 

For K > 2, there is an additional 
assumption concerning the sphericity of the 
pooled covariance matrix. If the pooled 
covariance matrix is non-spherical, the F-ratio is 
valid if the degrees-of-freedom (dfs) are 
corrected by a factor epsilon (see Huynh & 
Feldt, 1970). Methods for estimating epsilon 
have been investigated for over four decades 
(e.g., Box, 1954; Greenhouse & Geisser, 1959; 
Huynh & Feldt, 1970, 1976; Lecoutre, 1991). 
Also, general approximate methods to correct 
the dfs have been developed (Huynh, 1978). 

However, these df-correction procedures tend to 
be less powerful than multivariate approaches to 
analyzing repeated measures designs (e.g., 
Algina & Keselman, 1998; Algina & Oshima, 
1994; Keselman & Algina, 1996) and thus will 
not be elaborated. 
 
Multivariate Approach 

The multivariate approach to analyzing 
repeated measures designs (i.e., multivariate 
profile analysis) is often suggested because the 
multivariate tests do not require the additional 
sphericity assumption. This of great concern for 
repeated measures (e.g., longitudinal) designs 
because it seems unreasonable to make 
assumptions about the consistency of 
covariances (i.e., correlational structure) among 
measures taken over an extended period of time 
(Koch et al., 1980). One approach to conducting 
the multivariate profile analysis is to take 
pairwise differences among the K repeated 
measures in order to compute (K−1) transformed 
scores, Y* = YD, where Y is the NxK data 
matrix of scores (Yijk) and D is a Kx(K−1) 
difference matrix of the general form: 
 
 
 
 
 
 
 
 

(3) 
 
These transformed scores are then submitted to a 
MANOVA with the following multivariate 
linear model: 
 

Y*j = Μ** + Βj + Εj,                (4) 
 
where Μ** is a (K-1) vector of grand means 

(centroids), Βj is a (K-1) vector of between-

subjects effects, and Εj is a random error matrix. 

Testing the null hypothesis (H0(K): Μ** =        
0(K-1),where 0(K-1) is a (K−1) vector of zeros) is 
equivalent to testing the repeated measures main 
effect. With the original scores expressed as 
difference scores, the multivariate model (4) 

  1 -1 0 . . . 0 0  

D =  0 1 -1 . . . 0 0  

  . . . . . .  

  0 0 0 . . . 1 -1  
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contains only between-subjects effects. Thus, the 
null hypothesis in (2) can be expressed as: 
 

H0(JxK): Β1 = Β2 = … = Βj = … = ΒJ ,   (5) 
 
where Βj is a (K-1) vector of between-subjects 
effects (i.e., mean differences) for the jth group. 
Thus, the variables from the Y* matrix are 
defined as difference scores and the null 
hypothesis in (2) can also be expressed as: 
 
H0(JxK): (μ1k−μ1k´) = (μ2k−μ2k´) = … = 

(μjk−μjk´) = … = (μJk−μJk´), for k ≠  k´ ; k = 1, 
… K.  

(6) 
 
To illustrate the assumptions underlying the 
multivariate approach to repeated measures data, 
define Σj as the K x K covariance matrix of Yj. 
The homogeneity of covariance assumption 
requires that the J covariance matrices (Σj) are 

equivalent so that they can be combined to form 
the pooled covariance matrix, Σ. Parametric tests 
for the multivariate model (4) assume that the 
random error components are independent and 
multivariate normal with means of zero and a 
common covariance matrix (i.e., NID[0(K-1), 
D′ΣD]). 

In contrast to the univariate approach 
(1), the multivariate model (4) does not require 
homogeneity of the variances for each of the K 
repeated measures. That is, the multivariate 
approach does not require the diagonal elements 
of Σ to be equal. By taking difference scores this 
also translates into not requiring the (K−1) 
transformed variables (Y*) to have the same 
variances. For example, with K=3 repeated 
measures, the variance of the first pairwise 
difference, σ2

(Yj1−Yj2), is not assumed to be 

equivalent to the variance of the second pairwise 
difference, σ2

(Yj1−Yj2), under the multivariate 

model (4); however, this variance homogeneity, 
which is equivalent to the sphericity requirement 
(see Winer, et al., 1991, pp. 240-243), is 
assumed implicitly in the univariate model (1). 
 
 
 

Rank-Based Tests 
Regardless of whether (a) the univariate 

ANOVA test with possible df-corrections (e.g., 
Huynh, 1978; Huynh & Feldt, 1976; Lecoutre, 
1991), or (b) the multivariate approach to 
analyzing repeated measures design is 
employed, there are normality assumptions for 
parametric models. Unfortunately, the normality 
assumption is violated frequently in a variety of 
research fields including genetics (e.g., Allison 
et al., 1999) and behavioral research (e.g., 
Bradley, 1968; Cliff, 1996; Micceri, 1989; 
Zumbo & Coulombe, 1997).  

Rank-based approaches can be used in 
order to relax the normality assumptions by 
assuming that the error components are random 
variables from some continuous distribution, not 
necessarily the normal. However, rank-based 
approaches cannot be simply applied due to 
violations of model assumptions. For example, 
Zimmerman and Zumbo (1993) demonstrated 
that rank transformed scores inherit the 
heterogeneity of variance in the original data. 
Likewise, ranks can also inherit the non-
sphericity present in repeated measures data 
(Beasley & Zumbo, 1998; Harwell & Serlin, 
1994). Thus, to test hypotheses concerning shifts 
in location parameters the assumptions of 
independence, homogeneity of variance, and 
identical shape must still preside (Serlin & 
Harwell, 2001). 

Specifically, credible inferences about 
means require the assumption that the 
population distributions are symmetric (Koch, 
1969; Serlin & Harwell, 2001); whereas, 
credible inferences concerning location 
parameters generally require the assumption that 
the population distributions are of identical 
shape, not necessarily symmetric (i.e., IID

2[0, ]εσ  or IID[0(K-1), D′ΣD]). This frequently 

overlooked detail is one reason why so much 
attention has been given to rank-based 
procedures such as tests of stochastic 
homogeneity (Vargha & Delaney, 1998), 
distributional equivalence (Agresti & 
Pendergast, 1986; Beasley, 2000), or fully 
nonparametric hypotheses (Akritas & Arnold, 
1994). 

As a departure from parametric models 
that test differences among means, general 
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nonparametric models specifying only that 
observations in different cells which are 
governed by different distribution functions 
(Akritas & Arnold, 1994; Akritas, Arnold, & 
Brunner, 1997) have been developed for a 
variety of factorial designs including split-plot 
designs (Akritas & Arnold, 1994; Brunner & 
Langer, 2000). For a split-plot design, the fully 
nonparametric approach would involve ranking 
the data from 1 to NK and computing the 
appropriate test statistics (e.g., Serlin & Harwell, 
2001). 

Brunner, Domhof, and Langer (2002) 
warn that this practice should not be regarded as 
a technique for the derivation of statistics but 
rather as a property that can be useful for 
computational purposes. Therefore, fully 
nonparametric tests are not viewed as robust 
alternatives to normal theory methods, allowing 
direct inference concerning location parameters 
(Akritas, et al., 1997). Rather, statistically 
significant fully nonparametric tests are 
attributed to differences among any 
distributional characteristic (e.g., location, 
dispersion, shape). Hypotheses of this form 
reduce the risk of drawing incorrect conclusions 
about the likely sources of the significant 
interaction, but do so at the cost of not being 
able to characterize precisely how population 
distributions differ (Serlin & Harwell, 2001). 

Rank-based tests, however, are 
especially sensitive to shifts in location 
parameters because they are computed using 
mean ranks. Therefore, even if assumptions 
concerning identical distributions and 
homogeneous variances are not tenable, the 
researcher may still conclude that one or more 
groups are stochastically dominant over another 
group(s). For an interaction in a multiple group 
repeated measures design, this concept of 
stochastic heterogeneity (Vargha & Delaney, 
1998) implies that one or more groups tends to 
have higher scores on some measurement and 
that this stochastic dominance is not constant 
over the K measurements (Agresti & Pendergast, 
1986; Brunner & Langer, 2000). 
 
Aligned Rank Transform Procedures 

Because the Rank Transform is 
monotonic, it is commonly believed that the null 
hypothesis for the parametric test of interaction 

(2) from model (1) is similar to the null 
hypothesis for similar tests performed on ranks, 
except statistical inferences concern mean ranks 
(i.e., location parameters). However, interaction 
tests performed on ranked data from factorial 
designs have performed poorly compared with 
their normal theory counterparts. This is because 
the expected value of ranks for an observation in 
one cell has a non-linear dependence on the 
original means of the other cells (Headrick & 
Sawilowsky, 2000). For example, consider a 
two-factor model where ranks are assigned 
regardless of cell membership. The result is that 
if one of the effects is large then other effects 
must (because of the ranking) be small, thus 
producing distorted Type I and Type II error 
rates. Thus, a parametric test for interaction 
applied to ranks lacks an invariance property.  
Hence, interaction and main effect relationships 
are not expected to be maintained after rank 
transformations are performed (Blair, et al., 
1987). 

Headrick and Sawilowsky (2000) 
demonstrated computationally that in the 
presence of main effects the expected mean 
ranks for the cells in a factorial design can 
indicate an interaction when the original data do 
not. Moreover, Salter and Fawcett (1993) 
demonstrated conditions in which an interaction 
effect in the original data is lost in the ranking 
process. These situations illustrate that additivity 
in the original data does not imply additivity of 
the ranks, nor does additivity in the ranks imply 
additivity in the original data. Thus, Hora and 
Conover (1984) warned that simply ranking the 
data does not provide an adequate test for non-
additivity (i.e., interaction) in the conventional 
sense of testing shifts among location 
parameters. 

Several studies have shown that aligning 
the data before ranking yields better tests of the 
interactions among location parameters in 
factorial designs. Based on the work of Hodges 
and Lehmann (1962), McSweeney (1967) 
developed a Chi-square approximate statistic for 
testing the interaction using aligned ranks in the 
two-way layout. Hettmansperger (1984) 
developed a linear model approach in which the 
nuisance effects are removed by obtaining the 
residuals from a regression model. Higgins and 
Tashtoush (1994) and Koch (1969) have 
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proposed aligned rank procedures for testing 
interactions in split-plot designs. Based on 
Hollander and Sethuraman (1978), statistics for 
the Friedman (1937) model of ranks have been 
suggested as tests for interactions (Beasley, 
2000; Rasmussen, 1989). Each of these 
procedures aligns the data in different ways. 
 
Higgins and Tashtoush Alignment Procedure 

Both the McSweeney (1967) and 
Hettmansperger (1984) alignment procedures 
were developed for the two-way between-
subjects factorial design and thus are not 
desirable because they do not remove the 
subjects’ individual differences effect that is 
nested in the between-subjects factor. To 
elaborate, the data from a split-plot design has 
three nuisance parameters that must be removed 
in order to align the scores for ranking and 
subsequent analysis of interaction effects. 
Specifically, the three nuisance parameters from 
model (1) are the repeated measures main effect 
(τk), the between-subjects main effect (βj), and 
subjects’ individual differences effect that is 
nested in the between-subjects factor, πi(j). In 
terms of population effects, model (1) can be 
expressed as: 
 

(Yijk - μ***) = βj + πi(j) + τk + βτjk 
 
(see Winer, et al., 1991). Solving for the 
interaction yields: 
 

βτjk = (Yijk − μ***) − βj − πi(j) − τk. 
 
Using sample estimates of the effects yields: 
 

βτjk = (Yijk −   Y ***) − (  Y *j* -   Y ***) −             

(  Y ij* −  Y *j*) − (  Y **k −   Y ***), 

(7) 
 
where   Y **k is the marginal mean of the kth 

measure averaged over all N subjects,  Y *j* is 

the marginal mean of the jth measure averaged 
over all K measures and N subjects,   Y ij* is the 

mean for the ith subject averaged across the K 
measures, and   Y *** is the grand mean of all 

NK observations. Thus, to create scores aligned 

for effects other than the interaction (βτjk) in 
model (1), equation (7) reduces to: 
 

Y*ijk = [Yijk −  Y **k −   Y ij* +   Y ***],   (8) 

 
These aligned scores have the nuisance effects 
removed so that a subsequent test performed on 
the ranks of Y*ijk will be sensitive only to 
detecting interaction effects. Higgins and 
Tashtoush (1994) proposed using this method of 
alignment and then ranking the aligned data 
from 1 to NK as follows: 
 

Aijk = Rank[Yijk −  Y **k −   Y ij* +  Y ***] (9) 

 
(see Table 1). Following Hettmansperger (1984), 
this alignment could also be accomplished by 
obtaining the residuals from a linear model 
regressing Yijk on a set of (N−1) dummy codes 

that represent the subject effect (πi(j)) and a set 
of (K−1) contrast codes that represent the 
repeated-measures main effect (τk) from model 
(1). As can be inferred from (8) a set of (J−1) 
contrast codes that represent the between-
subjects main effect (βj) is not necessary for the 
residualization. 
 
Univariate Approach 

Higgins and Tashtoush (1994) 
recommended applying the split-plot ANOVA 
from model (1) to the aligned ranks (F(A)), thus 
replacing Yijk with Aijk. As previously 
mentioned, many of the properties of the 
original data transmit to ranks, including 
heterogeneity of variance (Zimmerman & 
Zumbo, 1993) and non-sphericity (Harwell & 
Serlin, 1994). Therefore, it is possible that the 
aligned ranks could also inherit some of the 
distributional properties of the original data as 
well. Thus, when performing the split-plot 
ANOVA F on aligned ranks, df-correction 
methods (e.g., Huynh & Feldt, 1976) may be 
employed if the pooled covariance matrix is 
non-spherical or if the between-subjects 
covariance matrices are heterogeneous (e.g., 
Huynh, 1978). These methods performed on 
ranks hold the Type I error rate near the nominal 
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alpha but have low statistical power in a variety 
of conditions (Beasley & Zumbo, 1998). 
 
