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CHAPTER 1 

INTRODUCTION TO NOISE 

This dissertation studies noise in electrical engineering, biomedical 

engineering, and operations research through mathematical models that 

describe, explain, predict and control dynamic phenomena. Noise is modeled 

through Brownian Motion and the research problems are mathematically 

addressed by different versions of a generalized Langevin equation. 

The lead article in the November 2005 issue of IEEE Signal Processing 

Magazine [1] was devoted to the history of noise, for, as noted by the author: 

““Noise,” as an idea, a subject, a field, an instrument, came upon the scene with 

a power and swiftness that transformed all of science and our views of the nature 

of matter. At birth, it solved the major issue of its time, perhaps, the greatest idea 

of all time—the existence of atoms.” 

Noise is pervasive across disciplines and its sources are diverse. A partial 

and far from exhaustive list of sources includes device noise, random 

environmental variation, noise arising from unknown, unmeasurable or 

unobserved variables and noise due to variables that are intentionally omitted 

from the mathematical model to promote analytical tractability. Concrete 

examples of noise are abundant: fluctuations generated by thermal, Johnson and 

shot noise in electrical and electronic devices [2, 3, 4], random environmental 

variation in population biology [5] and noise that is instrumental in the firing of 

neurons in the brain [6]. Noise due to unknown, unobservable or omitted 

variables is ubiquitous in operations research models of marketing and finance 
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phenomena [7, 8]. A very important type of noise called Brownian Motion is vital 

to the functioning of protein machines called molecular motors that enable 

mobility in living organisms [9]. Brownian Motion regarded as a stochastic 

process is the prototypical continuous-time probabilistic model for describing 

noise [10], and provides the foundations for a calculus to analyze dynamic 

systems driven by noise. 

Noise merits significant academic attention and scientific interest because 

it spans multiple disciplines in fundamental ways, provides a common language 

for scholarly discourse across disparate fields, and has spawned a sophisticated 

mathematical framework for the analysis of challenging problems across these 

disciplines. In particular, the solutions of these problems have significant 

implications for the improvement of processes, systems and devices in electrical 

engineering.  Therefore, contributions to noise are expected to advance theory 

and practice in electrical engineering as well as related academic disciplines that 

are influenced by developments in electrical engineering. 

 

1.1 History of noise 

As a branch of scholarly inquiry, noise has great intellectual appeal 

because it raises unsolved problems, whose solutions demand blending ideas 

from the engineering, physical, mathematical, biological and statistical 

disciplines. Indeed, the history of research on noise reveals many fruitful 

exchanges of ideas and mutually reinforcing discoveries among these 

disciplines. Robert Brown’s [11] biological observations of pollen particles 
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suspended in water stimulated the development of a mathematical model of 

noise called Brownian Motion [12, 13], and Brownian Motion provides an 

accurate probabilistic model for the movements of gas molecules [14], cyclotron 

motion [14], the motion of self-propelled flagellated bacteria [15], the action of 

molecular motors [9] that facilitate directed movement in living organisms, and 

fluctuations of stock prices [8].  

Einstein realized that Brownian Motion could settle one of the great 

controversies of his time—the existence of atoms [1]—and was the first to study 

the connection between atomic fluctuations and Brownian Motion. Five years 

before Einstein published his paper, Bachelier [12] had already anticipated many 

of Einstein’s [13] results in the completely different context of fluctuations of stock 

prices in financial markets. Thus, from its very inception, Brownian Motion has 

been intimately intertwined with both basic and applied science. Haw [16] 

identifies four stages in the historical development of “Brownian Motion science,” 

characterized by discovery, observation, theoretical prediction and quantitative 

confirmation and, according to him, we are currently living in the fourth stage, 

that of application.  

A history of noise would be incomplete without a discussion of fuzzy logic, 

a field born in electrical engineering and related to yet distinct from classical 

probability theory. Fuzzy concepts arise from a conceptually different source of 

noise—that arising from human interactions with systems.  For example, efficient, 

accurate and relevant information retrieval is a topic of central importance to 

researchers in all disciplines. But both the terms “information” and “access” are 
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ambiguous and unstable theoretical objects [17]. Ying [18] has rigorously 

established the mathematical conditions under which fuzzy methodologies (such 

as fuzzy control) are expected to outperform or work no better than classical 

control. We regard classical and fuzzy methods as complementary rather than 

mutually exclusive or intellectually dissonant approaches. Particularly in systems 

in which the human element plays a role, fuzzy control appears capable of 

capturing the vague, linguistically imprecise and often ambiguous knowledge that 

nevertheless enables humans to perform tasks that pose formidable challenges 

to machines based on the principles of classical control [19].  Thus, the practical 

merits of fuzzy control are undeniable. 

1.2 The significance of noise in engineering and science 

Noise is pervasive throughout science and engineering and has enabled 

the solution of truly grand problems such as the origin of the universe through the 

discovery, by Penzias and Wilson at Bell Labs, of the isotropic noise called three-

degree (Kelvin) blackbody radiation [1].  

The topic of fluctuations and noise is subtle because, contrary to intuition, 

noise is not always a hindrance. Even though the extensive literature on 

communications and filtering [20, 21, 22, 23] shows that noise has traditionally 

been regarded as an unwanted nuisance, more recent discoveries have placed 

noise in a central position as an agent for active improvement of the performance 

of computational algorithms, natural systems and engineered devices. These 

discoveries show that noise is sometimes helpful. For instance, noise is explicitly 

used in random search algorithms and simulated annealing techniques [19] to 
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avoid entrapment in local optima.  Indeed, noise can sometimes suggest 

solutions to problems where it superficially appears to play no role. For example, 

this author derived a noise model to compute an accurate approximation for the 

frequently occurring Spence integral in Feynman diagrams that are extensively 

used in quantum electrodynamics [24]. An intriguing example of the unexpected 

effects of noise is provided by the phenomenon of stochastic resonance [25] in 

which the signal to noise ratio actually improves with additional noise under some 

circumstances.  In neurobiology, stochastic resonance is helpful in aiding 

transduction across neurons [26] and in the efficient encoding of information in 

cochlear implants [27]. In chapter 4, this research will provide another example of 

how noise can be harnessed to improve the steady-state performance of a 

system. 

1.2.1 Noise in neuroscience  

A neuroscience phenomenon of focal interest in this dissertation is the 

noise influencing the hydrodynamics of cerebrospinal fluid flow. Cerebrospinal 

fluid (CSF) plays a key role in protecting the brain and shielding it from injuries 

and shocks. Intracranial dynamics, driven by the circulation of CSF, is important 

because it plays a central role in healthy brain function, and abnormalities in CSF 

dynamics can lead to multiple complications such as, among other things, 

hydrocephalus [28]. Intracranial pressure (ICP) is derived from cerebral blood 

and CSF circulatory dynamics, and clinical measurements of ICP over time show 

fluctuations around the deterministic time path predicted by the mathematical 

model [29]. Noise causes deviations of the predicted ICP from the actual ICP 
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level [30]. One source of noise is the influence of relevant factors that have been 

omitted from the mathematical model, and a closely related source of noise is the 

idealized abstraction of the real world that is captured in the model. Because a 

mathematical model is an abstraction of reality, it is based on simplifying 

assumptions that are approximations to reality. In the case of CSF dynamics, 

these assumptions include [31]: (1) CSF is an incompressible Newtonian fluid, 

(2) CSF is produced by the choroid plexus at a constant rate, (3) CSF absorption 

occurs by a “valve” mechanism into the capillaries through the arachnoid 

granulations, (4) brain compliance reflects the volume storage capacity of tissue 

as the CSF pressure changes, (5) the Monroe-Kellie doctrine that the intracranial 

space has a fixed volume, (6) CSF flow dynamics are accurately captured by an 

analogy to an electrical circuit; specifically the Marmarou [32] model abstracts the 

CSF system as an electrical circuit consisting of a nonlinear capacitor (storage 

mechanism), resistor (area of CSF absorption), and so on [33]. Every one of 

these assumptions is an approximation to reality and becomes a source of noise 

that hampers deterministic attempts at modeling CSF dynamics. Noise due to 

sources other than idealized assumptions and omitted factors also influence CSF 

flow dynamics and these are discussed in chapter 2. Other important 

neurological phenomena such as the firing of neurons involve noise in 

fundamental ways [34] but are outside the scope of this research. This 

dissertation will develop a stochastic differential equation to model the noise 

influencing the hydrodynamics of cerebrospinal fluid flow, derive results of clinical 

significance from it and use it to offer a fresh perspective on an ongoing 
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neuroscience controversy. Additionally, the new stochastic model of 

cerebrospinal fluid flow dynamics provides the mathematical basis for an 

automatic nonlinear regulator to keep the ICP within safe limits in patients 

suffering from hydrocephalus.  

1.2.2 Noise in electrical engineering 

It was the vacuum tube that initiated the study of noise in electrical 

engineering, and it is electrical engineering that has contributed more than any 

other discipline to the study of noise in both theory and practice [1]. Noise was 

the key player in the technology of the vacuum tube and later in semiconductor 

devices [1]. Modern communication theory is based on stochastic processes 

because the very concept of information transmission is rooted in probabilistic 

considerations [1]. Noise occupies center stage in signal processing models. 

Noise is present in the fluctuating current in a circuit with an inductance L in 

which the applied emf is a thermal noise voltage arising in the resistance [35]. 

Noise arises in the analysis of dynamically nonlinear translinear circuits [36]. In 

power systems, voltage and power consumption in gas discharge lamps show 

fluctuations due to thermal noise [37]. Noise fundamentally influences the 

degradation dynamics of ultra-thin gate oxides in MOS capacitors subjected to 

mechanical stress [38, 39]. Noise has important implications for nanotechnology, 

a field rapidly increasing in importance because molecular electronics, 

microelectromechanical devices, microscopic pumps and motors are achieving 

ever increasing degrees of physical realization [40, 9, 41]. Consequently, the 

scale of electronic manufacturing is becoming ever smaller, thereby making the 
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engineering relevance of noise increasingly prominent. Specifically, Brownian 

Motion is linked to nanotechnology through its implications for cell motility [42], 

because Brownian Motion appears to be instrumental in the functioning of 

molecular motors, sometimes described as nature’s nanomachines [43], that are 

the enablers of motility. In particular, as noted in Sharma and Mittal [44], 

researchers in the nanosciences are now increasingly interested in the 

development and applications of Brownian Motion models. This dissertation 

develops an algorithm to solve a general stochastic differential equation 

applicable to a large class of signal processing models and provides a basis to 

study noise in power systems, and the degradation dynamics of ultra-thin gate 

oxides in MOS capacitors. The methods developed to address these issues are 

applicable with only slight modification to future research on Brownian motors in 

nanotechnology. 

 

1.2.3 Noise in operations research 

Noise is a major issue in operations research models of industrial and 

business processes. Operations research is a broad field covering many 

disciplines such as marketing communications, financial engineering, industrial 

engineering, game theory, inventory theory and production management. Noise 

has a prominent presence in every one of these disciplines. Noise is typically 

called uncertainty in operations research but we will, for the sake of continuity of 

exposition, prefer the term noise throughout this dissertation. Marketing 

communications design is an important specialty within operations research and 
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is concerned with making optimal decisions about multiple media or channels of 

communications. Many technological developments in electrical engineering 

have had direct and profound impact on the marketing communications process. 

New technologies have increased the number of channels of communication 

between the firm and its customers. The combination of new communication 

technologies, market response dynamics and market response noise makes 

profit maximization of a firm’s marketing communications process a complex 

stochastic control problem. Market response is noisy because it is influenced by 

many factors over which the firm lacks control such as the state of the economy 

or technological developments. The optimal amount to spend on marketing 

communications requires careful mathematical analysis because it depends on 

the interaction of many factors. Answers to even simple questions are far from 

obvious. The issues here are: How much should the firm spend, given a profit 

maximization objective, and how should it spread the optimal amount over time? 

The first is an optimal budgeting issue and the second an optimal scheduling (or 

timing) issue.  Is it better to spread the budget evenly over time, to decrease 

spending over time, to increase spending over time, or to do something more 

elaborate? The issue is important because large sums of money are at stake and 

suboptimal spending patterns significantly reduce profitability. 

The salvage value associated with a dynamic process is the value 

associated with the final level of the state variable of interest at the end of the 

planning horizon. Many unaddressed issues remain and in particular, the 

influences of salvage value and uncertainty have received scant attention in the 



 

 

10 

extant literature. Salvage value constraints are the boundary conditions in a 

finite-horizon stochastic control problem. The influence of salvage value on 

optimal advertising remains an open question and existing research is based on 

deterministic dynamic optimization models, which, by their very nature, rule out 

market noise. Yet market noise is important because stochastic, not 

deterministic, market response is the norm [7, 45]. The objective of this part of 

the dissertation is to provide a rigorous analysis of the joint influence of salvage 

value constraints and market response uncertainty upon the structure and 

pattern of dynamic spending of a key marketing communications instrument. 

 

1.3 Mathematical treatment of noise  

The general mathematical treatment of deterministic systems evolving 

dynamically under the influence of a set of control variables is the Newtonian 

framework. The future history of the system is perfectly predictable from the 

current conditions (current value of the state variable and other relevant data 

such as values of the control variables). In the terminology of dynamical system 

theory, a tangent field defines a flow in classical phase space. At every point in 

the phase space and at all times, the tangent vector uniquely and 

deterministically prescribes the direction of flow for the point. 

1.3.1 Dynamical systems and noise 

Using standard mathematical notation, X(t) denotes the state of the 

system, u(t) the control vector, f(X, u, t) the tangent field, (X, u, t) the 

infinitesimal (local) standard deviation parameter capturing the intensity 
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(amplitude) of random fluctuations, all at time “t.” In the absence of fluctuations, 

(X, u, t) = 0, and such a system would enjoy the classical Newtonian 

description, 

                                             (1.1) 

in which X(t) could be (for instance) the position of a particle at time “t.” The 

above equation then defines the tangent field and its action maps the initial state 

X(0) into the state X(t) at time “t.”  The tangent field f(X, u, t) defines a flow in 

classical phase space as a function of the current state of the system. In the 

presence of noise, a natural generalization of equation (1.1) is 

                                             (1.2) 

in which (t) is a zero-mean, uncorrelated stochastic process, called white noise 

in the engineering literature [46]. The parameter  governs the intensity or 

amplitude of the white noise process. 

The distinguishing feature of white noise is that E[(t) (s)] = 0 for t ≠ s, 

where E denotes the expectation operator. This restriction leads to a Dirac Delta 

function representation for the covariance function of white noise [47], a feature 

that is equivalently mirrored by its constant spectral density.  Consequently the 

tangent vector defined by equation (2) cannot be interpreted as a velocity vector 

in the traditional mathematical sense because (i) a Dirac Delta function is not a 

well-defined mathematical function and (ii) a constant spectral density 

necessarily implies an infinite power signal [2]. 

Thus, in the presence of noise, the picture of the smooth deterministic flow 

dX
f (X,u, t)

dt


dX
f(X,u, t) (X,u, t) (t)

dt
   



 

 

12 

captured in equation (1.1) changes significantly. (A) First, the tangent vector is no 

longer a mathematically well-defined function; however it can be given a rigorous 

mathematical meaning within the theory of generalized functions. (B) Second, the 

flow becomes stochastic and the future history of the system is predictable only 

in a probabilistic sense. (C) Third, these probability distributions change over 

time, and the manner in which they change is described by the Fokker-Planck 

partial differential equations. The theory of stochastic differential equations 

accommodates all these facts and facilitates analytical treatment of stochastic 

dynamic systems [48]. 

