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1

Chapter 1: Introduction

Evaluating programming language techniques is done using case studies, controlled

experiments, corpus analysis, or surveys [14]. Corpus analysis has been extensively

used to evaluate techniques that promote structural typing [15], express protocols [6]

and prevent security vulnerabilities [18]. For evaluation approaches that involve case

studies or controlled experiments with participants, it may not be possible to con-

vincingly demonstrate the usefulness of the technique as there are confounds in using

participants such as differing skills or experience levels, and how amenable they are

to learning new tools, notations. Any evaluation approach that may be used, may

indicate that the technique is beneficial for some systems but not for other systems

or tasks [12, 19].

Often times, to evaluate a heavyweight technique that requires specifications or

annotations be added to the code, a lightweight proxy is used to select systems on

which using the technique is rewarding and evaluation can be conducted. The proxy

may consists of a visitor that identify methods with specific substrings in their names,

or a specific signature. However, such a proxy is often determined a priori and may be

unreliable. The proxy may predict a larger benefit than can be achieved in practice.

Also, finding a system for which the proposed heavyweight technique shines is often a

process of trial and error. Even if such a system is found, there is little understanding

of what types of similar systems these findings can be generalized to.

This work proposes a principled approach to derive a proxy that predicts if using

a heavyweight technique may be beneficial on a system. We use the approach to

derive a proxy for a heavyweight technique that our research group has been working

on. The technique extracts the abstract runtime structure of a system based on the

annotations that are added manually to the code, thus making it heavyweight. As

a first step, we compute the DiffMetrics that measure the differences between the
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system representation extracted by the heavyweight technique (the abstract runtime

structure) and a baseline representation (the code structure) to investigate how differ-

ent the two representations are for subject systems. We then identify data points of

the DiffMetrics that are higher than a predefined threshold, the outliers. We identify

code patterns that are associated with the outliers. We then implement visitors that

visit the code of a system to identify code patterns and to classify the outliers into

several classifications based on the identified code patterns. We generalize the visi-

tors to identify the same code patterns on systems that do not have any annotations

added to the code. Independently, we determine other code metrics that correlate

with the DiffMetrics. The proxy runs the visitors to identify the code patterns and

computes the code metrics on new systems that have not been analyzed using our

heavyweight technique. Based on the code patterns and the values of the code metrics

computed on the systems, the proxy predicts if its abstract runtime structure may

be significantly different from the code structure as the outliers of the DiffMetrics

indicate.

1.1 Problem and Solution

The Problem. To evaluate a heavyweight technique, a lightweight proxy is used

to select systems on which the technique may be useful. Often, the proxy is defined

arbitrarily and not specifically for a heavyweight technique. Such a proxy may be

unreliable. Thus, we need a more principled approach to define a proxy that predicts

if a heavyweight technique may work for a system without applying the technique on

the system.

Solution. We propose a principled approach to derive a proxy to predict if the

heavyweight technique that extracts the abstract runtime structure may prove to be

useful on a system. The proxy uses the DiffMetrics that are computed on the training
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set to build a model that predicts if the abstract runtime structure of a new system

is significantly different from its code structure. Based on the prediction, we decide

if using the heavyweight technique on this system may be beneficial or not. As the

proxy uses the DiffMetrics that are computed on the training set to build a model, it

is data-driven. The proxy is defined to work specifically for a heavyweight technique

and thus is more reliable.

1.2 Thesis Statement

Two tests predict if a system’s abstract runtime structure is different from the

corresponding code structure, as indicated by DiffMetrics that the measure the dif-

ferences between the two representations. The first test consists of running visitors

that look for code patterns identified from the outliers. The second test consists of

computing code metrics that are strongly correlated with the DiffMetrics.

1.3 Contributions

The contributions of this work are as follow:

I. Formal definition of some DiffMetrics that measure the differences between the

abstract runtime structure and the code structure of systems based on dataflow

edges;

II. A principled approach to derive a lightweight proxy for a heavyweight technique;

III. A proxy derived using the approach for a heavyweight technique that extracts

the abstract runtime structure for a system;

IV. An evaluation of the proxy’s predictions on systems that were not part of the

evaluation corpus of our heavyweight technique;
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1.4 Outline

The rest of this thesis is organized as follows: Chapter 2 discusses the background

of the heavyweight technique for which we propose a lightweight proxy. Next, we

discuss the DiffMetrics and the formalization of the DiffMetrics in Chapter 3. We

briefly discuss the proposed data-driven approach to derive a lightweight proxy and

discuss the research hypotheses in Chapter 4. In Chapter 5 and Chapter 6 we discuss

in detail the proxy, which consists of two tests. We evaluate the proposed proxy

on four test systems. A brief outline of the evaluation is discussed in Chapter 7.

The proxy predicts that using the heavyweight technique may prove to be useful for

developers during program comprehension, code modification tasks, for only two out

of the four test systems. We discuss the results of the proxy and the DiffMetrics

after applying the heavyweight technique on these test systems. Chapter 9 discusses

research work in same line as the work in this thesis such as the use code metrics and

code patterns to predict maintainability, defects and testability. Chapter 10 concludes

the thesis work and discusses some potential future work.
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Chapter 2: Background

We give some background for the heavyweight technique for which we define the

proxy.

2.1 Overview

We have been investigating a global hierarchy of abstract objects as a first-class

view of an object-oriented system at design time, one that conveys architectural ab-

straction by showing abstract objects, rather than specific instances. This view pro-

motes a new design-time thinking in terms of an abstract runtime structure consisting

of abstract objects and abstract edges between them.

Why Abstraction. Much of the functionality is determined by what instances point

to what other instances in object-oriented systems. Tasks that require knowing the

number of instances of a type that are created, or how one instance is related to how

many other instances, a debugger may be useful. But for program comprehension

tasks, understanding the system just in terms of specific instances or concrete objects

may not be effective. Instead, it may be useful to abstract objects and merge concep-

tually similar objects or those that play the same role into one abstract object. Our

heavyweight technique that extracts a hierarchy of abstract objects in the form of a

global, hierarchical object graph, the Ownership Object Graph (OOG) [1], presents

to the developers a manageable number of abstract objects.

With the help of the OOG, the developers may be able to distinguish the role

that an object plays not just by type but also by named group referred as the domain

and by position in an object hierarchy that dictates parent-child relationships between

objects. Using type+hierarchy+group, developers can construct an abstract runtime

structure in the form of an OOG that soundly approximates all possible objects and

relations.
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Hierarchy of classes

+- java

+- util

+- HashMap

Hierarchy of objects

+- main:Breakthrough

+- CTRL

+- MODEL

+- bf:BFigure

+ OWNED

| +- pMap:HashMap

+- bd:BDrawing

+ OWNED

| +- propMap:HashMap

Figure 2.1: A hierarchy of classes has one type HashMap. A hierarchy of objects has multiple
abstract objects of type HashMap distinguished based on their parent domain and hierarchy.

Hierarchy of Classes vs. Hierarchy of Objects. Current tools present the code

structure of a system in terms of hierarchy of classes where the classes are organized

by packages. In contrast, the analysis that extracts the abstract runtime structure

presents a hierarchy of objects to the developers. We illustrate an example with a

subject system to distinguish the hierarchy of classes from the hierarchy of objects

that may have multiple abstract objects of the same type (Figure 2.1).

2.2 Object Graph Semantics

A static analysis extracts the OOG using an abstract interpretation of code to

which manual annotations have been added. The annotations are checked to be

consistent with the code and implement a type system, Ownership Domains [3]. We

briefly review the Ownership Domains type system and the OOG semantics in order

to formally define our DiffMetrics.

Abstract syntax. A portion of the abstract syntax for Ownership Domains is

presented (Figure 2.2), focusing on class declarations, field declarations, expressions

e.g., method invocations, field reads and field writes. The meta-variable C ranges

over class names; T ranges over types; f ranges over fields; v ranges over values;

d ranges over domain names; and p ranges over formal domain parameters, actual

domains, or domain SHARED. An overbar over the meta-variable represents a sequence.
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cdef ::= class C<α, β> extends C ′<α>

{ dom; T f ; md}
dom ::= [public] domain d;

md ::= TR m(T x) Tthis {ret = eR; return eR; }
e ::= x = new C<p>(e) | x = r.m(e)

| x = y.f | x.f = y . . .

n ::= x | v | r | y
p ::= α | n.d | SHARED

T ::= C<p>

v, ℓ ∈ locations

Figure 2.2: Portions of the Ownership Domains abstract syntax [3].

A class is parameterized by a list of domain parameters, and extends another class

that has a subsequence of its domain parameters. A type T is a class name and a

set of actual domain parameters C<p>. The first domain parameter of a class is its

owning domain followed by other domain parameters.

Data types. The internal representation of an OOG is an OGraph. The OGraph

has two types of nodes: the OObjects referred to by the meta-variable O and the

ODomains referred to by the meta-variable D. Two OObjects may be connected by

OEdges referred to by the meta-variable E and can represent points-to, or dataflow

relations.

An OObject is represented using the tuple 〈A,D1, D2〉. The tuple represents an

abstract object of type A whose owning domain is D1; D2 is a domain that the object

has access to, i.e., it references objects from that domain. By having abstract objects

of the form 〈C,D1, D2〉, the OOG distinguishes different abstract objects of the same

type C that are in different owning domains or that have the same owning domain

but different other domains that the object has access to.

The ODomain represents an abstraction of a runtime domain, one domain decla-

ration D in a type C can correspond to multiple ODomains Di in the OGraph. The

static analysis computes an abstract object of type C in some domain D based on

mapping the formal domain parameters in the code to domains that may be declared

by other types Ci.
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D ∈ ODomain ::=〈Id = Did,Domain = C::d〉

O ∈ OObject ::=〈Type = C,OwningDomain = D1,OtherDomain = D2〉

E ∈ OEdge ::=〈From = Osrc,Field = f, To = Odst〉

E ∈ ODFEdge ::=〈From = Osrc, To = Odst, Lable = Olabel, Flag = Imp|Exp〉

Figure 2.3: Key data type declarations for the OGraph.

Abstract edges. An OEdge in the OGraph is a directed edge from a source OObject

Osrc to a destination OObject Odst. A points-to OEdge is due to a field declaration

Tf in a class in the code, where T = C ′<owner, α>.

While points-to OEdges are useful, the relationships between abstract objects due

to field usages and dataflow relations are also crucial. Data-flowOEdges represent such

relations in the OGraph. They express references propagating between the OObjects

and are referred to as the flow OObjects. We identify two different types of dataflow

scenarios, Import and Export. The OGraph shows import and export dataflow edges

for the two scenarios respectively.

I. Export scenario: In a scenario where an object a of type A owns reference of

an object c of type C and passes that to an object b of type B, the OGraph has

an export edge from source object a: A to destination object b: B with the

flow object c: C propagating between them. Such an edge is extracted due to

a method invocation or a field write in the OGraph.

II. Import scenario: In a scenario where a of type A owns reference to b of type

B from which it receives a reference to another object c of type C, the OGraph

has an import edge from source object b: B to destination object a: A with the

flow object c: C propagating between them. Such an edge is extracted due to

a field read or a method return statement.

A type has method declarations; each method declaration has method body; the

method body includes method invocations.
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class A<OWNER> {

domain D1, D2

B<D1,D2> oB;

D<D1,D2> oD;

void ma(){

// Method Invocation

oB.mb(oD);

// Field Read

C<D1,D2> c = oB.oC;

}

}

class B<OWNER,BDOM> {

domain DOM

// Field

C<DOM,BDOM > oC;

// Method declaration

void mb(D<DOM,BDOM> oD) {

...

}

}

Figure 2.4: Example illustrating dataflow import and export edges

Figure 2.4 illustrates dataflow OEdges in the OGraph. The type A has a method

declaration void ma() that has a method invocation, oB.mb(D oD) that is declared

in type B. So the analysis adds an export edge from the abstract object a: A to the

abstract object b: B propagating the reference of the argument of the abstract object

d: D in the OGraph. The type A reads a field of type C declared in B. The OGraph has

an import edge from b: B to a: A propagating the reference of the abstract object

that is type of the field associated in the read (c: C ).

To add an OEdge between OObjects, the OOG extraction analyzes a field decla-

ration Tf , method invocation recv.method(List<Arguments>), field write field1

= recv.field, field read recv.field in a type C, in a given analysis context Othis.

The analysis maps the owning domain p′1 to an ODomain D. It looks up in D each

OObject Ot of type Ct, where Ct is a subtype of C. It then creates multiple OEdges,

where each edge has as its origin the OObject corresponding to the current object and

as its destination each OObject Ot in D.

Extracting an OOG for a system is a two-step process. Developers add annotations

that express their design intent. Then they use a static analysis that extracts the

abstract runtime structure represented by its OOG from the annotated code. The

details of the steps are discussed below.

Add annotations. To extract an OOG that is hierarchical and that conveys design

intent, we assign each object to a domain. The developers understand the structure
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of the system and decide the top-level architectural tiers that are also the top-level

domains in the OOG. Each object is assigned to a single domain that does not change

at runtime. The developer assigns a domain to an object by annotating each of its

references. The annotations define two kinds of object hierarchies. Public domain

provides logical containment by making an object part of another object. Private

domain provides strict encapsulation by making an object owned by its parent object.

The developers iterate the process until all types in the system are annotated.

Run a static analysis. A static analysis extracts the abstract runtime structure

from the annotated code. The developers choose a root class as the starting point.

The analysis maps the formal domain parameters to the actual domains to which they

are bound. The OOG is both abstract and sound. It is abstract in the sense that a

canonical abstract object may correspond to many objects at runtime and sound in

the sense that the abstract runtime structure considers all possible runtime objects

and edges. The OOG is hierarchical where an abstract object can have one or more

nested domains that contain other abstract objects. The abstract objects that are

architecturally significant are at the top of the hierarchy and the ones that represent

data structures or other implementation details are hidden in the lower levels of the

hierarchy.

To decide if it is worthwhile extracting the OOG for a system and be able to

understand if an OOG may be useful for program comprehension or code modification

tasks, it is instructive to measure how much the OOG, derived from the usage of

objects, differs from the code structure derived from syntactic declarations in the

Abstract Syntax Tree (AST) of the program, using the DiffMetrics that we discuss

in the next chapter.
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Chapter 3: DiffMetrics

We illustrate the DiffMetrics with examples. We define the DiffMetrics more

formally and analyze the DiffMetrics quantitatively.

3.1 DiffMetrics

The DiffMetrics relate one or more code elements in the code structure to one

or more abstract runtime elements (OObjects and OEdges) in the OGraph. They are

grouped into several categories. The DiffMetrics that relate the points-to edges and

OObjects to elements in the AST are discussed in a previous work [2]. However, the

DiffMetrics that relate the dataflow edges to elements in the AST are discussed here.

3.1.1 Category: One-To-Many

This category measures how often one code element maps to many abstract run-

time elements. A type in the system may have many instances at runtime.