Multivariate Approach 

Agresti and Pendergast (1986) proposed 
a multivariate rank-based test for testing 
repeated measures effects in a single-sample 
design. Beasley (2002) extended this approach 
for testing the interaction in a split-plot design 
using aligned ranks (9). Define E as a K x K 
pooled-sample cross-product error matrix with 
elements: 
 

ekk′ = '

1 1

(  )(  ) 
jnJ

ijk jk ijk jk
j i

A A A A
= =

− − .   (10) 

 
Let E* be a JK x JK block diagonal matrix 
where the jth block of the main “diagonal” for E* 
is defined as E/nj, and all other off-diagonal 
blocks are zero. That is, E* is the Kronecker 
product of a diagonal matrix n = diag{1/n1, 
1/n2, …, 1/nJ} and E, E*=n E. Also, define 

AJK = [  A 11,   A 12, …  A 1K,   A 21, …  A 2K, 

…   A J1, …   A JK]′ as a JK-dimensional vector 

of mean ranks and CJK as a (J-1)(K-1)xJK 

contrast matrix that represents the interaction. In 
general, CJK can be defined as CJK = CJ CK, 

where CJ is a (J−1)xJ contrast matrix for the 

between-subjects effect and CK is a (K−1)xK 

contrast matrix for the repeated measures effect. 
For example, in a J = 3 x K = 4 split-plot design, 
define: 
 
 
 
and 
 
 
 
 
 
 
 
 
 
 
 
 

It should be noted, however, that CJ and CK 

need not be orthogonal, only linearly 
independent. For example, this matrix could be 
constructed by defining CJ and CK as difference 

matrices in the general form of D in (3), and 
thus, 
 
 
 
 
 
 
 
 
Based on Agresti and Pendergast (1986), 
Beasley (2002) proposed the statistic, 
 

H(A)=(CJK AJK)′ (CJK E*C′JK)-1(CJK AJK). 

(11) 
 
It should be noted that H(A) is the Hotelling’s 

(1931) trace for the interaction effect from a 
multivariate profile analysis of model (4) 
performed on Aijk. Thus, this procedure could 

also be accomplished by computing A*=AD, 
where A is the (NxK) data matrix of aligned 
ranks (9), and then replacing Y* with A* in the 
multivariate model (4). 

Because it is a rank-based version of the 
Hotelling’s trace, H(A) multiplied by (N−1) 

should approximate a χ2 distribution with df = 
(J−1)(K−1), asymptotically. Consistent with 
Agresti and Pendergast (1986), transforming 
H(A) to an F-test may provide better control of 

Type I error rates as opposed to comparing 
H(A)(N−1) to a chi-square distribution with df = 

(J−1)(K−1), especially with smaller sample sizes 
(Beasley, 2002; Harwell & Serlin, 1997). Based 
on Hotelling (1951), H(A) is transformed to an F 

approximation statistic by: 
 

FH(A) = [2(sn+1)/(s2(2m+s+1))]H(A),   (12) 

 
where s = min[(J−1),(K−1)], m = [(|K−J|−1)/2], 
and n = [(N−J−K)/2].  This F approximation has 
numerator dfs of dfh = [s(2m+s+1)] = 

[(J−1)(K−1)] and denominator dfs of dfe = 

⊗

⊗

CJ =  2 -1 -1   
 0 1 -1   

  -3 -1 1 3   
CK =  -1 1 1 -1   

  -1 3 -3 1  

1 -1 0 0 -1 1 0 0 0 0 0 0
0 1 -1 0 0 -1 1 0 0 0 0 0

CJK=  0 0 1 -1 0 0 -1 1 0 0 0 0 
0 0 0 0 1 -1 0 0 -1 1 0 0
0 0 0 0 0 1 -1 0 0 -1 1 0
0 0 0 0 0 0 1 -1 0 0 -1 1 .

  -6 -2 2 6 3 1 -1 -3 3 1 -1 -3  
  -2 2 2 -2 1 -1 -1 1 1 -1 -1 1
CJK=  -2 6 -6 2 1 -3 3 -1 1 -3 3 -1

  0 0 0 0 -3 -1 1 3 3 1 -1 -3
  0 0 0 0 -1 1 1 -1 1 -1 -1 1
  0 0 0 0 -1 3 -3 1 1 -3 3 -1 .
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[2(sn+1)]. Alternatively, a critical value for H(A) 

could be obtained from the sampling distribution 
of the Hotelling’s trace using the s, m, and n 
parameters. This approach has been shown to 
maintain the expected Type I error rate better 
than the F approximate test (12) with a relatively 
small sample size of N = 30 (Beasley, 2002). 
Unfortunately, few multivariate texts have 
extensive tables of these critical values. 
 
Koch Model of Ranking 

In the Koch (1969) model, each of the 

K2 paired differences among the repeated 
measures is ranked separately regardless of 
group membership. These ranks are then 
summed over the K levels of the repeated 
measures factor. To elaborate, for each of the K 
repeated measures, let Tij(k,k´) = Rank[Yijk − 

Yijk´] using mid-ranks in case of ties.  Thus, 

Tij(k,k´) ranges from 1 to N, except when k = k´ 

in which case [Yijk − Yijk´] = 0, and thus, all 

values of Tij(k,k) = (N+1)/2. Also, many of the 

K2 ranked differences are reverse rankings so 
that the correlation between say Tij(1,2) and 

Tij(2,1) is -1. The final data set is defined as 

 

Qijk  = ( , )

1

K

ij k k
k

T ′

′=
                    (13) 

 
(see Table 2). This procedure aligns the data in a 
less explicit manner than the Higgins-Tashtoush 
method (9). Specifically, the subjects’ individual 
differences effect that is nested in the between-
subjects factor, πi(j) from model (1), is removed 
by computing pairwise differences. This is 
analogous to the manner in which πi(j) is 
removed from Yijk in model (1) by computing 

Y*=YD and submitting Y* to the multivariate 
model in (4), which only has between-subjects 
effects. Furthermore, by ranking each pairwise 
difference separately (i.e., Tij(k,k´)) before 

summing, the mean for each of the K measures 
and for all the Qijk values must equal K(N+1)/2. 

This eliminates the variance due to the repeated 
measures main effect (τk) from model (1). 

To test the interaction, a univariate F-
test on this ranked data F(Q) could be performed 

(Iman, Hora, & Conover, 1984). However, Koch 
(1969, p. 495) proposed performing a 
nonparametric analog to the multivariate profile 
analysis, V(Q). Let Qij = [Qij1, …, Qijk, …, 

QijK]´ be a (Kxnj) data matrix for the jth group 

and let j be a K dimensional vector of means 

for the jth group: 
 

j = 
  

1

n j i =1

n j

 Qij = [ , ..., , …, ]´. 

(14) 
 
Also, let j  = { j − K(N+1)/2} be a vector of 

mean deviations and define the pooled 
covariance matrix as SQ = 1/N [Qij − 

K(N+1)/2][Qij − K(N + 1)/2]´.  The test statistic 

V(Q) is computed as: 

 

V(Q)  =  (N-1)/N [ *´SQ
*-1 

*] , (15) 

 
where  

SQ
* = n SQ, * =  [ 1´, ..., 2´ , ..., J´]´, 

 
and n = diag{1/n1, 1/n2, . . . , 1/nJ}.    

This test is a synthesis of a 
nonparametric multivariate statistic for the 
repeated measures main effect (Koch & Sen, 
1968) and the Kruskal-Wallis test. In fact, it is 
computationally equivalent to the Pillai’s (1960) 
trace (V) scaled by (N−1). That is, a multivariate 
profile analysis performed on Qijk yields a 

Pillai’s trace such that V(Q) = V(N−1). Thus, this 

procedure could also be accomplished by 
computing Q*=QD, where Q is the (NxK) data 
matrix for the Koch model ranks (14), and then 
substituting Y* with Q* in the multivariate 
model (4). 

V(Q) is a permutationally distribution-

free test. As sample sizes become large the 
number of permutations prohibits the 
computation of an exact test; however, the 

permutation distribution is χ2 with df = 
(J−1)(K−1) asymptotically. As an alternative 
approach to this statistic proposed by Koch 

Q

Q Q j1 Q jk QjK

Q Q

Q
 

Q
 

⊗ Q Q
 

Q
 

Q



BEASLEY & ZUMBO 
 

23 
 

(1969), the Hotelling’s trace could be used, thus 
calculating H(Q), the statistic in (11), by 

replacing Aijk (9) with Qijk (13). As before, 

H(Q) could be transformed to an F 

approximation test by (12) or critical values 
from the multivariate referent distribution (e.g., 
Hotelling’s trace; Pillai’s trace) could be 
obtained in order to assess statistical 
significance. 
 
Assumptions and Hypotheses for Interaction 
Tests Performed on Aligned Ranks 

It is important to reiterate that 
statistically significant values of these tests 
performed on aligned ranks (e.g., H(A), V(Q)) do 

not necessarily imply that the interaction is due 
to differences in location parameters unless 
additional assumptions are made. Strictly, 
statistical tests performed on aligned ranks 
involve inferences concerning the distribution of 
the original data. This is because the aligned 
ranks can be considered placeholders for the 
percentiles of the original raw score distribution 
(Yijk) with the nuisance location parameters 
removed (M. R. Harwell, personal 
communication, April 24, 2001). To elaborate, 
the univariate F-ratio performed on Aijk or Qijk 
in a repeated measures design actually evaluates 
a null hypothesis of exchangeability or 
permutational equivalence: 
 
H0(JxK):  
G1(Y1) = G2(Y2) =…= Gj(Yj) =…= GJ(YJ), 

 (16) 
 
where Gj(Yj) is the K-dimensional distribution 

function of the original scores for the jth group 
(Agresti & Pendergast, 1986, p. 1418). This 
implies that not only are all J groups expected 
have identical distribution functions, the K 
repeated measures are also expected to have 
identical distribution functions (i.e., IID[0,  σε

2 ] 
for all j and k). 

The multivariate procedures (11 or 15) 
test a broader null hypothesis of between-group 
marginal homogeneity: 

 
 

H0(JxK): 
G1(Y1k) = G2(Y2k) = … = Gj(Yjk) = … = GJ 

(YJk) , for k = 1, … K , 

(17) 
 
where Gj(Yjk) is the one-dimensional 

distribution function of the kth repeated measure 
for the jth group (Yijk). Strictly, this is a null 
hypothesis of distributional equivalence across 
the J groups for each of the K repeated 
measures. That is, each of the K repeated 
measures may have different distribution 
functions, but as long as there are no 
distributional differences across the J groups, 
(17) is true. Thus, to obtain the asymptotic null 
distributions of the test statistics (11 or 15), it is 
only necessary to assume the null hypothesis 
(17) of between-group distributional equivalence 
(i.e., IID[0,  σε

2 ] for all j for each k separately or 
IID[0(K-1),D′ΣD]) rather than to make stronger 
assumptions concerning joint (or permutational) 
distributions (i.e., common correlations between 
pairs of measures). 

To illustrate, suppose that on the first 
and second measures in a J = 2 by K = 3 split-
plot design, both groups are sampled from 
symmetric distributions with common variances 

( 2
1σ  and 2

2σ ); however, both groups are sampled 
from identically skewed distributions with a 

common variance ( 2
3σ ) for the third repeated 

measurement. This situation would not violate 
the multivariate IID[0(K-1), D′ΣD] assumption; 
however, it would violate the univariate IID[0,

 σε
2 ] assumption. 

 
Shift Model for Aligned Ranks in Split-Plot 
Designs 

The major purpose of the alignment 
process is to remove the nuisance effects (i.e., 
main effects) so that test statistics will be 
sensitive to the effect of interest (i.e., 
interaction). The alignment processes (9) and 
(13) remove the mean values for the nuisance 
main effects, thus involving linear 
transformations of the data. However, both Aijk 
and Qijk are monotone transformations of the 
aligned data. As a result, these aligned rank 
procedures do not guarantee that test statistics 
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performed on Aijk or Qijk will reflect shifts in 
location parameters. Therefore in order to make 
a credible inference about a single parameter, 
assumptions about other parameters are 
necessary (Serlin & Harwell, 2001). 