Equation (1.2) can be formulated as a stochastic differential equation 

(SDE) by exploiting a fundamental connection between white noise and 

Brownian Motion. Stated informally, this connection is simply that smoothed 

white noise is Brownian Motion (strictly speaking, the equivalence is in the almost 

sure sense, i.e. with probability one).  Integrating a process effectively 

smoothens it. Thus we rewrite the random differential equation (2) as a controlled 

stochastic differential equation: 

                                             (1.3) 

in which the dW term is identified with the error process t via the fundamental 

relationship 

                                             (1.4) 

The precise meaning of equation (1.3) will become clear after discussing 

Brownian Motion and the Langevin equation. The general Langevin equation for 

dX f(X,u,t)dt (X,u,t) dW(t)  

t

s

0

W(t) ds 



 

 

13 

this dissertation is presented in section1.5. Equations (1.3) and (1.4) show that 

Brownian Motion is the key to modeling noise in dynamical systems. Brownian 

Motion and its modeling significance are the subject of subsection 1.3.2.  

1.3.2 Brownian Motion 

 Brownian Motion is important not only because it is the foundation 

for stochastic differential equations, but also because it has major engineering 

and scientific significance. In electrical engineering, Brownian Motion plays a key 

role in the operation of semiconductor devices. The two main noise phenomena 

in semiconductor materials are generation-recombination noise and velocity-

fluctuation or diffusion noise, and the latter is associated with Brownian Motion 

[49] of the free carriers (classical picture) or electron-phonon and electron-

impurity scattering (quantum picture). Thus Brownian Motion is a mathematically 

powerful model for noise in electrical systems and electronic devices [2]. 

Brownian Motion is basic to Life itself, because it is responsible for our 

very ability to breathe! For it is Brownian Motion in its manifestation as random 

thermal motion that sustains the Boltzmann distribution of air molecules at 

various heights in our atmosphere: without the fluctuations of Brownian Motion, 

air molecules would fall to the floor [50], that is to say, they would fall to the 

lowest ground level in the gravitational potential field of our planet.  Furthermore, 

the most fundamental processes of Life are driven by DNA and soluble proteins, 

whose operation is closely linked to Brownian Motion for the following reason. 

DNA and soluble proteins are macromolecules that form colloidal suspensions in 
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water [50], and “to study colloidal suspensions is in many respects to study the 

consequences of Brownian Motion” [16]. 

Diffusion is the aggregate macroscopic result of the Brownian Motion of 

each individual molecule. Diffusion is responsible for transport phenomena, the 

development of membrane potentials, electrical resistance in circuits, friction and 

viscosity. The basic diffusion equation governing the concentration of a 

substance c(x, t) (the number of molecules per unit volume at location “x” at time 

“t”), is written as [15]:  

                                             (1.5) 

where D is the diffusion constant defined to be D  = 2/2t, where  is the size of 

the step taken by the Brownian particle every t time units. Diffusion in three 

dimensions is governed by the same equation in terms of the Laplacian operator 

, where . The diffusion equation in three dimensions is 

then: 

                                             (1.6) 

Equation (1.6) is intimately connected to electrical engineering—at steady-

state, the time-independent form of equation (1.6) is simply c = 0, which is 

Laplace’s equation for the electrostatic potential in charge-free space [51]. A 

second connection between equation (1.6) and engineering is that it is the classic 

heat equation [51]. 

A particularly important interpretation of the concentration c(x, t) is as a 
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probability density p(x, t), the probability of finding the Brownian particle near “x” 

at time “t,” and in that case, the evolution of the probability density function of 

Brownian Motion over time is given by: 

                                             (1.7) 

Equation (1.7) is an example of a Fokker-Planck equation (FPE) [48]. 

FPEs are partial differential equations describing the temporal evolution of the 

probability density function of a stochastic process. Given the SDE for a 

phenomenon, the associated FPE can be written immediately by inspection. 

Thus, FPEs provide an alternative way of studying the stochastic evolution of a 

system without using stochastic differential equations. However, the scope of 

FPEs is curtailed by the difficulty of solving PDEs. Stochastic differential 

equations (SDEs) driven by Brownian Motion vastly expand one’s modeling 

power and are used extensively in this research. Used judiciously as 

complementary analytical tools, SDEs and FPEs provide a powerful modeling 

methodology, as will be seen in chapter 2. The stochastic model for CSF flow 

dynamics in chapter 2 is formulated as a SDE and its steady-state distribution is 

derived by solving the associated FPE. 

1.3.3 The Langevin equation 

Next, the Langevin equation and the modeling philosophy known as the 

Langevin approach in Physics [3] is described. It will be seen that equation (1.3) 

effectively generalizes the Langevin equation to cover all cases of practical 

interest in this research. 

The Langevin equation was proposed to model the motion of a Brownian 
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particle immersed in a fluid. A Brownian particle is anything small enough to be 

affected by the thermal motion of the molecules or atoms of a fluid such as water, 

air or the bloodstream. For example, protein molecules and molecular motors are 

Brownian particles. Newton’s equation F = ma, where “m” is the mass and “a” the 

acceleration of a particle, can be written as  where , and V(t) is 

the velocity of the particle at time “t.” Because the motion of a Brownian particle 

is highly irregular and unpredictable, Paul Langevin modeled the specific impulse 

 in Newton’s law as the sum of a viscous drag force –V plus random 

fluctuations L(t) [14]. The Langevin equation is then: 

                                             (1.7) 

The assumptions on the random error term are [3]: 

(I) L(t) is irregular and completely unpredictable 

(II) E{L(t)} = 0 

(III) L(t) is caused by random collisions with the individual molecules of the 

surrounding fluid and it varies rapidly.  This assumption is expressed by the 

requirement 

E{L(t)L(t’)} = 2
(t-t’), where (t) is the Dirac delta function.   

Van Kampen [3] adds a fourth assumption: 

(IV) L(t) has a Gaussian distribution.   

However, in a very readable paper, Gillespie [52] shows that the fourth 

assumption is in fact a delightfully satisfying consequence of coupling the first 

three assumptions with two natural requirements--the Markovian nature (i.e. 
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memorylessness) of most physical processes and a self-consistency property of 

all reasonably behaved stochastic processes. Any force that can be written as 

the sum of a linear damping term and an irregular force with the properties (I) – 

(IV) above is called a Langevin force. 

The Langevin approach to modeling is the following [3]: 

a) Write the deterministic macroscopic equation of motion of the 

system; 

b) Add a Langevin force with the four properties mentioned above 

c) Adjust 2 so that the stationary distribution reproduces the correct 

mean square fluctuations as known from statistical mechanical or other 

considerations 

This approach is followed throughout the dissertation; the last step is not 

undertaken because the nature of the problems do not permit it. 

 

1.4  Objectives 

The modeling significance of the Langevin equation has grown well 

beyond the physical sciences to encompass biology, engineering, and operations 

research.  The general nonlinear form of the Langevin equation [3] is 

                                             (1.8) 

Written in the mathematically rigorous notation of stochastic differentials, 

the above general Langevin equation is 

                                             (1.9) 

With the incorporation of control variables, the general Langevin equation 

.

X A(X) C(X) L(t) 

dX A(X)dt C(X) dW 
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in this research is: 

                                             (1.10) 

All the phenomena in this dissertation fit into the framework of the general 

Langevin equation (1.91) in which the drift and infinitesimal standard deviation 

are functions of the state and, possibly, of a control vector. 

It was established in section 1.2 that noise raises significant problems in 

neuroscience, electrical engineering and operations research. Specifically, extant 

mathematical models of cerebrospinal fluid flow dynamics are deterministic and 

hence incapable of accounting for the noise that is intrinsic to the ICP 

waveform—generated by CSF flow dynamics—as is clearly revealed in 

experiments. By incorporating noise in a classic neuroscience model of CSF 

dynamics, this research makes contributions to an important area of 

neuroscience by deriving clinically relevant probabilities that will improve the 

treatment of hydrocephalus. The analytical results suggest new hypotheses that 

can be tested in the laboratory by experimental researchers. The stochastic 

model for CSF flow dynamics serves as the basis for the development of an 

automatic nonlinear regulator for the ICP. The automatic regulator has far 

reaching implications because controlling ICP to keep it within safe limits is 

important not only for patients suffering from hydrocephalus but also in the 

treatment of other disorders related to the brain such as brain injury and brain 

trauma. 

SDEs are ubiquitous in electrical engineering and provide the natural 

mathematical framework for signal processing models but nonlinear SDEs are 

dX f(X,u)dt (X,u) dW(t)  
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very difficult or impossible to solve. This research develops a new algorithm to 

quasi-analytically solve a class of SDEs with polynomial drift, and shows that the 

results are applicable in an approximate sense to SDEs with a completely 

general continuous drift. Furthermore, the algorithm can be used to control the 

system behavior at steady-state. Thermal noise affects the operation of gas 

discharge lamps, and while there is an existing stochastic model of this 

phenomenon, several unaddressed issues remain that need to be resolved. This 

research provides a basis to generalize existing results on gas discharge lamps 

and derives new probabilistic results that are useful in assessing their 

performance. Noise affects the degradation dynamics of ultra-thin metal oxides in 

MOS capacitors, and, although an existing stochastic model describes this 

phenomenon, the statistical quality of the estimators of that model leave room for 

improvement, and, based on this research, continuous-time estimators can be 

derived to inform future research in that area.  

In operations research, models of marketing communications response, 

existing models ignore noise—a significant limitation since prescriptions for 

optimal budgeting and its temporal allocation are dependent on realistic models 

of market response. This research extends a classic model of marketing 

communications response and analytically derives the optimal budgeting and 

temporal allocation for an important marketing communications instrument 

through stochastic optimal control. 

Guided by the above considerations, the objectives of this research are to:  

a) Extend and improve the applicability of a classic model of CSF flow 
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dynamics by incorporating noise; 

b) Derive clinically relevant probabilities for ICP regulation to facilitate 

dynamic risk management of patients; 

c) Use the extended model to resolve a neuroscience controversy; 

d) Develop a new algorithm to solve SDEs with polynomial drift; 

e) Use the new algorithm to improve system performance at steady 

state; 

f) Improve budgeting and temporal allocation of marketing 

communications by solving a stochastic optimal control problem for a marketing 

communications instrument. 

 

1.5 Novelty and significance 

This research contributes by mathematically modeling noise that has been 

ignored in prior work on dynamic phenomena in neuroscience, electrical 

engineering and operations research in which noise plays a key role. 

a) The stochastic model of CSF flow dynamics strengthens the classic 

model in the field by extending it to accommodate noise; 

b) By doing so, it enables the computation of clinically relevant 

probabilities of critical events which facilitates dynamic risk management of 

patients; 

c) Uses the stochastic model of CSF flow dynamics in a novel way to 

resolve a neuroscience controversy; 

d) Develops a new algorithm to solve SDEs with polynomial drift which 
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can be used to approximately solve SDEs with arbitrary continuous drift ; 

e) Though noise is generally considered a nuisance, the new 

algorithm exploits noise in a novel way to improve system performance at steady 

state; 

f) Proves that observed differences in temporal allocation of 

marketing communications need not be driven solely by differences in market 

response function effects as was previously thought—in fact the observed 

differences in temporal allocations are optimal for the same response function 

due to differences in assumptions about the boundary value. 
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CHAPTER 2 

CEREBROSPINAL FLUID DYNAMICS 

This chapter forms the heart of the dissertation.  It uses electrical 

engineering methods—stochastic differential equations and an electrical circuit 

analogy—to model the circulatory flow of an important fluid within the brain.  

Techniques of neuroscience, brain physics, electrical engineering and 

mathematics are united to solve the problem.  

2.1 Background 

2.1.1 CSF Flow, Intracranial dynamics and pressure 

The central nervous system consists of the brain and the spinal cord 

which are surrounded by a clear fluid excreted by the choroid plexus, called 

cerebrospinal fluid (CSF), which protects the brain from external pressure and 

shocks [1].  Intracranial dynamics, driven by the circulation of CSF, are important 

because CSF protects the brain from injury, contains nutrients enabling normal 

functioning of the brain and, transports waste products away from the 

surrounding tissues.  Intracranial dynamics play a central role in healthy brain 

function because disturbances in the internal fluid environment of the skull can 

lead to multiple complications such as, among other things, hydrocephalus [1]. 

Much more is involved in hydrocephalus than a simple disorder of CSF 

circulation [2];  it is considered a complex spectrum of diseases, primarily defined 

by perturbation of the cranial contents—operationalized as CSF volume—and the 

intracranial pressure [3].  Given the complex nature of hydrocephalus, we define 

hydrocephalus as a disease associated with disturbances in the CSF dynamics, 
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as in [1].   

The CSF must be absorbed in order to prevent the brain from expanding 

uncontrollably [1].  CSF is absorbed by the arachnoid villi, small leafed channels, 

and emptied into the superior sagittal sinus, which is the major venous pathway 

exiting the brain.  Intracranial pressure (ICP) is derived from cerebral blood and 

CSF circulatory dynamics.  As the CSF leaves the ventricles within the brain, 

through the aqueduct of sylvius, and seeps into the arachnoid villi, it encounters 

impedance to its flow, and this resistance is responsible for the development of 

ICP [1].   Experimental evidence compellingly validates that, over a large range 

of pressures, brain compliance is not constant [4].  Marmarou [5] postulated a 

hyperbolic compliance function that decreases as the pressure increases, which 

coupled with other assumptions to be described below, led to a nonlinear 

ordinary differential equation for the variation of ICP over time.  The Marmarou 

model [5] is fundamental in mathematical pressure-volume models of CSF 

dynamics.  It uses an electrical circuit analogy to relate pressure and volume 

through an exponential relationship.   

2.1.2 An electrical circuit analogy for CSF flow  

In his approach to modeling CSF dynamics, Marmarou [5] conceptualized 

the relationship between flow and pressure drop in the same way that Ohm’s law 

relates the current to voltage in an electric circuit.  Large fluid spaces such as 

ventricles or subarachnoid spaces are modeled as lumped parameter 

compartments, and narrow conduits between them give rise to resistance or 

impedance [3].  The current source reflects formation of CSF; resistor with diode 
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captures unilateral absorption of CSF into the sagittal sinuses; capacitor and 

voltage source models the nonlinear compliance of CSF space.  Pss is the 

pressure in the sagittal sinuses.  P0 is the reference pressure.  See Figure 2.1 

below for the circuit [2]. 

 

Figure 2.1 Electrical circuit analogy for CSF flow dynamics.  Reproduced 

                   from [2] with permission. 

 

2.2 The Marmarou model for CSF dynamics 

While the Marmarou model has deservedly remained the mainstay of 

quantitative modeling of the dynamics of CSF flow, its deterministic nature 

prevents taking full advantage of the information in real ICP measurements, 

because deterministic models average over all possible fluctuations of real data.  

The ICP waveform contains additional information that is ignored by the time-

averaged ICP mean value [6].  We draw upon the fundamental principles of 

modeling cerebrospinal fluid dynamics explicated in [2] to develop the 

deterministic Marmarou model.   