I. Which-A-in-Which-B (WAWB) measures how frequently different OObjects of

the same type are assigned to different parent OObjects of different types in the

OGraph based on the roles the objects play.

We define other DiffMetrics that measure how often one expression e.g., method

invocation, field read, or field write in the code may map to many abstract runtime

dataflow edges in the OGraph. Such DiffMetrics are grouped into a subcategory of

One-To-Many Category.

Subcategory: DFMetrics

I. One Method Invocation Many Edges – Receiver Type (1MInE RecType) mea-

sures how many OEdges in the OGraph are due to the same method invocation
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in the code such that the types of the destination OObjects of the OEdges are

subtype compatible with the receiver type of the invocation.

II. One Method Invocation Many Edges – Argument Type (1MInE ArgType) mea-

sures how many edges in the OGraph are due to the same method invocation

in the code such that the types of the flow OObjects between the source and

destination OObjects are subtype compatible with the actual argument types of

the invocation.

III. One Method Invocation Many Edges – Return Type (1MInE RetType) measures

how many edges in the OGraph are due to the same method invocation in the

code such that the types of the flow OObjects between the source and destination

OObjects are subtype compatible with the return type of the corresponding

method declaration.

IV. One Field Read Many Edges (1FRnE) measures how many edges in the OGraph

are due to the same field read expression in the code such that the types of the

source OObjects are subtype compatible with the receiver type of the expression.

V. One Field Write Many Edges (1FWnE) measures how many edges in the

OGraph are due to the same field write such that the types of the destina-

tion OObjects of the edges are subtype compatible with the receiver type of the

expression.

3.1.2 Category: Many-To-One

This category measures how many code elements map to one abstract runtime

element. When the code and the abstract runtime structure are very closely aligned,

distinct code elements correspond to distinct runtime elements. However, when the

two structures are different, different types in the program may correspond to the

same runtime elements.
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I. Types Merged by Object (TMO) measures the number of distinct types, exclud-

ing interfaces, that are merged by an OObject in the OGraph.

3.1.3 Category: MismatchedLocation

Each OObject assigned to a domain appears where that domain is declared in the

OGraph. For example, an object of type A that is assigned to a domain D that may be

declared in the object of type B, will appear in the hierarchy of the parent object (B),

inside the domain D in the OGraph. However, in the code, the type B may not directly

create an object of type A. The OObject is mapped to a domain of a parent OObject

after the analysis maps formal domain parameters to the actual domains to which

they are bound to. This category of DiffMetrics measures how often the location of

an OObject appears in the hierarchy of another object that does not directly create

this object in the code.

I. Pulled Objects (PO) measures the percentage of OObjects assigned to domains

of parent OObjects that may not directly create the object compared to all

OObjects in the OGraph.

3.1.4 Category: Precision

This category measures the precision of the abstract runtime structure compared

to the code structure. As the OGraph is extracted by an analysis that uses abstract

interpretation, it resolves some information compared to a visitor that traverses the

AST of a system. If the abstract runtime structure contains significantly more preci-

sion than the code structure, then the OGraph may help in program comprehension.

I. Points-To Edge Precision (PTEP) measures how precisely the OGraph resolves

the possible types of all the objects that a field may reference, compared to all

the possible subtypes of the field’s type.
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{Oi = 〈Ai<Di>〉, Oj = 〈Aj<Dj>〉}

∃OBi
∈ parentObj(Oi) and ∃OBj

∈ parentObj(Oj)

where Ai = Aj and Bi 6= Bj

Figure 3.1: Formal definition of WAWB.

We derive another DiffMetrics that generalizes the precision based on abstract

interpretation to other variables and fields that may be the receivers of method

invocations, field reads, field writes, method parameters and method returns.

II. Data-Flow Edge Precision (DFEP) measures how precisely the OGraph resolves

the possible types of all the objects that such a field or variable may reference,

compared to all possible subtypes of the field’s or variable’s type.

3.2 Formalization of DiffMetrics

The DiffMetrics under each category are discussed more formally here. The for-

malization uses the Featherweight Domain Java (FDJ) syntax. The details of the

syntax are discussed in [3]. We illustrate the DiffMetrics using a subject system

MiniDraw (MD).

3.2.1 DiffMetrics in One-To-Many Category

WAWB1collects the unordered pairs of OObjects that satisfy the condition in Fig-

ure 3.1.

To discuss DiffMetrics that relate a method invocation to many abstract dataflow

edges, we first establish that one method invocation (MI) may be associated with N

different dataflow import or export edges in the OGraph.

1The definition of WAWB is included here for completeness. It includes contributions by co-
authors [2].
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One Method Invocation and N edges. The OGraph may have many export

dataflow edges from the OObject of the enclosing type of the expression to the OOb-

jects of the receiver or subtypes of the receiver type that are in reachable domains

after the formal domain parameters are bound to the actual domains propagating

OObjects of the argument types or subtypes of argument types between the abstract

objects. Similarly, the OGraph may have many import edges when the reference OOb-

jects propagating between the abstract objects may be subtypes of the return type of

the corresponding method declaration that are in reachable domains after the formal

domain parameters are bound to the actual domains.

Formally, the OGraph has N import or export dataflow edges (Figure 3.2). The

edges trace to the same method invocation (1MI) in the code. The method is invoked

in class C through the receiver of type Crec. This indicates that the method may

be declared in Crec or in a type that may be subtype compatible with Crec. The

invocation has sequence of arguments and return an OObject of type Cret or a subtype

of Cret.

Once we have established that one method invocation in the code may re-

late to many abstract dataflow edges in the OGraph, we discuss that DiffMetrics,

1MInE RecType, 1MInE ArgType and 1MInE RetType, that count number of edges

due to the same method invocation in the code satisfying different conditions.

1MInE RecType collects the sets of OEdges such that the type of the destination

OObjects are subtypes of the receiver of a method invocation (Figure 3.4).

For example, the method invocation figure.addFigChangeListener(this) (Fig-

ure 3.3) is associated with two distinct dataflow export edges E1 and E2 such that the

destination OObjects of types BDrawing and BFigure are subtype compatible with

the receiver type Figure in the OGraph. The OObjects are in domain MODEL and the

owning domain M of Figure maps to MODEL.

1MInE ArgType collects the sets of OEdges such that the type of the flow OObjects



16

Ei = 〈Osrci, Odsti, Oflowi, EXP |IMP 〉// 1. Edge 1

Ej = 〈Osrcj, Odstj , Oflowj, EXP |IMP 〉// 2. Edge 2

s.t

Ei 6= Ej

Edges due to the same method invocation

x = r.m(y) ∈ traceToCode(Ei) ∩ traceToCode(Ej)

Receiver of the method invocation

r : Trec, Trec = Crec<prec>

Variable or a field

x : Tx, Tx = Cx<px>

Actual arguments of the method invocation

y : Targ, Targ = Carg<parg>

The method m is declared in Cdeclr

mbody(m,Cdeclr<pdeclr>) = (arg : T , ret)

Return type the method

ret : Tret, Tret = Cret<pret>

Receiver may be subtype of type that declares m

Crec <: Cdeclr

x may be subtype of return type

Cx <: Cret

Figure 3.2: 1 method invocation may have N edges in the OGraph.

are subtypes of the argument types of a method invocation (Figure 3.5).

For example, the OGraph has two distinct dataflow edges E3 and E4 propagating

the flow OObjects of types BDrawing and BFigure due to the method invocation

fFigure.remove(figure) (Figure 3.3). The owning domain M of the actual argument

of the invocation maps to the actual domain MODEL and both the flow OObjects are

in the domain MODEL.

1MInE RetType collects the sets of OEdges such that the type of the flow OObjects

are subtypes of the return type of the corresponding method declaration of a method

invocation (Figure 3.6).

For example, the method invocation figure = fFigure.get(index) (Figure 3.3)



17

class BDrawing<OWNER, M, C> implements Figure<OWNER, M, C>{

Figure<M, M, C> figure;

List<OWNED, <Figure><M, M, C>> fFigure;

buildPropMap() {

// Example: 1MInE_RecType

figure.addFigChangeListener(this)

// Edges due to the above method invocation

E1 = <bdrawing, bdrawing, bdrawing, EXP>

E2 = <bdrawing, bfigure, bdrawing, EXP>

}

pieceMoveEvent() {

// Example: IMInE_RetType

int index;

figure = fFigure.get(index);

// Edges due to the above method invocation

E5 = <fFigure, bdrawing, bdrawing, IMP>

E6 = <fFigure, bdrawing, bfigure, IMP>

// Example: IMInE_ArgType

fFigure.remove(figure);

// Edges due to the above method invocation

E3 = <bdrawing, fFigure, bdrawing, EXP>

E4 = <bdrawing, fFigure, bfigure, EXP>

}

}

class BFigure<OWNER, M, C> implements Figure<OWNER, M, C> { ... }

class Breakthrough {

domain MODEL, CTRL;

// Subtypes of Figure in reachable domains

// M maps to MODEL

// C maps to CTRL

BDrawing<MODEL, MODEL, CTRL> bdrawing = ...;

BFigure<MODEL, MODEL, CTRL> bfigure = ...;

}

1MInE RecType: figure.addFigChangeListener(this) = 2
1MInE ArgType: fFigure.remove(Figure) = 2
1MInE RetType: figure = fFigure.get(index) = 2

Figure 3.3: Examples illustrating 1MInE RecType, 1MInE ArgType, 1MInE RetType.

is associated with two distinct import dataflow edges E5 and E6 in the OGraph propa-

gating the flow OObjects of types BDrawing and BFigure that are subtype compatible

with return type.

To discuss the DiffMetrics that relate a field read or field write expression to

many abstract dataflow edges, we first formally indicate that one field read (FR)

and one field write (FW) may be associated with N dataflow import or export edges

respectively in the OGraph.
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{Ei} where (r.m(y)) ∈ traceToCode(Ei)

s.t

r : Trec, Trec = Crec<prec>

Odsti = 〈Areci<Dreci>〉

Destination OObject types and receiver types are subtype compatible

Areci <: Crec | Crec <: Areci

and Areci 6= Crec and flag = EXP

Figure 3.4: Formal definition of 1MInE RecType.

{Ei} where (r.m(y)) ∈ traceToCode(Ei)

s.t

y : Targ, Targ = Carg<parg>

Oflowi
= 〈Aflowi

<Dflowi
>〉

Flow OObject types and argument types are subtype compatible

∀ Carg<parg>

Aflowi
<: Cargk | Cargk <: Aflowi

and Aflowi
6= Cargk and flag = EXP

Figure 3.5: Formal definition of 1MInE ArgType.

{Ei} where (x = r(y)) ∈ traceToCode(Ei)

s.t

x : Tret, Tret = Cret<pret>

Oflowi
= 〈Aflowi

<Dflowi
>〉

Flow OObject types and return types are subtype compatible

Aflowi
<: Cret | Cret <: Aflowi

and Aflowi
6= Cret and flag = IMP

Figure 3.6: Formal definition of 1MInE RetType.

One Field Read and N edges. One field read x = r.f in class C may be associated

with N dataflow import edges in the OGraph from the OObject of receiver or OObjects
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Ei = 〈Osrci, Odsti, Oflowi, IMP 〉

Ej = 〈Osrcj, Odstj, Oflowj, IMP 〉

s.t

Ei 6= Ej

Edges due to the same field read expression

x = r.f ∈ traceToCode(Ei) ∩ traceToCode(Ej)

Receiver of the field read

r : Trec, Trec = Crec<prec>

Variable or field

x : Tx, Tx = Cx<px>

Field type

f : Tf , Tf = Cf<pf>

The field f is declared in Cdeclr

(Tff) ∈ fields(Tdeclr), Tdeclr = Cdeclr<pdeclr>

Receiver may be subtypes with type that declares the field

Crec <: Cfdeclr

x may be subtype of field type

Cx <: Cf

Figure 3.7: 1 field read may have N edges in the OGraph.

of subtypes of the receiver that are in reachable domains after the formal domain

parameters are bound to the actual domains to the OObject of the enclosing type of

the expression.

Formally OGraph has N import dataflow edges that trace to a single field read

expression (1FR) in the code (Figure 3.7). The field is read through the receiver of

type Crec. The field of the type Cf is declared in Crec or in subtypes of receiver type.

Once we have established that one field read in the code may relate to many

abstract dataflow edges in the OGraph, we discuss that DiffMetrics, 1FRnE, that

count number of edges due to the same field read in the code satisfying a specific

conditions.

1FRnE collects the sets of OEdges such that the type of the source OObjects are
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{Ei} where (x = r.f) ∈ traceToCode(Ei)

s.t

r : Trec, Trec = Crec<prec>

Osrci = 〈Areci<Dreci>〉

Source OObject types and receiver types are subtype compatible

Areci <: Crec | Crec <: Areci

and Areci 6= Crec and flag = IMP

Figure 3.8: Formal definition of 1FRnE.

subtypes of the receiver type of a field read expression (Figure 3.8).

For example, the field read x = md.editor in the enclosing type ATool is as-

sociated with four distinct import dataflow edges in the OGraph E1, E2, E3 and E4

(Figure 3.11). As the field is declared and read in ATool, the sources and destinations

of the edges are OObjects of types SelTool, BoardATool, DragTrack and SelTrack

that are subtypes of ATool.

One Field Write and N edges. One field write r.f = x in a class C may be

associated with N dataflow export edges in the OGraph from the OObject of the

enclosing type of the expression to the OObjects of the type of receiver or subtypes of

the receiver type that are in reachable domains after the formal domain parameters

are bound to the actual domains.

The OGraph has N export dataflow edges that trace to the same field write ex-

pression in the code. The receiver of the expression is of type the Crec. The field of

type the Cf associated with the expression may be declared in Crec or types that are

subtype compatible with Crec (Figure 3.9).

Once we have established that one field write in the code may relate to many

abstract dataflow edges in the OGraph, we discuss that DiffMetrics, 1FWnE, that

count number of edges due to the same field write in the code satisfying a specific

conditions.
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Ei = 〈Osrci, Odsti, Oflowi, EXP 〉

Ej = 〈Osrcj , Odstj, Oflowj, EXP 〉

s.t

Ei 6= Ej

Edges due to the same field write expression

r.f = x ∈ traceToCode(Ei) ∩ traceToCode(Ej)

Receiver of the field write

r : Trec, Trec = Crec<prec>

Variable or field

x : Tx, Tx = Cx<px>

Field Type

f : Tf , Tf = Cf<pf>

The field f is declared in Cdeclr

(Tff) ∈ fields(Tdeclr), Tdeclr = Cdeclr<pdeclr>

Receiver may be subtype of type that declares the field

Crec <: Cdeclr

x may be subtype of field type

Cx <: Cf

Figure 3.9: 1 field write may have N edges in the OGraph.