Assuming that all JK cells have 
identically shaped distributions with a common 
variance (i.e., IID[0,  σε

2 ] for all j and k), then 
rejection of the null hypothesis (16) must be due 
to shifts in the location parameters (Lehmann, 
1998). To illustrate the shift model for the 
univariate approach to the split-plot design, 
define the null hypothesis in (16) as: 
 
H0(JxK): 

G1(Y1−1Δ1)=G2(Y2−1Δ2)=…=Gj(Yj−1Δj)=…

= GJ(YJ −1ΔJ) 

(18) 
 
where 1 is an njx1 vector of ones and Δj = [δj1 

δj2 … δjk … δjK] is a 1xK vector of location 

parameters for the jth group. To illustrate the 
shift model for the multivariate approach to the 
split-plot design, define the null hypothesis in 
(17) as: 
 
H0(JxK): 

G1(Y1k − δ1k) = G2(Y2k − δ2k) = … = Gj(Yjk − 

δjk) = … = GJ(YJk − δJk), for k = 1, ...K, 

(19) 
 
where δjk is a scalar location parameter for the 

jkth cell. It is important to note that if (18) is true 
so is (19); however, if (19) is true, it does not 
imply that (18) is true. Likewise, a false (18) 
does not imply a false (19). These distinctions 
are important because in order to test a null 
hypothesis of shifts in location parameters 
analogous to the null hypotheses in (2) or (6), 
the univariate null model for ranks (18) requires 
an assumption that the data for all JK cells are 
sampled from identically shaped distributions 
with a common variance. By contrast, the 
multivariate null model for ranks (19) only 
requires an assumption that the distribution for 
each of the K repeated measures is identical for 
each of the J groups; however, there is no 
assumption that the K repeated measures are 

identically distributed. Thus, the relationship 
between the multivariate approach to analyzing 
aligned ranks and the F-ratio performed on 
aligned ranks is analogous to the relationship of 
the multivariate approach to repeated measures 
designs (4) and the univariate approach (1) that 
requires the sphericity assumption (Agresti & 
Pendergast, 1986). Therefore, just as the null 
hypotheses for the univariate (2) and 
multivariate (6) parametric models are 
equivalent, differing only in the sphericity 
condition required by the univariate test, the 
same holds for the univariate (18) and 
multivariate (19) shift models for aligned ranks.  
Furthermore, note that the null hypotheses (18) 
and (19) are equivalent in terms of location 
parameters. Thus under either the univariate 
IID[0,  σε

2 ] assumption or the multivariate 
IID[0(K-1),D′ΣD] assumption, the null hypotheses 
in (18) or (19), respectively, reduce to an 
interaction null hypothesis expressed in terms of 
location parameters: 
 
H0(JxK): 
(δ1k − δ1k´) = (δ2k − δ2k´) = … = (δjk − δjk´) = 

… = (δJk − δJk´) for k ≠  k´ ; k = 1, … K, 
(20) 

 
which is conceptually similar to a rejection of 
the parametric null hypothesis in (6). The 
difference between these null hypotheses is that 
the parametric models (1) and (4) require 
normally distributed error components, and thus, 
a rejection of (2) or (6) implies the effect must 
be attributed to differences among means. The 
shift models require identical, not necessarily 
normal, error distributions, and thus, a rejection 
of (20) implies that the effect can be attributed to 
differences among location parameters but not 
necessarily means (e.g., medians). It is important 
to note, however, that if (20) is false, then (18) 
and (19) are also false. However, a false (18) or 
(19) does not imply that (20) is necessarily false. 
That is, a significant test statistic may reflect 
differences in other distributional characteristics 
(i.e., variance or shape) rather than differences 
in location (Serlin & Harwell, 2001), unless 
these additional distributional assumptions are 
met. 
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Friedman Model of Ranks 
For data from a repeated measures 

design, a researcher could employ the Friedman 
(1937) model and rank the data from 1 to K 
across the K levels of the repeated measures 
factor for each subject. The Friedman model of 
ranks has been applied to related samples data as 
well as to data originating from repeated 
measures designs (Zimmerman & Zumbo, 
1993). The Friedman model has also been 
suggested when the assumptions of the split-plot 
ANOVA are violated (e.g., Beasley, 2000; 
Rasmussen, 1989). After applying the Friedman 
model of ranking to a split-plot design, all 
subjects have the same marginal mean of 
(K+1)/2. Thus, it is an attempt to eliminate the 
between-subjects variance (βj) and the nested 

subjects variance (πi(j)) in model (1) (Hollander 
& Wolfe, 1973, p. 143). 

The Friedman model rank method does 
not remove the repeated measures main effect 
(τk) from model (1). Beasley (2000) 
demonstrated that test statistics for the Friedman 
model maintained the expected Type I error rate 
when a slight repeated measures main effect was 
present; however, without removing the repeated 
measures main effect through alignment, the 
statistics for testing the interaction suggested by 
Beasley (2000) can demonstrate low statistical 
power when a strong repeated measures main 
effect is present in each group. Aligning the data 
before applying Friedman ranks results in Type I 
error rates that are more consistent with the 
nominal alpha and a gain in statistical power, 
especially for a univariate approach (Beasley & 
Zumbo, in press). 

To apply the Friedman ranks to data 
from a split-plot design, let Rijk be the rank 
assigned to measure k for the ith subject in group 
j after alignment (8). Also, let   R jk be the mean 
of the ranks assigned to measure k by the 
subjects in group j,   R *k be the mean of the 

ranks assigned to measure k averaged over all N 
subjects, and   R **=(K+1)/2, which is the 

average of all NK ranks (see Table 3). 
 
Univariate Approach 

Based on Beckett and Schucany’s 
(1979) multiple comparison tests, Beasley 

(2000) demonstrated an omnibus test for the 
Friedman model with two or more independent 

groups of subjects. Based on the χ2 analog of 
Scheffé’s (1959) theorem (see Marascuilo, 
1966), the Friedman model for J > 2 
independent samples can be generalized as: 
 

F(R) = 
  

n j (R j k − R *k )2

k =1

K


j =1

J


K (K + 1) / 12

.         (21) 

 
This test approximates a χ2 distribution with df = 
(J−1)(K−1), asymptotically (Beasley, 2000). 
However, with smaller samples sizes computing 
an F-ratio on Rijk may be more appropriate if 
the covariance structure is spherical. Otherwise 
epsilon-adjusted tests or multivariate procedures 
are more appropriate (Beasley & Zumbo, in 
press). 
 
Multivariate Approach 

Hollander and Sethuraman (1978) 
developed a multivariate statistic to test for 
discordance in ranking patterns for J = 2 groups 
of raters. Beasley (2000) proposed an extension 
of this statistic for J > 2 groups. For the jth 
group, let mj = [(  R j1−  R *1), …, (  R jk−  R *k), 

…, (  R jK−  R *K)]´, for j = 1, …, J, be a K-

dimensional column vector of deviations for the 
kth measure for each group j. Let SR be the total 

sample covariance matrix of the ranks computed 
with ordinary least squares. Also, define SR

* as 

the Kronecker product of a diagonal matrix n = 
diag{1/n1, …, 1/nJ} and SR, SR

*
 = n SR. 

Then, the following statistic takes the general 
quadratic form: 
 

V(R) =   M´ SR
*  - M  (22) 

 
where M = [m1́, …, mj́ , …, mJ́]´ is a JK 

column vector. Because the data matrix has a 
fixed mean of (K+1)/2, both SR and SR

* will be 

singular. Therefore, a generalized inverse must 

be employed to compute SR
*-. For computational 

purposes, it should be noted that V(R) is the 
Pillai’s trace (V) scaled by (N−1). That is, a 

⊗
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multivariate profile analysis performed on the 
Friedman ranks (Rijk) yields a Pillai’s trace such 

that V(R) = V(N−1), which approximates a χ2 
distribution with df =(J−1)(K−1), asymptotically 
(Beasley, 2000). Thus, this procedure could also 
be accomplished by computing R*=RD, where 
R is the (NxK) data matrix for the Friedman 
model ranks, and then substitute Y* with R* in 
the multivariate model (4). As an alternative 
approach to this statistic proposed by Beasley 
(2000), the Hotelling’s trace could be used, thus 
calculating H(R), the statistic in (11), by 

replacing Aijk with Rijk. As shown previously, 

H(Q) could be transformed to an F 

approximation test by (12) or critical values 
from the multivariate referent distribution (e.g., 
Hotelling’s trace; Pillai’s trace) could be 
obtained in order to assess statistical 
significance. 
 
Assumptions and Hypotheses for Interaction 
Tests Performed on Friedman Ranks 

By using the shift model (18) and 
requiring the univariate model assumptions of 
IID[0,  σε

2 ] for all j and k, a rejection of (18) 
using the univariate F(R) test (21) implies that 
(20) is false (i.e., the interaction is due to 
differences in location parameters). Likewise, 
requiring the multivariate model assumption that 
the random error vectors (εjk) are independent 
and identically distributed across the J groups 
for each of the K repeated measures separately 
(i.e., IID[0(K-1),D′ΣD]), a rejection of (19) using 
V(R) implies that (20) is false. However, if these 
distributional assumptions are not tenable, 
inferences concerning shifts in location 
parameters are not credible. Therefore in the 
strictest sense, the null hypothesis in (20) 
applied to the Friedman model ranks implies the 
equality of ranking patterns across groups, 
which would involve a Chi-square test of 
homogeneity of ranking distributions in a JxK! 
contingency table. Analogous to the null 
hypotheses for aligned ranks, (20) does not 
imply that the probabilities of occurrence for 
each permutation of the ranks are equal in value 
across groups. 

To elaborate, the univariate model null 
hypothesis of permutational equivalence (16) 

and the multivariate model null hypothesis of 
distributional equivalence (17) can be 
formulated in terms of the probability of ranking 
patterns for Rijk. Let φr be the rth permutation of 

the K Friedman ranks (r = 1, … K!). Let πrj be 

the probability of the rth permutation for subjects 
in the jth group. Because the average rank for 
each individual equals (K+1)/2, the null 
hypothesis in (20) can be expressed in a form 
similar to (5): 
 

H0(JxK): Δ1 = … = Δj  = … = ΔJ,      (23) 
 
where, 

Δj = 
  r =1

K !

 πrj φr. 

 
Thus, consistent with the null hypothesis in (16), 
the univariate F(R) statistic approximates a chi-
square distribution with df = (J−1)(K−1) under 
the null hypothesis: 
 
H0(JxK): 

πrj = 1/K!, for r = 1, ... K! and j = 1, … J. 
(24) 

 
Therefore, F(R) (21) does not necessarily 
provide a test of (20) because a false (24) does 
not imply a false (20). It is also important to 
recognize that if (24) is true so are (16), (17), 
and (20), but (20) does not imply (24). That is, it 
is possible to have identical mean ranks without 
each permutation of ranks occurring with the 
same frequency. Therefore, using F(R) as an 
approximate test may occasionally reject (20) 
incorrectly because (24) is false. 

Likewise, V(R) does not necessarily test 
the null hypothesis (20). The null hypothesis 
actually tested by V(R) is: 
 
H0(JxK): 

πr1 = … = πrj  = … = πrJ for r = 1, … K! 

(25) 
 

The asymptotic distribution of V(R) is χ2 with df 
= (J−1)(K−1) under (25) but not necessarily 
under (20). As with the univariate F(R) test, it is 
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important to recognize that if (25) is true so is 
(20), but (20) does not imply (25). That is, it is 
possible for two groups to have identical mean 
ranks but different permutational distributions. 
Therefore, using V(R) as an approximate test 
may occasionally reject (20) incorrectly because 
(25) is false. 

It should be noted that if the univariate 
null hypothesis (24) is true so is the multivariate 
null hypothesis (25). However, if (25) is true, it 
does not imply that (24) is true. Likewise, a false 
(24) does not imply a false (25). Thus, the 
univariate F(R) and the multivariate V(R) 
statistics test two distinctly different, although 
conceptually related, hypotheses concerning the 
similarity of ranking patterns among multiple 
groups. Table 4 shows various scenarios in 
which these null hypotheses are true or false in a 
(J=2)x(K=3) split-plot design. 

The multivariate model null hypothesis 
(25) is less restrictive than the univariate model 
null hypothesis (24) because F(R) uses a fixed 
covariance structure (i.e., K(K+1)/12) in the 
denominator (Marascuilo & McSweeney, 1967), 
thus implying compound symmetry of the 
covariance matrix. Thus, the null hypothesis in 
(24) implies sphericity because it translates to 
the assumption that the errors are IID[0,  σε

2 ] for 
all j and k from the univariate model null 
hypothesis in (16). 

Similarly, the null hypothesis in (25) 
translates into relaxing the assumption that all K 
repeated measures have identical distributions. 
This is analogous to the multivariate model null 
hypothesis in (17), which only assumes the 
random error components are independent and 
identically distributed across the J groups for 
each of the k measures separately (i.e., IID[0(K-1), 
D′ΣD]; Hollander & Wolfe, 1973, p. 145). Thus, 
V(R) as a multivariate test of the null hypothesis 
in (25) does not assume sphericity of the 
covariance matrix. This is because under the null 
hypothesis in (25) each group is not required to 
have πrj = 1/K!, which implies a fixed 

covariance structure and thus sphericity. 
If it is tenable to assume that the errors 

are IID[0,  σε
2 ] for all j and k, then rejections of 

(24) using the univariate F(R) imply an 
interaction due to location parameters (i.e., a 

false 20). Likewise, rejections of (25) using the 
multivariate V(R) imply a false (20) if the errors 

are assumed to be IID[0(K-1), D′ΣD]. 
Although the univariate (24) and 

multivariate (25) null hypotheses for Friedman 
ranks can be expressed by different formulations 
than the univariate (18) and multivariate (19) 
null hypotheses for the shift model for aligned 
ranks, the concept of stochastic homogeneity 
applies to the Friedman ranks (Randles & 
Wolfe, 1979; Vargha & Delaney, 1998). 
However, if the additional distributional 
assumptions are not met, these statistics based 
on Friedman model ranks should strictly be 
considered test of stochastic homogeneity 
(Beasley, 2000; Serlin & Harwell, 2001; Vargha 
& Delaney, 1998). 
 
Computational Example One 

Table 1 shows hypothetical data and 
sample moments for a J=2 groups by K=3 
repeated measures design. An educational 
psychology research application of this design 
could be a comparison of the forgetting rates 
over a three week period (e.g., recall measured 
at 7, 14, and 21 days) for children classified as 
slow (j=1) or fast (j=2) learners (e.g., Gentile, 
Voelkl, Mt. Pleasant, & Monaco, 1995). A 
medical psychology application would be a 
comparison of the addiction severity scores of 
opioid-dependent patients in a Day Treatment 
program (j=1) versus patients in an Enhanced 
Standard Methadone program (j=2) at three time 
points: Pre-treatment, Post-treatment, and 
Follow-up (e.g., Avants, Margolin, Sindelar, & 
Rounsaville, 1999). 