2.2.1 The deterministic Marmarou model 



 

 

25 

Our starting point is Marmorou’s model [5, 7] of pressure-volume 

compensation, which was subsequently modified in [8] and [9].  Central to the 

development of the Marmarou model is a conservation law.  Conservation laws 

are ubiquitous in physics [10].  The Marmarou model represents CSF flow 

dynamics through a conservation equation relating the production of CSF to its 

storage and reabsorption [2].  

Production of CSF = storage of CSF + reabsorption of CSF                 

                            (2.1) 

Next, reabsorption is proportional to the differential between CSF pressure 

(p) and pressure in the sagittal sinuses (pss): 

                                             (2.2) 

pss is considered a constant parameter, determined by central venous 

pressure.  The coefficient R is the resistance to CSF reabsorbtion or outflow, 

measured in units of mmHg mL-1 min.  Storage of CSF is proportional to the 

cerebrospinal compliance C, measured in units of mL mmHg -1. 

                                             (2.3) 

The compliance of the cerebrospinal space is inversely proportional to the 

differential of CSF pressure p and the reference pressure p0 [8, 11], and is 

considered the most important law of cerebrospinal dynamic compensation [2]: 

                                             (2.4) 

The coefficient E is called the cerebral elasticity (or elastance coefficient) 
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and has the units mL-1 [12].  Next, by exploiting an analogy between an electrical 

model of CSF compensation, as described in section 21.2 based on [5] and [2], 

the deterministic description of the dynamics of CSF flow are given by: 

                                             (2.5) 

where I(t) is the rate of external volume addition and pb is a baseline pressure.  

The circuit diagram, reproduced from [2], is shown in Figure 1.  An electrical 

circuit analogy is also used in [13] and [14] to study the dynamics of ICP in the 

ventricular compartments.  The reference pressure parameter p0 is sometimes 

taken to be zero, as for example, in [5] because, as noted in [2], the significance 

of p0 is unclear.  Consequently, we assume p0 = 0, which results in the equation: 

                                             (2.6) 

2.3 Incorporating noise into Marmarou model  

 

2.3.1 Importance of modeling noise in CSF dynamics 

 

Broadly construed, noise arises from variations in factors that influence 

the observed outcome—which is the ICP in this paper— but that have been 

omitted from the mathematical model, and from factors affecting the observed 

outcome that are beyond the experimenter’s control.  Noise causes deviations of 

the predicted ICP from the actual ICP level.  Factors uncontrolled by the 

experimenter include thermal fluctuations, body movement and breathing.  

Because a mathematical model is an abstraction of reality, it is based on 
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simplifying assumptions, as listed in [3].  The Marmarou model abstracts the CSF 

system as an electrical circuit consisting of a nonlinear capacitor (storage 

mechanism), resistor (area of CSF absorption), and so on [15].  There remains 

substantial uncertainty regarding the average rate of CSF production [16].  

Realistic estimates of the mechanical properties of the living human brain are 

hard to discover [15].  The compliance is not an appropriate indicator of the 

brain’s elastic properties [14].  Shunts, used in the treatment of hydrocephalus, 

can be dramatically improved by more accurate modeling of the CSF dynamics.  

Shunts providing continuous CSF drainage are the ideal [17], and nonlinear 

control theory can be used to design an automatic controller for a shunt that 

provides continuous drainage.  But in order to design a stable controller to 

facilitate a shunt with continuous drainage, we need a model of CSF drainage 

that either incorporates factors omitted in extant models, or that accounts for the 

noise caused by the omission.  Our objective is to incorporate noise into the 

dynamics of CSF flow.  The effect of noise on the ICP waveform is discernible in 

Figure 2.2, which shows the fluctuations of the ICP around the deterministic path 

predicted by the deterministic Marmarou model. 
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Figure 2.2 Comparison of actual path of ICP with the path predicted by 

                     the deterministic Marmarou model.  Reproduced from [1] with 

                                permission.  

 

2.3.2 Ito and Stratanovich stochastic differential equations  

Visual examination of the time-series of ICP recordings shows that the 

fluctuations are smooth (unlike electrons in a wire which generate shot noise, 

characterized by jumps [17]), and therefore continuous state space Markov 

processes are appropriate to capture the noisy dynamics of CSF flow.  A large 

class of Markov processes can be represented by SDEs, and here a 

methodological choice must be made—noisy dynamic processes can be 

represented by stochastic differential equations of the Ito type or the Stratonovich 

type which correspond to two different ways of introducing noise into a dynamic 

system.  A central difference between the two is that the Stratonovich SDE uses 
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the usual deterministic calculus whereas the Ito SDE requires a completely new 

stochastic calculus.  Extensive conceptual, empirical and philosophical 

discussions of this issue exist in the literature on mathematical models of 

electrical, biological and physical phenomena [19, 20, 21].  The overwhelming 

majority of these discussions conclude that Ito processes, generated by 

stochastic differential equations of the Ito type, are superior to Stratonovich 

processes, generated by stochastic differential equations of the Stratonovich type 

[22, 23].  Ito [24] extended standard deterministic calculus to a "stochastic 

calculus" applicable to functions of a wide class of continuous-time random 

processes, known as Ito processes.  Given the SDE for the process under 

consideration, a result called Ito’s Lemma yields the SDE driving the dynamics of 

a general transformation of the original process [24].  This utilitarian result allows 

deducing the stochastic properties of considerably complex models driven by Ito 

processes [23].  An essential property of Ito processes is that nonlinear functions 

of Ito processes remain Ito processes—a property called closure under nonlinear 

transformations, indispensable for practical reasons.  From an empirical 

standpoint, a compelling advantage of Ito processes is that they often yield very 

precise statistical specifications for estimation [23].  An attractive property of Ito 

processes—on theoretical, mathematical, practical and computational grounds—

is that they are Markov processes.  Finally, the Ito calculus has been extended to 

embrace general martingale processes [25]—a development that permits joint 

consideration of both smooth noise and noise that occurs in jumps.  Thus our 

modeling framework can accommodate neurological phenomena requiring noise 
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that encompasses both smooth and jumpy variations in the state of the system, 

such as the firing of neurons [26]. 

2.3.3 The stochastic Marmarou model 

Given all these considerations, we modeled the fluctuations in CSF 

dynamics through an Ito stochastic differential equation.  First we introduced 

noise into equation (6) through a white noise process (t) with intensity parameter 

, which by definition satisfies the following properties: E[(t)] = 0, and E[(t)(s)] 

= 0, whenever t  s.  The notation E[.] denotes the expectation operator, which, 

when applied to a random quantity such as (t), signifies the value of (t) on 

average.  Thus E[(t)] = 0 signifies that the average value or mean of the random 

error at time “t” is zero, and this is a standard assumption in the literature on 

modeling noisy phenomena.  The term E[(t)(s)] is the expectation operator 

applied to the product of random errors at two different times ‘s’ and ‘t;’ 

technically it denotes the covariance between the errors at two different times.  In 

this case, because of the zero-mean assumption, it also denotes the correlation 

between (t) and (s); and so the property E[(t)(s)] = 0 means that the errors 

at two different times are uncorrelated, which substantively means that an error 

at one point in time does not influence the error at another point in time.  This too 

is a standard assumption in the dynamic modeling literature. 

                                             (2.7) 

Next we exploited the fundamental relationship between a white noise 

process (t) and a Brownian motion process W(t):  , which, when 
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written in differential notation, yields dW = (t) dt.  Therefore, 

                                             (2.8) 

Rearranging the above terms yields our final model, which we will call the 

stochastic Marmarou model. 

                                       (2.9) 

Note that in order for equation (9) to be dimensionally consistent, the unit 

of  is mL/min.  Because the ‘input’ I(t) is the infusion rate which is under direct 

experimental control, therefore, in the language of control theory, I(t) is a ‘control’ 

variable.  In the infusion studies conducted at Addenbrookes’s Hospital in 

Cambridge, UK, I(t) is maintained at a constant rate of 1.5 mL/min.  However, 

factors not within the experimenter’s control also influence the input flow rate.  In 

addition to the infusion rate of the experimenter which influences CSF formation, 

CSF is produced inside the brain, but much about its production remains 

unknown at the present time.  Currently, there are no direct methods to measure 

the CSF production rate over short periods of time.  Globally, the average 

secretion rate—used as a proxy for the production—is 0.35 mL/min with a 95% 

confidence range of 0.27 mL/min to 0.45 mL/min [2].  The lack of precise 

knowledge about the CSF production rate and the unmeasured factors that 

influence it are sources of noise in the total CSF formation rate.  Consequently 

the stochastic Marmarou model may be conceptualized as the classic Marmarou 

model with a noisy input flow rate that reflects uncertainty about CSF formation. 

The deterministic Marmarou model is contained in the final model 
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displayed above—it surfaces when  = 0 mL/min, which precludes noise, and 

consequently produces only the mean ICP value.  The general model with  ≠ 0 

mL/min reproduces the fluctuations inherent in the time-path of real 

measurements of ICP—information which is discarded by the deterministic 

Marmarou model.  Figure 2.3 compares the fluctuating path, similar to the actual 

noisy ICP data, reproduced by the stochastic Marmarou model with the path 

predicted by the deterministic Marmarou model.   

 

Figure 2.3 Comparison of deterministic and stochastic Marmarou model 

                    solutions. 

The mathematical structure of the Marmarou et al. [5] equation is the 

classic Verhulst logistic model, ubiquitous in biological growth and saturation 

phenomena [27].  The mathematical form of equation (9) is the stochastic logistic 

model and it is the natural stochastic extension [28, 29] of the Verhulst logistic 

model. 
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2.3.4 Clinical significance of the stochastic Marmarou model 

By building the fluctuations right into the dynamics of the model structure, 

the stochastic model makes full use of the information in the variations of the ICP 

waveform.  From this additional information, the time-varying probability 

distributions of the ICP waveform can be extracted, and it is these latter 

quantities that enable computation of the probabilities of clinically relevant 

events.  It is the knowledge of these probabilities of clinically relevant events that 

facilitate dynamic risk management of the patient.  Conceptually, the average 

value of p(t) at any given time ‘t’ is the average ICP at that time in an ensemble 

of patients with a similar CSF flow profile, as reflected in the values of the CSF 

flow parameters. 

2.4 Analysis of the stochastic Marmarou model  

In the remaining subsections, we will display the exact analytical solution 

to the stochastic Marmarou model and derive insights from the solution into the 

influence of noise on the ICP at each point in time, and on average.  Under the 

normal conditions described in [2], biological processes will settle down to a 

steady state after the transients have died out.  In the deterministic Marmarou 

model [5], the steady state (equilibrium) is found by setting the time rate of 

change of the ICP equal to zero.  What is the corresponding steady-state 

concept for a stochastic process?  The stochastic counterpart to the time-

independent steady-state level of the ICP is the time-independent probability 

distribution of the ICP, and the equilibrium probability distribution is to the 
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stochastic environment as the stable equilibrium point is to the deterministic one 

[30].  We derive the equilibrium probability distribution for the ICP, and from it, 

draw conclusions for the influence of CSF flow parameters and noise intensity 

upon the average steady-state ICP level.  We compute a measure relevant to the 

treatment and control of hydrocephalus: given the current value of the patient’s 

ICP, what is the probability that it will exceed a critical high level?  And how is 

that probability influenced by neurological characteristics of the patient such as 

their resistance to CSF flow and the noise intensity of the fluctuations in CSF 

formation rate which in turn drives the fluctuations in their ICP? 

2.4.1 Clinically relevant transition probabilities 

The mathematical formulation of the problem posed in the previous 

paragraph is: given that a patient’s ICP is currently x mmHg, where x is an 

arbitrary value, what is the probability that the ICP will exceed a critical threshold 

‘b’ (mmHg) at a future time?  Mathematically stated:  given that p(s) = x, find the 

following transition probability— P[p(t) > b | p(s) = x], t > s.  Simple though the 

question seems, finding the answer requires computing the conditional 

probability distributions of the CSF process.  Since the conditional probability 

distributions follow the Fokker-Planck partial differential equation, the problem is 

non-trivial, but Karlin and Taylor [31] circumvent the difficulty by solving a 

boundary-value problem associated with this dynamically changing probability.  

They show that the required probability satisfies a nonlinear ordinary differential 

equation which must be solved subject to two conditions on the probability that 

are natural consequences of the current ICP level when it is at one of the two 
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extreme points of the range of ICP values under consideration.  It is these 

conditions that give rise to the term ‘boundary value problem.’ 

 

2.4.2 Solution with constant infusion 

For a constant infusion rate I, equation (9) is explicitly solvable in closed-

form as shown below.  Given any initial ICP value “p0” (mmHg) at time t = 0, the 

future ICP value at any time “t” is given by: 

                        (2.10) 

Proof 

The Marmarou model with a constant infusion rate is 

                                       (2.11) 

This may be rewritten in the form of the stochastic logistic model 

                                       (2.12) 

It is shown in [28] that the solution to the stochastic logistic model is 

                             (2.13) 

Identification of the parameters “r” with (E/R), ‘K’ with (RI + pb) and  with 

E produces the claimed solution. 
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Discussion 

Note that the solution to the stochastic Marmarou model is found through 

an “integrating factor” which involves an integration constant, the evaluation of 

which necessitates a unit of 1/min unit for the 2 inside the exponent of the 

exponential function.  The noise intensity parameter  and the Brownian Motion 

process W(t) in the solution show the explicit influence of noise on the evolution 

of the ICP, underscoring the importance of modeling the noise in the clinical ICP 

data.  In addition to the practical utility of offering a closed-form analytical 

solution, this result has value for another reason: it shows explicitly that noise 

cannot be averaged away when the process is nonlinear.  If the Brownian motion 

process W(t) entered the solution for p(t) in an additive linear way, its effect 

would disappear on average.  But the Brownian motion process enters the 

solution in a highly nonlinear fashion, making it impossible to average out its 

effect to zero.  Finally, the solution depends upon the noise intensity parameter  

in a mathematically continuous way, a fact that is meaningful because the result 

shows that the solution to the deterministic Marmarou model [5] emerges as the 

special case corresponding to  = 0 mL/min, and so, it is natural to ask if the 

simpler deterministic model would suffice when the noise intensity is small.  

Should the influence of noise be negligible in a particular case, the value of  will 

be very small, and, because of the mathematical continuity in its dependence 

upon , the stochastic solution will be very close to the deterministic solution in 

such a case, and we may use the simpler deterministic model with confidence.  

However, the stochastic model is preferable in general for two reasons: it 
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captures the dynamics of the ICP data better than the deterministic model when 

the noise intensity is larger, and furthermore, the stochastic model characterizes 

the risk profile of the patient probabilistically.  Almost tautologically, the 

deterministic model cannot evaluate the risks due to the errors that are an 

inseparable part of medical data because deterministic modeling philosophy sees 

the future as completely predictable from the present situation.  These 

considerations suggest that, from a conservative modeling perspective, 

incorporating the influence of noise into the dynamics is conceptually more 

defensible. 

In principle, the solution contains all the transient probability distributions 

of the ICP process that characterize it on its way to equilibrium.  In practice, 

mathematical difficulties may make these transient distributions hard to extract 

from the solution.  But we can still compute the probability of the critical events by 

using a methodology that does not depend on that knowledge.  And we can still 

draw useful information about the nature of the process at steady-state.  Next, 

we find the steady-state probability distribution of the ICP process. 

2.4.3 Steady state probability distribution of ICP 

The steady-state probability distribution of the ICP is gamma with the 

parameters shown p.149 in [29], and will exist provided that the noise intensity 

parameter  satisfies the condition: . 