{Ei} where (r.f = x) ∈ traceToCode(Ei)

s.t

r : Trec, Trec = Crec<prec>

Odsti = 〈Areci<Dreci>〉

Destination OObject types and receiver types are subtype compatible

Areci <: Crec | Crec <: Areci

and Areci 6= Crec and flag = EXP

Figure 3.10: Formal definition of 1FwnE.

1FWnE collects the sets of OEdges such that the type of the source OObjects are

subtype of the receiver type of a field write expression (Figure 3.10).

An object of type Figure is written into the field draggedFig in SelTool. The
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abstract class ATool<OWNER, M, C> implements Tool<OWNER, M, C> {

MiniDraw<M, C> md = new MiniDraw();

mouseDown() {

// Example: 1FRnE

x = md.editor;

// Edges due to the above field read expression

E1 = <dragTrack, dragTrack, window, IMP>

E2 = <selTool, selTool, window, IMP>

E3 = <baTool, baTool, window, IMP>

E4 = <selTrack, selTrack, window, IMP>

}

}

class SelTool<OWNER, M, C> extends ATool<OWNER, M, C> {

Figure<M, M, C> draggedFig;

void mouseDown(...){

Drawing<M, C> model = editor().drawing();

// Example: 1FWnE

draggedFig = model.findFigure(...)

// Edges due to the above field write expression

E5 = <dragTrack, dragTrack, figure, EXP>

E6 = <selTool, selTool, figure, EXP>

}

}

class BoardATool<OWNER, M, C> extends ATool<OWNER, M, C> { ... }

class DragTrack<OWNER, M, C> extends ATool<OWNER, M, C> { ... }

class SelTrack<OWNER, M, C> extends ATool<OWNER, M, C> { ... }

class Breakthrough {

// M maps to MODEL

// C maps to CTRL

domain MODEL, CTRL;

// Subtypes of Tool in reachable domains

SelTool<CTRL, MODEL, CTRL> selTool = ...;

BoardATool<CTRL, MODEL, CTRL> baTool = ...;

DragTrack<CTRL, MODEL, CTRL> dragTrack = ...;

SelTrack<CTRL, MODEL, CTRL> selTrack = ...;

// Subtypes of Figure in reachable domains

BDrawing<MODEL, MODEL, CTRL> bdrawing = ...;

BFigure<MODEL, MODEL, CTRL> bfigure = ...;

}

1FRnE: x = editor = 4
1FWnE: draggedFig = model.findFigure(...) = 2

Figure 3.11: Examples illustrating 1FRnE, 1FWnE.

OGraph shows two export edges E5 and E6 from the type that writes the field SelTool

to the type that declares the field, SelTool exporting flow OObjects of types BFigure

and BDrawing that are subtypes of the field type in reachable domains after the formal

domain parameters are bound to the actual domains (Figure 3.11).
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{A′

i} where Ai <: A′

i and Oi = 〈Ai<Di>〉

Figure 3.12: Formal definition of TMO.

O = 〈A<D>〉, OB = 〈B<DB>〉, OB ∈ parentObj(O)

where C ∈ declaringTypes(O) and B 6= C

new A<df , ...>(...) ∈ traceToCode(O), where df ∈ params(C)

(OX , df ) 7→ D1 and (OB , d) 7→ D1, where d ∈ domains(B)

Figure 3.13: Formal definition of PO.

3.2.2 DiffMetrics in Many-To-One Category

TMO2collects OObject O that satisfy the following condition in Figure 3.12.

3.2.3 DiffMetrics in MismatchedLocation Category

PO3computes the percentage of pulled objects compared to all OObjects in the

OGraph (Figure 3.13).

3.2.4 DiffMetrics in Precision Category

PTEP4computes the precision ratio and precision factor for every field associated

with points-to edges in the OGraph (Figure 3.14).

For example, the OGraph shows three points-to edges for the field declaration

fChild of the type Tool in SelectionTool. The analysis only shows the types

DragTrack, SelTrack and NullTool as subtypes of the Tool when a typical type

hierarchy shows all the seven types that implement the type Tool as subtypes.

2The definition of TMO is included here for completeness. It includes contributions by co-
authors [2].

3The definition of PO is included here for completeness. It includes contributions by co-
authors [2].

4The definition of PTEP is included here for completeness. It includes contributions by co-
authors [2].
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Ddst = mapFtoA(OX , p) // map domain in the code to ODomain

precisionRatio(C<p> f) =
|OOGPossibleSubTypes(C,Ddst)|

|AllPossibleSubClasses(C)|

PTEP F (C<p> f) = 1− precisionRatio(C<p> f)

Figure 3.14: Formal definition of PTEP.

Dsrc = mapFtoA(Osrc, ps) // map domain in the code to ODomain

Ddst = mapFtoA(Odst, pd) // map domain in the code to ODomain

Dflw = mapFtoA(Oflw, pf ) // map domain in the code to ODomain

precisionRatio(C<p> v) =
|OOGPossibleSubTypes(C,D)|

|AllPossibleSubClasses(C)|

DFEP F (C<p> v) = 1− precisionRatio(C<p> v)

where

p ::= ps | pd | pf

D ::= Dsrc | Ddst | Dflw

Figure 3.15: Formal definition of DFEP.

DFEP computes precision ratio and precision factor for every variable that may be

a reciever of a method invocation or field read or field write, actual arguments of a

method invocation that is associated with dataflow edges in the OGraph (Figure 3.15).

For example, a typical type hierarchy shows all possible subtypes of Tool but

OGraph shows only three subtypes of Tool: DragTrack, NullTool, SelTrack for the

return type of Tool of the method tracker() in SelTool (Figure 3.16).

3.3 Quantitative Analysis of DiffMetrics

We quantitatively analyze the DiffMetrics on on eight systems (training set sys-

tems) we previously annotated totalling 100 KLOC. We identify the data points of

the DiffMetrics that are above a threshold, which we set to be the 75th percentile,

as the outliers. The analysis identifies the outlier data points in the detailed tabular

output files with a special symbol, so we can manually inspect them. The analysis
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Inheritance Type Hierarchy

+- Object

+-Tool

+-ATool

+-BoardATool

+-DragTrack

+-SelTrack

+-SelTool

+-NullTool

Annotated code fragment

class SelTool<OWNER, M, C>

extends ATool<OWNER, M, C> {

domain TRACK;

// points-to edge

Tool<TRACK, M, C> fChild;

Tool<TRACK, M, C> tool;

void mouseDown(...){

tool = new NullTool();

// dataflow edge

tool = tracker();

}

Tool<TRACK, M, C> tracker() {

SelTrack<TRACK, M, C> selTrack = ...;

DragTrack<TRACK, M, C> dragTrack = ...;

}

}

class NullTool<OWNER, M, C> extends Tool<OWNER, M, C> {

...

}

class DragTrack<OWNER, M, C> extends ATool<OWNER, M, C> {

...

}

class SelTrack<OWNER, M, C> extends ATool<OWNER, M, C> {

...

}

PTEP F = 1− 3

7
= 0.57

DFEP F = 1− 3

7
= 0.57

Figure 3.16: Examples illustrating PTEP, DFEP.

also computes the maximum, average and other descriptive statistics on the DiffMet-

rics. The analysis also generates short output files that we load into a statistical

analysis package, R. We then wrote scripts to compute p-values and other statistics

and generate the output tables (Figure 3.17).
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DiffMetrics

Detailed tabular

output

Outliers

> Threshold

1
2

3

Short tabular

output

Figure 3.17: Quantitative Analysis.
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Chapter 4: Approach Overview

Adding annotations to a system to extract the OGraph from the annotated code

can be time consuming. Moreover, the DiffMetris may indicate that the abstract

runtime structure is not be significantly different from the code structure. In such a

case, the developers may not benefit from the OGraph during program comprehension

or code modification tasks to justify the time spent adding annotations. We discuss

a principled approach to define a proxy that identifies systems for which the abstract

runtime structure is different from the corresponding code structure.

4.1 A Principled Approach

As a first step, we compute the DiffMetrics on set of eight systems that were

previously annotated. These eight systems constitute the training set We use the

DiffMetrics computed on the training set to build a model to predict characteristics

that effect the DiffMetrics based on other code metrics and code patterns that are

determined by the proxy. Then, we run the proxy on a system that is not part of

the training set to predict if the abstract runtime structure is significantly different

from the code structure. The proxy has two phases: Model building and Prediction.

As the proxy does not need the developers to add annotations to the system, it is

lightweight.

Model Building. We identify code patterns that may be associated with the out-

liers of the DiffMetrics. Then we identify other metrics that can be computed from

the code (code metrics) which correlate with the DiffMetrics. Then we build a model

that indicates what code patterns may lead to statistically significant values of the

DiffMetrics, also what code metrics positively correlate with some DiffMetrics. The

proxy consists of a visitor that detects the code patterns and simple tools that com-

pute code metrics. The proxy is used on any system.
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Table 4.1: Research Hypotheses.

H1 Code patterns as predictors

H2 Code metrics as predictors

Prediction. We run the visitor to detect the code patterns and compute code metrics

on a system for which we want to extract the abstract runtime structure. The number

of each identified code patterns and the values of the code metrics predicts if the

abstract runtime structure of this system may be significantly different from the code

structure. The proxy may indicate that extracting the abstract runtime structure

may not be worthwhile. But, running the proxy is less manual effort compared to

adding annotations to the code.

4.2 Research Hypotheses

We derive two research hypotheses H1 and H2 (Table 4.1) that the proxy tests to

predict if the abstract runtime structure of a system is significantly different from the

code structure.

4.2.1 Testing H1

As a first step (testing H1), we run visitors on the AST and scan for code patterns.

The visitors are called the No-Annotation Visitors (Figure 4.1). The No-Annotation

visitors reuse code patterns that are previously identified based on our analysis of the

DiffMetrics and their outliers. We initially picked MD to examine the outliers of all

the DiffMetrics. We chose MD since it is small in size (1.5 KLOC), yet it uses many

object-oriented concepts. Moreover, the system has extensive documentation (a text-

book), that explains various design patterns and frameworks that are designed into

the system. We manually traced the OObjects and OEdges associated with the out-

liers to their corresponding code elements in the system. We identified code patterns

such as containers, inheritance. The code patterns may also be based on the system
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Figure 4.1: No-Annotation Visitors.

Figure 4.2: Test H1 based on the Classification.

specific types of fields or variables, or Java library types of the associated OObjects.

We implement a model that extracts all the system specific framework types and the

Java library types. By manual inspection of the code, we collect data types such as

Rectangle, Points etc. Every system has a file metrics map.xml. A small portion of

the file for MD is shown in Figure 4.3. The code patterns are based on the predefined

list of framework types, library types and data types from the metrics map.xml. The

identified patterns from the inspection of MD are grouped into different categories

(Table 4.2). To test H1, we desinged the No-Annotation visitors. The visitors use the

same code patterns to classify code elements in the system that has no annotations

added to the code. The number of code elements in each classification supports or

does not support H1 (Figure 4.2).

4.2.2 Testing H2

As a second step (testing H2), we compute some code metrics that measure

abstractness and depth of inheritance, among others. Computing such metrics on

medium or large-scale systems is possible due to the availability of many open-source

and commercial tools. We used an Eclipse plugin Metrics1. However, this tool does

1http://metrics.sourceforge.net/
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<?xml version="1.0" encoding="utf-8"?>

<model id="0">

<dataTypes id="33">

<string id="34">java.awt.Point</string>

<string id="35">java.sql.Timestamp</string>

<string id="36">java.util.Date</string>

<string id="37">java.awt.Dimension</string>

<string id="38">java.awt.Rectangle</string>

...

</dataTypes>

<appFrameworkTypes id="39">

<packageType id="40" packageName="md.frk" typeName="md.frk.Figure"/>

<packageType id="41" packageName="md.std" typeName="md.std.StandardDrawing"/>

...

</appFrameworkTypes>

</model>

Figure 4.3: Small portion of metrics map from MD.

System
Metrics or 

STAN

Runs on
Code Metrics

Computes
System

Metrics or 

STAN

Runs on
Code Metrics

Computes

Figure 4.4: Compute Code Metrics.

Figure 4.5: Test H2 based on the range of the Code Metrics.

not compute some of the code code metrics like coupling between classes and access

to foreign data that use links between classes to define the detailed architecture of

the system. So, we used another tool, Structure Analysis for Java (STAN )2 that

computes another set of code metrics. Both the tools generate files with the com-

puted numbers, average measures for all the packages and the standard deviation for

the metrics. From the computed metrics, we pick a subset of them (Figure 4.4) that

correlates with the DiffMetrics. The range of the subset either support or not support

H2 (Figure 4.5).

2http://stan4j.com/sample-report.html
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Table 4.2: Code Patterns identified from MD.

Application Specific Java Library Predefined List

Code Container of Field/ Variable of Field/ Variable of
Patterns General Type Java Library Type Framework Type

Container of Container of Field/ Variable of
Application Type Java Library Type Data Type

Field/ Variable of Java Exception
General Type

Custom Exception Inheritance

Inheritance

When both steps match the ranges and the classifications that we derived from our

previous analysis, this may be a good indicator that the abstract runtime structure

may be different from the code structure. In that case, one may consider adding

annotations to this system and extracting the OGraph in order to use that for program

comprehension or code modification tasks. In the next two chapters, we discuss the

No-Annotation visitors and the correlations between code metrics and the DiffMetrics

in detail.



32

Chapter 5: Code Patterns as Predictors

We discuss the code patterns, the classification of the outliers of the DiffMetrics

and introduce our training set systems. Next, we discuss the first step of the proposed

proxy, the No-Annotation visitors and how the visitors may be used to test H1.

Training set Systems. Over a period of time, we have collected systems ranging

in size from 1 to 18 KLOC. They are large enough to be interesting but yet small

enough to be able to analyze them in a limited time. We have the design information

for some of the systems that may be used to express design intent. They are from a

wide variety of application domains. Some are desktop applications for board games,

others process domain-specific data. Yet, others are client-server applications and one

is an encrypt-decrypt application. Also, the systems use design patterns, inheritance,

composition, interface implementation, type parameterizations that are common in

object-oriented design. Some measures from the code structure of the systems are

shown (Table 5.1).

Table 5.1: List of Training set Systems: Number of Types, Number of GT are the number of all
types, abstract or Interfaces.

Abbr. Names KLOC Number of Types Number of GT

MD MiniDraw 1.4 68 21

CDB CrytoDB 2.3 47 9

AFS Apache FtpServer 14.4 173 61

DL DrawLets 8.8 165 54

PX Pathway-Express 36 300 62

JHD JHotDraw 18.0 306 65

HC HillClimber 15.6 171 35

APD Aphyds 8.2 70 15

Total 104.7
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Training 

Set

Systems

Add 

annotations
Annotated 

system

sys: Main

c: C

VIEW

OGraph

Run static

analysis

DiffMetrics

c1: C1

DATA

Compute

Outliers

Visitor

< Threshold

Visits

Figure 5.1: Visitors visit outliers of the DiffMetrics.