Analyses of these data using the 
univariate model (1) show that the between-
subjects effect was statistically significant, 
F(Y)(1,16) = 6.27, p = .023. The covariance 

structure was non-spherical with a Greenhouse-
Geisser epsilon estimate of .681. The Huynh-
Feldt correction results in an epsilon estimate of 
.769. After a Huynh-Feldt correction to the dfs, 
both the repeated measures main effect 
[F(Y)(1.54,24.61) = 194.22,  p < .001] and the 

interaction effect [F(Y)(1.54, 24.61) = 12.20, p = 

.001] were statistically significant. A 
multivariate profile analysis yielded similar 
findings. Both the Pillai’s trace (V(Y) = 0.936) 
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and Hotelling’s trace (H(Y) = 14.706) for the 

repeated measures main effect were statistically 
significant (p <.001). For the interaction effect, 
both the Pillai’s trace (V(Y) = 0.494) and 

Hotelling’s trace (H(Y) = 0.977) were 

statistically significant (p = .006) also. 
Examining the moments for each of the 

JK=6 cells in Table 1, it is apparent that the data 
are skewed for many cells, thus potentially 
violating the normality assumptions of both the 
univariate (1) and multivariate (4) models. This 
provides a reason for employing rank-based 
tests. However, given that both the repeated 
measures and between-subjects main effects 
were statistically significant, it is necessary to 
align the data before ranking and subsequent 
analysis. 

Table 1 also shows the aligned data (8) 
and the aligned ranks (9). Analysis of the 
aligned ranks showed a statistically significant 
interaction using the univariate model [F(A)(2,32) 

= 16.33, p < .001]. The Greenhouse-Geisser 
epsilon estimate was .839 and the Huynh-Feldt 
correction was .984. Thus, any correction to the 
dfs would not affect statistical significance. The 
multivariate approach yielded a statistically 
significant Hotelling’s trace [H(A) = 1.426 from 

(11)], which multiplied by (N-1)=17 yields a 
chi-square approximate statistic of χ2

(A)(df=2) = 

24.242, p < .001. Converting H(A) to an F 

approximate using (12) yields FH(A)(2,15) = 

10.697, p = .001. 
Table 2 shows the Koch (1969) model 

of alignment and ranking. As was the case with 
the aligned ranks, the results show a statistically 
significant interaction with a Pillai’s trace of 
V(Q) = 0.574 from (15), which multiplied by 

(N−1) = 17 yields a Chi-square approximate 
statistic of χ2

(Q)(df=2) = 9.758, p < .01. The 

Hotelling’s trace for the Koch model ranks was 
H(Q) = 1.345 with an F approximate (12) of 

FH(Q)(2,15) = 10.091, p = .002. 

Table 3 shows the aligned data and the 
Friedman (1937) model of ranking applied to the 
aligned data. As was the case with the aligned 
ranks and the Koch ranks, the results show a 
statistically significant interaction. Analyzing a 
univariate model and calculating the multiple 

group extension of the Friedman (1937) statistic 
(21) yields [F(R)(df=2) = 15.239, p < .001]. The 

Huynh-Feldt correction of the Greenhouse-
Geisser estimate of epsilon was 1.0. Thus, there 
are no corrections to the dfs. The multivariate 
approach yielded a statistically significant 
Pillai’s trace of V(R) = 0.624 from (22), which 

multiplied by (N−1) = 17 yields a Chi-square 
approximate statistic of 10.608, p < .005. The 
Hotelling’s trace for the Friedman model aligned 
ranks was H(R) = 1.657 with an F approximate 

(12) of FH(R)(2, 15) = 12.426, p = .001. 

By further examination of the six cells 
in Table 1, the data at time k = 1 are positively 
skewed with similar means, variances, and 
kurtosis values for both groups. At time k = 2, 
the data for both groups are symmetric with 
similar variances, but group j = 2 has a higher 
mean. At time k = 3, there are still location 
differences, but the data for both groups are 
negatively skewed with similar variances and 
kurtosis. 

In analyzing real data, it is difficult to 
trust sample statistics for skew and kurtosis, 
especially for small sample sizes. Therefore, 
judging whether the IID assumptions are tenable 
presents a conundrum. Although such practice is 
not advised, for the sake of illustration, suppose 
that these sample moments are valid estimates of 
population parameters. This data pattern then 
illustrates a situation in which there is a 
violation of the univariate shift model (18) 
distributional assumptions (i.e., IID[0,  σε

2 ] for 
all j and k); however, the multivariate shift 
model (19) assumption (i.e., IID[0(K-1),D′ΣD]) 
seems tenable. That is, the univariate model 
requires that all six cells have identical 
distribution functions; whereas, the multivariate 
model only requires the two groups to have 
identical distribution functions for each of the K 
= 3 measures separately. Given that all three 
multivariate aligned rank tests led to rejections 
of the interaction null hypothesis in (17), the 
interaction can be attributed to shifts in location 
parameters (i.e., a false 20). Furthermore, one 
may conclude that the stochastic dominance of 
one group over the other was not constant across 
the K = 3 repeated measures. 
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Computational Example Two 
Table 5 shows the sample moments and 

the univariate and multivariate test statistics for 
the Original Data, Aligned Ranks, Koch Model 
Ranks, and Friedman Model Ranks for 
hypothetical data from J = 3 groups by K = 4 
repeated measures design (see Appendix for 
data). A medical psychology research 
application of this design could be a comparison 
of the number of errors in recall over K = 4 trials 
for men with treated blood pressure elevation (j 
= 3), men with untreated elevated blood pressure 
(j = 2), and a group of normotensive males (j = 
1) (e.g., Waldstein, et al., 1991). A genetic 
association research application would be an 
alcohol sensitivity study in which motor 
coordination of humans with J = 3 different 
genotypes (e.g., aa, AA, Aa) was measured once 
before (k = 1) and three times after ingesting a 
standard dose of alcohol (e.g., Boomsma, 
Martin, & Molenaar, 1989). 

Suppose that these sample moments are 
valid estimates of population parameters, then 
upon examination of the Original Data, it can be 
seen that Group One has positively skewed data 
with minor changes in spread (variance) and 
location (mean and median) across the four 
measures. Similarly, Group Three also has 
positively skewed data with minor changes in 
variance over time. However, Group Three also 
exhibits significant increases in location over the 
four time periods. Thus, if this example only 
included Groups One and Three, even the more 
restrictive distributional assumptions of the 
univariate shift model (18) would be tenable. 
That is, the eight cells for Groups One and Three 
have similar variance and shape (i.e., IID[0,  σε

2 ] 
for all j and k) and differ only in location. 

By contrast, Group Two has data that is 
positively skewed initially (k = 1). Subsequently, 
Group Two increases in location, fluctuates in 
spread, and changes from a positively skewed 
shape at k = 1 to a symmetric shape at k= 2 and 
then to a negatively skewed shape at the third 
and fourth measures. In comparing Group Two 
to the other groups, neither the univariate (18) 
nor the multivariate shift model (19) 
distributional assumptions are met. Therefore, 
the significant test statistics that result in 
rejections of the null hypotheses (16) or (17) 

cannot be attributed to a single parameter. Thus, 
the rejection must be interpreted as the groups 
demonstrating stochastic heterogeneity in trends 
(growth curves). Namely, Group Two appears to 
be stochastically dominant over the other two 
groups at time points k = 2 and 3 and 
stochastically dominant over Group One at k = 
4; however, contrast procedures are necessary to 
test this interpretation. 
 
Multiple Comparison Procedures for Aligned 
Rank Procedures 

Given that the three rank-based 
procedures are viable approaches to analyzing 
repeated measures data, then contrast procedures 
based on these methods should hold quite 
generally (Agresti & Pendergast, 1986; Beasley, 
2000, 2002; Koch, 1969). The most typical form 
is a product interaction contrast (Hochberg & 
Tamhane, 1987, pp. 294-303; Marascuilo & 
Levin, 1970) defined as: 
 

 = a1(b1  U 11 + b2  U 12 + … + bk  U 1k + … 

+ bK  U 1K) + a2(b1  U 21 + b2  U 22 + … + bk
 U 2k + … + bK  U 2K) + aj(b1  U j1 + b2  U j2 + 

… + bk  U jk + … + bK   U jK) + aJ(b1  U J1 + b2
 U J2 + … + bk  U Jk + … + bK   U JK); 

(26) 
 
where  U jk is a general term for the mean rank 

of the jth group on the kth repeated measure. 
Define a = (a1 + a2 + ... + aj ... + aJ)´ as 

a vector of contrast coefficients that compares 
the J independent samples and b = (b1+b2+ 
…+bk+…+bK)´ as a vector of contrast 
coefficients that involves the K repeated 
measures with the restriction that Σaj = 0 and 

Σbk = 0. For comparing the J independent 
groups, a set of pairwise or group combination 
contrasts would most likely be of interest for 
defining a. For comparing the K repeated 
measures either pairwise, polynomial, or trend 
contrasts would most typically define b (Lix & 
Keselman, 1996; Marascuilo & McSweeney, 
1967). In some cases, it may be desirable to 
normalize the trend coefficients, b, so that the 
metric of the repeated measures variable will not 

ψ 
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change, thus making confidence intervals more 
interpretable. 

From a univariate perspective, a pooled 
squared standard error of a contrast in a split-
plot design (see Kirk, 1982, pp. 516-518) can be 
calculated by defining: 
 

2

1

( )
J

j

j j

a
n=

 ,             (27) 

 
where E is the error matrix (4) computed for 
Uijk (i.e., any of the three ranking procedures). 
This approach assumes homogeneity of variance 
of the transformed scores: 
 

U*ij  =
1

K

k =
 bkUijk.               (28) 

 
This requirement of homogeneity of variance for 
transformed scores implies the sphericity of the 
pooled covariance matrix (4). Thus from the 
perspective of rank-based tests, this approach 
requires that the error components are IID[0,  σε

2 ] 
for all j and k. 

From a multivariate perspective, a 
standard error that does not require homogeneity 
of variance of the transformed scores (i.e., 
sphericity) can be calculated by defining J 
separate Sums of Squares (SS): 
 

SSU*j = 
1

jn

i=
 (U*ij -   U *j)2,      (29) 

 
where   U *j is the mean for the jth group for the 
transformed scores U*ij in (29). The standard 
error is calculated as: 

2

1

( )
J

j

j j

a
n=


    

SSU j
*

(n j − 1)
,        (30) 

 
A (1−α)% confidence interval for the contrast of 
aligned ranks can be formed by: 
 

 + S ( ).                    (31) 

 

The null hypothesis H0: ψ = 0 is rejected if the 
confidence interval in (31) does not cover zero. 
If the univariate IID[0,  σε

2 ] assumption is 

tenable,  can be defined as the square root 

of (26). However,  should be defined as the 

square root of (30) if the transformed scores 
have heterogeneous variances (i.e., the 
sphericity condition does not hold). 

The definition of S depends on the type 
of contrast conducted. For example, in the J = 3 
by K = 4 design from Example Two, suppose 
that after rejecting the null hypothesis (17) the 
interest was in assessing whether the linear 

trend, b Ĺ = {-3 -1 +1 +3}/ 20 , of Group One 

is stochastically different from the linear trend of 
the other two groups combined, a 1́ = {+1 -0.5 –

0.5}, and whether the linear trends for Groups 
Two and Three are stochastically different, a 2́ = 

{0 +1 -1}. In this case, the trend coefficients, b 
L, were normalized so that the metric of the 

repeated measures variable was not changed, 
thus making subsequent confidence intervals 
more interpretable. 

Also, consider the same group 
comparisons for the Initial Change from Time k 
= 1 to Time k = 2, b´C = {-1 +1  0  0}. Thus, c = 

4 post hoc tests would be conducted. To 
construct a post hoc confidence interval, S could 
be defined as a critical value from Student’s t 
distribution using the Dunn-Sidák correction, 
αDS = [1−(1−α)1/c]/2: 

 
S = t(1−αDS),dfe.                  (32) 

 
For c = 4 contrasts, αDS = .00637; however, dfe 

for (32) differs for the univariate (27) and 
multivariate approaches (30). For the univariate 
pooled standard error (27), dfe = (N−J); 

however, if the standard error in (30) is used 
then a Welch (1947) correction must be applied 
to dfe. For defining S in terms of the sampling 

distribution of the Hotelling’s trace or other 
multivariate referent distribution, refer to 
Gabriel (1968) and Sheehan-Holt (1998). 

For computational convenience, the 
interaction contrasts can be calculated by 

SEψ
 2

 =
( b  ́E b )  

( N  -  J)

SEψ
 2

 =

ψ SE ψ
 

SE ψ
SE ψ
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transforming the data into a single variable: Ub, 
where U is the NxK data matrix and b is the Kx1 
vector of trend coefficients. Then, the group 
contrasts, a, can be performed on the 
transformed data. The univariate pooled 
standard error (27) can be computed from 
methods that assume equal variances, such as 
Fisher’s LSD. The multivariate standard error 
(30) can be computed from methods that do not 
assume equal variances, such as Tamhane’s 
(1979) T2. 

It is debatable whether the multivariate 
(30) or univariate (27) approach is better in 
terms of robustness and power (Maxwell & 
Delaney, 2000), and thus, this issue should be 
investigated. However, the multivariate 
approach would be expected to yield more 
precise confidence intervals than the univariate 
approach, especially in situations where the 
pooled covariance matrix is non-spherical (Boik, 
1981). 