Proof 

The transition probability function satisfies the Fokker-Planck partial 

differential equation, which at steady-state, becomes an ordinary differential 

 b2 2 RI p
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equation (ODE).  Let  be the transition 

density.  Then, (x, t, y, s) satisfies the Fokker-Planck partial differential equation, 

hereafter abbreviated (FPE), stated in [29] for a general vector stochastic 

process, and here specialized to a scalar process for the stochastic Marmarou 

model: 

                             (2.14) 

subject to 

(x, t, y, s) = (x – y), where (x – y) is the generalized Dirac-delta function 

centered at y.  The FPE shows that the transition probabilities vary over time 

during the transient phase, but at steady-state, the probability transition functions 

are time-independent, and consequently .  The Fokker-Planck partial 

differential equation then becomes an ordinary differential equation which may be 

solved to find the steady-state distribution of the ICP process p(t).  The ODE is 

shown below: 

                             (2.14) 

Solving the time-independent Fokker-Planck ODE yields the Gamma 

distribution with parameters that are shown in [29].  It is shown in [29] that the 

steady-state distribution for the SDE  will exist provided 

that b2 < 2a.  The condition for the steady-state distribution of the ICP stated in 

the paper follows upon appropriate identification of the parameters of the 
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stochastic Marmarou model with those of the model in [29]. 

Discussion 

The integration required to evaluate the normalization constant generates 

a unit of 1/min for the 2 in the above inequality.  The mean and variance of the 

gamma distribution are not independent parameters as they are for the normal 

distribution.  Unlike the normal distribution in which the mean is the location 

parameter and the variance is the shape parameter, neither of the parameters of 

the gamma distribution is a pure location or pure shape parameter.  Thus, the 

two parameters that characterize the gamma distribution jointly determine its 

location and shape, because the mean and variance of this distribution are 

functions of both the parameters.  In practice, biological phenomena will 

converge to a steady-state, but nonetheless it is important to check that the 

technical condition stated for the existence of a steady-state distribution is 

satisfied by realistic values of the Marmarou model parameters.  We obtained 

typical values of R, E, p0, pb and I from a combination of [2] and private 

communication with Dr. M. Czosnyka, yielding R = 7 mmHgmL-1 min (reported 

values range between 6 and 10 mmHgmL-1 min), p0 = 0 mmHg and pb = 8 

mmHg.  Elevated elasticity is reported to be E > 0.18 ml-1 and the rate of infusion 

is I = 1.5 mLmin-1 [2].  The value of E was taken to be E = 0.15 mL-1, based on 

private communication with Dr. Czosnyka, and this value came from data 

gathered in infusion studies conducted at Addenbrooke’s Hospital.  pb is a 

baseline pressure which is different for each individual patient.  Based on the ICP 

plots in [2], we set pb = 8 mmHg.  This value is close to the average pb across all 



 

 

40 

infusion studies conducted at Addenbrooke’s Hospital which Dr. Czosnyka, in 

private communication, reported to be 6 mmHg.  While the authors solved the 

deterministic Marmarou model for the general case of p0 ≠ 0 mmHg in [2], and 

found that the average value of p0 in the infusion studies was p0 = 4 (private 

communication with Dr. Czosnyka), the non-zero p0 case is currently not 

analytically solvable for the stochastic Marmarou model.  Our p0 = 0 mmHg 

assumption is consistent with [5], in which the authors ignore the reference 

pressure.  However, we acknowledge that the non-zero p0 case is an important 

issue in mathematical modeling of hydrocephalus—and, in Chapter 4, we 

develop a quasi-analytical algorithm based on a stochastic exponential transform 

to solve the stochastic Marmarou model for non-zero p0.  A typical value for  is 

difficult to find since the input flow rate of CSF is not accessible to direct 

observation—only the fluctuations in the ICP are observable.  We estimated  

roughly as, σ = 0.33*I=0.33*1.5 mL/min = 0.5 mL/min, so that the flow 

fluctuations are 33% (1/3) of the flow rate.  This is a rough estimate—the choice 

of a typical value for  is unclear.  Because of the uncertainty and 

approximations involved in the estimate, we did the computations in which  was 

fixed, not just at  = 0.5 mL/min, but also at values of  lower as well as higher 

than 0.5 mL/min in order to check the robustness of the conclusions.  We have 

reported the results for  = 0.5 mL/min and for  = 0.8 mL/min.  The results of the 

computations of the probability as a function of R are robust across a wide range 

of , so that, even though the estimate of  is only approximate, we can be 

reasonably confident about the conclusions of the analysis.  To examine the 
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influence of  itself on the risk probability, we computed the probability across a 

wide range of  as shown in Figure 2.4 in subsection 2.4.6—again, in an effort to 

reduce the impact of our imprecise knowledge of  upon the findings..   

 

While our estimate of  is only approximate, we note that there is 

imprecision and uncertainty about all the parameter estimates, especially that of 

the CSF flow resistance ‘R.’ Estimation methods specifically developed for 

dynamic models are needed.  In this chapter, the primary objectives were to 

introduce SDE methodology to CSF research, demonstrate its analytical power, 

and show its clinical usefulness in dynamic risk management.  Consequently, we 

used existing typical estimates of the model parameters even though some of 

them are imprecise and approximate.  With  = 0.5 mL/min, the condition for the 

existence of a steady-state probability distribution is met with ease.   

Our next three results are motivated by the following considerations.  A 

larger cerebrospinal fluid resistance R tends to increase ICP by increasing the 

pressure due to the circulatory CSF component.  This is a direct consequence of 

Davson’s equation [6]:  ICP
CSF

 = (resistance to CSF outflow) x (CSF formation) + 

(pressure in sagittal sinus).  This naturally leads to the following questions.  How 

will the intensity of the fluctuations influence the relationship between resistance 

and ICP?  The same relationship may hold on average, but, as anticipated in the 

solution to the stochastic Marmarou model, it may be moderated by the noise 

intensity parameter because of the nonlinearity of the ICP process.  How will the 

intensity of fluctuations affect the average steady-state ICP—is the average 
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steady-state ICP smaller or larger when the intensity of fluctuations increases?  

Finally, will the intensity of fluctuations attenuate or amplify the effect of 

resistance to CSF flow on the average steady-state ICP? 

 

2.4.4 Relating average ICP to CSF flow resistance 

The average steady-state ICP, denoted by  increases with the 

cerebrospinal fluid resistance R—thus the relationship between R and ICP holds 

on average. 

Discussion 

The steady-state probability distribution of ICP is gamma with the 

parameters shown in the previous subsection.  From well-known properties of the 

gamma distribution, it follows that the steady-state mean ICP level  is given by:  

.  Therefore, .  From the expression for , it is 

clear that the average ICP level does indeed increase with R, provided that 

.  This condition is satisfied, using the values of the parameters in the 

previous subsection. Thus, the increasing relationship between the actual ICP 

level and the cerebrospinal fluid resistance, predicted by Davson’s equation 

when ICP is conceptualized as a deterministic process, also holds on average at 

steady-state when ICP is modeled as a stochastic process. 

2.4.5 Relating average ICP to noise intensity 

The average steady-state ICP level, decreases with the intensity of 

fluctuations, measured by the infinitesimal variance parameter 2. 
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Discussion 

From the relationship derived in the previous subsection, 

, it is clear that  decreases as 2 increases.  A larger noise 

intensity corresponds to greater variation in the CSF input flow rate which 

translates into greater variation in ICP, and these larger fluctuations could cause 

the average ICP level to increase, decrease or remain unaffected.  The nonlinear 

influence of the parameters of CSF flow dynamics on ICP level turns out to 

reduce the average ICP value when the fluctuations in ICP are greater.  This is 

an outcome that one would expect to find when steady-state has been 

achieved—when the transition probabilities have settled down to constant levels 

so that the probability distribution of ICP is no longer changing over time.  This 

mathematical finding could be tested by separating a random sample of patients 

into two groups, such that one group has more variability in its ICP levels (due to 

higher variability in its CSF input flow rate) than the other group, and then 

conducting a statistical test of significance—such as a t-test—on the difference in 

mean ICP levels in these two groups at steady-state.   

2.4.6 Effect of noise intensity on ICP-R relationship  

The resistance increases the ICP on average by a smaller amount when 

the intensity of fluctuations is higher. 

Discussion 

From , it is clear that a higher 2 will dampen the effect 

of the cerebrospinal resistance on the average steady-state ICP level.   This is an 
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outcome that one would expect to find at steady-state.   The mathematical finding 

could be tested by separating a random sample of patients into two groups, such 

that one group has more variability in its ICP levels than the other group (due to 

higher variability in its CSF input flow rate), and then correlating the mean ICP 

level with the cerebrospinal resistance in each group at steady-state.  According 

to the mathematics, the correlation should be smaller in the group with more 

variable ICP.  Given the linear relationship between the steady-state mean and 

the cerebrospinal resistance, a simple correlation coefficient such as the Pearson 

product moment should suffice. 

 

Next we turn our attention to dynamic management of the patient’s risk.  

Risk may be quantified in terms of the probability of the onset of some critical 

event, say the ICP exceeding a dangerously high level.  Given the current value 

of the patient’s ICP, what is the probability that it will exceed a high level?  Such 

a probability is intrinsically dynamic because it depends upon the patient’s 

current condition (their current ICP), the dynamics of the patient’s CSF flow and 

the noise intensity 2.  We want to understand how the probability is influenced 

by important clinical characteristics of the patient such as their resistance to CSF 

flow, and by the noise intensity. 

2.4.7 Transition probabilities as solutions of boundary value 

problems 

Given that the current ICP is x mmHg, where 0≤x ≤ b, let u(x) denote the 

probability of reaching the level b.  Then u(x) satisfies the following nonlinear 
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differential equation, which must be solved subject to the two conditions on u(x) 

at x = 0 and at x = b: 

                             (2.15) 

The conditions on u(x) at the two corners x = 0 and x = b make this a two-

point boundary value problem.  The solution is given in terms of the scaling 

function S(x): 

, where , and 

                             (2.16) 

The integrals defining s(x) and S(x) are indefinite at the lower end 

because the final answer is unaffected by its choice.  For our clinical applications, 

it is natural to take the lower end point to be zero. 

Proof 

Consider the stochastic differential equation dX = (X) dt + (X) dW.  

Given that the current value of X(t) is x, where 0≤x ≤ b, let u(x) denote the 

probability of reaching the level b.  It is shown in [31] that u(x) satisfies the 

nonlinear ordinary differential equation: Consider the stochastic differential 

equation dX = (X) dt + (X) dW.  Given that the current value of X(t) is x, where 

0≤x ≤ b, let u(x) denote the probability of reaching the level b.  It is shown in [31] 

that u(x) satisfies the nonlinear ordinary differential equation: 
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                             (2.17) 

Therefore, in the context of this paper, u(x) satisfies the following ODE, 

                             (2.18) 

Using Green’s function methods, the solution to the above boundary value 

problem is given in terms of an important quantity called the scaling function S(x) 

[31]: 

, where , and 

                             (2.19) 

Identification of the parameters with those of the stochastic Marmarou 

model, immediately yields the claimed result. 

Discussion 

While the above representation is, in principle, a closed-form analytical 

solution, it is, in practice, a quasi-analytical solution because the integral that 

defines s(x) cannot be obtained in closed-form.  However, that is no limitation 

because we can integrate it numerically after substituting the empirically 

established values of the parameters.  We used the parameter values shown in 

the subsection “Steady-state Probability Distribution of ICP.”  We took the critical 

level ‘b’ to be 40 mmHg, based on the clinical finding reported in [2] that patients 
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were able to tolerate increases in ICP up to 40-50 mmHg.  Our rationale was 

that, from a clinical perspective, a conservative approach to patient management 

would be consistent with assessing the probability of reaching the lower end 

point of the 40–50 mmHg range that patients are able to tolerate.  Thus our 

critical event is defined as “reaching an ICP of 40 mmHg.”  In order to understand 

how the probability is influenced by the noise intensity parameter , we 

computed the probability over a range of  = 0.4 mL/min to  =1.3 mL/min.  For 

each value of  in this range, we solved the boundary-value problem to find the 

probability of reaching 40 mmHg.  Furthermore, in order to understand the 

influence of the patient’s initial condition upon the probability of the critical event, 

we repeated this set of computations for three different starting levels of ICP; the 

curve shown in Figure 2.4 is for a starting level of ICP of 35 mmHg.   

 

Figure 2.4 Probability that ICP reaches 40 mmHg as a function of noise 

                    intensity parameter . 
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In order to understand how the probability is influenced by the resistance 

to CSF outflow R, we computed the probability over a range of R = 4 mmHgmL-1 

min to R =12 mmHgmL-1 min.  For each value of R in this range, we solved the 

boundary-value problem to find the probability of reaching 40 mmHg.  Again, we 

repeated this set of computations for three different starting levels of ICP; the 

curve shown in Figure 2.5 is for a starting level of ICP of 35 mmHg.  Across the 

three initial levels of ICP, the curves have a similar shape and are simply 

translated vertically.   

 

Figure 2.5 Probability that ICP reaches 40 mmHg as a function of 

resistance to CSF flow parameter R. 

Figures 2.4 and 2.5 show that the probabilities increase at an increasing 

rate (convex functions).  Furthermore, they tell an interesting neurological story—

namely, that the probabilities of the critical events exhibit strong threshold effects.  

In Figure 2.4, below a critical level of noise intensity, the probabilities are very 

low—almost zero—but beyond a threshold value of  = 1.1 mL/min in Figure 2.4, 
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they rise steeply.  In Figure 2.5, as R (mmHgmL-1min) varies from 4 to below 10, 

the probabilities are almost zero, but beyond R = 10 mmHgmL-1 min, they rise 

dramatically.  Furthermore, at low levels of noise intensity, the probabilities 

remain close to zero throughout the range of R (mmHgmL-1min) from 4 to 12.  

But as  increases to 0.8 mL/min—the value assumed for it in Figure 2.5—R has 

a strong effect on the probability beyond the critical threshold of 10 mmHgmL-

1min.  The clinical significance of these findings is that erratic fluctuations in ICP 

(caused by a larger input flow rate noise intensity ) will significantly increase the 

patient’s risk, as measured by the probability of the critical event.  Because the 

risk increases rapidly beyond the threshold value of , these results suggest that 

an essential component of risk management is to carefully minimize erratic 

fluctuations in the patient’s CSF input flow rate at all times.  Finally, Figure 6 

shows the probability of the critical event as a function of both R and  in a three-

dimensional plot, starting at an ICP level of 35 mmHg.   
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Figure 2.6 Probability that ICP reaches 40 mmHg as a function of 

resistance to CSF flow parameter R, and noise intensity parameter . 

 

The two-dimensional surface shows the value of the probability for each 

combination of values of R and .  To facilitate interpretation of the surface, we 

used a mesh in which the dark lines are the probability plots as a function of R 

and the red lines are the probability plots as a function of .  Figure 6 shows very 

clearly that threshold effects are sensitive to both R and , and beyond the 

threshold, the probabilities asymptotically approach one. 