5.1 Visitors and Classifications of DiffMetrics

For all the training set systems, we extracted the OGraph from the annotated

code. Each of the defined DiffMetrics is associated with a visitor that visits the

OObjects and OEdges of outliers of DiffMetrics (Figure 5.1). As an example, the

DiffMetrics 1MInE RecType, overrides the method visitOutliers. This method

invokes visit() and this method visits OEdges that are outliers collected in the set

HashSet<EdgeInfo> (Figure 5.2). Each visited outlier is then classified into one of the

predefined classifications. Most of the DiffMetrics in MismatchedLocation Category

computed on MD did not have any outliers. Manual inspection of these DiffMetrics

on the other systems also indicated that there were few or no outliers. We did not

investigate such DiffMetrics in this experiment.

5.1.1 Classifiers of Outliers

Most of the previously identified code patterns are the classifications. However,

for some code patterns like Inheritance, we define slightly varying classifications to

classify the outliers associated with the DiffMetrics grouped under One-To-Many Cat-

egory and Many-To-One Category. The OObjects and OEdges collected from the visi-

tors are classified into one of the classifications. Each of the DiffMetrics have slightly
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Table 5.2: WABW Outlier.

Outlier Size Type Triplet 1 Triplet 2

X 3 List<A1>

<List<A1>, DATA1, C1> <List<A1>, DATA2, C3>

<List<A1>, DATA2, C3> <List<A1>, DATA2, C4>

<List<A1>, DATA1, C1> <List<A1>, DATA2, C4>

different classifications. So, we have one file for each of the DiffMetrics that defines

the logic for the classification. As an example, the classification of the visited OEdges

associated with the outliers of 1MInE RecType are in the type Q 1MInE RecType

(Figure 5.2). We discuss the classifications of outliers of the DiffMetrics grouped by

their category.

Classification of Outliers in One-To-Many Category

I. Container of general type (CGT). An OGraph can express different design intent

by mapping the OObjects of the same type in multiple domains to distinguish

the context in which the containers of the same type are used in the system. The

outliers of WAWB are usually classified into this classification. WAWBmeasures

the number of instances of List<A1> that are in different parent OObjects and

the output is presented in Table 5.2 for the code in Figure 5.3. ’X’ in the outlier

column indicates that the instance of List<A1> associated with corresponding

triplet is an outlier. Our visitors visit the outlier and classifies listener of type

List<A1> as CGT (Figure 5.3). The hierarchy of OObjects from the extracted

OGraph is in Figure 5.4.

II. Inheritance. DiffMetrics of the DFMetrics Subcategory, that relate dataflow

edges in the OGraph to a method invocation, or field read, or field write ex-

pression, have outliers when the receiver type of such expressions, or the type

of the formal parameters of the method declaration or the return type of the

method declaration are part of some inheritance hierarchy. We define slightly

varying classifications that are associated with the code pattern inheritance for
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such DiffMetrics.

(a) Inheritance Type 1 (DFIT1):

The expression and the associated OEdges are classified into this classifica-

tion when the type of the destination OObjects of the OEdges are subtypes

of receiver type or enclosing type of the corresponding expression in reach-

able domains after the formal domain parameters are bound to the actual

domains. Also, the type of the source OObjects of the OEdges have only

one subtype or the type of the OObjects are of subtypes that are not in

reachable domains after the formal domain parameters are bound to the

actual domains.

The expression a1.m1(str) has two OEdges (E1 and E2) in the OGraph

from the OObject of type C1, a subtype of the enclosing type of the method

invocation to different destination OObjects that are subtypes of the re-

ceiver after the formal domain parameter of A1 is bound to the actual

domain DATA1 in main (Figure 5.5). However, there is no edge from

OObject of type C1 to OObject of one of the subtypes of A1 C5. The anal-

ysis that extracts the OGraph picks only the OObjects that are subtypes

of A1 and in domain DATA1 as the formal domain parameter D1 maps

to the actual domain DATA1. The output of the DiffMetrics is illustrated

(Table 5.3). As the destination OObjects are subtypes of receiver type,

most of the outliers of 1MInE RecType is classified into this classification.

(b) Inheritance Type 2 (DFIT2):

The expression and the associated OEdges are classified into this classifi-

cation when the type of the source OObjects of the OEdges are subtypes of

receiver type or enclosing type of the corresponding expression in reach-

able domains after the formal domain parameters are bound to the actual
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domains. Also, the type of destination OObjects of the OEdges have only

one subtype or the type of the OObjects are of subtypes that are not in

reachable domains after the formal domain parameters are bound to the

actual domains.

The expression a2.m2(str) and the associated OEdges is classified into

this classification. The OGraph has two edges (E3 and E4) from C3 and

C4 that are subtypes of the enclosing type of the expression to the same

destination OObject of type C1 (Figure 5.5).

(c) Inheritance Type 3 (DFIT3):

The expression and the associated OEdges are classified into this classifica-

tion when the type of source OObjects and the destination OObjects of the

OEdges are subtypes of receiver type or enclosing type of the corresponding

expression in reachable domains after the formal domain parameters are

bound to the actual domains.

The method invocation a1.m1(str) in the enclosing type A3 and the asso-

ciated OEdges is classified into this category. The OGraph has four edges

(E5, E6, E7 and E8) from OObjects of types C5 and C6 that are subtypes of

A3 in reachable domains after the formal domain parameter D2 is mapped

to the actual domain DATA2 in main to OObjects of types C3 and C4 that

are subtypes of A1 in reachable domains after the formal domain parameter

D1 is mapped to the actual domain DATA1 (Figure 5.5).

(d) Inheritance Type 4 (DFIT4):

The expression and the associated OEdges are classified into this classifica-

tion when the type of flow OObjects of the OEdges are subtypes of actual

argument or return type of a method invocation in reachable domains af-

ter the formal domain parameters are bound to the actual domains. The

source OObjects and the destination OObjects of the OEdges are from the
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Table 5.3: 1MInE RecType Outlier.

Outlier Expression Size Type

X 2 a1.m1(str)
c1 -> c3 [Export str]

c1 -> c3 [Export str]

same OObjects of the same types.

(e) Inheritance Type 5 (DFIT5)):

The classification is similar to DFIT4 with a slight change. The flow

OObjects associated with an expression are mapped to different domains

in the OGraph.

III. Exception types. The OObjects of an exception type may be mapped to different

domains in the OGraph since the same exceptions may be thrown in different

contexts.

Classification of Outliers in Many-To-One Category

I. Framework types. Many concrete types that refer to a predefined list of frame-

work type in the system may have object creation expressions. However, many

of these object creation expressions may map to a single OObject in the OGraph.

This indicates that the OObject of the framework type is shared amongst all

types that refer to it.

II. Inheritance. When a type extends other types, then OObjects its super types

are merged by the OObject of the concrete type in the OGraph. We define clas-

sification that distinguish OObjects that are of type of application, framework,

Java Library or Exception. The outliers of TMO are classified into any of the

below classifications.

(a) Type <: Type: When a concrete type A extends another concrete type,

then the OObjects of subtypes of A are merged by the OObject of type A in
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the OGraph. Most of the outliers of the training set systems are classified

into this classification.

(b) Type <: Framework Type (Type <: FKT): When a concrete type A extends

a framework type in a predefined list, then the OObjects of subtypes of A

are merged by the OObject of type A in the OGraph.

(c) Type <: Java Library Type (Type <: Java Type): When a concrete type A

extends a Java library type, then the OObjects of subtypes of A are merged

by the OObject of type A in the OGraph.

(d) Framework Type <: Java Library Type (FKT <: Java Type): When a

framework type F in a predefined list extends a Java library type, then

the OObjects of subtypes of F are merged by the OObject of type F in the

OGraph.

Classification of Outliers in Precision Category

I. Field/Variable of a general type. The type of the field or variable for which the

OGraph has more precise information compared with the type hierarchy that

uses the AST, is usually a general type. A system may have many subtypes

for a general type, however the OGraph shows points-to and dataflow edges to

only a subset of these subtypes that are in reachable domains after the formal

domain parameters are bound to the actual domains. The argument of the

method invocation sel.add(figure) of the type Figure has seven subtypes.

But the analysis traces dataflow edges associated with the OObject of type

Figure (Figure 5.6) and shows only two concrete types that are in reachable

domains after the formal domain parameters are bound to the actual domains

(Table 5.4).
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Table 5.4: DFEP Outlier.

Outlier Expression Type DFType No. All Subtypes No. Subset Subtypes Precision

X sel.add(figure) Figure Argument 7 2 0.71

5.2 No-Annotation Visitors

The above experiment indicated that code patterns, especially containers of gen-

eral types, containers of types, fields of general types and inheritance among others

influence the DiffMetrics and implicitly the runtime structure too. As code patterns

do not depend on the OGraph, both the code patterns and classifications can be

identified from the code of a new system with no annotations. We then used the

classifications of the new system to predict if the DiffMetrics would indicate runtime

structure may be significantly different from the code structure, the first step in our

approach. We generalized the visitors and the classifiers of the outliers to visit and

classify every field and variable of this system (Figure 5.8). We discuss the visitors

and the classifiers in detail (Figure 5.7).

Visitors of Field/Variables. The visitors in Figure 5.1 that visit the outliers of

the DiffMetrics traverse only the nodes and edges in the OGraph. As we do not have

an extracted OGraph for the new system, we need to visit all the fields and variables

that are declared. Hence, we generalize the visitors to traverse the entire AST of the

system. The generalized visitors scan fields and variables from various expressions in

the AST such as field declarations, method invocations, field reads and field writes.

Classifiers of Field/Variables. The visited fields and variables are classified into

one of the previously identified code patterns. The classifications based on the type

of the field or the variable are reused. However, the classifications that is based on

the code pattern inheritance are very specific to OObjects and OEdges in the OGraph.

So we define two classifications that work for a new system. The code patterns and

classification are presented (Table 4.2). We illustrate the generalized code patterns

and the classification (Figure 5.9).
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Table 5.5: Code Patterns and Classification.

Code Patterns Classifications

Containers of Types
Framework Types

Inheritance Inheritance Type 1
Inheritance Type 2

General Types Fields
Other Classification
Unclassified

1. Inheritance Type 1 (IT1): When the visited field or variable is of a concrete

type that has other concrete subtypes, then such a field or variable is classified

into this category.

2. Inheritance Type 2 (IT2): When a field or variable is of a general type and

has other subtypes (concrete or general types), then such a field or variable is

classified into this category.

5.3 Using H1 as Predictor

After the classification of the fields and variables of the new system, we analyze the

classification summary to test H1. We compare the percentage of the total classified

fields and variables with the total numbers that are not classified. If more than the

defined threshold (50%) of the total fields and variables are classified, we inspect the

number of fields and variables in each classification.

When a field or variable is classified as CGT or CT, the runtime structure may

have many different instances of the same container types playing different roles at

runtime. Distinguishing containers of the same type playing different roles may help

the developers during program comprehension and code modification tasks that re-

quire understanding or modifying container elements that represent a specific role in

the system. When a field or variable is classified as FGT, the runtime structure may

have multiple instances of different concrete types of this general type that may play
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different roles at runtime. Runtime structure of the system may have more precise in-

formation on the subtypes of those fields or variables compared to the type hierarchy

that uses AST. When a field or variable is classified as IT1 and IT2, runtime structure

may indicate that different concrete types of the same inheritance hierarchy may play

different roles at runtime. We map the code from MD the participants struggled or ex-

plored often from transcripts collected in an experiment conducted [4] to the outliers

from the DiffMetrics. The analysis indicated that the outliers of the DiffMetrics that

are fields or variables of a general type, trace to the portion of the code that is difficult

to comprehend. The details of the analysis are in Appendix A: Transcript Analysis.

When a field or variable is classified under Composition, IT1 and IT2, this also in-

dicates that the system uses object-oriented concepts, e.g., inheritance, composition,

and abstractness. All the above classifications are indicators that the abstract run-

time structure of the system may be significantly different from its code structure.

However, if the No-Annotation Visitors classify the majority of fields or variables

into Field/Variable of a Library type or Field/Variable of a Data type, then the code

structure may be adequate for most program comprehension tasks.

If the No-Annotation Visitors classify the majority of fields and variables as Con-

tainer of general type or Container of type, Field/Variable of a general type, Inheri-

tance Type 1, Inheritance Type 2, or Composition, we then compute the code metrics

of the system.
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abstract EdgeMetricBase {

void visitOutliers(Writer writer, Set<EdgeInfo> outliers) {

}

}

class HowManyEdgesToMethodInvok_RecType extends EdgeMetricBase {

@Override

void visitOutliers(Writer writer, Set<EdgeInfo> outliers) {

// The visited OEdges are classified into DFIT1, DFTI2 etc

Q_1MInE_RecType qVisit = new Q_1MInE_RecType(writer, outliers, shortName);

qVisit.visit();

}

}

abstract class Q_Base{

abstract void visit();

}

class Q_1MInE_RecType extends Q_Base {

/* DFIT1: Outliers when destination OObjects are many

* DFIT2: Outliers when source OObjects are many

* DFIT3: Outliers when both source OObjects and destination OObjects are many

* DFIT4: Outliers when flow OObjects are many */

int numDFIT1 = 0;

int numDFIT2 = 0;

@Override

void visit() {

Set<Type> sourceOObjects = new HashSet<Type>();

Set<Type> destinationOObjects = new HashSet<Type>();

// Traversing through the outliers

for (EdgeInfo edgeInfo : outliers) {

// Outliers are instance of DiffMetrics 1MInE_RecType

if (edgeInfo instanceof HowManyEdges_MIRecType) {

HowManyEdges_MIRecType MI_edgeInfo = (HowManyEdges_MIRecType) edgeInfo;

// Get set of OEdges

Set<IElement> setEdges = MI_edgeInfo.getElems();

for (IElement eachEdge : setEdges) {

// Get source OObject and destination OObject types for each OEdge

if (eachEdge instanceof ODFEdge) {

Type sourceType = ((ODFEdge) eachEdge).getOsrc().getC();

Type destType = ((ODFEdge) eachEdge).getOdst().getC();

sourceOObjects.add(sourceType);

destinationOObjects.add(destType);

}

}

// Logic for classification here

// DFIT1

if (sourceOObjects.size() == 1 && destinationOObjects.size() > 1) {

numDFIT1++;

}

// DFIT2

else if (sourceOObjects.size() > 1 && destinationOObjects.size() == 1) {

numDFIT2++;

}

}

}

}

Figure 5.2: Pseudo-code of the Visitors.
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abstract class A1<OWNER> {

}

class C2<OWNER> extends A1<OWNER>{

}

class C1<D1> {

void C1() {

// Container of A1

List<OWNED, <A1><D1>> listener

= new ArrayList<A1>();

// Field of C2

C2<D1> f2 = new C2();

}

}

class C4<D2> {

void C4 {

// Container of A1

List<OWNED, <A1><D2>> listener

= new ArrayList<A1>();

}

}

class C3<D2> {

void C3() {

// Container of A1

List<OWNED, <A1><D2>> listener

= new ArrayList<A1>();

}

}

class main {

domain DATA1, DATA2;

// D1 maps to DATA1

// D2 maps to DATA2

C1<DATA1> c1 = ...;

C3<DATA2> c3 = ...;

C4<DATA2> c4 = ...;

}

listener: ArrayList<A1> is classified into CGT
f2: C2 is classified Field/Variable of FKT

Figure 5.3: Classification of OObjects.