Conducting post hoc analyses is not 
generally suggested as an optimal procedure to 
adopt (Marascuilo & Levin, 1970). Rather, a 
defined set of planned contrasts with an 
appropriate adjustment for controlling Type I 
errors is often recommended, in which case the 
omnibus tests previously elaborated should be 
bypassed. For conducting multiple planned 
comparisons or simultaneous test procedures, 
there are several excellent references for both 
the univariate and multivariate approaches 
references (e.g., Hochberg & Tamhane, 1987; 
Gabriel, 1968; Lix & Keselman, 1996; Maxwell 
& Delaney, 2000; Sheehan-Holt, 1998). 
 
Defining Confidence Intervals for Interpretable 
Parameters 

Reasons for rejecting an interaction null 
hypothesis are of more interest than the simple 
conclusion that it is false; therefore, the contrast 
testing procedures detailed in the previous 
section are of great utility. Furthermore, there is 
a trend toward interpreting confidence intervals 
instead simply reporting p-values in a variety of 
research disciplines (Campbell & Gardner, 
1988; Gardener & Altman, 1986; Serlin, 1993). 
Moreover, it is important to construct confidence 
intervals around interpretable parameters when 
possible. Thompson (2002) discusses a bootstrap 
methodology to compute confidence intervals 

for effect sizes from parametric analyses. For 
location parameters less sensitive to skewness, 
confidence intervals for medians have been 
proposed (Bonett & Price, 2002; Campbell & 
Gardner, 1988; Hodges & Lehmann, 1963). 

Unfortunately, aligned ranks have no 
inherent meaning except that they serve as 
placeholders for the percentiles of the original 
raw score distribution with the nuisance location 
parameters removed. Thus, the rank statistics 
previously discussed are useful for assessing the 
statistical significance of the interaction, but 
they do not provide direct information about the 
nature or magnitude of the effect. For this 
reason, Koch, et al. (1980) suggested that results 
from nonparametric omnibus tests should be 
accompanied by appropriate descriptive 
statistics (e.g., frequency distributions or 
percentiles) and nonparametric estimates for 
confidence intervals. Newson (2002) reviewed 
methods for computing confidence intervals for 
rank-based statistics, which convey estimates 
and boundaries for informative parameters such 
as Cliff’s (1996) d and Somers’ (1962) D. 
 
Confidence Intervals for Aligned Ranks 

The cell means for the aligned ranks 
provide descriptions of the degree to which the 
JK cells have different locations due to 
discrepancies from the marginal distributions 
(i.e., due to interaction). Thus, these cell means 
give information about interaction trends relative 
to main effects and which cells contribute more 
to the omnibus interaction effect. For repeated 
measures designs, Agresti and Pendergast 
(1986) suggested dividing ranks by (NK+1). 
These values, Uijk = Aijk/(NK+1), have a grand 

mean, **U =0.5, that is equivalent to the median 

of the aligned scores. The cell means, jkU , 

provide the probability that a randomly selected 
observation from cell jk is larger than an 
independent observation selected at random 
from another cell after removing the main 
effects. This approach suggested by Agresti and 
Pendergast (1986) is consistent, though not 
identical, to Cliff’s (1996) notion of dominance1 
and the computation of relative effects2 
(Brunner, et al., 2002). It is also similar to the 
Hodges and Lehmann (1963) median difference, 
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which estimates the typical difference between 
individual observations from different cells. 

As noted, the interaction contrasts can 
be accomplished by transforming the data, Ub, 
and performing the group contrasts, a, on the 
transformed data. The upper panel of Table 6 
shows the means and standard deviations for U 
= A/(NK+1), the data transformed by the linear 
trend contrast, UbL , and the data differenced by 

the Initial Change contrast, UbC. The upper 

panel of Table 7 shows the univariate-based (27) 
and multivariate-based (30) 95% confidence 
intervals for the four contrasts previously 
discussed performed on the adjusted aligned 
ranks. 

The cell mean for Group 1 at time k = 1 
had the highest mean of 0.9476. This indicates 
that, after removal of the main effects, this cell 
had higher scores relative to the other cells and 
that a randomly selected observation from this 
cell has a very high probability (0.9476) of being 
larger than an independent observation selected 
at random from any other cell. Likewise, the cell 
mean for Group 1 at time k = 4 had the lowest 
mean of 0.1012, and thus, a randomly selected 
observation from this cell has a very low 
probability of being larger than an independent 
observation selected at random from any other 
cell. 

Similar to Cliff’s (1996) d-statistic, the 
difference in these probabilities can be used to 
judge the stochastic dominance of one cell over 
another. Thus, the aligned ranks for Group 1 
have a descending trend in that relative to the 
main effects the observations in Group 1 tend to 
get stochastically smaller over time. By 
examining the original data in Table 5, Group 1 
had a slight increase in means across the K = 4 
time points. Therefore, the aligned ranks provide 
information about which cells have 
stochastically larger scores relative to the main 
effects. In other words, given that there was a 
repeated measures main effect with increasing 
means for all three groups combined, the trend 
for Group 1 was descending in a relative 
manner. This can be seen in the data transformed 
by the linear contrast coefficient, UbL, in which 

the probability of larger scores (i.e., stochastic 
dominance) for observations in Groups 1 tends 
to decrease at a rate of -.620 on average. 

For Group 2, the probability of larger 
scores tends to increase at average rate of .336 
relative to the main effects. For Group 3, the 
stochastic dominance of scores relative to the 
main effects increases at a slight lower rate 
(.202) as compared to Group 2. For comparing 
Group 1 to Groups 2 and 3 combined, the results 
show a value of a1bL = -0.8891. This 

indicates that Groups 2 and 3 combined, as 
compared to Group 1, have a very high 
probability of having stochastic larger scores at 
time k = 4 and smaller scores at k = 1. To 
elaborate, suppose Case A is a randomly 
selected case from Group 2 or 3 and Case B is a 
randomly selected case from Group 1. The 
probability that Case A will have a steeper 
ascending (positive monotonic) trend across the 
K = 4 time points than Case B from Group 1 is 
0.8891. 

The univariate 95% simultaneous 
confidence interval indicates that plausible 
values range between -1.1276 and -0.6506. The 
multivariate 95% simultaneous confidence 
interval gives a tighter band of plausible values 
that range between -1.0474 and -0.7308. Note 
that the sign of the contrast value only indicates 
the direction of the stochastic dominance; it does 
not indicate a negative probability. Also, this 
approach can yield a bound on the confidence 
interval that exceeds 1 (-1 in this case), thus, an 
asymmetrical confidence interval with 1 (or -1) 
as the upper (or lower) bound may be 
constructed. Other methods create this bound 
and asymmetrical confidence interval by 
computing the standard errors in a different 
manner (see Endnotes 1 and 2; Brunner, et al., 
2002; Cliff, 1996; Newson, 2001). The 
difference between Groups 2 and 3 is not 
statistically significant: both the univariate and 
multivariate 95% confidence intervals contained 
zero as a plausible value (see Table 7). 

By examining the data transformed by 
the initial change contrast coefficient, UbC, it is 

observed that observations from time k = 1 tend 
to be stochastically larger than observations 
taken at k = 2, for Groups 1 and 3. For Group 2, 
the measures taken at k = 2 are stochastically 
larger than the scores from k = 1 and the 
probability of randomly selecting a larger score 
at k = 2 increases by 0.3657 relative to the main 

ψ
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effects. Thus, Group 2 has a tendency for scores 
to become stochastically larger from k = 1 to k = 
2; whereas, Groups 1 and 3 have a tendency for 
scores to decrease relative to the main effects. 

As compared to Group 1, Groups 2 and 
3 combined have a higher probability of scores 
becoming stochastically larger from time point k 
= 1 to k = 2, ψ̂ a1bC = -0.4824. The univariate 

95% simultaneous confidence interval indicates 
that plausible values range between -0.7236 and 
-0.2385. The multivariate 95% simultaneous 
confidence interval gives a tighter band of 
plausible values that range between -0.6531 and 
-0.3117. The contrast of Group 2 with Group 3 
is statistically significant; thus, the probability 
that Group 2 has stochastically larger scores at k 
= 2 relative to k = 1 as compared to Group 3 is 
0.8552. 

To elaborate, suppose a randomly 
selected case from Group 2 and a randomly 
selected case from Group 3. The probability that 
the case selected from Group 2 will have a 
stochastically larger gain from time k = 1 to k = 
2 as compared to the latter case from Group 3 is 
0.8552. The univariate 95% simultaneous 
confidence interval indicates that plausible 
values range between .5833 and 1.1271. The 
multivariate 95% simultaneous confidence 
interval gives a wider band of plausible values 
that range between 0.4779 and 1.2326. As with 
previous analyses, a researcher may choose to 
construct an asymmetrical confidence interval 
with 1 as the upper bound or use other methods 
that compute standard errors in a different 
manner (Brunner, et al., 2002; Cliff, 1996; 
Newson, 2001). 
 
Confidence Intervals for Koch Model Ranks 

Using the logic of Agresti and 
Pendergast (1986), the Koch ranks can be 
transformed by: 
 

Uijk = [Qijk –[((N+1)/2)]]/[(K-1)(N+1)]. 
 
These values have a grand mean of 0.5. The cell 
means provide descriptions of the degree to 
which the JK cells have different locations due 
to discrepancies from the marginal distributions. 
As shown in Table 6, the cell mean values for 
the Koch ranks (middle panel) are similar to the 

aligned rank cell means (upper panel). Thus, it 
would seem that the Koch ranks could be 
interpreted in a similar manner, but whether they 
represent probabilities in the same sense that the 
aligned ranks is debatable. 

In Table 7, note that the Koch model 
tends to give lower estimates of the contrast 
effects with smaller standard errors, thus, one ay 
question the statistical power of the Koch model 
relative to the aligned rank procedure. For 
identically skewed (i.e., multivariate 
exponential) error distributions, Tandon and 
Moeschberger (1989) found the Koch model to 
have similar power as parametric procedures, 
whereas, Beasley (2002) found the aligned rank 
procedure to have more statistical power than 
parametric tests for interactions. It is debatable 
whether these differences are due to estimation 
bias, violations of assumptions, or differences in 
statistical power. 
 
Confidence Intervals for Friedman Ranks 

A different logic is used to standardize 
the Friedman Ranks: 
 

Uijk = [Rijk –[((K+1)/2)]]/[(K2-1)/12]. 
 
For each subject, Uijk has a mean of 0 and unit 
variance, which is similar in concept to 
Hettmansperger’s (1984) standardization of 
ranks. As previously noted, the interaction 
contrasts can be accomplished by transforming 
the data, Ub, and then performing the group 
contrasts, a, on the transformed data. The lower 
panel of Table 6 shows the means and standard 
deviations for U=[Rijk–[((K+1)/2)]]/[(K2−1)/12]. 
To transform the data by the linear trend 
contrast, bL is standardized, rather than 

normalized, so that it also has a variance of one, 
rather than a sum of squares of one, b Ĺ={-

1.3416–0.4472+0.4472+1.3416}. The values of 
UbL/K are a linear transformation of Page’s 

(1963) L statistic and represent each individual’s 
rank correlation with the linear trend coefficients 
(Lyerly, 1952). Thus, the mean values of UbL/K 

for each group represent the group’s average 
concordance with the ordered alternative, in this 
case linear trend. The contrasts, a, applied to 
these values will estimate how the groups differ 
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Table 1: Hypothetical Data and the Aligned Ranking Procedure for the J = 2 by K =3 Split-Plot Design in 
Example One. 

 

 Original Data Aligned Data Aligned Ranks 

 k = 1 k = 2 k = 3  Y ij* k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 

Group One 
j = 1 
Slow 

Learners 
or 

Day 
Treatment 

1.1 6.2 7.2 4.83 .56 -.03 -.53 39 28 18 
2.2 4.8 6.1 4.37 2.13 -.96 -1.16 53 10 8 
2.3 7.1 8.0 5.80 .79 -.10 -.70 44 24 15 
2.4 8.1 9.4 6.63 .06 .07 -.13 30 31 23 
3.2 7.3 10.4 6.97 .53 -1.06 .54 37 9 38 
3.4 9.3 10.5 7.73 -.04 .17 -.13 26 34 22 
4.1 8.1 9.3 7.17 1.23 -.46 -.76 48 20 14 

10.1 10.4 10.2 10.23 4.16 -1.23 -.2.93 54 7 1 
Mean 3.60 7.66 8.89 6.72 1.18 -.45 -.73 41.38 20.38 17.38 

Median 2.80 7.70 9.35 6.80 .68 -.28 -.61 41.5 22.00 16.50 
SD 2.78 1.75 1.62 1.84 1.39 .56 1.03 10.25 10.60 11.03 

Variance 7.72 3.05 2.64 3.37 1.93 .32 1.06 105.13 112.27 121.70 
Skew 2.24 -.06 -.76 .75 1.69 -.36 -1.47 -.23 -.12 .54 

Kurtosis 5.65 -.09 -.75 1.08 2.88 -1.97 3.22 -1.22 -1.88 1.17 

Group Two 
j = 2 
Fast  

Learners 
or 

Enhanced 
Standard 

Methadone 

1.0 7.9 8.8 5.90 -.61 .60 0 16 41 29 
2.4 9.2 10.1 7.23 -.54 .57 -.03 17 40 27 
2.2 10.1 11.8 8.03 -1.54 .67 .87 3 42 45 
2.3 10.9 11.1 8.10 -1.51 1.40 .10 4 50 33 
3.1 10.1 13.2 8.80 -1.41 -.10 1.50 5 25 51 
3.3 9.9 12.1 8.43 -.84 .07 .77 12 32 43 
3.2 11.2 14.4 9.60 -2.11 .20 1.90 2 35 52 
4.4 12.3 13.1 9.93 -1.24 .97 .27 6 46 36 
4.9 11.2 14.2 10.10 -.91 -.30 1.20 11 21 47 
9.2 13.1 14.3 12.20 1.29 -.50 -.80 49 19 13 

Mean 3.60 10.59 12.31 8.83 -.94 .36 .58 12.50 35.10 37.60 
Median 3.15 10.50 12.60 8.62 -1.07 .39 .52 8.50 37.50 39.50 

SD 2.26 1.50 1.89 1.74 .92 .59 .82 13.90 10.63 12.36 
Variance 5.11 2.24 3.59 3.03 .85 .35 .67 193.17 112.99 152.71 

Skew 1.85 -.06 -0.63 .31 1.63 .26 .05 2.35 -.32 -.74 
Kurtosis 4.35 .21 -0.50 .76 3.90 -.56 -.53 6.22 -1.18 .075 

Epsilon* .769 .769 .984 

Note: * Based on the Huynh-Feldt adjustment of the Greenhouse-Geisser estimate of epsilon from the pooled 
within-group covariance matrix. 
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Table 2: Hypothetical Example of Koch’s Model of Ranking for Interactions for Hypothetical Data in 
Table 1. 