2.5 Conclusions 

The stochastic generalization of the Marmarou model offers a tractable 

analytical description of the noisy ICP dynamics and yields insights into the 

impact of noise.  The SDE offers a rigorous analytical framework to study issues 

of clinical interest and neurological significance such as the patient’s risk.  A key 

clinical implication is that fluctuations in the CSF formation rate—which increase 

the fluctuations in ICP— should be minimized to lower the patient’s risk.  The 

stochastic differential equation framework, in conjunction with nonlinear control 

theory, can be used to develop a nonlinear automatic controller to regulate 

shunts to facilitate continuous CSF drainage. 
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CHAPTER 3 

REFERENCE PRESSURE IN CEREBROSPINAL FLUID DYNAMICS 

Mathematical models of pressure-volume compensation have played a 

central role in hydrocephalus research because they enhance understanding of 

the circulatory dynamics of cerebrospinal fluid (CSF), thereby improving 

treatment of hydrocephalus, a condition caused by excessive accumulation of 

CSF in the brain.  The classic model in mathematical research on hydrocephalus 

was described and generalized in Chapter 2 to accommodate noise in the 

dynamics of CSF flow.  The generalized model results in a nonlinear stochastic 

differential equation (SDE).  In this chapter, we will use the generalized model to 

partially resolve an ongoing controversy over the appropriate value of the 

reference pressure parameter in the classic model. 

3.1 Background 

Intracranial dynamics are driven by the circulation of CSF, and the 

circulatory dynamics of CSF, in conjunction with cerebral blood, results in 

intracranial pressure (ICP).  Cranial contents are operationalized by the volume 

of CSF, and mathematical pressure-volume models of cerebrospinal fluid relate 

CSF volume to ICP.  In the literature on mathematical pressure-volume models, 

the Marmarou model [32, 53] remains the classic, and is given by the nonlinear 

ordinary differential equation (ODE): 

                             (3.1) 

The parameter p0 refers to the reference pressure about which substantial 
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controversy exists in the literature. 

3.1.1 The reference pressure controversy 

The Marmarou [32, 53] ODE shown in equation (3.1) relates the 

intracranial pressure p(t) to the infusion rate I(t).  The coefficient E is called the 

cerebral elasticity (or elastance coefficient) and has the units ml-1 [54], pb is a 

baseline pressure (units mmHg), p0 is the reference pressure  (units mmHg) 

parameter, often taken to be zero because, as noted in [54], the significance of 

p0 is unclear.  Marmarou [32] himself implicitly set the reference pressure 

parameter p0 to zero by simply ignoring it in his model.  Under that assumption, 

equation (3.1) has the structure of a homogeneous logistic differential equation, 

described by the ODE:  

                          ,                             (3.2) 

The Marmarou model performs well in practice, continues to be extensively used 

and is now considered a classic in the mathematical modeling of cerebrospinal 

fluid (CSF) dynamics [57].  However, there is controversy over the reference 

pressure parameter p0, upon whose value disagreement prevails among different 

reseachers.  While Marmarou [32] himself took the reference pressure to be 

zero, non-zero values of reference pressure have in fact been used by other 

reseachers.  For example, Czosnyka et al. [54] take the reference pressure to be 

the pressure inside the dural sinuses.  Furthermore, in infusion studies 

conducted at Addenbrooke’s Hospital at Cambridge, UK, the average value of p0 

in the infusion studies is reported to be p0 = 4 (private communication with Dr. 

Czosnyka).  Wirth and Sobey [56] also argue that the reference pressure should 

2dx
(ax bx)

dt
 
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be non-zero.  Indeed, based on their model for cerebral compliance, Wirth and 

Sobey [56] suggest a very definite value for the reference pressure.  Under their 

reasoning, Wirth and Sobey [56] suggest that the reference pressure should be 

neither zero nor the pressure inside the dural sinuses but instead should be 

determined by the exact mathematical relationship: 

          (3.3) 

In equation (3), ps is the dural sinus pressure, ps is the pressure drop through 

the bridging veins, and K is the elastic modulus of a collapsed vessel.  According 

to Wirth and Sobey’s [56] reasoning, typical values of the parameters are: ps ~ 5 

mm Hg, , ps ~ 1 mm Hg, and K ~ 0.5 to 1 mm Hg, therefore the reference 

pressure p0 would range from values of 5.5 to 5 mm Hg.  While Wirth and Sobey 

[56] disagree with Czosnyka et al. [54] in that they urge that the reference 

pressure should not be set equal to the sagittal sinus pressure, they 

acknowledge that certain values of ps and K could produce a value for p0 

roughly equal to the sagittal pressure ps.  Thus we are left with the following 

possibilities for the reference pressure p0: p0 = 0, p0 = ps, and p0 is determined by 

equation (3.3), which, for some values of of ps and K, could yield p0 ~ ps.  In 

either of the latter two cases, the fundamental point is that p0 ≠ 0. 

3.1.2 An approach to resolving the controversy 

We offer a possible resolution of this controversy through a mathematical 

generalization of the classic Marmarou [32] model.  The generalization [30, 57] is 

motivated by the intrinsic fluctuations in intracranial (ICP) level around the 

deterministic path predicted by the Marmarou [32] model—these fluctuations are 

0 s sp p p K  
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due to noise arising from various sources such as the measurement device, 

breathing and movement of the patient, to the approximations and idealizations 

made in developing the Marmarou [32] model, and to other factors that affect ICP 

that have been omitted from Marmarou’s [32] deterministic model.  As 

established in Chapter 2, one way of accounting for the effect of the noise in 

observed ICP measurements in pressure-volume compensation studies is to 

model the evolution of ICP as a stochastic differential equation, hereafter 

abbreviated SDE [30, 57].  Our strategy is based on the mathematical finding that 

the two cases p0 = 0 and p0 ≠ 0 have very different implications for the nature of 

the solutions of the SDE, and in particular, that in the latter case we cannot 

mathematically rule out, with probability one, the possibility of unbounded values 

for the state variable. 

3.1.3 The inhomogeneous stochastic logistic model 

SDEs play an important role in electrical engineering and the 

neurosciences because they arise in a natural way as models of dynamic 

phenomena influenced by fluctuations.  As Karlin and Taylor [8] note, they enjoy 

a great advantage over discrete models in that the continuous time formulation of 

SDEs frequently permits explicit answers to substantively important questions, 

even though such answers would be inaccessible in the discrete formulation of 

the same problem.  It will be shown in this chapter that the SDE formulation 

suggests a novel resolution of the reference pressure controversy in 

cerebrospinal fluid dynamics research. 

We consider a class of stochastic differential equations that are pervasive 
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in neuroscience and engineering.  This class of equations encompasses a large 

number of phenomena.  To free the rest of the exposition from intrusive detail, 

we will henceforth focus on that part of the mathematical structure of the 

Marmarou model that is most relevant to settling the controversy about whether 

p0 = 0 or p0 ≠ 0.  

As noted earlier, under the hypothesis that p0 = 0, the deterministic 

Marmarou model has the structure of equation (3.2), which is the homogeneous 

logistic equation.  The first step is to extend equation (3.2) to make it stochastic. 

Considered the natural stochastic extension of the logistic model, the stochastic 

logistic model has been successfully used to model the noise in the degradation 

dynamics of progressive breakdown in ultrathin films in metal-oxide-

semiconductor (MOS) capacitors [39].  This results in the following structure for 

the stochastic Marmarou model, which was analyzed in Chapter 2: 

                                     (3.4) 

Under the hypothesis that p0 ≠ 0, the stochastic Marmarou model has the 

following structure: 

                                     (3.5) 

In both equations (3.4) and (3.5), a, b and c are constants.  The drift term 

is called the Marmarou model, considered the fundamental model in the study of 

the brain physics of cerebrospinal fluid dynamics [32, 53]. The infinitesimal 

variance structure extends the deterministic Marmarou model to take fluctuations 

in fluid flow into account. Mathematical modelers in neuroscience assume c = 0, 

so that the drift term in the Marmarou model is homogeneous, but this decision is 

2dX (aX bX)dt XdW  

2dX (aX bX c)dt XdW   
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grounded in the currently incomplete understanding of CSF flow dynamics rather 

than upon a clear scientific rationale. Our analytical results show that there are in 

fact strong mathematical reasons to support homogeneity of the drift term, 

thereby replacing an ad hoc decision by rational justification. The parameter c 

distinguishes between the competing hypotheses p0 = 0 and p0 ≠ 0, because c = 

-(I + pb/R)Ep0/R; consequently the hypothesis p0 = 0 implies that c = 0, and the 

hypothesis p0 ≠ 0 implies that c ≠ 0.  In the definition of c, pb is a baseline 

pressure, R is the resistance to cerebrospinal fluid flow, and E is the cerebral 

elasticity. The class of phenomena described by Equation (5) includes, as special 

cases, models of many important phenomena in neuroscience and electrical 

engineering. Clearly, on both theoretical and practical grounds, these facts 

warrant a rigorous study of this class of stochastic differential equations. 

If equation (3.4) is the correct description of CSF dynamics, then the 

hypothesis p0 = 0 is supported; if equation (3.5) is the correct description of CSF 

dynamics, then the hypothesis p0 ≠ 0 is supported.  To decide between these 

competing descriptions, we derive the conditions under which the existence of 

positive and non-explosive solutions to these SDEs is guaranteed.  The logic is 

that a valid description of the evolution of ICP—which reflects CSF dynamics—

must minimally generate predictions that are positive and do not grow 

unboundedly large.  The question regarding the model that provides a better 

statistical fit to the ICP data is important but not considered here—for, regardless 

of the statistical fit, however measured, a model that does not guarantee positive 

and finite values for ICP must be viewed with caution from a theoretical 
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perspective. 

3.2 Analysis of the inhomogeneous stochastic logistic model 

The solution of nonlinear SDEs raises daunting mathematical obstacles 

and most nonlinear SDEs defy closed-form analytical representations of their 

solutions. Nonlinear SDEs that satisfy the reducibility criterion [58] can be solved 

through Ito’s lemma after discovering a suitable transformation of the state 

variable.  The class of SDEs with quadratic drift and infinitesimal standard 

deviation proportional to the state variable is completely solvable in closed-form 

for the special case in which c = 0 so that the drift is homogeneous—this was 

done in Chapter 2.  Standard text-book solutions for the homogeneous case are 

available, for example, in Oksendal [10] and Gard [58].  The inhomogeneous 

case c = 0 is challenging, because the SDE fails the reducibility criterion, as 

shown in Gard [58].  

Because there is no explicit closed-form solution for SDEs with 

inhomogeneous quadratic drift and infinitesimal standard deviation proportional 

to the state variable, the existence question becomes imperative: under what 

conditions do solutions to these systems exist?  Will a solution, when it exists, be 

unique so that we may rest assured that it is the only solution?  Two additional 

issues of practical consequence and engineering relevance remain.  Positive 

solutions are frequently desirable since the state variable in many practical 

applications has no meaning if it is negative.  And finally, the engineering 

importance of solutions that remain finite with probability one is obvious.  Thus 

we ask: will the solutions be positive and non-explosive?  The rest of the chapter 
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is devoted to answering these questions. 

Before embarking on the mathematical details needed to answer these 

questions, a simple example will illustrate the subtlety of existence, positivity and 

non-explosion issues for this class of SDEs, so pervasive in applications. 

Consider the special case in this class defined by a = c = 0 so that the stochastic 

system is: 

                                     (3.6) 

Even a tiny change of the coefficient ‘b’ in the above system will result in 

remarkably different sample path behavior.  In the above system, if,  

then  as ; but changing the coefficient ‘ ’ to ‘ ’ forces 

 as  [59].  If we choose σ to be an arbitrarily small quantity t , it is 

clear that, even though the ‘b’ coefficients for two processes differ by an 

arbitrarily small amount, the asymptotic behavior of those two processes will be 

strikingly different from each other, forbidding explosions in one case while 

permitting them in the other.  The somewhat elaborate mathematical machinery 

that follows reflects the delicateness of these issues for the yet broader class of 

SDEs that contains this simple example as a special case.  

3.2.1 Existence, positivity and non-explosion 

Let (, F, P) be a complete probability space on which the following are 

defined: 

, a standard one-dimensional Wiener process, and 

(ii) , a random variable 

t t t tdX bX dt X dW  

20 b 2 

tX 0 t  b 2b 2

tX  t 

 t(i)W W :0 t T  


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We assume that  is independent of the Wiener process . For each t, 

define the  -field Ft = {s, Ws, 0 ≤ s ≤ t}  (all  −null sets in ). It is clear 

that the filtration (Ft) satisfies the usual conditions, and W is an Ft -adapted 

Wiener process. 

Let a(x) = ax2 + bx + c where a < 0, b > 0,and c  0.  Let  where 

 > 0.  Consider the stochastic differential equation: 

                                     (3.7) 

where  with . The stochastic integral on the right side of (3.7) is 

taken in the sense of Itô. 

Definition 3.1. A process   defined on (, F, P) is called a 

strong solution of the stochastic differential equation (3.1) if the following 

assertions hold: 

1.  is Ft -adapted with continuous sample paths. 

2.   <  a.s. 

3. For each ,  almost surely 

Definition 3.2. The stochastic differential equation (3.1) with initial condition 

 has a unique strong solution if for any two strong solutions and 

on (, F, P), one has 
. 
 

The notion of uniqueness given above is called strong uniqueness of 

solutions which is especially attractive from an engineering perspective since it 

 W
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
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ties the solution concept directly back to applications and–where necessary–

simulations.  In this section, we will show the existence, uniqueness, non-

negativity, and non-explosion of strong solutions to the SDE (3.1). Our proof is 

essentially self-contained, and is presented in several steps.  

STEP 1: Define the functions 

 

 

for any fixed integer  > 0, where the notation  stands for min{u, v} and 

= max{u, v}.  Consider the associated SDE given by 

                   
t t

(n) (n) (n)

t n n s n s s

0 0

X a (X )ds (X )dW                                   (3.8) 

where .  The coefficients in (3.2) are bounded (for any large 

fixed ) and Lipschitz-continuous.  Therefore, by the standard theory of SDEs, 

there exists a unique strong solution of the equation (3.2).   

Define inf  > }, and . Though the process 

depends on n, we have not displayed it to simplify the notation.  It is clear that  

solves the equation (3.1) till time . 

STEP 2: We next claim that, that almost surely for all . To prove this, 

define 

 

Likewise, define 

na (x) a((x n) ( n))   
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Let  be the solution of the equation 

 

Fix any ε > 0. Define 

 inf < -ε  and  inf  

For all  such that  < , it follows that for any  ∈   

 

     -ε  

        -ε. 

This contradicts the definition of infimum in the definition of the stopping time . 

Since ε is arbitrary, a.s. for all t.  By the continuity of paths of the solution, 

 is non-negative valued for all t almost surely. Therefore, the processes 

and coincide. 

STEP 3: Let us consider the solution  over the time interval for any fixed, 

finite time . Since 

 

it follows that 

 

by the Gronwall Lemma. 
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Likewise, 

 

By the Gronwall inequality, for all  

 

where  One can also bound in a similar 

manner by using the Itô Lemma and the estimate (3.4). This is possible since we 

have assumed that  < . 

STEP 4: We will now estimate .  By the Itô Lemma, 

 

         

          

 

Therefore, 
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by the Burkholder-Davis-Gundy inequality.  Using the bound for , the last 

term on the right side can be bounded by a constant K.  By the Gronwall 

inequality, 

 

so that is finite.  Let us call it as C. 

STEP 5: Consider 

 

           

Hence , and by the Borel-Cantelli Lemma, we infer that 

infinitely often  = 0.  Therefore, eventually with probability one.  

If we denote the limit of  by , then 

      

Since T is arbitrary, we can conclude that  a.s.  Therefore, the solution 

doesn’t explode, and we are guaranteed the existence of a unique, non-negative 

solution without explosion. 