+- main:Main

+- DATA1

+- c1:C1

+ OWNED

| +- listener:ArrayList

+- DATA2

+- c3:C3

+ OWNED

| +- listener:ArrayList

+- c4:C4

+ OWNED

| +- listener:ArrayList
Figure 5.4: Hierarchy of OObjects.
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abstract class A1<D1> {

// Method declaration

void m1(String<shared> str) {

}

void method2() {

String str;

// Method invocation

A2<D1> a2;

a2.m2(str)

// Edges

E3 = <c3, c1, str, EXP>

E4 = <c4, c1, str, EXP>

}

}

abstract class A3<D1> {

void method3() {

String str;

A1<D1> a1;

// Method invocation

a1.m1(str)

// Edges

E5 = <c5, c3, str, EXP>

E6 = <c6, c3, str, EXP>

E7 = <c5, c4, str, EXP>

E8 = <c6, c4, str, EXP>

}

}

class main {

domain DATA1, DATA2;

void run() {

//D1 maps DATA1

//D2 maps to DATA2

C1<DATA1, DATA1> c1 = new C1();

C3<DATA1, DATA1> c3 = new C3();

C4<DATA1, DATA1> c4 = new C4();

// Subtype of A1 not in reachable domains

C5<DATA1, DATA2> c5 = new C5();

// Subtype of A3 in reachable domains

C6<DATA1, DATA2> c6 = new C6();

C7<DATA1, DATA2> c7 = new C7();

// Subtype of A3 not in reachable domains

C8<DATA1, DATA1> c8 = new C8();

}

}

abstract class A2<D1> {

// Method declaration

void m2(String<shared> str) {

}

void method1() {

String str;

A1<D1> a1;

// Method invocation

a1.m1(str);

// Edges

E1 = <c1, c3, str, EXP>

E2 = <c1, c4, str, EXP>

}

}

class C1<OWNER, D1> extends A2<D1>{

// Method declaration

void m4(A1<D1> a1) {

}

void method4() {

// Method invocation

c1.m4(a1);

// Edges

E9 = <c1, c1, c3, EXP>

E10 = <c1, c1, c4, EXP>

}

}

class C3<OWNER, D1> extends A1<D1> {

}

class C4<OWNER, D1> extends A1<D1> {

}

class C5<OWNER, D2> extends A1<D1> {

}

class C6<OWNER, D2> extends A3<D1> {

}

class C7<OWNER, D2> extends A3<D1> {

}

class C8<OWNER, D1> extends A3<D1> {

}

a1.m1(str) and E1, E2 are classified into DFIT1
a2.m2(str) and E3, E4 is classified into DFIT2
a1.m1(str) and E5, E6, E7, E8 is classified into DFIT3

Figure 5.5: Classification of OEdges and Expressions DiffMetrics under DFMetrics Subcategory.
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public class StdDrawing<OWNER, M, C> extends CompFigure<OWNER, M, C> {

// Adds a figure to the current selection.

void addToSelection(@Domain("M<M, C>") Figure figure) {

// Method invocation argument

sel.add(figure);

}

}

class Breakthrough {

domain MODEL, CTRL;

// M maps to MODEL

// C maps to CTRL

// Subtypes of Figure in reachable domains

BDrawing<MODEL, MODEL, CTRL> bdrawing = ...;

BFigure<MODEL, MODEL, CTRL> bfigure = ...;

}

Figure 5.6: Classification of fields and variables of DFEP: No. All Subtypes, No. Subset Subtypes
are the number of all subtypes and number of subtypes the OGraph identified for the field or variable.

Figure 5.7: Classification of Fields and Variables from No-Annotation Visitors.
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class NoAnnotatMetrics {

// A private class that visits the AST of the system

private class Visitor extends ASTVisitor {

// Visits the VariableDeclarationFragment node in AST

@Override

boolean visit(VariableDeclarationFragment node) {

return super.visit(node);

}

}

C_AllMetrics extends Q_Base{

TypeInfo typeInfo = TypeInfo.getInstance();

int numCGT = 0;

@Override

public void visit() {

QualUtils utils = QualUtils.getInstance();

for (IVariableBinding eachVarField : variables) {

fieldTypeBinding = eachVarField.getType();

Type fieldType = typeInfo.getType(fieldTypeBinding.getQualifiedName());

if (fieldTypeBinding != null) {

if (utils.isContainerOfGeneralType(fieldTypeBinding.getQualifiedName())) {

numCGT++;

}

else {

unknown++;

}

}

}

}

}

Figure 5.8: Pseudo-code of the No-Annotation Visitor.
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abstract class A1 {

}

class C5 extends A1 {

}

class C1 {

// Field declaration

A1 f1;

//Container of a general type

List<A1> = new ArrayList<A1>;

}

class C2 extends C1 {

}

class C3 extends C1 {

// Field declaration

C2 f2;

}

class C4{

// Field declaration

C1 f;

//Container of a type

List<C1> = new ArrayList<C1>;

}

C1 f is classified as Inheritance type 1 (IT1)
A1 f1 is classified as Inheritance type 2 (IT2)
C2 f2 is classified as Composition
List<A1> is classified as Container of general type (CGT)
List<C1> is classified as Container of type (CT)

Figure 5.9: Illustrating Code Patterns and Classification.
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Chapter 6: Simple Metrics as Predictors

We computed code metrics using the toolMetrics1 on the training set systems and

outputted them in separate files src.code.xml for each the system. The tool STAN 2

did not support exporting the computed metrics on the systems in any useful that

our analysis may use the data, so we manually outputted the data. The figures 6.2

and 6.1 illustrates a portion of the file along with the metrics computed using both

the tools. From the set of metrics in src.code.xml and the output of STAN. We

picked three code metrics that correlates with the DiffMetrics. As the next step, we

correlated the average of the metrics with the average of the DiffMetrics across the

training set systems (Table 6.2). The correlation and the code metrics computed for

a new system is used to test H2.

Figure 6.1: CBO computed using STAN.

6.1 Subset of Code Metrics

Code metrics such as NOC, Lines of Code (LOC), NOV, BLOC and NOV (Fig-

ure 6.2) may not indicate if object-oriented concepts e.g., inheritance are used in

the system. Other code metrics such as PAR (Figure 6.2) are not associated with

an increase or decrease in the number of OObjects and OEdges that affect the Diff-

1http://metrics.sourceforge.net/
2http://stan4j.com/
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Table 6.1: Code Metrics for Training set Systems.

MD CDB AFS DL PX JHD HC APD

DIT 1.96 1.58 1.69 3.66 2.40 2.40 3.16 2.39

RMA 0.34 0.00 0.22 0.16 0.07 0.18 0.10 0.01

CBO 1.83 2.73 4.31 3.20 4.05 4.38 4.63 5.85

Table 6.2: Average of the Code Metrics for Training set Systems.

Code Metrics Average

DIT 2.50

RMA 0.13

CBO 3.70

Metrics as method parameters may be primitive types and do not have OObjects in

the OGraph. Also metrics that measure package information are not very helpful to

determine properties of the DiffMetrics. Other code metrics that compute the code

complexity such as the Cyclomatic complexity (VG) are not relevant to be correlated

with any of the defined DiffMetrics as the analysis of the OGraph does not consider

control flow information.

We pick the following code metrics that measure abstraction, inheritance and

communication between types from the code.

I. Depth of Inheritance Tree (DIT): This metric measures the number of hops

from a type to the topmost level in the class hierarchy. The metric measures

inheritance directly.

II. Abstractness (RMA): This metric measures the number of interfaces or abstract

types over the total number of classes in a package (cumulative of all packages

in the system). The metric measures abstractness.

III. Coupling Between Object classes (CBO): This metric measures the number of

reference types that occur through method calls, method parameters, return

types, thrown exceptions and accessed fields. The metric measures communi-

cation between types.
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6.2 Correlation between DiffMetrics and Code metrics

We implemented R scripts that uses src.code.xml and the detailed output of Diff-

Metrics of all the training set systems to collect the average of code metrics and

DiffMetrics of interest. The scripts outputted the values of the code metrics and the

DiffMetrics into a file named, all metric.csv. As the tool STAN does not output an

XML file, we manually edited all metric.csv and added the computed CBO for thr

training set systems. With metrics (DiffMetrics and code metrics) in one file, we

implemented an R script that computes correlations between the two sets of metrics.

The script correlates the three code metrics with the DiffMetrics using Pearson’s

correlation to measure the linear correlation giving a value between +1 and -1. A

coefficient of 0 indicates no correlation while a correlation of 0–0.1 trivial, 0.1–0.3

minor, 0.3–0.5 moderate, 0.5–0.7 large, 0.7–0.9 near perfect, and 0.9–1 perfect. The

output of the correlation is recorded in correl.xml file. From the output, it was evident

that not all code metrics correlated with all the defined DiffMetrics. We analyzed

the data and discuss the details of correlations between code metrics and DiffMetrics

under each category.

6.2.1 Correlation with DiffMetrics in One-To-Many Cate-

gory

I. DIT with DiffMetrics: Each of the concrete types in different inheritance depth

of the same general type may have many OObjects mapped to different domains

playing different roles at runtime. Thus, as the depth of inheritance hierarchy

increases in a package on average, the number of OObjects of different concrete

types that are mapped to different domains may also increase. The DiffMetrics

grouped into DFMetrics Subcategory measure the effect of inheritance. So, the

code metric DIT correlates positively with the DiffMetrics in this category.
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II. CBO with DiffMetrics: When communication between two types increase as

measured by CBO, the communication between their corresponding OObjects

also increase. Thus, this metric correlates positively with the DiffMetrics

grouped into the DFMetrics Subcategory.

6.2.2 Correlation with DiffMetrics in Many-To-One Cate-

gory

I. DIT and RMA with DiffMetrics: When the inheritance depth of a general

type and the abstractness of a package increase on average, more distinct types

(general or concrete) may be merged by one OObject in the OGraph. So, the code

metrics DIT and RMA correlate positively with DiffMetrics in this category.

The plot of the correlation between DIT and TMO computed on the training

set systems is presented in Figure 6.3. The graph indicates that the two metrics

are correlated linearly and if one increases or decreases, the other metrics also

follows the same trend.

6.2.3 Correlation with DiffMetrics in Precision Category

I. DIT and RMA with DiffMetrics: When the abstractness of a package on average

increase, the OGraph may show more precise subtype information for field or

variable type from the points-to or dataflow edges in the OGraph. Also, when

the depth of inheritance of a system increase, the OGraph shows points-to and

dataflow edges only a subset of subtypes of field or variable type that play the

same role in the same context at runtime. Thus the code metrics DIT and

RMA correlate positively with DiffMetrics in Precision Category. The plot of

the correlation between RMA with PTEP and DFEP on the training set systems

is presented in Figure 6.4. The graph indicates that the three metrics correlate
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Table 6.3: Correlation of Code Metrics with DiffMetrics.

Category DiffMetric Code Metric Correlation
One-To-Many Category WAWB DIT 0.80

DFMetrics

1MInE RecType DIT 0.99
CBO 0.65

1MInE RetType
DIT 0.50
CBO 0.59

1MInE ArgType
DIT 0.44
CBO 0.85

1FRnE
DIT 0.45
CBO 0.46

1FWnE
DIT 0.51
CBO 0.48

Many-To-One Category TMO
DIT 0.69
RMA 0.64

Precision Category
PTEP

DIT 0.70
RMA 0.95

DFEP
DIT 0.51
RMA 0.96

linearly and follow the same trend as the other two metrics.

The correlated coefficient of the code metrics with their corresponding DiffMetrics

across training set systems is presented in Table 6.3. We highlighted the near perfect

and perfect correlated coefficients.

6.3 Using H2 as Predictor

If the average of DIT, RMA and CBO for the new system is in the range with the

average of the code metrics of the training set systems, this may indicate that the

corresponding DiffMetrics for the new system may also follow the same trend (many

outliers or few or no outliers) as the systems in the training set. The Table 6.4 shows

the range of the code metrics and the trend the DiffMetrics that a new system may

follow.

When the DIT is in the range 2.00 – 3.00 for a new system, the runtime structure

may be significantly different from the corresponding code structure and DiffMetrics

grouped into One-To-Many Category measure the difference. Again, if the DIT and
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Table 6.4: Average of Code Metrics and corresponding DiffMetrics trends.

Code Metrics Range of code metrics DiffMetrics may have outliers

DIT 2.00 – 3.00 One-To-Many
Many-To-One

Precision

RMA 0.1 – 0.2 One-To-Many
Precision

CBO 3.00 – 4.00 DFMetrics

CBO are in the range between 2.00 – 3.00 and 3.00 – 4.00, the DiffMetrics grouped

into DFMetrics Subcategory may have many outliers, indicating that the runtime

structure is significantly different. Likewise, when the DIT and RMA fall in the

range between 2.00 – 3.00 and 0.1 – 0.2, then all other DiffMetrics grouped into

Many-To-One Category and Precision Category have many outliers.
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<?xml version="1.0" encoding="utf-8"?>

<Metric id = "NOC" description ="Number of Classes">

<Values per = "packageFragment" total = "32" avg = "6.4" stddev = "3.666" max = "13">

<Value name="md.std" package ="md.std" value ="13"/>

...

</Values>

</Metric>

<Metric id = "DIT" description ="Depth of Inheritance Tree">

<Values per = "type" avg = "1.969" stddev = "1.425" max = "6">

<Value name="MDApp" source ="MDApp.java" package ="md.std" value ="6"/>

...

</Values>

</Metric>

<Metric id = "RMA" description ="Abstractness">

<Values per = "packageFragment" avg = "0.34" stddev = "0.302" max = "0.846">

<Value name="md.framework" package ="md.framework" value ="0.846"/>

...

</Values>

</Metric>

<Metric id = "SIX" description ="Specialization Index">

<Values per = "type" avg = "0.268" stddev = "0.699" max = "3.6">

<Value name="StdBckgrd" source ="StdBckgrd.java" package ="md.std" value ="3.6"/>

...

</Values>

</Metric>

<Metric id = "MLOC" description ="Method Lines of Code">

<Values per = "method" total = "702" avg = "3.637" stddev = "5.067" max = "41">

<Value name="IManager" source ="IManager.java" package ="md.std" value ="41"/>

...