 

 Koch’s Model for Analyzing Interaction Effects 

 Tij(1,1) Tij(1,2) Tij(1,3) Tij(2,1) Tij(2,2) Tij(2,3) Tij(3,1) Tij(3,2) Tij(3,3)

Group One 
j = 1 
Slow 

Learners 
or 

Day 
Treatment 

9.5 12 13 7 9.5 12 6 7 9.5 
9.5 17 17 2 9.5 8 2 11 9.5 
9.5 13 14 6 9.5 14 5 5 9.5 
9.5 11 12 8 9.5 7 7 12 9.5 
9.5 14. 10 5 9.5 2 9 17 9.5 
9.5 10 11 9 9.5 11 8 8 9.5 
9.5 15 15 4 9.5 9.5 4 9.5 9.5 
9.5 18 18 1 9.5 18 1 1 9.5 

Group Two 
j = 2 
Fast   

Learners 
or 

Enhanced 
Standard 

Methadone 

9.5 6 8 13 9.5 14 11 5 9.5 
9.5 7 9 12 9.5 14 10 5 9.5 
9.5 4 3 15 9.5 6 16 13 9.5 
9.5 1 5.5 18 9.5 17 13.5 2 9.5 
9.5 5 2 14 9.5 3 17 16 9.5 
9.5 8 5.5 11 9.5 5 13.5 14 9.5 
9.5 2 1 17 9.5 1 18 18 9.5 
9.5 3 7 16 9.5 16 12 3 9.5 
9.5 9 4 10 9.5 4 15 15 9.5 
9.5 16 16 3 9.5 9.5 3 9.5 9.5 

 Qij1   Qij2   Qij3   

Group One 
j = 1 
Slow 

Learners 
or 

Day 
Treatment 

34.5   28.5   22.5   
43.5   19.5   22.5   
36.5   29.5   19.5   
32.5   24.5   28.5   
33.5   16.5   35.5   
30.5  37.00 29.5 24.94 25.5 23/56 
39.5 SD(Q11) 5.37 23.0 SD(Q12) 4.95 23.0 SD(Q13) 6.92 
45.5 Var(Q11) 28.86 28.5 Var(Q12) 24.53 11.5 Var(Q13) 47.89 

Group Two 
j = 2 
Fast   

Learners 
or 

Enhanced 
Standard 

Methadone 

23.5   36.5   25.5   
25.5   35.5   24.5   
16.5   30.5   38.5   
16.0   44.5   25.0   
16.5   26.5   42.5   
23.0   25.5   37.0   
12.5   27.5   45.5   
19.5  21.70 41.5 31.35 24.5 32.45 
22.5 SD(Q21) 8.08 23.5 SD(Q22) 7.76 39.5 SD(Q23) 8.93 
41.5 Var(Q21) 65.34 22.0 Var(Q22) 60.23 22.0 Var(Q23) 79.75 

 

Q 1 1 Q1 2 Q 1 3

Q2 1 Q2 2 Q2 3
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Table 3: Friedman Model of Aligned Ranks for Hypothetical Data in Table 1. 
 

 Aligned Data Friedman Aligned Ranks 

 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 

Group One 
j = 1 
Slow 

Learners 
or 

Day 
Treatment 

.56 -.03 -.53 3 2 1 
2.13 -.96 -1.16 3 2 1 
.79 -.10 -.70 3 2 1 
.06 .07 -.13 2 3 1 
.53 -1.06 .54 2 1 3 
-.04 .17 -.13 2 3 1 
1.23 -.46 -.76 3 2 1 
4.16 -1.23 -.2.93 3 2 1 

Mean 1.18 -.45 -.73 2.625 2.125 1.250 
Median .68 -.28 -.61 3.000 2.000 1.000 

SD 1.39 .56 1.03 .518 .641 .707 
Variance 1.93 .32 1.06 .268 .411 .500 

Skew 1.69 -.36 -1.47 -.644 -.068 2.828 
Kurtosis 2.88 -1.97 3.22 -2.240 .741 8.000 

Group Two 
j = 2 
Fast   

Learners 
or 

Enhanced 
Standard 

Methadone 

-.61 .60 0 1 3 2 
-.54 .57 -.03 1 3 2 

-1.54 .67 .87 1 2 3 
-1.51 1.40 .10 1 3 2 
-1.41 -.10 1.50 1 2 3 
-.84 .07 .77 1 2 3 

-2.11 .20 1.90 1 2 3 
-1.24 .97 .27 1 3 2 
-.91 -.30 1.20 1 2 3 
1.29 -.50 -.80 3 2 1 

Mean -.94 .36 .58 1.200 2.400 2.400 
Median -1.07 .39 .52 1.000 2.000 2.500 

SD .92 .59 .82 .633 .516 .699 
Variance .85 .35 .67 .400 .267 .489 

Skew 1.63 .26 .05 3.162 .484 -.780 
Kurtosis 3.90 -.56 -.53 10.000 -2.277 -.146 

Epsilon* .769 1.000 

Note: * Based on the Huynh-Feldt adjustment of the Greenhouse-Geisser estimate of 
epsilon from the pooled within-group covariance matrix. 
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Table 4: Hypothetical Population Distribution of Probabilities (πr*) for Friedman Model Ranks with Descriptive 
Statistics for Each Element (Rijk). in a J = 2 by K =3 Split-Plot Design. 

 

Permutation Probability of rth Permutation 
Group 

Configuration 
Status of Null Hypotheses 

R1 R2 R3 πr1 πr2 πr3 πr4 πr5 j = 1 j =2 H0 (23) H0 (24) H0 (25)

1 2 3   
1

6  
  
1

12  
  
10

24  
1

12  
 
1

6  πr1 πr1 True True True 

1 3 2   
1

6  
  
1

6  
  
1

24  
 
1

12  
 
1

8
 πr2 πr2 True False True 

2 1 3   
1

6  
  
1

4  
  
1

24  
 
1

6  
 
1

24  πr2 πr3 True False False 

2 3 1   
1

6  
  
1

4  
  
1

24  
 
1

6  
 
1

24  πr4 πr4 True False True 

3 1 2   
1

6  
  
1

6  
  
1

24  
 
1

4  
 
7

24
 πr4 πr5 True False False 

3 2 1   
1

6  
  
1

12  
  
10

24  
1

4  
 
1

3
 πr3 πr4 False False False 

   2.000 2.000 2.000 2.333 2.333      

   0.667 0.500 0.917 0.556 0.806      

   2.000 2.000 2.000 1.833 1.833      

   0.667 0.833 0.167 0.639 0.472      

   2.000 2.000 2.000 1.833 1.833      

   0.667 0.667 0.917 0.639 0.556      

  ε 1.000 0.923 0.640 0.992 0.903      
 

R1

σR1
2

R2

σR2
2

R3

σR3
2
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Table 5: Sample Moment and Tests Statistics for Hypothetical Data from the J=3 by K=4 Split-Plot Design in 
Example Two. 

 

Original 
Data 

Group j = 1 (n1 = 8) 
(e.g., Normotensive; aa) 

Group j = 2 (n2 = 10) 
(e.g., Untreated EBP; AA) 

Group j = 3 (n3 = 8) 
(e.g., Treated EBP, Aa) 

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 

Mean 5.80 6.11 6.88 7.21 5.80 11.79 13.29 15.84 5.88 7.05 9.59 13.70
Median 5.10 5.20 5.95 6.55 5.10 11.75 13.70 17.10 5.20 6.20 8.70 13.05

SD 2.63 2.93 2.73 2.86 2.82 1.55 1.77 2.72 2.85 2.91 2.80 2.78 
Variance 6.90 8.56 7.43 8.19 7.98 2.40 3.12 7.39 8.15 8.46 7.82 7.70 

Skew 2.34 2.45 2.33 2.37 2.09 0.10 -0.75 -0.78 2.13 2.59 2.36 2.40 
Kurtosis 5.94 6.44 5.85 6.15 5.19 0.08 -0.65 -1.21 5.45 7.06 5.99 6.28 

H-F = .795, F(Y)(4.77, 54.86) = 53.42, p < .001; H(Y) = 10.06,  p < .001; V(Y) = 1.66, p < .001 

Aligned Ranks 

Mean 99.50 58.25 33.69 10.63 15.20 69.50 69.90 67.65 57.75 22.25 38.75 83.88
Median 99.50 56.50 34.00 10.50 6.50 66.00 72.50 71.00 57.00 21.50 39.00 83.50

SD 2.45 6.88 5.81 3.32 24.53 16.08 18.44 26.67 12.14 4.30 8.89 6.22 
Variance 6.00 47.36 33.78 11.05 602.0 258.5 340.0 711.2 147.4 18.50 79.00 38.70

Skew 0 1.09 0.21 -0.36 2.84 0.03 -1.75 0.00 0.01 1.19 -0.09 -0.06 
Kurtosis -1.20 0.37 -0.93 -0.53 8.46 -1.61 4.75 -1.95 -0.86 1.93 -2.20 -1.66 

H-F = .893, F(A)(5.36, 61.61) = 43.10, p < .001; H(A) = 8.50, p < .001; V(A) = 1.61, p < .001 

Koch Ranks 

Mean 80.25 60.75 47.38 27.63 32.35 62.25 59.55 61.85 54.81 36.94 53.69 70.56
Median 81.00 57.25 49.25 27.50 28.50 63.25 57.50 59.50 55.75 34.50 52.75 70.50

SD 7.16 8.22 8.27 7.66 12.56 10.15 12.37 12.89 7.20 8.17 7.28 7.81 
Variance 51.29 67.57 68.41 58.70 157.7 103.0 153.1 166.1 51.78 66.82 53.00 61.03

Skew -1.02 0.84 -0.35 0.70 1.72 0.08 0.37 0.86 -0.06 0.79 0.14 -0.05 
Kurtosis 1.49 0.42 -0.28 0.68 3.39 -0.79 1.34 -0.04 0.01 -0.22 -1.87 -0.51 

H-F = 1.00, F(Q)(6, 69) = 30.35, p < .001; H(Q) = 7.52, p < .001; V(Q) = 1.55, p < .001 

Friedman Ranks 

Mean 4.00 3.00 2.00 1.00 1.30 2.80 2.90 3.00 2.75 1.00 2.25 4.00 
Median 4.00 3.00 2.00 1.00 1.00 2.50 3.00 3.00 3.00 1.00 2.00 4.00 

SD 0 0 0 0 0.95 0.92 0.88 0.94 0.46 0 0.46 0 
Variance 0 0 0 0 0.90 0.84 0.77 0.89 0.21 0 0.21 0 

Skew     3.16 0.47 -1.02 0.00 -1.44  1.44  
Kurtosis     10.00 -1.81 1.83 -2.13 0.00  0.00  

H-F = .931, F(R)(df = 5.59) = 56.50, p < .001; H(R) = 8.80, p < .001; V(R) = 1.60, p < .001 

Note: H-F = Huynh-Feldt adjustment of the Greenhouse-Geisser estimate of epsilon from the pooled within-
group covariance matrix. 
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Table 6: Sample Moment and Tests Statistics for Hypothetical Data from the J=3 by K=4 Split-Plot Design in 
Example Two. 