3.3 Implications for the Reference Pressure 

3.3.1 Constraints of existence, positivity and non-explosion 

The proof of existence depends upon the Lipschitz growth conditions, in 

which the drift and infinitesimal standard deviation enter as differences between 

distinct points in the state space.  Since the inhomogeneous parameter ‘c’ drops 

out in forming the difference, it can have any value-positive or negative-without 
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compromising existence.  Because the growth conditions involve absolute 

values, the parameters a, b, and σ can have any values—subject to the obvious 

requirement that σ> 0 by definition-without jeopardizing existence.  The proof by 

contradiction argument to establish positivity of the process depends upon the 

assumption that c ≥ 0.  Thus, if c< 0, the process value could become negative. 

This may be legitimate for some applications-for example if the state variable 

denotes the voltage in a circuit-but inappropriate for problems in which only 

positive values of the state variable are meaningful, such as, for example, if the 

state variable denotes the power in an electrical circuit, or the size of a 

population.  In establishing non-explosion, we capitalized on the Gronwall 

inequality by showing that the first and second moments of the process are 

bounded above at every point in time, and that required the condition a< 0.  

Thus, for a> 0, the process could explode. 

3.3.2 The case for zero reference pressure 

Our analysis has provocative implications for settling the controversy 

regarding the reference pressure parameter p0 in the celebrated Marmarou [32] 

model.  That model is a nonlinear differential equation based on physical 

analogies between cerebrospinal fluid dynamics and an electrical circuit, and the 

drift term in the stochastic extension of the Marmarou model has the form ax
2 

+ 

bx + c.  As discussed earlier, the parameter c is taken to be zero by many brain 

physics and neuroscience researchers, including Marmarou himself.  However, 

the reason that c is assumed to be zero is because it is proportional to the 

reference pressure parameter p0 which is “a parameter of uncertain 
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significance”[29]. 

 On the grounds that the clinical and neurological meaning of p0 are 

presently unclear, researchers set p0 = 0 which results in c = 0.  However, is it 

not somewhat capricious to set p0 = 0 merely because its clinical and 

neurological significance are not currently well-understood?  Would better 

understanding in the future then decree a non-zero value for p0?   

Our analysis substitutes a rigorous mathematical rationale for the 

arbitrariness inherent in the current approach driven by subjectivity: p0 should 

equal zero not because its meaning is unclear, but because a non-zero value for 

p0 would create an explosive neurological process.  That’s because c = -(I + 

pb/R)Ep0/R, and, because all the quantities on the right hand side are positive, c< 

0.  But we proved that explosions can be conclusively ruled out only when c ≥ 0. 

And that mathematical fact determines whether p0 should be zero or non-zero.  

p0 should be zero because that is the only way to assure that c = 0, thereby 

forbidding explosions.  It is pleasing that mathematical rigor resolves a practical 

matter so elegantly.  Normally, advanced mathematics offers little commentary 

on practice, but here the practical issue is enlightened and aided by advanced 

mathematical reasoning.  While the mathematical considerations favor a zero 

value for ’p0,’ we certainly do not suggest that the mathematics should supplant 

neuroscientific knowledge generated by experimentation; rather we urge that the 

mathematical insights should augment neuroscience experiments and guide the 

research inquiry in the most promising directions.  The mathematical logic 

presents one possible rationale for a zero value for ’p0,’ based on the theoretical 
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desirability of ruling out unbounded solutions—however, more empirical work is 

needed to conclusively settle the issue. 

3.4 Conclusions 

Our research contributes by establishing the precise conditions that will 

guarantee existence, positivity and non-explosion of the solutions for a class of 

SDEs that are ubiquitous in neuroscience and engineering.  These theoretical 

issues are not infrequently ignored or relegated to the realm of speculation, often 

bolstered by the comforting thought that no harm is done as long as an 

approximate solution works.  But here it is established that mathematical rigor is 

accompanied by unheralded benefits.  While our results about global behavior 

enrich existing theory, we demonstrate that, in this case, the theoretical results 

also illuminate a pragmatic issue and bestow mathematical rigor upon an ad hoc 

rule used in a fundamental model in the neurosciences.  The results facilitate the 

engineer’s search for insights through simulations for nonlinear control problems 

in which the drift is quadratic.  In Chapter 4, we develop an algorithm to quasi-

analytically solve higher order polynomial systems—a result that will permit 

solving the stochastic Marmarou model for the non-zero p0 case in future 

research.  
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CHAPTER 4 

STOCHASTIC DIFFERENTIAL EQUATIONS WITH POLYNOMIAL DRIFT 

Signals described by stochastic differential equations in which the drift is a 

polynomial function of the state variable and the infinitesimal standard deviation 

is proportional to the state variable are pervasive in electrical engineering and the 

physical sciences.  Most of these equations cannot be solved in closed-form.  

The innovation of this research is a two-stage algorithm that first transforms the 

SDE into an ordinary differential equation with time-varying and random 

coefficients, and then converts that into a differential equation in which every 

coefficient except one is constant.  The contributions are an algorithm that solves 

polynomial SDEs with linear noise, and that harnesses noise to influence the 

equilibria and characteristic response time of the system.  

 

4.1 Background 

4.1.1 Relationship to general Langevin equation 

The general Langevin equation was introduced in equation (1.10) in 

Chapter 1 of this dissertation.  It is reproduced here: 

                                             (4.1) 

Equation (4.1) covers all the cases in this research and most cases of 

practical interest in engineering, neuroscience and operations research.  In the 

absence of control variables ‘u,’ the signals considered in this chapter 

correspond to the specification that f(X) is a polynomial in X and (X) is 

dX f(X,u)dt (X,u) dW(t)  
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proportional to X: 

                                             (4.2) 

4.1.2 Relevance to cerebrospinal fluid dynamics 

The classic Marmarou [32] model that was extended in Chapter 2 to 

accommodate noise in CSF flow dynamics corresponds to a homogeneous (a0 = 

0) quadratic specification of the drift in equation (4.2): 

                                             (4.3) 

The non-zero reference pressure case discussed in Chapter 3 corresponds to an 

inhomogeneous (a0 ≠ 0) quadratic specification of the drift in equation (4.2): 

                                             (4.4) 

Thus, the algorithm developed in this chapter can solve the stochastic Marmarou 

model for the general case of non-zero reference pressure.  

4.1.3 Relevance to electrical engineering 

Many signals in electrical engineering are described by stochastic 

differential equations (SDEs) with infinitesimal drift coefficients that are 

polynomial in the state variable.  For example, Rebolledo, Rios, Trigo and Matus 

[37] show that the current and power in gas discharge lamps are both well-

described by a SDE with infinitesimal drift and standard deviation terms 

proportional to the state—a simple linear example of polynomial systems.  The 

post-breakdown current-time characteristics of constant voltage-stressed metal-

oxide-semiconductor (MOS) capacitors with ultra-thin oxides is well-captured by 

the logistic model [38, 39], whose natural stochastic extension to incorporate the 
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pervasive noise in the current is the stochastic logistic model [39]—a quadratic 

example of polynomial systems.  SDEs with polynomial drift arise in the analysis 

of sampling mixers [60], as models of noisy signals in electrical circuits, and as 

special cases of the Langevin equation [35, 10].  SDEs with polynomial drift are 

solvable in the simplest linear case but remain tractable only in a handful of 

nonlinear models.  Because SDEs with polynomial drift and linear noise are 

ubiquitous in engineering and science, there is strong interest in solving these 

systems.  

4.2 A quasi analytical algorithm to solve polynomial SDEs 

4.2.1 The reducibility condition 

The key player in this chapter is equation (4.2).  Some models in the class 

of SDEs represented by equation (4.2) satisfy the reducibility condition [61] which 

states that, if the signal X(t) satisfies the SDE, 

dX (X,t)dt (X,t)dW                                               (4.5) 

and if the coefficients (.) and (.) obey the following condition, 

                                             (4.6) 

then, it may be shown [62], that under a suitable transformation Z(t) = F[X(t)], the 

transformed signal Z(t) will satisfy an SDE in which the drift and variance terms 

are independent of Z, 

                                             (4.7) 

for which the solution leaps out at a glance because both the infinitesimal drift 

and standard deviation terms are free of ‘X.’   
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If the majority of SDEs arising in applications respected the reducibility 

condition, the case for more sophisticated solution methods would be less 

compelling.  But many SDEs of practical interest unabashedly violate the 

reducibility condition.  And the slightest change in the drift or variance term of the 

SDE can transform a reducible equation into one that staunchly resists 

reducibility.  For example, the stochastic logistic model with homogeneous 

quadratic drift (equation (4.3)) satisfies the reducibility condition and can be 

explicitly solved, as shown in Chapter 2.  However, the stochastic logistic model 

with inhomogeneous quadratic drift (equation (4.4)) violates the reducibility 

condition, turning the quest for its solution into a non-trivial and arduous task, as 

mentioned in Chapter 3. 

Consequently, an algorithm that can handle the irreducible case is 

needed.  And although lower degree polynomials such as linear, quadratic or 

cubic may suffice for some applications, the methodology should ideally be 

applicable to polynomials of arbitrarily high degree.  The quest for such generality 

is prompted not by idle mathematical curiosity but by pragmatic sentiments.  For 

a methodology that can solve SDEs containing a polynomial drift with arbitrarily 

high degrees can be harnessed to solve more general autonomous SDEs with 

arbitrarily small error.  Such a system has the form: 

                                             (4.8) 

Provided that the infinitesimal standard deviation term is proportional to the state 

variable, the algorithm developed in this chapter will approximately solve 

equation (4.8), as will be shown in section 4.3.3. 

dX   f (X)dt   XdW 
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4.2.2 A stochastic exponential martingale transform 

Consider a probability space consisting of a set  of all possible 

outcomes, a sigma algebra of events F, and a probability measure P defined on 

F.  As usual, the probability space (, F, P) is assumed to be complete, so that F  

contains all the P-null events, a technical assumption that is standard in the 

literature (Wong and Hajek 1985, p. 3).  Furthermore, the probability space (, F, 

P) is equipped with a filtration {Ft} defined on the sigma algebra F.  A filtration Ft 

is a  field of events satisfying the condition that t ≥ s implies that Ft Fs, a 

definition that intuitively captures the notion of increasing information patterns 

over time [64].  A process Xt is defined to be a martingale with respect to the 

filtration Ft if it satisfies the property, E [Xt| Fs ] = Xs, for any s < t.   

Let W(t) be a standard Brownian Motion process.  Then the process 

 is a martingale [10].  Consequently, the process 

 is also a martingale.  This latter process is called a 

stochastic exponential martingale and will be a key player in the development of 

our algorithm.  

4.2.3 Statement of the algorithm 

The central problem is to solve the SDE: 

                                             (4.9) 

Because the system is a SDE, its solution is a stochastic process, 
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specifically a Markov process, whose temporal behavior will depend upon the 

realization of the Brownian Motion process W(t).  For each possible realization, 

the solution can be derived on a path-by-path basis as specified in the algorithm 

below. 

Algorithm to solve SDEs with Polynomial Drift 

The first step in the solution strategy is to convert the SDE into a nonlinear 

ODE in which every coefficient except one is time-varying and random.  The next 

step transforms the nonlinear ODE with time-varying and random coefficients into 

a significantly simpler ODE in which only one coefficient is time-varying and 

random.  The Euler algorithm then solves the ODE for that specific realization of 

the process.  The following steps implement the algorithm. 

(1) Given the signal X(t) described by equation (4.9), ), consider the transformed 

signal Y(X, W, t) = X e-W + 2t/2 . 

(2) The signal Y(t) satisfies the ODE 

                                             

(4.10) 

where g = e-W + 2t/2 , in which all the coefficients except a1 are random and time-

varying. 

(3) Consider a specific realization of the Brownian Motion process W(t), say 

for .  Given W(t) = wk-1 for tk-1 ≤ t< tk, the evolution of 

the system is deterministic over the interval [tk-1, tk].  Consider the deterministic 

process U(t) associated, through a series of transformations described in the 
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next section, with the ODE shown in step 2, such that U(t) satisfies 

                     

                        (4.11) 

Solve the ODE for the function U(t).  This can be done in closed-form for the 

linear and quadratic case, and numerically for higher-degree systems.  Note that 

the only time-varying term in the ODE satisfied by U(t) is the term that is free of 

U. 

(4) Compute the quantity . 

(5) Given the specific value W(t) = wk-1, the solution to the SDE over the interval 

[tk-1, tk] is 

                              

   (4.12) 

By sampling the process more frequently, the accuracy of the solution can be 

increased as desired.  Between sampling points, the evolution of the system is 

described by the above solution. 

4.2.4 Derivation of the algorithm 

The algorithm will be proved in two stages.  In the first stage, a stochastic 

exponential martingale is employed to transform the SDE into an ODE with 

random and time-varying coefficients.  Next that system is reduced to an ODE in 

which only one coefficient is time-varying, over each interval [tk-1, tk], 1 ≤ k ≤ N, 
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from which the solution to the original system is recovered through a series of 

simple transformations. 

Given the SDE (4.9), consider the function f(x, w, t) = x e-w + 2t/2 =  

x g(w, t) and let Yt denote the transformed process Xt e
-w + 2t/2, so that  

Yt = f(Xt, Wt, t).  

By the Ito Lemma, 

                

                 (4.13) 

In the above, the processes <X>t ,<W>t and <X, W>t denote, respectively, 

the quadratic variation process of X, W and the cross-variation process between 

X and W, all at time ‘t.’ 

Then: 

fx = g, fxx = 0, fw = - f, fww = 2 f, fwx = fxw = - g, ft = 2 f/2 

Next, the quadratic and cross variation processes are computed as 

follows: 

d<X>t = 2 X2 dt, d<W>t = dt, d<X, W>t =  Xt dt 

Using the above computed quantities in the Ito Lemma, it is found: 
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                 (4.14) 

The 3rd term of (4.14) is 

 

The 4th term of (4.14) is 

 

The 5th term of (4.14) is 

 

The last term of (4.14) is 

 

Addition of terms 2 through 6 sparks a sequence of spirited cancellations, 

leaving the delightfully frugal representation: 

                                 (4.15) 

 

And using fx = g in the above: 

                                 (4.16) 
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Therefore 

                                 (4.17) 

Next,  , and therefore 

                              

  (4.18) 

It follows that the process Yt satisfies the following ODE in which all the 

coefficients except a1 are random, time-varying parameters: 

                                (4.19) 

Thus, solving the original SDE is equivalent to solving this random ODE: 

for each ω Є Ω, solve the above ODE.  Ω can be taken as .  And 

 and P, the Wiener measure.  For each ωЄ Ω, the above ODE is a 

polynomial in which all but one of the coefficients are time-varying.  While the 

ODE is significantly more tractable than the SDE, considerable simplifications 

reward additional work.  The above will be reduces to an algebraically simpler 

and computationally more efficient system, in which the coefficients associated 

with powers of Y are all constant, and only a single term is time-varying. 

Consider a specific realization of W(t), say for .  