</Values>

</Metric>

<Metric id = "NOP" description ="Number of Packages">

<Value value="5"/>

</Metric>

<Metric id = "NOM" description ="Number of Methods">

<Values per = "type" total = "190" avg = "5.938" stddev = "4.841" max = "26">

<Value name="BFig" source ="BFig.java" package ="md.boardgame" value ="8"/>

...

</Values>

</Metric>

<Metric id = "NOF" description ="Number of Attributes">

<Values per = "type" total = "65" avg = "2.031" stddev = "1.811" max = "6">

<Value name="BDrawing" source ="BDrawing.java" package ="md.boardgame" value ="5"/>

...

</Values>

</Metric>

<Metric id = "PAR" description ="Number of Parameters" max ="5" hint ="Pass an object">

<Values per = "method" avg = "1.197" stddev = "1.049" max = "4">

<Value name="BFigure" source ="BFigure.java" package ="md.boardgame" value ="4"/>

...

</Values>

</Metric>

Figure 6.2: Sample src.code from MD.
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Figure 6.3: TMO and DIT.

Figure 6.4: RMA and PTEP, DFEP.
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Chapter 7: Evaluation Overview

To evaluate the predictions of our approach, we selected systems from different

domains than the ones that were previously analyzed. We initially selected four

random mobile applications of sizes ranging from 4 to 6 KLOC from a repository

of open-source Android applications, F-Droid1. We tested the hypotheses on the

test systems. The results of applying both the hypotheses H1 and H2 on the test

systems is presented in Table 7.1. From the results, the two systems Nectroid and

Blokish negate H1 based on the No-Annotation Visitors. The No-Annotation Visitors

indicated that the two systems do not extensively use object-oriented concepts e.g.,

inheritance and do not make much use of the standard library containers. So for

those systems, the abstract runtime structure may not be significantly different from

the code structure.

Table 7.1: Hypotheses tested on four Test Systems.

System Name Test H1 Test H2

Muspy True True

Nectroid False True

Blokish False True

Ermete SMS True True

For the other two test systems, both H1 and H2 predict that the abstract runtime

structure may differ significantly from the code structure. The cumulative results of

the number of fields and variables declared in each classification for both the systems

are shown in Table 7.2. More than 70% of the fields and variables are classified into

one of the classifications. The average of the three chosen code metrics for both the

systems are shown in Table 7.3.The average of DIT, RMA and CBO matches with

the average of code metrics of the training set. Thus, we picked Muspy and Ermete

1https://f-droid.org/
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Table 7.2: Cumulative Classification count on Muspy and Ermete SMS using No-Annotation
Visitors.

Classification Muspy Ermete SMS

CGT 12 18
CT 24 10
IT1 1 39
IT2 5 2
FGT 49 37

Composition 102 152
Library type 66 90

Others 74 48

Total classified 333 396

Unknown classification 159 167

Table 7.3: Average of Code Metrics from Muspy and Ermete SMS.

Metric Muspy Ermete SMS Range of Code Metrics
from Model Building

DIT 2.4 2.0 2.00 – 3.00
RMA 0.1 0.1 0.1 – 0.2
CBO 3.5 3.2 3.00 – 4.00

Table 7.4: Test Systems Selected for Evaluation.

System Name KLOC All types Description

Muspy 6.2 81 Keeps tracks of musicians
and albums

Ermete SMS 4.6 48 Messaging service for
T-Mobile users

SMS to evaluate the proposed approach. Some of the measures from the code of the

two test systems are presented in Table 7.4.

We analyze the results from No-Annotation Visitors and the computed code met-

rics for both newly chosen test systems. In order to close the loop and conclude

that the predictions from the proxy match with the results from the DiffMetrics, a

graduate student (experimenter) annotated the systems and extracted the OGraphs.

We then computed the DiffMetrics from the OGraphs, and analyzed the results from

DiffMetrics for each system manually. The manual inspection of the outliers from the

DiffMetrics gave us some confidence. So, we computed the p-value (Table 7.5) based

on the one-sample Wilcoxon non-parametric test to test if the difference between

the abstract runtime structure is statistically significant from the corresponding code
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Table 7.5: Statistical analysis for the DiffMetrics: p-value (p), Cliff’s Delta (D) and Cliff’s Delta
size (D-Size).

DiffMetric Muspy Ermete SMS

p D D-size p D D-size

WAWB 0.00 0.44 0.33 1.00 0.00

TMO 0.00 -0.75 -0.72 0.00 0.30 0.47

PTEP 0.09 0.08 0.00 0.54 0.33

DFEP 0.00 0.10 0.06 0.00 0.23 0.11

1MInE RecType 0.50 0.00 0.60 1.03

1MInE ArgType 0.00 0.00 0.22 0.22

1MInE RetType 0.01 0.25 0.25 0.00 0.75 0.75

1FRnE 0.00 NA

1FWnE 0.00 NA

structure. We also estimated the magnitude of the difference using Cliff’s Delta D,

a non-parametric effect size for ordinal data. For each of the DiffMetrics, we defined

a control value. D ranges between +1 to -1, if all values from the DiffMetrics are

higher than the control value, then D is positive else it is negative. For one of the

systems, the D values are negative. The effect size D is considered negligible for

0 ≤ D < 0.147, small for 0.147 ≤ D < 0.333, medium for 0.333 ≤ D < 0.474 and

large for D ≥ 0.474.
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Chapter 8: Evaluation

We present the results of evaluation of the proposed proxy on two test systems

here.

8.1 Muspy

Muspy is an open source, free Android application that notifies music lovers when

there are new releases of albums of the various artists they follow. The system

constantly checks the official websites of the artists and in turn eases out the trouble

of constantly monitoring the web sites. An user can create a new account linking his

email address. Once the first time registration process is complete, the user can use

the registered email to log back in and follow or un follow their favorite artists , with

just a click of button in the system. The users may also share the released albums

on social networking sites e.g., Facebook, Tweeter. The system also sends the users

automated email notifications about recent releases of albums. We run the proxy

that the proxy consists of the two tests, H1 and H2. We discuss the results from the

proxy here.

8.1.1 Testing the Hypotheses

We predict if the abstract runtime structure differs significantly from the code

structure based on the results from the proxy.

Testing H1. About 40 fields or variables are classified as container of a general type

or container of a type. We investigate the code and understand that the developers

use standard library containers such as ArrayList and LinkedList. The elements of

containers are of types Art or Releases of the artists. The classifiers identified only

about eight fields or variables as IT1 and IT2. Most of the fields or variables that

are associated with inheritance are not system types but are of types from Android
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Table 8.1: Classification using No-Annotation Visitors.

Type Instance Name Enclosing Type Classification

List<model.Release> releases utils.RelHolder CT
List<model.Release> releases act.RelAct CT
List<model.Art> releases act.RelAct CT
List<model.Art> releases act.SearchArtAct CT
List<model.Art> releases services.MusicClient CT
Array<model.Art> adapter act.RelAct CT
LoadBio.Listener listener ArtBioAct.LoadBio FKT

base.AListAct.Listener listener base.AListAct FKT
android.SharedPreferences sharedPreferences muspy.MuspyApp FGT
android.SharedPreferences sharedPreferences act.SettingsAct FGT
android.SharedPreferences sharedPreferences base.AListAct FGT

android.Context context template.CustomListAdapter IT1
List<model.Art> CREATOR model.Art IT1

android.OnItemClickListener mOnClickListener base.AListAct IT2
android.Intent intent act.AboutAct Java Library type
android.Intent intent act.RelAct Java Library type
android.Builder builder act.RelAct Java Library type

library. Investigation of the code indicate that the system only has four general

types, e.g., AAct, ABrowserAct, AListAct and ICustomListAdapterHolderPattern.

Moreover, the abstract type ABrowserAct is not used in any system specific tasks.

So, the system does use object-oriented concepts like abstractness and inheritance in

the implementation but not to a large extent. About 10% of the total classified fields

or variables are Field/Variable of a general type. So, fields or variables of 4 general

types may be referred to in many concrete subtypes. However, fields or variables that

are library types are large in number. More than about 30% of fields or variables are

classified as Composition. The category Others in Table 7.2 include fields or variables

of final and exception types. Also, the classifiers classified about 70 fields or variables

as Java Library Type. Such fields or variables may not reflect the significant difference

during the abstract runtime structure as they are usually mapped to a shared domain.

We present a portion of the output from the No-Annotation Visitors (Table 8.1).

As the classifiers classify many fields or variables into the classifications of con-

tainer of a general type or container of a type, WAWB may have outliers. The
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classifiers classify many fields or variables as field/variable of a general type and so

the DiffMetrics from the Precision Category have many outliers. The classifiers iden-

tify very few fields and variables that are associated with inheritance. So, all the

DiffMetrics grouped into the DFMetrics Subcategory have only few outliers.

Testing H2. The values from the computed code metrics are in the same range

as the training set systems. So, the code metrics indicate that the corresponding

DiffMetrics that correlate with the code metrics may have outliers.

Predictions from Proxy. Based on the results from the proxy that tests both the

hypotheses on this system, we draw the following predictions.

1. WAWB indicates that the abstract runtime structure is significantly different

from the corresponding code structure.

2. DiffMetrics in the Precision Category have many outliers indicating that the

abstract runtime structure is significantly different from the code structure.

3. DiffMetrics in the DFMetrics Subcategory do not contribute to the significant

difference.

4. DiffMetrics grouped in Many-To-One Category do not have many outliers.

Closing the Loop. To support the predictions made by the proxy, we compute the

DiffMetrics from the extracted OGraph. To start with, the experimenter annotated the

system and extracted the OGraph. A brief about the annotation process is discussed

in the subsequent section. The results of the DiffMetrics are also discussed in detail.

8.1.2 Annotations

Using the documentation and inspecting the code, the experimenter decide that

Muspy followed a three tier architecture. The three tiers are the three top level

domains UI, LOGIC and DATA in the OGraph. The types of objects that are strictly
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class MuspyApp<U, L, D> extends App<U, L, D> {

Crypto<D<D>> SC = new Crypto();

String<shared> email = null;

String<D> pass = null;

String<shared> userID = null;

public void setCredentials(String<shared> email, String<D> pass, String<shared> userID) {

Log<L> log = new Log();

}

}

class MyArtAct<U, L, D> extends AListAct<U, L, D> {

List<shared, <Art><shared<D>>> artists;

ArtHandler<OWNED<U, L, D>> artistsHandler = new ArtHandler(this);

}

class SearchArtAct<U, L, D> extends AListAct<U, L, D> {

List<shared, <Art><shared<D>>> artists;

SearchHandler<OWNED<U, L, D>> searchHandler = new SearchHandler(this);

}

class SignInAct<U, L, D> extends AListAct<U, L, D> {

SignHandler<OWNED<U, L, D>> signHandler = new SignHandler(this);

}

class SignUpAct<U, L, D> extends AListAct<U, L, D> {

SignHandler<OWNED<U, L, D>> signHandler = new SignHandler(this);

}

Figure 8.1: Annotation of Muspy.

encapsulated are mapped into owned domains and fields and variables of type String

are mapped into the shared domain. During the annotation process, the experimenter

refactored some code e.g., add missing constructors. Below, we show a sample of the

annotated code from Muspy (Figure 8.1).

8.1.3 Results from the DiffMetrics

WAWB has outliers of type List of Art as indicated by the No-Annotation visitors.

The OObjects of types Art that are containers of a type are mapped into different

domains of OObjects of different activity types such as SignInAct, SignOutAct etc.

The lists of type Art play different roles in each of the different activity types. Since

six activities that are subtypes of base.AListAct in the system observe the mouse

click event, the type base.AListAct.ClkListener are mapped into owned domains

of the types. The OObjects of containers of Array of Art are used in different context

and play different roles in the runtime. So they are mapped into different domains of
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Table 8.2: WABW Outliers from Muspy.

Outlier Size Type Triplets

X 1 List<model.Art>
<List<model.Art>, unique1, act.RelAct>

<List<model.Art>, unique6, act.RelActSearch>

X 36 base.AListAct.Listener

<base.AListAct.Listener, owned, act.RelActSearch>

<base.AListAct.Listener, owned, act.RelAct>

<base.AListAct.Listener, owned, act.SearchArtAct>

<base.AListAct.Listener, owned, act.SignInAct>

<base.AListAct.Listener, owned, act.RelAct>

<base.AListAct.Listener, owned, act.SignInAct>

<base.AListAct.Listener, owned, MyArtAct>

<base.AListAct.Listener, owned, act.SignUpAct>

X 1 Array<model.Art>
<Array<model.Art>, unique1, act.RelAct>

<Array<model.Art>, unique6, act.RelActSearch>

+- Object

+-Act

+-AAct

+-ABrowserAct

+-ALAct

+-SearchArtAct

+-MyArtAct

+-ImtLastfmAct

+-RelAct

+-RelActSearch

+-SignInAct

+-SignUpAct

+-SettingsAct

+-ResetPwdAct

Figure 8.2: Inheritance hierarchy of AAct.

different parent OObjects. Also, the containers of Releases are in the enclosing types

ReleasesHolder, RelAct and are used in different contexts. Some of the outliers are

discussed here are illustrated in Table 8.2.

As suggested by the proposed proxy, PTEP and DFEP have many outliers. The

type of the receiver AAct of the method transition(intent) has 11 subtypes. A typical

type hierarchy shows all the subtypes of the type AAct (Figure 8.2). But the OGraph

only shows 8 of those subtypes that in the reachable domains after formal domain

parameters are bound to the actual domains. Some of the outliers are discussed in

Table 8.3.

The total number of outliers of each DiffMetrics under different categories (Ta-
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Table 8.3: DEEP Outliers from Muspy.

Outlier Expression Type DFType All Subtypes Subset Subtypes Precision

X transition(intent) base.AAct InvkRec 11 8 03̇

Table 8.4: Count of outliers of DiffMetrics.

Category DiffMetric Number of Outliers
One-To-Many Category WAWB 8

DFMetrics

1MInE RecType 0
1MInE RetType 4
1MInE ArgType 0

1FRnE 0
1FWnE 1

Many-To-One Category TMO 15

Precision Category
PTEP 12
DFEP 22

ble 8.4) indicate that the DiffMetrics under the category One-To-Many and Precision

and Many-To-One have outliers and that the DiffMetrics under the Subcategory DF-

Metrics do not have outliers.

8.1.4 Results from the Wilcoxon test

The results are statistically significant for WAWB and D indicates medium ef-

fect. As indicated by the proxy, the metric involves OObjects of type containers.

Some OObjects are types of inner classes e.g., MyFactory, NewClickListener that

are mapped into different domains play different roles in the system. The results

indicate that the DiffMetrics grouped under the Subcategory DFMetrics are not sta-

tistically significant. Most of the method invocation expressions are associated only

with one or few OEdges in the OGraph. This is the same with field read and field

write expressions. The proxy indicates that there are no or few outliers for TMO but

the results are statistically significant. Inspection on the data from the DiffMetrics

indicate that OObjects of Android libraries types merge OObjects of other library

types in the OGraph. As we do not prominently consider fields or variables of library

types during the model building phase, the predictions may not reflect for OObjects

of library types. D is negative as there are objects that merge only one other type
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and the value is less than the control value specified for this metric.