 

 
Group j = 1 (n1 = 8) 

(e.g., Normotensive; aa) 
Group j = 2 (n2 = 10) 

(e.g., Untreated EBP; AA) 
Group j = 3 (n3 = 8) 

(e.g., Treated EBP; Aa) 

Aligned Ranks U=A/(NK+1) 

 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 

Mean .9476 .5548 .3208 .1012 .1448 .6619 .6657 .6443 .5500 .2119 .3690 .7988 

SD .0233 .0655 .0554 .0317 .2337 .1531 .1756 .2540 .1156 .0410 .0847 .0592 

Linear UbL -.6201 
SD = .0194 

.3359 
SD = .3157 

.2020 
SD = .1132 

Change UbC -.2778 
SD = .0592 

.3657 
SD = .2199 

-.2391 
SD = .0910 

Koch Ranks U = Qijk –[((N+1)/2)]/[(K-1)(N+1)] 

 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 

Mean .8241 .5833 .4182 .1744 .2327 .6019 .5685 .5969 .5100 .2894 .4961 .7045 

SD .0884 .1015 .1021 .0946 .1550 .1253 .1528 .1591 .0888 .1009 .0899 .0965 

Linear UbL -.4727 
SD = .0666 

.2369 
SD = .2184 

.1767 
SD = .1094 

Change UbC -.2407 
SD = .1848 

.3691 
SD = .1759 

-.2207 
SD = .1504 

Friedman Ranks U = Qijk –[((N+1)/2)]/[(K-1)(N+1)] 

 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 

Mean 1.3416 .4472 -.4472 -1.3416 -1.0733 .2683 .3578 .4472 .2236 -1.3416 -.2236 1.3416

SD 0 0 0 0 .8485 .8219 .7832 .8433 .41404 0 .41404 0 

Linear 
UbL/K 

-1.0000 
SD = 0 

.5200 
SD = .5750 

.5000 
SD = .1852 

Change 
UbC/K 

SD 

-.3162 
SD = 0 

.4742 
SD = .4104 

-.5535 
SD = .1464 
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Table 7: Results of Contrast Procedures for the J = 2 by K =3 Split-Plot Design in Example Two. 
 

Rank 
(Contrast) 

 
Univariate Approach 

df = 23; S = 2.701 
Multivariate Approach 

Aligned 
Ranks  SE (27) 

Lower 
Bound 

Upper 
Bound 

df* S 
SE 

(30) 
Lower 
Bound 

Upper 
Bound 

a1bL -0.8891 0.0883 -1.1276 -0.6506 12.11 2.920 0.0542 -1.0474 -0.7308 
a2bL 0.1339 0.0984 -0.1319 0.3997 11.73 2.936 0.1076 -0.2461 0.5139 
a1bC -0.4824 0.0903 -0.7263 -0.2385 18.22 2.762 0.0618 -0.6531 -0.3117 
a2bC 0.8552 0.1007 0.5833 1.1271 12.53 2.903 0.1084 0.4779 1.2326 

Koch 
Ranks  SE (27) 

Lower 
Bound 

Upper 
Bound 

df S 
SE 

(30) 
Lower 
Bound 

Upper 
Bound 

a1bL -0.6795 0.0655 -0.8564 -0.5026 20.27 2.732 0.0461 -0.8054 -0.5536 
a2bL 0.0602 0.0730 -0.1369 0.2572 13.79 2.861 0.0792 -0.2102 0.3305 
a1bC -0.3150 0.0730 -0.5122 -0.1178 12.06 2.922 0.0758 -0.5365 -0.0935 
a2bC 0.5898 0.0813 0.3702 0.8094 15.90 2.806 0.0770 0.3335 0.8461 

Friedman 
Ranks  SE (27) 

Lower 
Bound 

Upper 
Bound 

df S 
SE 

(30) 
Lower 
Bound 

Upper 
Bound 

a1bL -1.5100 0.1592 -1.9400 -1.0800 11.24 2.958 0.0966 -1.7957 -1.2243 
a2bL 0.0200 0.1774 -0.4591 0.4991 11.24 2.958 0.1933 -0.6696 0.7096 
a1bC -0.2767 0.1123 -0.5800 0.0266 11.82 2.932 0.0685 -0.4775 -0.0759 
a2bC 1.0277 0.1251 0.6898 1.3657 11.82 2.932 0.1371 0.5443 1.5111 

Notes: From (32) αDS = .00637. a1={+2 -1 -1} is a comparison of Group One to a combination of Groups 

Two and Three. a2={0 +1 -1} is a comparison of Groups Two and Three. bL={-3 -1 +1 +3} is a linear 

polynomial contrast. bQ={+1 -1 -1 +1} is a quadratic polynomial contrast. *The dfs for the Multivariate 

Approach were computed from the Welch (1947) correction. 
 

ψ

ψ

ψ
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in their concordance with the ordered alternative 
(i.e., linear trend) on average. As shown in the 
lower panel of Table 6, Group 1 has a perfect 
negative rank correlation with the linear trend 
with no variance, which means that relative to 
the main effects each person in Group 1 had a 
descending trend or was discordant with the 
ordered alternative. Groups 2 and 3 had rank 
correlations with the linear trend (concordance) 
of approximately 0.50. Comparing Group 1 to 
Groups 2 and 3 combined, it is apparent that 
there are strong differences in their average rank 
correlation, ψ̂ a1bL = -1.510. The univariate 

95% simultaneous confidence interval indicates 
that plausible values range between -1.9400 and 
-1.0800. The multivariate 95% simultaneous 
confidence interval gives a tighter band of 
plausible values that range between -1.7957 and 
-1.2243. 

This type of interpretation can be used 
for any trend contrast that involves a linear 
combination of all K repeated measures by 
thinking of the trend in terms of ordered 
alternatives. These results can also be couched 
in terms of stochastic heterogeneity (Beasley, 
2000; Vargha & Delaney, 1998) in that Groups 2 
and 3 combined, as compared to Group 1, have a 
very high probability of yielding stochastic 
larger scores at time k = 4 and smaller scores at 
k = 1 (i.e., very high probability of having 
stochastically larger or steeper slopes). Group 2 
did not significantly differ from Group 3 in 
terms of linear trend (i.e., the confidence interval 
contains zero). 

To transform the data by the initial trend 
contrast is standardized, b´C = {- 2  + 2   0  0}. 

The values of UbC/K represent each individuals 

rank correlation with this ordered alternative. 
The results in the bottom panel of Table 7 show 
that Group 1 does not significantly differ from 
Groups 2 and 3 combined (i.e., the confidence 
interval contains zero). However, the change 
from time k = 1 to k = 2 was positive for Group 
2 and negative for Group 3 (see Table 6, lower 
panel). The difference in these rank correlations 
was -1.0277. The univariate 95% simultaneous 
confidence interval indicates that plausible 
values for the difference in rank correlation 
range between 0.6898 and 1.3657. The 
multivariate 95% simultaneous confidence 

interval gives a wider band of plausible values 
that range between 0.5433 and 1.5111. 

For analyses such as Initial Change 
contrast, UbC, only two of the K repeated 

measures are used and thus interpretations 
reduce to the interpretations similar to the sign 
test. However, this approach includes 
information from the other time points; thus, 
these effects are relative to the other time points. 
If a more direct interpretation is desired, then the 
signs or signed ranks for the differences for the 
two measures could be computed and statistical 
analyses conducted to compare the groups. This 
is a methodology proposed by Cliff (1996) and 
is not detailed here. 
 

Conclusion 
 
Rank-based methods could be applied to the data 
in a multiple group repeated measures 
experiment because the normality assumptions 
of the split-plot ANOVA model in (1) are 
violated. In such a case, testing against the shift 
model null hypothesis (20) would be of interest 
because it seems conceptually similar to the 
differences among means in the parametric 
model hypotheses in (2) or (6). However, if 
aligned rank procedures are employed and tests 
of interactions are conducted, then (20) may be 
rejected incorrectly because some other 
hypothesis (i.e., 16, 17, 24 or 25) is false. That 
is, a statistically significant test statistic may be 
attributable to differences in other distributional 
characteristics (i.e., variance or shape) rather 
than reflecting solely differences in location, 
unless additional distributional assumptions are 
made (Serlin & Harwell, 2001). 

In order to test against (20) and make 
inferences in terms of location parameters, 
distributional assumptions must be made. 
Credible inferences concerning location 
parameters (20) require the assumption that the 
population distributions are of identical shape 
(Serlin & Harwell, 2001; Vargha & Delaney, 
1998). This may seem restrictive, however, 
because parametric statistical tests, which also 
require IID[0,  σε

2 ] or IID[0(K-1),D′ΣD] with the 
additional restriction that the error distributions 
have a normal shape (Bradley, 1968) have been 
conducted for decades. 
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Unfortunately, these distributional 
assumptions present a conundrum for data 
analysis. Specifically, the sample estimates of 
skew and kurtosis are unstable, especially with 
small sample sizes. Therefore, it is difficult to 
judge the tenability of the IID assumptions. The 
choices are: (a) accept the assumptions without 
testing their tenability or (b) test the assumptions 
based on unstable estimates. Furthermore, 
estimates of skew and kurtosis are more reliable 
with larger samples sizes. However, parametric 
procedures are more likely to be robust with 
large samples sizes and the advantage of rank-
based procedures over parametric methods in 
terms of statistical power is likely to decrease. 

To circumvent this conundrum, Akritas 
and Arnold (1994) have argued that hypotheses 
should be expressed in a manner that does not 
place additional distributional assumptions on 
the data. These fully nonparametric hypotheses 
differ because statistically significant results are 
not attributed to location parameters alone but 
rather to any distributional difference. Vargha 
and Delaney (1998) and Beasley (2002) have 
suggested analyses of hypotheses related to 
stochastic heterogeneity. Similarly, Cliff (1996) 
has argued that rank-based and other 
nonparametric methods provide ordinal answers 
to ordinal questions, which are equivalent to 
results of stochastic heterogeneity and that these 
results correspond more closely to the goals of 
many researchers. These forms of hypotheses 
reduce the risk of drawing incorrect conclusions 
about the likely sources of the significant 
interaction, but do so at the cost of not being 
able to characterize precisely how population 
distributions differ (Serlin & Harwell, 2001). 

The process of aligning the scores 
before ranking permits test statistics to focus on 
interactions among location parameters; by 
removing main effects, the aligned ranks should 
not inherit any effects due to marginal location 
differences (i.e., main effects). However, the 
alignment does not remove other marginal 
distributional effects; therefore, aligned ranks 
may still inherit the distributional properties of 
the original data (e.g., heterogeneity of 
variance). When the distributions have 
heterogeneous variances or have different 
shapes, the null hypothesis of equal location 
parameters (20) and the null hypothesis of 

identical distributions are no longer equivalent. 
Therefore, as analogs to parametric procedures, 
aligned rank tests are likely to be sensitive to 
variance heterogeneity, especially with unequal 
sample sizes (Algina & Keselman, 1998; 
Kowalchuk, Keselman, & Algina, 2003; Lei, 
Holt, & Beasley, 2004). 

Similarly, Wilcox (1993) noted that 
parametric tests are not robust to differences in 
skew when sample sizes are not equal; however, 
they are more sensitive to mean differences 
when there are differences in shape and equal 
sample sizes. Thus, it may be conjectured that 
the aligned rank procedures as tests of location 
parameters would be somewhat robust to 
heterogeneous variance and differences in shape 
when sample sizes are equal; however, Lei, et al. 
(2004) have shown that tests that correct for 
unequal variances (e.g., Huynh, 1978) 
performed on aligned ranks still detect 
distributional (i.e., variance) differences when 
location parameters do not reflect an interaction. 
Furthermore, with increasing disparity among 
sample sizes, aligned rank procedures become 
more sensitive to detecting any distributional 
difference and thus should strictly be considered 
tests of stochastic homogeneity. 

Vargha and Delaney (1998) explicated 
this issue by showing that the null hypotheses of 
stochastic homogeneity and a null hypothesis of 
equal mean ranks are equivalent for non-
identical, but symmetric distributions. They also 
demonstrated that stochastic homogeneity and a 
null hypothesis of equal location parameters (20) 
are equivalent for identical, asymmetric 
distributions. Therefore, statistically significant 
values for interaction tests performed on aligned 
ranks, and the subsequent rejections of the 
associated null hypotheses, typically imply a 
pattern in which one of the J groups is 
stochastically larger than the other(s) on at least 
one of the K repeated measures and that this 
stochastic dominance is not constant across all K 
repeated measures (Brunner & Langer, 2000; 
Vargha & Delaney, 1998). 

To illustrate, imagine a J = 2 groups 
(e.g., Control and Treatment) by K = 3 repeated 
measures (e.g., Pretest, Posttest, Follow-up) 
design. Suppose that for the first measure (k = 1) 
the two groups are stochastically identical, 
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G1(Y11) = G2(Y21), which would be expected 

on a pretest if the groups were randomly 
assigned. Thus for all real values, u, the 
probability of scores larger than u is the same in 
both groups, P(Y11 > u) = P(Y21 > u). 

Now imagine that the posttest (k = 2) 
was measured after some treatment had been 
administered to second group (j = 2) while the 
first group remained a control. If the treatment 
worked, then the second group should have 
higher scores, and thus, G1(Y12) ≠  G2(Y22). 

Because the Treatment group has scores (Y12) 

that are stochastically larger than the scores for 
the Control group (Y22), the between-group 

probabilities of scores larger than all real values 
(u) are no longer equal, P(Y12 > u) < P(Y22 > u). 

This conclusion that the stochastic dominance of 
one group over another is not constant over time 
is consistent with the answers that aligned rank 
tests provide to the ordinal question: did the 
groups respond differently after treatment? 
Specifically, the treatment group tends to have 
stochastically larger gains than the control 
group. 

Although statistically significant results 
may be attributed to other distributional 
differences, these aligned rank tests are 
especially sensitive to shifts in location 
parameters because they use mean ranks in their 
computation. Therefore, statistically significant 
test statistics performed on aligned ranks can 
generally be attributed to differences in location 
parameters (Marascuilo & McSweeney, 1977, 
pp. 304-305), which is fortunate because it is 
difficult to test the tenability of the IID 
assumptions associated with the shift models. 
Newson (2002) reviewed methods for 
constructing confidence intervals that are robust 
to between-group differences in parameters 
other than location (e.g., variance; skew). 
Technically, however, statistically significant 
tests performed on aligned ranks cannot be 
attributed solely to differences in location 
parameters. Given the difficulty of testing model 
assumptions especially with small samples, 
results from these procedures should be 
interpreted in terms of stochastic heterogeneity 
(Beasley, 2002; Varga & Delaney, 1998). 
Newson (2002) and Cliff (1996) suggest that 

rank-based statistics are based on population 
parameters, related to Somer’s (1962) D, which 
are extremely informative in terms of stochastic 
dominance and can be estimated using 
corresponding sample statistics. Thus, although 
aligned rank-procedures produce what may be 
considered a more ambiguous formulation of the 
underlying null hypothesis that is of interest 
conceptually, the conclusions are consistent with 
the ordinal answers that Cliff (1996) has extolled 
as the effect of actual interest to many 
researchers. 
 