For notational convenience, denote the process value by w for t between tk-1 and 

tk, and replace w by wk-1 later.  Then, starting from t = , the process evolves 
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according to the ODE: 

 

 

 

 

Let 

                                (4.20) 

Then 
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Let 

                                (4.21) 
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                                (4.22) 

Then 
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                                (4.23) 

Then 

 

Finally, 

                     

           (4.24) 

All the coefficients in the above system are constant except for the term 

that is free of U, and the equation is solvable by numerical algorithms, for 

example by using the Runge-Kutta algorithm, over each interval [tk-1, tk], using 

wk-1 as the constant value of w in the above computations.  Recover V from U, Z 

from V, Y from Z, and finally X from Y.  Upon working one’s way through this 

chain of transformations, the solution to the original SDE is discovered, as 

exhibited in the algorithm. 

4.3 Applications of algorithm 

Despite its historical plight of being targeted for elimination, the salubrious 

effects of noise are now increasingly acknowledged in a growing body of work 

[65, 66, 67, 68].  Far from being an embarrassment to be expunged, research 

shows that noise plays a constructive role in stochastic resonance phenomena 

[69, 70] and in molecular motors featuring in nano-engineering [71, 72].  In the 

next two subsections, it will be shown that the steady-state behavior of a system 

can be palpably altered by using noise judiciously. 

4.3.1 Utilizing noise to influence system behavior at steady-state 
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The idea of harnessing noise to influence system behaviour is not new, as 

evidenced by the abundant literature on stochastic resonance [65, 66, 67, 68].  

The novelty here is that we suggest ways of using noise, not to improve the 

signal-to-noise ratio as in stochastic resonance, but to alter the structural 

properties of the system.  Furthermore, unlike some forms of stochastic 

resonance, no threshold effects are needed.  A closely related concept is the 

notion of vibrational control, extensively developed in a series of papers by 

Meerkov [73], Bellman et al. [74], and Bellman et al. [75].  The idea motivating 

vibrational control is to stabilize certain types of systems by adding an oscillatory 

function into the differential equation, and after employing a suitable averaging 

technique described in [76], transform it into one for which a previously unstable 

point becomes stable.  But noise is not involved in vibrational control.  It has 

been applied only to deterministic systems.  Furthermore, whether or not 

vibrational control is successful for a particular application is a structural property 

of that system [73]; here, we demonstrate how noise can be used to alter the 

structural property of the system. 

Two significant properties of a dynamical system are its set of fixed points, 

and its typical response time, called the characteristic time [77].  By regarding 

noise intensity as a control parameter, noise can be utilized to influence both 

these dynamical system properties.  It is clear from the solution 

 

that the random variable wk-1 observed at t = tk-1 influences the solution Ut 
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merely by a multiplicative scaling factor.  Consequently, when Ut inhabits one of 

its fixed points, it will stay there provided that the fixed point is a stable 

equilibrium.  This simple observation paves the way to using noise to influence 

the fixed points of the system, as demonstrated explicitly for the class of 

polynomial SDEs with homogeneous drift. 

The class of SDEs with homogeneous drift is defined by a0 = 0, and for 

that class, the corresponding ODE has no time-varying parameter.  With a0 = 0, 

the non-autonomous ODE satisfied by the function U(t) reduces to the 

autonomous constant-parameter system. 

                       (4.25) 

Steady-state solutions are found by setting , which results in a 

polynomial of degree ‘n’ in U.  Steady-state solutions are guaranteed to exist by 

the fundamental theorem of algebra [78].  Consequently, after the transients 

have died out, the system will settle down into one of its equilibria (fixed points) 

at steady-state.  Assume that a sufficiently long time has elapsed for the 

condition at steady-state to be satisfied so that the fixed points of the system 

satisfy: 

                          (4.26) 

One of the roots is clearly U = 0, showing that the origin is an equilibrium.  

But other equilibria exist, some of which may portend unwelcome outcomes to 

the control engineer.  The fundamental theorem of algebra guarantees the 
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existence of the remaining (n-1) roots to the above equation—not necessarily all 

distinct or all real-valued.  The variance parameter 2 is seen to play a 

fundamental role in determining the nature of these solutions—a fact that can be 

judiciously exploited to control the system behavior in desirable ways. 

4.3.2 Three examples 

Example 1. As an example, consider the homogeneous quadratic 

system: 

, for which the corresponding ODE is 

 

Assume that a1 < 0.  The two equilibria are U* = 0 and 

 

In a completely deterministic system,  = 0, and the only non-zero 

equilibrium is U* = -a1/a2, which is fixed and unalterable for a given system 

defined by the parameters a1 and a2.  In many engineering applications, 

performance criteria mandate stable equilibria.  The origin is a stable equilibrium 

because f'(0) = a1 < 0.  So if the system settles down at the origin, it will be 

stable.  But if the system ends up in the non-zero equilibrium U* = -a1/a2, it will be 

unstable because f'(-a1/a2) = -a1 > 0. 

In the presence of noise, the non-zero equilibrium can be moved around in 

desired directions by manipulating the noise intensity 2.  In particular, noise can 

be exploited to either keep all fixed points at the origin or to stabilize the non-zero 
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equilibrium.  The first objective is achieved by driving the only non-zero 

equilibrium to the origin—by increasing or reducing the noise till 2 = -2a1.  Doing 

so guarantees that no matter which of its fixed points the system inhabits at 

steady-state, it will remain at the origin.  In fact, with the choice of 2 = -2a1, the 

system is transformed to , a situation that results in a “whole line of fixed 

points,” in which perturbations neither grow nor decay [77].  Another possibility is 

to choose 2 > -2a1, and under this choice, 

and . This choice leaves both the origin 

and the non-zero equilibrium stable.  Thus, while noise is generally shunned as 

an annoyance that hinders the operation of the system, here it is shown that 

noise helps the control engineer improve the performance and stability of the 

system. 

Example 2. Our second example is the homogeneous cubic system: 

, for which the corresponding ODE is 

.
 

Assume that a3 < 0, a1 < 0, a2 > 0, and a2
2 > 4a3a1.  The three equilibria 

are U* = 0 and .  In a completely deterministic 

system,  = 0, and there are two non-zero equilibria defined by 
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, and which are fixed and 

unalterable for a given system defined by the parameters a1, a2, and a3.  The 

origin is a stable equilibrium because f'(0) = a1 < 0.  To test the stability of U1* 

and U2*, note that 

, so U2* is a stable equilibrium, but 

 if and only if . 

Next consider the stochastic system.  The roots are 

, and .  

Corresponding to these roots, 

, but 

 if and only if 

, which can be guaranteed for 

sufficiently large 2 because the left hand side increases faster with 2 than the 

right hand side.  This intuition can be rigorously substantiated.  The proof is by 

contradiction.  The assumption a2
2 > 4a3a1 guarantees that .  

Denote  to reinforce its positivity.  The assumption a3 < 0 
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guarantees that -2a3 is always positive.  Let .  Then, if there exists no 2 

such that the above inequality is true, then for all 2,  .  

Consider the inequality for 0 < a2 < 1, and choose .  For that 

choice of 2, the above inequality reads B2


2 ≤ 0, which is impossible.  Therefore, 

f’(U1*) < 0 for sufficiently large 2 and the equilibrium U1* can be made stable by 

adjusting the noise intensity. 

Example 3. Our third example shows that noise can be exploited to 

change the characteristic time of a system. 

Strogatz [77] defines the characteristic time of a system as the time 

required for the system to vary significantly in the neighborhood of its fixed 

points.  Noise can be used to change the characteristic time of the system.  The 

characteristic time of the dynamic process U(t) is defined as follows: 

 

U* denotes a fixed point or equilibrium of the system.  For the quadratic system, 

at both the equilibria U* = 0 and U* = , the characteristic time is given by 

.  Consequently, the characteristic time can be controlled by adding or 

reducing the noise intensity.  For higher noise intensity (larger 
2), the 
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characteristic time of the system becomes smaller.   

4.3.3 Solving a general Langevin equation 

The general Langevin equation is of the form: 

                                             (4.27) 

Within the class of SDEs represented by equation (4.27), consider the 

class of SDEs in which the infinitesimal standard deviation term is proportional to 

the state variable, and there is no control variable ‘u’: 

                                             (4.28) 

Equation (4.28) can be solved approximately by the algorithm developed 

in this chapter by using a polynomial approximation for the general drift function 

f(X).  The link between autonomous SDEs and the class of SDEs with polynomial 

drift is spawned by the Weierstrass Approximation Theorem.  Given a continuous 

but otherwise perfectly general autonomous drift function f(.), the Weierstrass 

Approximation Theorem [79] guarantees a polynomial to approximate f(.) within 

any desired degree of accuracy.  Thus, for an arbitrarily small approximation 

error , there exists a polynomial of degree n() that will mimic the function f(.) 

within the tolerable error .  Consequently, a mathematical algorithm that solves 

SDEs with polynomial drift will also solve general autonomous systems with 

arbitrarily small approximation error, thereby considerably expanding the range of 

engineering phenomena accommodated by polynomial SDEs. 

4.4 Conclusions 

4.4.1 Implications for CSF dynamics 

The stochastic Marmarou model with reference pressure p0 ≠ 0 cannot be 

dX f(X,u)dt (X,u) dW(t)  

dX   f (X)dt   XdW 
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solved in closed-form because it is an inhomogeneous stochastic logistic SDE 

which was shown to violate the reducibility condition in section 4.2.1.  The 

algorithm developed in this chapter can be used to obtain a quasi-analytical 

solution for the non-zero reference pressure case.  Solving the stochastic 

Marmarou model for p0 ≠ 0 would be an important contribution to the 

neuroscience literature because it will provide another perspective on the 

controversy over whether p0 ≠ 0 or p0 = 0.  By comparing the predictions from the 

solution in Chapter 2 for the p0 = 0 case with those from the quasi-analytical 

solution for p0 ≠ 0, these two possibilities can be tested to discover the one that 

provides superior predictions.  This is on the future research agenda. 

4.4.2 Implications for electrical engineering 

The algorithm to solve SDEs with polynomial drift and linear noise is 

relevant to signal processing and several areas of electrical engineering in which 

SDEs are pervasive, as discussed in section 4.1.3.  The algorithm illuminates the 

counter-intuitive role of noise.  By analyzing the special case of SDEs with 

homogeneous drift, insights were obtained into the effect of noise on the 

system’s steady-state behavior.  Contrary to the intuitive view of noise as an 

unwelcome interference that degrades system performance, these results show 

that noise can be utilized constructively to achieve desirable system behavior.   
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CHAPTER 5 

STOCHASTIC OPTIMAL CONTROL IN OPERATIONS RESEARCH 

The determination of optimal advertising spending occupies a key position 

in operations research literature.  Advertisers spread their budget out over time 

because memory effects cause the influence of advertising to decay over time.  

In response to advertising decay, marketers have developed different temporal 

scheduling patterns for advertising.  But these temporal patterns do not maximize 

profits because they driven by managerial judgment rather than rigorous 

mathematical reasoning.  What is the profit-maximizing way to allocate an 

advertising budget over time?  Is it better to spread the budget evenly over time, 

to decrease spending over time, to increase spending over time, or to do 

something more elaborate?  Using stochastic optimal control, this research 

shows that all these spending patterns emerge at optimality for the same 

response function dynamics, due to differences in salvage value assumptions.  

We use these results to develop a methodology for determining the optimal 

planning horizon length for each pattern of spending. 

5.1 Background 

Past research has identified conditions favoring one or the other of these 

options.  The best option is determined by the interplay of at least six different 

factors:  the dynamics of demand, the dynamics of production cost, the dynamics 

of temporal preference for money, the forces of competition, uncertainty, and 

salvage value [80, 81, 82, 83, 84].  Sasieni [85] established that it is dynamically 

optimal to spread advertising expenses evenly over an infinite planning horizon 
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for a large class of response models.  But the influences of salvage value and 

uncertainty have received scant attention in the extant literature.  The salvage 

value of a dynamic process is the value of the final level of the state variable at 

the end of the planning horizon.  Salvage value constraints are the terminal time 

or boundary conditions in a finite-horizon stochastic control problem. 

5.1.1 Noise in marketing communications 

The marketing communications mix consists of advertising, promotions, 

personal selling and all the media through which a firm communicates with its 

customers.  Market response functions relate the marketing communications 

expenditures to market outcomes, typically sales.  Sales are however, influenced 

by many factors other than the marketing communications mix alone—such as 

price, product quality, distribution channel and uncontrollable elements such as 

competition and the economy.  To the extent that these factors vary, they will 

affect market response.  Consequently, market response functions will contain 

some unexplained error variance due to the omission of factors influencing sales.  

Therefore, market response functions are stochastic, the source of noise being 

factors that affect sales but have been omitted from the model [86, 87].   

5.1.2 Finite horizon decision-making 

Salvage value assumptions play a central role in finite horizon decision 

making.  Salvage values reflect the decision-maker’s assumptions about the 

nature of the market and product.  High tech markets are characterized by rapid 

product obsolescence and short product life cycles; under such conditions, the 

salvage value at the end of the planning horizon would be zero.  For some 
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products, the availability of a secondary market imparts non-zero value to the 

decision maker at the end of the planning horizon.  Leased cars are an example 

of secondary markets—they can be sold in the market for used cars at the end of 

the leasing period.   

Questions remain about the influence of salvage value on optimal 

advertising because finite horizon problems are mathematically more challenging 

than infinite horizon problems, and thus numerical analysis is the norm in 

previous work [80].  Yet it is important to understand salvage value effects 

analytically because they are a fundamental determinant of the temporal pattern 

of advertising spending [83].  Bass et al. [80] solves finite-horizon problems but 

the influence of salvage value constraints on advertising policies remains 

significantly under researched. 

Salvage values influence the choice of best horizon in dynamic decision-

making.  Sethi and Chand [89], Chand, Sethi and Sorger [90] and Sethi and 

Sorger [91] have made some contributions in this area but they do not address 

the following questions.  Is it better (in an expected profit-maximizing sense) to 

use a short or long planning horizon?  Should the planning horizon be larger or 

smaller when advertising effectiveness (decay) is larger?  A short planning 

horizon is inconsistent with dynamic optimization, but a long planning horizon is 

undesirable in a rapidly changing industry or, as Starr [92] notes, in an uncertain 

environment. 

5.2 A stochastic model of communications response 

5.2.1 Model formulation 
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Nerlove and Arrow [93] conceptualized the long-term effect of advertising 

through the construct of goodwill.  Following Rao [94], we postulate the following 

SDE for the goodwill process G(t), driven by advertising u(t): 

                                                         (5.1) 

where  is the infinitesimal standard deviation and W(t) is a standard Brownian 

motion process.  In equation (5.1), ‘u(t)’ is the control variable.  The implication of 

equation (5.1) is that goodwill evolves as a controlled Markov process—for every 

possible advertising spending trajectory u(t), the goodwill process G(t) is a 

Markov process. 

5.2.2 Stochastic optimal control problem 

The decision-maker’s objective is find a trajectory u(t) to achieve the 

following maximization: 

                                                       (5.2) 

subject to the evolution of the SDE (5.1), where (s) = mG(s) – u2(s) is the 

instantaneous profit at time “s.”  We consider the following family of salvage 

values, multiplicatively separable in g and T: (G(T),T) = e-T mgfor any G(T) = 

g at t=T.  The parameter  > 0 captures a number of substantively interesting 

scenarios. 

5.2.3 Salvage value specifications 

Specification I: Natural salvage value,  = 1/( + ) 

This boundary specification is a natural consequence of Nerlove-Arrow dynamics 

because the accumulated goodwill at the end of the planning horizon will decay 
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in the absence of advertising thereafter.  Therefore for any arbitrary level G(T) = 

g, the discounted value of the profit stream over [T, ∞) with u(t) = 0, for t>T is (e-

T mg)/(+). 