To conclude the evaluation on this test system, the prediction of the proxy matches

the the results of the analysis of the outliers of the DiffMetrics and the results from

Wilcoxon test for all the DiffMetrics except the DiffMetrics from the Many-To-One

Category. Next, we discuss the second test system.

8.2 Ermete SMS

Ermete SMS is another open source, free Android application that lets the users

to send uninterrupted SMS through the internet. The system lets the users of TIM

(Telecom Italia Mobile) to exchange messages between others users and provides

options for group chat conversation. The users can create or modify their account

via interfaces provided by the system. We run the proxy that tests H1 and H2. We

discuss the results from testing the hypotheses here.

8.2.1 Testing the Hypotheses

We predict if the abstract runtime structure differs significantly from the code

structure based on the results from the proxy.

Testing H1. Only about 6% of the total classified fields or variables are classified

as container of a general type or container of a type. Inspection of the code indicate

that the implementation use Java containers that store elements that have types from

the Android library. These types do not lead to the significant difference between

the abstract runtime structure and the code structure. Also, further investigation

indicated that the ermete developers did not use Java containers extensively. The

classifiers indicate that about 40 fields or variables may be associated with Inheritance.

The OObjects of such fields or variables may be outliers of the DiffMetrics. It is

interesting to note that the system does not implement any system-specific interfaces
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Table 8.5: Classification using No-Annotation Visitors.

Type Instance Name Enclosing Type Classification

List<acc.Acc> providers acc.AccManagerAndroid CGT
List<hhtp.NameValuePair> reqData provider.TIM CGT
List<hhtp.NameValuePair> reqData provider.TIM CGT
List<message.Receiver> receivers message.SMS CT

acc.Acc ac android.AccountService IT1
acc.Acc ac android.AccModifyAct IT1
acc.Acc oldAcc android.AccModifyAct IT1
acc.Acc newAcc android.ComposeAct IT1

acc.AccManager accManager android.AccModifyAct IT1
acc.AccManager accManager android.ComposeAct IT1
acc.AccManager accManager android.AccOverviewAct IT1
acc.AccManager accManager android.AccDisplayAct IT1
msg.ConvMan convMan android.AccService IT1
msg.ConvMan convMan android.ComposeAct IT1

http.NameValuePair NVP provider.Tim FGT
con.ServiceConn serviceConn android.ComposeAct FGT

but has about 10 abstract types. Also, only a few concrete types extend the abstract

types. About 40 fields or variables of types fall under field/variable of a general

type. However, most of the fields or variables under this classification are not system

specific. More than about 30% of fields or variables are classified as Composition.

The category Others in Table 7.2 include fields or variables of final and data types.

Such fields or variables may not reflect significant difference during the runtime as

they are usually mapped into shared domains. We present a portion of the output

from No-Annotation Visitors in Table 8.5.

As the classifiers identified few fields or variables into the classifications container

of a general type or container of a type, WAWB may not have many outliers. The

classifiers classify many fields or variables into Inheritance Type 1 or Inheritance Type

2. So the DiffMetrics under the Subcategory DFMetrics have outliers. The classifiers

classified many fields or variables as field/variable in general type. However, as many

fields or variables are Android library types, the DiffMetrics in Precision Category

may have many outliers that show precise information only for these types. The

proxy predicts that the abstract runtime structure may be significantly different from
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the code structure as indicated by the DiffMetrics under the DFMetrics Subcategory.

Thus, we test the second hypothesis.

Testing H2. The values from the computed code metrics are in the same range

as the training set systems. So, the code metrics indicate that the corresponding

DiffMetrics that correlate with the code metrics may have outliers.

Predictions from Proxy. Based on the results from the proxy that tests both the

hypotheses on this system, we draw the following predictions.

1. DiffMetrics under DFMetrics Subcategory, indicate that the abstract runtime

structure is significantly different from the corresponding code structure.

2. DiffMetrics grouped in Many-To-One Category have many outliers.

3. DiffMetrics under Precision Category have many outliers indicating that the

abstract runtime structure is significantly different from the code structure.

4. WAWB indicate that same types in the system are not used in different context

playing different roles.

Closing the Loop. The proposed proxy concluded that the hypotheses are valid

and indicate that the abstract runtime structure is significantly different from the

code structure. To close the loop, the experimenter, annotate the system and extract

the OGraph.

8.2.2 Annotations

Using the documentation and inspecting the code, the experimenter decide that

Ermete SMS also followed a three tier architecture. The three tiers are the three top

level domains UI, LOGIC and DATA in the OGraph. The domain owned that encapsulate

OObjects are not used so extensively. The types that are of not much interest, like
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class Main<U, L, D> {

}

class AccCreatAct<U, L, D> extends Act<U, L, D> {

AccManager<L<U, L, D>> accManager;

}

class AccModifyAct<U, L, D> extends Act<U, L, D> {

AccManager<L<U, L, D>> accManager;

}

class AccDisplayAct<U, L, D> extends Act<U, L, D> {

AccManager<L<U, L, D>> accManager;

}

class ComposeAct<U, L, D> extends Act<U, L, D> {

AccManager<L<U, L, D>> accManager;

}

class SettingsAct<U, L, D> extends Act<U, L, D> {

AccManager<L<U, L, D>> accManager;

}

Figure 8.3: Annotation of Ermete SMS.

String that does not carry confidential information is mapped into the domain shared.

Below we show a sample of the annotated code from Ermete SMS (Figure 8.3).

Using the above annotated code, we extract OGraph and computed DiffMetrics.

8.2.3 Results from the DiffMetrics

The containers of Acc declared in the type AccModifyAct all play the same role.

Thus, the experimenter mapped such OObjects into the same domains. Also, the

containers of Android library types e.g., http.NameValuePair are also mapped into

the same domains under the same parent OObject of type provider.Tim. So WAWB

does not have any outliers.

As suggested by the proposed proxy, the DiffMetrics from DFMetrics Subcategory

have many outliers. Various method invocations, e.g., accManager.delete(acc)

whose receivers and actual arguments are general types of type AccManager and Acc,

are associated with many OEdges in the OGraph. Methods that are declared in the

type Act have at least one OEdge in the OGraph that corresponds to five different

activities in the system. Some of the outliers are illustrated below in Table 8.6.

Types in the code that are subtype compatible with Act are merged into one
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Table 8.6: 1MInE ArgType Outlier.

Outlier Expression Edges: Osrc→Odst [Type]

X accManager.delete(acc)
AMA:AccModifyAct →

AMAnd:AccManager [Export t]

AMA:AccModifyAct →
AMAnd:AccManager [Export ac]

X accManager.insert(acc)
AMA:AccModifyAct →

AMAnd:AccManager [Export t]

AMA:AccModifyAct →
AMAnd:AccManager [Export ac]

Table 8.7: Count of outliers of DiffMetrics.

Category DiffMetric Number of Outliers
One-To-Many Category WAWB 0

DFMetrics

1MInE RecType 5
1MInE RetType 5
1MInE ArgType 8

1FRnE 0
1FWnE 0

Many-To-One Category TMO 12

Precision Category
PTEP 14
DFEP 91

OObject of types such as ComposeAct, AccOverViewAct etc. in the OGraph. So,

TMO also has outliers. Thus, the conclusions of testing the hypotheses match with

the DiffMetrics results.

The total number of outliers of each DiffMetrics under different categories (Ta-

ble 8.7) indicate that the DiffMetrics under the Subcategory DFMetrics, the cat-

egories Precision and Many-To-One have outliers and that the DiffMetrics under

One-To-Many category do not have outliers.

8.2.4 Results from the Wilcoxon test

The proxy predicts that WAWB does not have outliers, and the results are not

statistically significant for WAWB. The results indicate that the DiffMetrics grouped

under the Subcategory DFMetrics are statistically significant. The D value indicates

large effect for 1MInE RecType and 1MInE RetType. From the data, the receivers

of method invocations is of type Act and has about 12 subtypes. Most of the method
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invocations are associated with at least five OEdges in the OGraph and the destination

OObjects are subtypes of Act in reachable domains after formal domain parameters

are bound to the actual domains.

To conclude the evaluation on this test system, the prediction of the proxy matches

with the results of the outliers of the DiffMetrics and with the results from Wilcoxon

test for all the DiffMetrics.
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Chapter 9: Related Work

Various research areas that are related to the line of work in this thesis are dis-

cussed here. We organize the discussion around research topics that use (1) metrics

as predictors in Section 9.1, (2) correlation as predictors, and (3) code patterns as

predictors in Section 9.2.

9.1 Metrics as Predictors

We discuss research topics that use metrics as predictors for maintainability, de-

tection of defects, fault proneness, program comprehension, and runtime properties.

9.1.1 Predictors of Maintainability and Defects

Taba et al. explore the use of antipatterns for bug prediction in order to improve

the accuracy of previously existing bug prediction models [21]. Antipatterns are in-

troduced into the systems by the developers’ lack of domain experience or lack of

ability to solve a particular problem. Another research also claim that the classes

with antipatterns are more prone to bugs than other classes [13]. Taba et al. propose

metrics that quantitatively measure antipatterns. Some of the antipatterns are Blob:

too large and not cohesive enough; LazyClass: a class that has grown too large with

very few fields or methods; MessageChain: a class that uses a long chain of method

invocations to realize one of its small functionalities. The antipatterns indicate the

data flow and the structure of the system. They define metrics such as Average Num-

ber of Antipatterns (ANA), Antipattern Cumulative Pairwise Differences (ACPD) etc

to measure the properties associated with the identified antipatterns. There may be

a class with large number of methods but many of its methods may not be invoked.

The ANA metric counts such a class as a class that demonstrates the antipattern,

MessageChain. The DiffMetrics grouped into DFMetrics Subcategory may help us to
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determine if such a class that is not coupled with the other classes at runtime does

not contribute to bugs.

Dagpinar and Jahnke [11] investigate if the object-oriented metrics from Chi-

damber and Kemerers [10], Bieman and Kangs [7] can be used as significant predic-

tor for the maintainability of a code base. They evaluate import coupling metrics

vs. export coupling metrics, direct coupling metrics vs. indirect coupling. They

then conduct an experiment. For each subject system, they collected maintenance

activities with intervals of few months over few years. They propose a regression

model that correlates the most suitable metrics, based on their previous evaluation,

with the frequency of perfective/adaptive maintenance activities. The DiffMetrics

grouped under the Subcategory DFMetrics are alternative metrics that measure cou-

pling between objects at runtime. These DiffMetrics indicate the classes that are

important in the system, classes whose methods are invoked by other classes. Mea-

suring such properties from the DiffMetrics may bring some useful connection for

predicting maintenance and bug prediction models.

9.1.2 Predictors of Program Comprehension

Mathias et al. discuss software measurements and metrics that are factors when

conducing comprehension studies [17]. They propose various attributes in a system

e.g., lines of code and derive measures that are quantitative of the defined attributes.

The combination of such measures are metrics categorized into size, object-oriented

and structural measures. Such metrics do not predict program comprehension, but

are factors that impact program comprehension. For example, for two systems of

similar size, a system with fewer data flow paths is easier to understand. A class

that is associated with fewer method invocations may be easier to understand than a

class with many method invocations. The DiffMetrics grouped under the Subcategory

DFMetrics measure dataflow communication in the OGraph, which is an approximate
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runtime structure. Also, the identified code patterns effect the DiffMetrics that in-

dicate that the abstract runtime structure is different from the code structure. Our

work on the transcript analysis discussed in Appendix A: Transcript Analysis indi-

cate that the outliers of the DiffMetrics trace to the portions of the code in the system

that are difficult to comprehend, or are most frequently explored. Thus, the defined

DiffMetrics in this work can be used to predict portions of code in that system that

may be difficult to understand by the developers.

Yu-ying et al. use runtime information to discover knowledge about software

systems [22]. They claim polymorphism, dynamic binding and inheritance rendering

cannot be captured using static metrics e.g., Fan-in and Fan-out. They re-define

these static metrics that measure properties like inheritance, dynamic binding in

method or class to metrics that measure such properties in object level coupling for

a scenario ’S’, a sequence of user inputs triggering actions in the system that yields

an observable results. Such dynamic metrics effectively identifies important classes

and methods. Their approach uses dynamic analysis to define metrics and focuses on

a particular sequence of event. The DiffMetrics 1MInE RecType, 1MInE ArgType,

1MInE RetType measure object level coupling and interaction using static analysis

that covers all possible scenarios in the system.

9.1.3 Predictors of Runtime State or Properties

Virtual calls may cause significant performance overhead due to dynamic binding.

Zhang et al. proposed techniques that obtain information about the execution fre-

quencies of the targets for unresolved virtual calls at compile time [23]. They explore

the frequency distribution or relative frequencies of virtual call targets by defining

static program-based metrics derived from features in the system that cause imbal-

ance of usages of different virtual call targets. They build a model to predict certain

defined metrics cause imbalance of usages of virtual call targets than other metrics.
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The model is two phased: Model Building and Estimation. They analyze the pro-

posed metrics and dynamic profiles for training sets systems to model. Based on

their model, they use the metrics computed on other systems to identify the causes of

imbalance of usages of the virtual call targets. Our work follows the style in this work

closely. We build a model to predict if the abstract runtime structure of a system

is significantly different from its code structure. The model identifies code patterns

and other metrics that affect the abstract runtime structure by correlating them with

the DiffMetrics computed using a statics analysis on the training set systems. The

metric, number of callers (No. Callers) that uses the calling relations to measure the

popularity of the method may linearly or non-linearly correlate with the DiffMetrics,

1MInE RecType, 1MInE ArgType and 1MInE RetType.

In a system execution, some paths may be executed frequently and some paths

not so frequent. This high degree of non-uniformity in a system execution makes

characterizing runtime behavior of system an important concern for code optimization

and general data flow analysis [5]. Buse and Weimer propose a statistical model

of path frequencies based on metrics that can be obtained from the source code

of a system. Such metrics predict runtime path frequencies [9]. The infrequent

paths involve system instructions associated with error detection, reorganizing data

structures, resizing hash tables etc. They claim that the paths that exhibit only small

impacts on program state, both in terms of global variables and in terms of context

and stack frames are most likely the hot-paths that are executed frequently in runtime.

The metrics capture the state changing behavior and are based on the data flow

structure of the system. The DiffMetrics grouped under the Subcategory DFMetrics

measure dataflow between two objects in runtime due to a method invocation, field

read or a field write. Such DiffMetrics can also be used to investigate hot-paths in

the system. As the DiffMetrics are derived from the abstract runtime structure, path

frequency estimates may be more closely associated with runtime compared with their
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Table 9.1: Correspondence between DiffMetrics and Metrics from [9].