Notes 
 

1. In a two-group Between-Subjects 
design, Cliff (1996) has shown that transforming 
the ranks by [(2Rijk − 1)/N] yields a rank mean 
difference equal to the d statistic. This 
transformation will only yield standard errors 
similar to Cliff’s method asymptotically. This is 
because they are based on different counting 
procedures. Furthermore, this transformation 
does not necessarily extend to multiple groups 
and dependent measures. Thus, the 
transformation suggested by Agresti and 
Pendergast (1986) was used.  
 

2. Brunner, et al. (2002) showed a linear 
transformation of unaligned ranks [(Rijk − 
½)/NK], similar to the Agresti and Pendergast 
(1986) suggestion, will yield cell means that 
provide estimates of relative treatment effects. 
Test statistics performed on these values will 
provide valid tests of fully nonparametric 
hypotheses. According to Brunner, et al. (2002), 
however, these values cannot simply be used to 
compute standard errors, unless the sample size 
is large.  Constructing accurate confidence 
intervals using the Brunner, et al. method 
involves a more complicated procedure of 
computing partial ranks and logit 
transformations. Whether the Brunner, et al. 
method can be applied to aligned ranks has yet 
to be investigated. Thus, for the sake of 
simplicity the transformation suggested by 
Agresti and Pendergast (1986) was used. 
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Appendix I: SAS Code 
 
data egtwo; 
input k1 k2 k3 k4 group; 
cards; 
   3.90  4.20  5.10  5.10  1 
   4.10  4.00  5.00  5.20  1 
   4.30  5.00  5.40  6.10  1 
   5.00  5.10  6.00  6.00  1 
   5.20  5.30  5.90  7.20  1 
   5.80  6.00  7.00  7.00  1 
   6.10  6.20  7.30  7.10  1 
  12.00 13.10 13.30 14.00  1 
   3.00  9.20 10.10 11.30  2 
   4.10 10.10 11.00 12.20  2 
   4.00 11.20 11.90 13.00  2 
   4.20 12.30 13.10 17.20  2 
   5.20 11.20 14.30 15.20  2 
   5.00 11.30 13.40 18.30  2 
   6.00 12.20 14.90 17.00  2 
   6.20 12.40 14.00 17.90  2 
   7.30 13.50 15.20 18.20  2 
  13.00 14.50 15.00 18.10  2 
   3.00  4.90  7.70 11.60  3 
   4.10  6.10  7.70 11.70  3 
   5.10  5.90  8.10 13.20  3 
   5.00  5.80  8.70 12.80  3 
   5.30  6.30  9.70 13.90  3 
   5.90  6.30  8.70 13.00  3 
   6.10  7.00  9.90 13.10  3 
  12.50 14.10 16.20 20.30  3 
;proc sort out=two;by group; 
data three;options ls=120; 
proc iml; use two; 
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read all var{k1 k2 k3 k4} into 
Y;read all var{group} into 
Group; 
JJ=max(Group);K=ncol(Y);N=nrow(Y
);NV=j(JJ,1,0); 
Q=j(N,K,0);FR=j(N,K,0); CK=j((k-
1),K,0);CJ=j((jj-1),JJ,0); 
dfjk=(JJ-1)*(K-1);dfeu=N-JJ)*K-
1); 
smv=min(JJ,K);smv=smv-1; 
mmv=((ABS(K-JJ))-1)/2; 
nmv=(N-JJ-K)/2; 
dfem=2#((smv#nmv)+1); 
do hh=1 to JJ; 
  do ii=1 to N; 
    if group[ii,1]=hh then 
NV[hh,1]=NV[hh,1]+1; 
end;end; 
RMMEAN=Y[:,];RMMEAN=(j(N,1,1))*R
MMEAN; 
PMEAN=Y[,:];GMEAN=PMEAN[:,];PMEA
N=PMEAN*(j(1,K,1)); 
AD=(Y-PMEAN-
RMMEAN)+GMEAN;AR=RANKTIE(AD);AR=
AR/((N*K)+1); 
do hh=1 to K; 
  do ii=1 to K; 
   DX=Y[,hh]-
Y[,ii];RDX=RANKTIE(DX);Q[,hh]=Q[
,hh]+RDX; 
end; end; 
Q=(Q-((N+1)/2))/((K-1)*(N+1)); 
do ii=1 to N; 
  FR[ii,]=RANKTIE(AD[ii,]); 
end; 
FR=(FR-((K+1)/2))/(((K##2)-
1)/12); 
do ii=1 to (K-1); 
  CK[ii,ii]=1; CK[ii,(ii+1)]=-1; 
end; 
do ii= 1 to (JJ-1); 
  CJ[ii,ii]=1;CJ[ii,(ii+1)]=-1; 
end; 
CJK=CJ@CK; 
AMEANK=AR[:,];QMEANK=Q[:,];RMEAN
K=FR[:,]; 
do ii=1 to JJ; 
  if ii=1 then zz=1;else 
zz=zz+NV[(ii-1),1]; 
  if ii=1 then zzz=NV[ii,1];else 
zzz=zzz+NV[ii,1]; 
 do hh=zz to zzz; 

  if hh=zz then AJ=AR[hh,]; else 
AJ=AJ//AR[hh,]; 
  if hh=zz then QJ=Q[hh,]; else 
QJ=QJ//Q[hh,]; 
  if hh=zz then RJ=FR[hh,]; else 
RJ=RJ//FR[hh,]; 
end; 
MAJ=AJ[:,];DMAJ=MAJ-
AMEANK;DMAJ=DMAJ#(NV[ii,1]); 
EAJ=AJ-
(((j((NV[ii,1]),1,1))*MAJ)); 
if ii = 1 then AMEAN=MAJ; else 
AMEAN=AMEAN//MAJ; 
if ii = 1 then DEVA=MAJ; else 
DEVA=DEVA||MAJ; 
if ii = 1 then EA=EAJ; else 
EA=EA//EAJ; 
MQJ=QJ[:,];DMQJ=MQJ-QMEANK; 
DMQJ=DMQJ#(NV[ii,1]); 
EQJ=QJ-
(((j((NV[ii,1]),1,1))*MQJ)); 
if ii = 1 then QMEAN=MQJ; else 
QMEAN=QMEAN//MQJ; 
if ii = 1 then DEVQ=MQJ; else 
DEVQ=DEVQ||MQJ; 
if ii = 1 then EQ=EQJ; else 
EQ=EQ//EQJ; 
MRJ=RJ[:,];DMRJ=MRJ-
RMEANK;DMRJ=DMRJ#(NV[ii,1]); 
ERJ=RJ-
(((j((NV[ii,1]),1,1))*MRJ)); 
if ii = 1 then RMEAN=MRJ; else 
RMEAN=RMEAN//MRJ; 
if ii = 1 then DEVR=MRJ; else 
DEVR=DEVR||MRJ; 
if ii = 1 then ER=ERJ; else 
ER=ER//ERJ; 
end; 
EA=EA`*EA;TA=AR-
((j(N,1,1))*AMEANK);TA=TA`*TA; 
EQ=EQ`*EQ;TQ=Q-
((j(N,1,1))*QMEANK);TQ=TQ`*TQ; 
ER=ER`*ER;TR=FR-
((j(N,1,1))*RMEANK);TR=TR`*TR; 
HTA=((CJK*(DEVA`))`)*(ginv((CJK*
((diag((1/nv)))@EA)*((CJK`)))))*
(CJK*(DEVA`)); 
VA= 
((CJK*(DEVA`))`)*(ginv((CJK*((di
ag((1/nv)))@TA)*((CJK`)))))*(CJK
*(DEVA`)); 
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HTQ=((CJK*(DEVQ`))`)*(ginv((CJK*
((diag((1/nv)))@EQ)*((CJK`)))))*
(CJK*(DEVQ`)); 
VQ= 
((CJK*(DEVQ`))`)*(ginv((CJK*((di
ag((1/nv)))@TQ)*((CJK`)))))*(CJK
*(DEVQ`)); 
HTR=((CJK*(DEVR`))`)*(ginv((CJK*
((diag((1/nv)))@ER)*((CJK`)))))*
(CJK*(DEVR`)); 
VR= 
((CJK*(DEVR`))`)*(ginv((CJK*((di
ag((1/nv)))@TR)*((CJK`)))))*(CJK
*(DEVR`)); 
FHA=HTA#(dfem/(smv#dfjk));pvalam
=1-(probf(FHA,dfjk,dfem)); 
FHQ=HTQ#(dfem/(smv#dfjk));pvalqm
=1-(probf(FHQ,dfjk,dfem)); 
FHR=HTR#(dfem/(smv#dfjk));pvalrm
=1-(probf(FHR,dfjk,dfem)); 
FA=(((CJK*(DEVA`))`)*(ginv((CJK*
((diag((1/nv)))@I(K))*((CJK`))))
)*(CJK*(DEVA`))/(TRACE(EA)))*(df
eu/dfjk);  
pvalau=1-(probf(FA,dfjk,dfeu)); 
FQ=(((CJK*(DEVQ`))`)*(ginv((CJK*
((diag((1/nv)))@I(K))*((CJK`))))
)*(CJK*(DEVQ`))/(TRACE(EQ)))*(df
eu/dfjk); 
pvalqu=1-(probf(FQ,dfjk,dfeu)); 
FRC=((CJK*(DEVR`))`)*(ginv((CJK*
((diag((1/nv)))@I(K))*((CJK`))))
)*(CJK*(DEVR`))/((K#(K+1))/12); 
pvalru=1-(probchi(FRC,dfjk)); 
 
Print 'Univariate Tests'; 
Rowun={"Aligned Ranks F(A)", 
"Koch Ranks F(Q)",  
"Chi-Square - Friedman Ranks 
F(R)"}; 
ColUN={"TEST" "DFh" "DFe" "p-
value"}; 
Uprt=(FA//FQ//FRC)||(dfjk//dfjk/
/dfjk)||(dfeu//dfeu//0)|| 
(pvalau//pvalqu//pvalru); 
print UPrt[rowname=rowun 
colname=colun]; 
 
Print 'Multivariate Tests';Print 
'DFh =' dfjk;Print 'DFe =' dfem; 

Rowmn={"Aligned Ranks (A)", 
"Koch Ranks (Q)", "Friedman 
Ranks (R)"}; 
ColmN={"Pillia Trace V(*)" 
"Hotelling Trace H(*)" "F-
approx" "p-value"}; 
Mprt=(VA//VQ//VR)||(HTA//HTQ//HT
R)||(FHA//FHQ//FHR)||(pvalam//pv
alqm//pvalrm); 
print MPrt[rowname=rowmn 
colname=colmn]; 
 
DLINE={-3 –1 1 
3};DLINE=DLINE/(20##.5); 
DCHNG={-1 1 0 0}; 
YL=Y*(DLINE`);YC=Y*(DCHNG`); 
AL=AR*(DLINE`);AC=AR*(DCHNG`); 
QL=Q*(DLINE`);QC=Q*(DCHNG`); 
FL=(FR*((DLINE`)#2))/4;FC=(FR*((
DCHNG`)#(2##.5)))/4; 
 
outx=Y||AR||Q||FR||YL||YC||AL||A
C||QL||QC||FL||FC||Group; 
create xxx from outx[colname={k1 
k2 k3 k4 ak1 ak2 ak3 ak4 qk1 qk2 
qk3 qk4 fk1 fk2 fk3 fk4 yl yc al 
ac ql qc fl fc group}]; 
append from outx; 
data last;set xxx; 
proc glm;class group; 
model k1 k2 k3 k4=group/nouni; 
contrast 'Group 1 vs 2 + 3' 
group 1 -.5 -.5; 
contrast 'Group 2 vs 3' group 0 
1 -1; 
repeated time 4 (1 2 3 4) 
polynomial/summary;run; 
proc glm;class group; 
model ak1 ak2 ak3 
ak4=group/nouni; 
contrast 'Group 1 vs 2 + 3' 
group 1 -.5 -.5; 
contrast 'Group 2 vs 3' group 0 
1 -1; 
repeated time 4 (1 2 3 4) 
polynomial/ summary;run; 
proc glm;class group; 
model qk1 qk2 qk3 qk4 = group / 
nouni; 
contrast 'Group 1 vs 2 + 3' 
group 1 -.5 -.5; 
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contrast 'Group 2 vs 3' group 0 
1 -1; 
repeated time 4 (1 2 3 4) 
polynomial/ summary;run; 
proc glm;class group; 
model fk1 fk2 fk3 fk4 = group / 
nouni; 
contrast 'Group 1 vs 2 + 3' 
group 1 -.5 -.5; 
contrast 'Group 2 vs 3' group 0 
1 -1; 
repeated time 4 (1 2 3 4)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

polynomial/ summary;run; 
proc glm;class group; 
model yl yc al ac ql qc fl fc = 
group / nouni; 
contrast 'Group 1 vs 2 + 3' 
group 1 -.5 -.5; 
contrast 'Group 2 vs 3' group 0 
1 -1; 
repeated time 4 (1 2 3 4) 
polynomial/ summary;run; 
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