Proof 

Let the process  be an Ito diffusion .  For , 

and g(.) a bounded continuous function on , define the resolvent operator  

by , where  is the expectation operator given 

; then Oksendal [10] shows that 
.
 

Apply Oksendal’s [10] result to evaluate  with  over . 

To evaluate , set  in the stochastic differential equation (SDE) 

satisfied by G(t) to get ; apply  to both sides of the SDE for 

G(t), interchange  and  operators (allowed by Fubini’s Thereom) and solve 

the resulting ordinary differential equation for  using the condition at the 

boundary  for  to get  finally 

 for any  

G(t) = g. 

Specification II: Zero salvage value,  = 0 

A zero salvage value specification would be appropriate for an industry 

characterized by rapid product obsolescence or short product life cycles (the 

latter is typically though not always, a consequence of the former), so that the 
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residual goodwill at the end of the horizon is worth nothing to the firm.   

Specification III: Secondary market salvage value,  = 1 

This boundary specification attaches no value whatsoever to any level of 

goodwill G(t) after t > T but recognizes that goodwill accumulated until time T 

may have value in a secondary market.  The firm can dispose of its accumulated 

goodwill G(T) at $m/unit in a secondary market but since it has to wait till t = T, it 

discounts the value of G(T) back to time t = 0. 

Specification IV: High equity salvage value,  > 1 

This specification is appropriate for a firm with high brand equity such as 

Coca-Cola in consumer non-durables or Microsoft Windows in consumer 

durables.  The goodwill enjoyed by such brands could arise from strong brand 

loyalty (as for Coke) or a captive customer base due to high switching costs (as 

for Microsoft Windows). 

 

5.3 Derivation of stochastic optimal control 

5.3.1 Solution strategy 

The value function V(g, t, T, ) denotes the optimal expected performance 

over the remaining time horizon [t, T] when using an optimal policy and is defined 

as: 

                                 (5.3) 

where Eg denotes the expectation operator, given G(t) = g, and = (,,,,m,c).  

The boundary condition is V(g,t,T,) = (G(T),T) where (G(T),T) is the salvage 
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value of terminal goodwill.  V(g,t,T,) satisfies the Hamilton-Jacobi-Bellman (HJB) 

partial differential equation: 

                     (5.4) 

where Vt = V/t, Vg = V/g and Vgg = 2V/g2.  The above non-linear partial 

differential equation is solved subject to G(t) = G0, and boundary conditions 

(G(T),T) = e-T mg. 

Given (5.1) and (5.3), the HJB equation is: 

                                  (5.5) 

The stochastic optimal control is derived by solving equation (5.5) subject 

to the boundary condition (G(T),T) = e-T mg.  The Riccati structure of (5.5) 

suggests the following functional form for V(g,t,T,): 

V(g,t,T,) = e-t{k1(t)g
2 + k2(t)g + k3(t)}                                  (5.6) 

Substitution of (5.6) into the HJB equation generates three coupled non-linear 

differential equations satisfied simultaneously by the functions k1(t), k2(t), and 

k3(t).  These are solved subject to the boundary conditions given by (g,t) at t=T 

5.3.2 Optimal solution 

Substituting V(g,t,T,) = [e-t{k1(t)g
2 + k2(t)g + k3(t)] into the HJB, we 

obtain: 
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                                  (5.7) 

where .  The ki′(t) satisfy three coupled nonlinear differential equations: 

                                  (5.8) 

                                  (5.9) 

                                  (5.10) 

Solving equations (5.8) – (5.10) yields the value function V(g,t,T,): 

                                  (5.11) 

Next, we substitute  into  to obtain: 

                          (5.12) 

Finally, V(g ,t, T, ) =  e-Tmg at t=T, and so the boundary condition is 

indeed satisfied.  Since the optimal policy does not depend upon the state 

variable for any , it is an open-loop policy. 

Define: 

                          (5.13) 
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Equation (5.12) is the optimal policy for the general family of salvage 

values (G(T),T) = e-T mgfor any G(T) = g at t=T.  The optimal policy for each 

of the four market conditions corresponds to the specific value of  characterizing 

that market condition. 

Natural salvage value,  = 1/( ) 

                          (5.14) 

Thus it is optimal to maintain a constant advertising level, called an Even 

policy [95, 96] defined in equation (5.13).  The optimal policy increases with 

margin (m), effectiveness () and decreases with decay rate () and the discount 

rate ().  Since the finite horizon problem with natural boundary specification 

yields the same optimal policy as the infinite horizon problem, this result means 

that a decision-maker with a long-term perspective should keep her advertising 

level constant in markets described by Nerlove-Arrow dynamics. 

Specification II: Zero salvage value,  = 0 

                          (5.15) 

From equation (5.13) and (5.15),  

 

Specification III: Secondary market salvage value,  = 1 

                          (5.16) 

From equation (5.13) and (5.16),  
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Specification IV: High equity salvage value,  > 1 

                          (5.17) 

From equation (5.13) and (5.17),  

 

Summing up, it is optimal to spend less than the even policy in both the 

zero salvage and secondary market conditions.  Thus a decision-maker ignoring 

the zero salvage or secondary market constraint will overspend relative to an 

optimal decision maker.  Under zero salvage and secondary market conditions, 

the qualitative nature of the policy is time-varying rather than even. 

5.3.3 Properties of the optimal solution 

Asymptotic behavior of the optimal policy 

From equation (5.12), the optimal policy for the general optimal policy is 

asymptotically even because 

                          (5.18) 

 

 

Temporal behavior of the optimal policy 

Differentiating u(t, T) with respect to : 

                          (5.19) 
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                          (5.20) 

Terminal value of the optimal policy 

                          (5.21) 

5.4 Optimizing the length of the planning horizon 

5.4.1 Impact of planning horizon on performance 

Many decision-makers use planning horizons of three, five or ten years, 

but Starr (1966) points out that the practice is based on executive judgment 

rather than quantitative analysis.  What is the best planning horizon length for 

advertising spending decisions and how is the answer influenced by market 

parameters?  Determining the planning horizon length to maximize the expected 

profit makes the issue unambiguous.   

5.4.2 Optimal planning horizon length in general 

Given an exogeneously predetermined T, the value function V(g, t, T, ) 

evaluated at t = 0 gives the maximum expected profit over [0,T].  Let C(T) be the 

cost associated with a horizon of length T, such that C(T) = cT [59].  The problem 

is to endogeneously determine T to maximize the value, net of the cost 

associated with the planning horizon length.  Thus the problem is to 
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. 

The value function V(g, t, T, ) is shown in equation (5.11).  Evaluating 

V(g, t, T, ) at t = 0, we obtain the optimal expected value over [0,T] for fixed T 

and any arbitrary initial level g. 

                          (5.22) 

The expected profit function is the difference between the expected value 

over [0, T] and the cost associated with a planning horizon of length T. 

                          (5.23) 

Setting  gives the optimality equation for the expected profit-

maximizing T, and its solution yields the optimal T provided that the sufficiency 

condition  holds at the root of the optimality equation.  Successively 

setting  = 1/(+), 0, 1, we get the optimality equations for T for the natural, 

secondary market and high equity cases respectively.  A closed-form solution 

can be found for T in the case of natural boundary condition.  For the other three 

market conditions, no closed-form solution is available. 
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condition 

Let T* denote the optimal T. 

 

 

Consequently, the sufficiency condition is met and from , we 

obtain T*:  

                          (5.24) 

5.5 Conclusions 

The central issues in this research were the optimality of different temporal 

patterns of advertising spending and their implications for the optimal planning 

horizon.  The focal questions were: is it better to spend evenly over time, or use 

more elaborate spending patterns, and how is the optimal planning horizon 

related to the spending pattern?  Although an even policy is optimal under a 

specific boundary constraint, other boundary constraints generate patterns of 

optimal spending quite different from the even policy.  Across different market 

conditions (as captured in the salvage values), longer planning horizons are 

optimal when the advertising effectiveness increases or when the decay rate 

decreases. 

 

 

T 2 2 T 2

2

e (m 4 c e ( ) )
0

T 4 ( )

    
 

 

2 T 2 2

2 2

e m
0

T 4 ( )

    
  

 

0
T






2 2

2

m
Log

4c( )
T*

 
 

 




 

 

101 

CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

No field has contributed more to a rigorous and systematic study of noise 

than electrical engineering—methodologically, conceptually and pragmatically.  

By its very nature and because of its ubiquity across disciplines, noise is an 

interdisciplinary topic—thus electrical engineering technologies for studying noise 

solve fundamental problems in other disciplines, whose solutions spawn new 

problems leading to new methodologies and algorithms for the analysis of noise, 

thereby driving a closed-loop research process in which interdisciplinary 

applications enrich electrical engineering methodology.  Such has indeed been 

the case in this research, as discussed below.   

This research makes interdisciplinary contributions by mathematically 

modeling the impact of noise on dynamic phenomena in neuroscience, electrical 

engineering and operations research.  The model for the dynamics of 

cerebrospinal fluid (CSF) flow in neuroscience is inspired by an electrical circuit 

analogy, the extended CSF flow model accommodates noise through SDE 

technology, both the neuroscience and operations research applications exploit 

the power of SDEs, the extended SDE model of CSF flow dynamics developed in 

chapter 2 derives results of clinical significance and offers a novel perspective on 

an ongoing neuroscience controversy in hydrocephalus research in chapter 3.  

Additionally, the new stochastic model of cerebrospinal fluid flow dynamics 

provides the mathematical basis for an automatic nonlinear regulator to keep the 

intracranial pressure (ICP) within safe limits in patients suffering from 
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hydrocephalus—this is a contribution to the biomedical engineering literature.  A 

natural generalization of the SDE for CSF flow dynamics leads to SDEs with 

polynomial drift of arbitrarily high order, which are relevant to both neuroscience 

and electrical engineering applications.  Responding to this relevance, a new 

algorithm to solve SDEs with polynomial drift is developed in chapter 4, 

applicable to a large class of signal processing models in electrical engineering 

and neuroscience.  Thus the new algorithm is a methodological contribution to 

both the electrical engineering and applied mathematics literature.  Not only does 

the new algorithm solve a large class of SDEs; it also suggests ways in which 

noise can be harnessed constructively to improve the performance of 

engineering systems, as shown in chapter 4.  In chapter 5, the technology of 

SDEs and stochastic optimal control solve a fundamental puzzle in operations 

research on marketing communications, specifically advertising.  Temporal 

patterns observed for advertising include constant spending over time, 

decreasing spending over time and increasing spending over time.  Rigorous 

mathematical analysis has previously established that constant spending is 

dynamically optimal for a large class of models.  Past research also shows that a 

number of demand, cost and temporal dynamics dictate dynamically optimal 

time-varying spending rather than constant spending.  The joint impact of 

terminal time constraints at the end of a finite planning horizon and response 

uncertainty have been neglected in past work, as has the issue of the best 

planning horizon length.  The research reported here shows that different 

spending patterns emerge at optimality for the same response function 
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dynamics, due to differences in salvage value assumptions at the terminal time.  

Modeling response dynamics by a special case of the Langevin model, we show 

that constant and time-varying policies are each optimal under different terminal 

value constraints.  The general Langevin equation provides the unifying 

mathematical framework that ties together all the chapters in this dissertation. 

This dissertation has already spawned several new projects for future 

work, many of which are now at various stages of completion.  Thermal noise 

affects the operation of gas discharge lamps, and while there is an existing 

stochastic model of this phenomenon, several unaddressed issues remain that 

have been resolved by using methods developed in this research.  The existing 

results on gas discharge lamps are generalized and new probabilistic results that 

are useful in assessing their performance are derived.  By doing so, we expand 

the scope of previous results on gas discharge lamp dynamics and introduce 

sophisticated martingale techniques in power engineering to compute 

probabilities of engineering relevance for gas discharge lamps.  Noise affects the 

degradation dynamics of ultra-thin metal oxides in MOS capacitors, and, 

although an existing stochastic model describes this phenomenon, the statistical 

quality of the estimators of that model leave room for improvement, and a 

generalization of the methodology of this dissertation leads to continuous-time 

estimators that will inform future research in that area.  These new continuous 

time maximum likelihood estimators are expected to improve theory and practice 

in studies of the degradation dynamics of ultra-thin metal oxides in MOS 

capacitors.  
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 The methods developed to address these issues are applicable with only 

slight modification to future research on Brownian motors in nanotechnology.  

Almost every function of life involves motion.  Furthermore, every biological 

process involving motion arises from the action of biological ‘molecular motors.’ 

The world in which molecular motors and nanomachines operate is the world of 

Brownian Motion.  Any description of molecular motors has to be stochastic in 

nature because molecular motors operate in a Brownian environment.  

Consequently, researchers in the nanosciences are now increasingly interested 

in the development and applications of Brownian Motion models.  These 

molecular motors are the essential agents of movement at the molecular level.  

Understanding how they work is a major challenge that requires the blending of 

ideas from multiple disciplines.  At the macroscopic level, the physics of 

movement can be understood by applying Newtonian mechanics, but movement 

at the microscopic level is not purely deterministic because molecules are in 

unceasing thermal (random) motion.  Indeed, all micron-sized and smaller 

particles are in constant motion due to thermal fluctuations.  The puzzle is: how 

do the molecular motors inside a living cell overcome this randomness to 

produce orderly macroscopic motion?  In other words, how do molecular motors 

produce useful mechanical work?  The key to modeling molecular motors is 

known to be the Langevin approach and the methodology developed in this 

dissertation for solving a large class of Langevin SDEs provides the analytical 

apparatus for future contributions to nanotechnology. 
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The topic of this dissertation is the study of noise in electrical engineering, 

neuroscience, biomedical engineering, and operations research through 

mathematical models that describe, explain, predict and control dynamic 

phenomena.  Noise is modeled through Brownian Motion and the research 

problems are mathematically addressed by different versions of a generalized 

Langevin equation.  Our mathematical models utilize stochastic differential 

equations (SDEs) and stochastic optimal control, both of which were born in the 

soil of electrical engineering.  Central to this dissertation is a brain-physics based 

model of cerebrospinal fluid (CSF) dynamics, whose structure is fundamentally 

determined by an electrical circuit analogy.  Our general Langevin framework 

encompasses many of the existing equations used in electrical engineering, 

neuroscience, biomedical engineering and operations research.   

The generalized SDE for CSF dynamics extends a fundamental model in 

the field to discover new clinical insights and tools, provides the basis for a 
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nonlinear controller, and suggests a new way to resolve an ongoing controversy 

regarding CSF dynamics in neuroscience.  The natural generalization of the SDE 

for CSF dynamics is a SDE with polynomial drift.  We develop a new analytical 

algorithm to solve SDEs with polynomial drift, thereby contributing to the 

electrical engineering literature on signal processing models, many of which are 

special cases of SDEs with polynomial drift.  We make new contributions to the 

operations research literature on marketing communication models by unifying 

different types of dynamically optimal trajectories of spending in the framework of 

a classic model of market response, in which these different temporal patterns 

arise as a consequence of different boundary conditions.  

The methodologies developed in this dissertation provide an analytical 

foundation for the solution of fundamental problems in gas discharge lamp 

dynamics in power engineering, degradation dynamics of ultra-thin metal oxides 

in MOS capacitors, and molecular motors in nanotechnology, thereby 

establishing a rich agenda for future research. 
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