DiffMetrics Metrics-Predict Path Freq

1MInE RetType return-stmts

1MInE RecType invoked method

1MInE ArgType parameters

1FWnE fields written

metrics derived from the source code. The correspondence between the DiffMetrics

and their metrics is presented in Table 9.1.

The metrics from both the above research are derived from the call graph. The

DiffMetrics are extracted from a hierarchical, sound abstract runtime structure that

considers all possible execution path.

9.2 Correlations and Code patterns as predictors

The research uses correlations and code patterns as predictors for efforts of testa-

bility of systems and bug predictions. Bruntink and Deursen evaluate a set of Chi-

damber and Kemerer’s metrics [10] with respect to their capabilities to be able to pre-

dict the efforts needed for testing [8]. They claim that features like inheritance, poly-

morphism and other factors e.g., cohesion of methods, coupling affect test cases gen-

eration. They define two source-code level metrics Lines of Code for class (dLOCC)

and Number of test cases (dNOTC) for their test suite. They correlate standard

metrics that measure the factors that affect testability, Lack of Cohesion of Methods

(LCOM), Fan out (FOUT) with the derived metrics for their test suite using Spear-

man’s correlation. They predict the factors that influence test case generations based

on the p-value. Their study indicates of how specific object-oriented features affect

the test case generation. We compute some Chidamber and Kemerer’s metrics [10]

that measure coupling, cohesion. Then we compute correlation between them with

the DiffMetrics using Pearson’s correlation. The p-values measure the significance of

the DiffMetrics and indicates that the abstract runtime structure is different from the
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corresponding code structure. We also identify some code patterns e.g., containers,

fields of general types that affect the abstract runtime structure of a system.

Rilling and Klemola [20] propose metrics to predict the location of high frequen-

cies of defects. The developer may not be familiar with system specific identifiers

defined within the system. A larger number of variables, classes, methods and other

developer-defined labels or entities, leads to greater difficulty system may be difficult

to understand as each of the programmer-defined labels or entities must be traced

to identify their definition in the system. Code that has been fragmented into many

small parts will have a higher concentration of method invocations with parameters.

This would need many identifiers and thus, more tracing activity during the compre-

hension process. Based on the above observation, they propose a metric Identifier

Density (ID) that identifies the density of developer-defined entities on inspection

of the code. The developers may be interested in focusing measures on a particu-

lar execution path. This will provide developers some guidance in identifying the

difficulty level of comprehending a particular program execution. So, they propose

another dynamic metric Dynamic Identifier Density (DID). They claim that the rise

in ID and DID is caused by external coupling, complex expressions and code pat-

terns like arrays, Java collections, complex conditional statements. We identify code

patterns like containers, composition, inheritance. The transcript analysis discussed

in Appendix A: Transcript Analysis indicate that the outliers of the DiffMetrics trace

to the portions of the code in the system that are difficult to comprehend.
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Chapter 10: Discussion and Conclusion

We defined a proxy for a heavyweight technique that requires adding annotations

to the code to extract abstract runtime structure. The defined proxy requires less

manual intervention to run on any system compared to adding annotations to the

systems, thus making it lightweight.

We discuss some threats to validity in Section 10.1 and some limitations in our

design of the proxy in Section 10.2, We discuss of how other research groups may be

able to adapt the principles behind defining the proxy for selecting systems that may

be used to evaluate their programming language technique in Section 10.3. Finally,

we talk about some future work in Section 10.4 and conclude in Section 10.5.

10.1 Threats to Validity

The approach we use to define the proxy has several threats to validity.

Non-representative. The systems in our training set may not be representative.

The corpus does not include systems from well-established benchmarks such as the

DaCapo benchmark and a few of the systems are closed-source or proprietary. We

are aware of this limitation, and started analyzing one of the systems in DaCapo,

sunflow.

Small- and medium-sized systems. The systems we analyzed, where the largest

one is around 35 KLOC, are smaller than those in studies of the code structure because

our technique requires adding manual annotations. Without automated inference of

these annotations, analyzing large systems is currently infeasible. There is promising,

active work in the area of automated inference, which will enable conducting larger

scale studies.

Small training set. The training set is relatively small and includes only 8 systems

totaling 100 KLOC. This number of subject systems is lower than is typically seen
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in empirical studies of the code structure or studies of runtime heaps using dynamic

analysis [16]. Those studies consist of running a fully automated analysis on a large

number of systems. In our case, we had to manually add annotations to each subject

system before we could incorporate it in our training set.

10.2 Limitations

Our design of the proxy had some limitations that could have interfered with our

results.

False positives. The visitors may produce a large number of false positives. But

since the visitors look for structural patterns compared to visitors that look for local

information such as method names, the results are likely to be instructive.

Manual interpretation of the results. While the visitors and the code metrics are

predictive, the approach still requires a human to interpret the output of the visitors,

or the values of the metrics to decide what is considered to be within an interesting

range.

10.3 Global Discussion

We discuss some lessons learned about the proposed approach based on our case

study.

Adaptability of Lightweight Proxy. Another research group may use the pro-

posed principled data-driven approach to derive a proxy that selects systems to eval-

uate their programming-language based heavyweight techniques. Firstly, they need

to define DiffMetrics for their heavyweight technique. Then identify other simple

metrics or code patterns that may be associated with the defined DiffMetrics. Such

metrics and code patterns have to be determined by inspection of the code without

the manual intervention the heavyweight technique may need. The proxy may be
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visitors or other available open source tools that identify the determined metrics and

code patterns.

Once DiffMetrics are defined for the heavyweight technique, a model to predict

characteristics that impact the heavyweight technique based on the simple metrics

or code patterns determined by the proxy must be built. Using the model and the

results from the proxy, they predict if running the heavyweight technique on the

system may be beneficial. When considering to analyze a system, they may choose a

system on which running the heavyweight technique may not be rewarding. However,

the time consumed to run the proxy is less compared to running their heavyweight

technique that may require radically rewriting the code in different language or adding

annotations to the code. They will be able to run the proxy on many systems with

ease and identify collection of systems that may be worth studying further.

Designing the Code Pattern Visitors. The visitors that visit the OGraph con-

tribute to a better understanding of the relationships between the abstract runtime

structure and the code structure by identifying code patterns that may lead to sig-

nificant differences between the two structures of a system. The code patterns also

identify portions of the code that may be difficult to comprehend by the developers.

The No-Annotation visitors identify the same code patterns that may lead to signif-

icant differences between the two structures of a system with no added annotations.

Also, the classifications such as Field/Variable of Framework type need additional

inputs such as the list of framework types in a system. We may able to reduce the

count of false positives identified by the classifiers by using a more precise approach

for identifying the framework types.

Identifying the Correlated Metrics. The simple metrics that are computed using

open source tools contribute to a better understanding of the relationships between

code metrics that measure properties of the code and the DiffMetrics. We determine

metrics that positively and linearly correlate with the DiffMetrics. In general, the
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simple metrics determined by the proxy may also be negatively and non-linearly

correlate with properties of a heavyweight technique.

10.4 Future Work

We will use the proxy to select systems for which it would be worthwhile to extract

the abstract runtime structure, which may be helpful to developers during program

comprehension or code modifications. We will also use the proxy to select future

systems to use in controlled experiments that we may conduct. The style of the data-

driven approach to derive proxy can also be followed for other programming language

based techniques to predict for what systems they will be most useful.

10.5 Conclusion

We propose a lightweight proxy that predicts types of systems on which a heavy-

weight technique may be beneficial. We define a proxy for a heavyweight techniques

that needs adding annotations to the code. The proxy for the heavyweight technique

predicts for what systems the abstract runtime structure, a representation extracted

using the heavyweight technique, may be significantly different from the code struc-

ture.
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Appendix A: Transcript Analysis

Introduction: Transcript Analysis

In one of the previous studies conducted [4], we had 10 participants implement

three coding tasks. We divided the participants into two groups. Participants from

the Control group (numbered C1 . . . C5) had access to just class diagram (code struc-

ture) and ones from the Experimental group (numbered E1 . . . E5) had access to the

OGraph (abstract runtime structure). The experiment was conducted on MD. We

collected data from both groups while they attempt to implement the tasks. The

data is referred to as transcripts. Each transcript consists of types in the systems the

participants explored, the architectural diagrams and the functionalities in Eclipse

the participants used. The DiffMetrics is computed on MD and the outliers are iden-

tified. We associated the code from the system the participants struggled or explored

often during the tasks with the outliers from the DiffMetrics. The mining of such

data indicate that the outliers point us to code in the system that

I. are often explored

II. are interfaces or abstract types in the system

III. indicate portions of the system’s code that are difficult to comprehend

Research Hypothesis. The outliers of the metrics trace to the code in the system

that are difficult to comprehend during program comprehension or code modification

tasks.

Data from Transcript

We analyze the transcripts of all the participants for each task.
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Task1

The participants implementing the validation of piece movements first need to get

the current position of the piece that is to be moved. Then, they need to implement

a check if the new position is empty or not. The move of the piece is valid only if

the new position is empty or a piece may be captured diagonally. The code from

the system that the participants explored for this task typically map to the following

DiffMetrics:

I. PTEP. Participants implementing above task wonder what constitute pieces on

the board. They analyse irrelevant types from the Package Explorer such as

FigureFactory. The PTEP shows more precise subtype information for the

object figure: Figure and points only to BoardDrawing and BoardFigure

that are the concrete types representing the pieces of the board.

QUOTES. Some of the quotes from the participants indicate the struggle.

I. “Okay so BoardFigure gets its information from the FigureFactory inter-

face. Ah! quite a few interfaces but BoardDrawing and BoardFigure are

actual classes” [C5]

II. “okay so its says that these guys are part of board drawing, but how?” [E4]

III. “yeah so what I am searching for now is a representation of the board itself

the collection. So I am not looking at the right place I need to back up”

[E2]

Task2

The second task is to implement the capture of pieces on the board. A piece

may only capture an opponent diagonally and only an opposite colored piece. We

analyze the data from the participants and map the portions of system explored to

the outliers of PTEP.
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I. PTEP. The participants implementing the task need the color of pieces that are

on non-empty squares and color of pieces that is to be moved. The participants

find it difficult to locate such a method. They look at types that may be

associated with figures. The participants analyze types back and forth and

finally look at BoardFigure and realize that its the right fit for such a method.

The OGraph shows more precise subtype information for field of type Figure.

One of the outliers in PTEP indicate that the concrete types for field of type

Figure are BoardDrawing and BoardFigure. Investigating only BoardDrawing

and BoardFigure, the participants could guess that such a method would fit in

BoardFigure.

QUOTES. The following quotes from various participants indicate the struggle.

I. “I have to go to this class and check whether there is a member to check

color. May be ImageFigure okay so this is another class, FigureFactory

may be, not really” [C3]

II. “So in BoardFigure which extends ImageFigure which extends god knows

what. so ImageFigure ah wait a minute, where the heck is the color? “

[E4]

Task3. The participants implement the undo feature for all moves except piece

capture moves on the board. Many participants fail to complete the task and there

are no transcript data available for the task.
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Appendix B: The Overall Outlier Classification table

We visited the OObjects and OEdges of the defined DiffMetrics to look for certain

code patterns associated with the outliers. Table 1 is the summary of classification

of the outliers of the DiffMetrics for all the training set systems.
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Table 1: Number of Outliers in each Classification for Training set Systems.

metrics category MD CDB AFS DL PX JHD HC APD

WAWB CGT 2 12 3 1277 441 1763 0 0

CT 1 0 0 0 0 10 12 2

FKT 2 3 6 30 0 1374 0 0

Others 0 0 1 416 0 547 65 0

Unclassified 0 0 15 249 212 1393 202 1

1MInE RecType DFIT1 0 0 0 9 93 8 7 0

DFIT2 0 0 0 6 0 3 4 0

DFIT3 0 0 1 13 5 67 12 0

Unclassified 0 0 6 1 0 0 11 0

1MInE RetType DFIT1 0 0 0 7 0 14 8 0

DFIT2 0 0 0 10 0 30 4 0

DFIT3 0 0 0 15 45 170 19 0

DFIT4 7 0 0 1 0 13 56 0

Unclassified 0 0 0 0 0 0 0 0

1MInE ArgType DFIT1 0 0 0 8 1 10 5 0

DFIT2 0 0 0 6 2 25 3 0

DFIT3 0 0 1 15 10 63 11 0

DFIT4 0 0 5 7 7 0 31 0

DFIT5 0 0 0 0 0 0 0 0

Unclassified 0 0 0 0 0 0 0 0

1FRnE DFIT1 0 0 0 0 0 0 0 0

DFIT2 0 0 0 0 0 0 0 0

DFIT3 5 0 0 29 19 51 59 0

Unclassified 0 0 0 0 0 0 39 0

1FWnE DFIT1 0 0 0 0 0 0 0 0

DFIT2 0 0 0 0 0 0 0 0

DFIT3 2 0 0 7 15 17 14 0

Unclassified 0 0 0 0 0 0 3 0

PETP FGT 8 0 11 12 35 39 46 1

Others 0 0 0 0 1 0 0 0

Unclassified 0 0 0 1 12 1 23 1

DFEP FGT 56 0 97 149 307 549 271 2

Others 0 0 0 0 1 0 0 0

Unclassified 0 3 1 0 24 25 254 0
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Evaluating programming-language based techniques is crucial to judge their useful-

ness in practice but requires a careful selection of systems on which to evaluate the

technique. Since it is particularly hard to evaluate a heavyweight technique, such as

one that requires adding annotations to the code or rewriting the system in a radically

different language, it is common to use a lightweight proxy to predict the technique’s

usefulness for a system. But the reliability of such a proxy is unclear.

We propose a principled data-driven approach to derive a lightweight proxy for a

heavyweight technique that requires adding annotations to the code. The approach

involves the following: computing metrics (DiffMetrics) that measure differences be-

tween a system representation (e.g., the code structure) and the system representation

extracted by the heavyweight technique (e.g., abstraction of the runtime structure);

identifying the outliers of the DiffMetrics; identifying code patterns and classifying

the outliers based on the identified code patterns; implementing visitors that look

for the code patterns on systems with no annotations; identifying code metrics that

correlate strongly with the DiffMetrics. For a new system with no annotations, a

proxy predicts if the heavyweight technique may be useful based on the results from

the visitors and the code metrics.
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To evaluate the approach, we run the visitors and compute code metrics on four

systems that were previously not analyzed. The proxy predicts that the heavyweight

technique may be useful two of the systems. Thus, the abstract runtime structure

may be significantly different from the code structure for those systems. To validate

the proxy’s predictions, we run the heavyweight technique on the two systems to

confirm the predictions.

Such a principled approach is reusable and can be applied on any programming-

language based technique to identify systems for evaluation and for a better under-

standing the types of systems for which a technique is most useful.
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