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Introduction

Motivation

The object of this thesis is to develop and generalize an analog, in the Poincaré Duality

setting, of the Stabilization and Classification Theorems for embeddings up to homotopy

given by Connolly and Williams in [CW78]. The main results essentially give a charac-

terization of certain Poincaré Duality embeddings in terms of the homotopy types of their

complements. Throughout what follows, we wish to emphasize that the methods of homo-

topy theory and algebraic topology provide very tractable alternatives to their geometric

ancestors in studying the topology of manifolds. The importance of developing such an un-

derlying homotopy-theoretic theme was addressed by C.T.C Wall in the last sentence of the

following quote on embeddings: ([Wa99], P.119)

The results to be obtained are best formulated in terms of a ‘triangulation or

smoothing’ of initial homotopy-theoretic data. It is misleading to regard this as

a complete solution to the problem of embeddings: the problems raised seem to

the author in some respects to be harder than the original geometrical problems.

We hope to give more positive results on this point elsewhere.

The need for such “positive results” has facilitated a major part of the work of Klein ([Kl99a],

[Kl99b], [Kl02a], [Kl02b], [Kl05]) and this thesis is, in many ways, a continuation of this work.
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The Main Results

Let T denote the category of compactly-generated topological spaces with the Quillen

model structure ([Qu67], Section 1) based on weak homotopy equivalences and (Serre) fibra-

tions. In what follows, “space” will mean “cofibrant object of T ” unless otherwise stated.

An object X of T is homotopy finite of dimension d, written hodim(X) = d, if X is homo-

topy equivalent to a finite cell complex of dimension d, and d is the smallest such number

for which this holds. Similarly, we will write hodim(X, Y ) = k if X can be obtained from Y,

up to homotopy, by attaching cells of dimension at most k.

Let T (A
f−→ B) denote the category whose objects are triples (i, Y, j) such that Y is an

object of T , i : A → Y and j : Y → B are morphisms in T , and j ◦ i = f . A morphism

(i, Y, j) → (i′, Y ′, j′) is a morphism g : Y → Y ′ in T such that g ◦ i = i′ and j′ ◦ g = j.

A morphism in T (A
f−→ B) is r-connected if its underlying map of spaces is r-connected.

It is well-known that T (A
f−→ B) is a model category (see, e.g., [Ho99], Chapter 1) whose

weak equivalences and (co)fibrations are determined by the forgetful functor to T which is

given on objects by (i, Y, j) 7→ Y . In particular, an object (i, Y, j) of T (A
f−→ B) is fibrant if

j : Y → B is a fibration in T . Similarly, (i, Y, j) is cofibrant if i : A→ Y is a cofibration in

T . Note that T (∅ → X) is the category (T ↓ X) of spaces over X. In particular, an object

of (T ↓ X) is a pair (i, Y ) such that i : Y → X is a map of spaces.

Let X be a Poincaré Duality space (possibly with boundary ∂X) of formal dimension n,

and fix an object (f,K) ∈ (T ↓ X). Assume that (K,L) is a cofibration pair of connected,

homotopy finite spaces with hodim(K,L) = k ≤ n − 3. Further, require that f : (K,L) →
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(X, ∂X) be a map of pairs such that K → X is an r-connected map of spaces, r ≥ 1,

and the map L → ∂X is the underlying map of a given Poincaré Duality embedding (see

Definition 1.1.2 below). In what follows, we define a space Ef (K,X rel L) of Poincaré Duality

embeddings for f and a map

σ : Ef (K,X rel L)→ ESXf (SXK,X ×D1 rel SXL)

where SXK denotes the (unreduced) fiberwise suspension of the object (f,K). We call σ

the stabilization map.

Theorem A (Stabilization). With the hypotheses above, the stabilization map

σ : Ef (K,X rel L)→ ESXf (SXK,X ×D1 rel SXL)

is (n− 2(k − r)− 3)-connected.

Theorem A serves as a classification tool for Poincaré Duality embeddings for f . In partic-

ular, another space, SWf (K,X rel L), is defined and can be thought of as a kind of moduli

space of unstable fiberwise duals of Poincaré embeddings with underlying map f : K → X.

We define a classification map

θ : Ef (K,X rel L)→ SWf (K,X rel L)

and, as a consequence of the Theorem A, obtain

Theorem B (Classification). With the assumptions of the previous theorem, the classifi-

cation map
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θ : Ef (K,X rel L)→ SWf (K,X rel L)

is (n− 2(k − r)− 3)-connected.

In the case that X = Sn and L = ∅, there is an evident “collapse” map

ESSnf (SSnK,S
n ×D1 rel SSn∅)

c−→ ESf (SK,Sn+1)

where S is the usual (unreduced) suspension functor. We can precompose this map with the

stabilization map to get

Ef (K,Sn)
c◦σ−−→ ESf (SK,Sn+1).

In this case, the space SWf (K,S
n) amounts to a space of Spanier-Whitehead n-duals for K

(hence the notation “SW”). We will show that the map c above induces a π0 surjection and,

as consequences of the Theorems A and B, obtain the following analogs, in the Poincaré Du-

ality setting, of the “Stabilization” and “Classification” theorems of Connolly and Williams

([CW78], PP.385-386):

Theorem C. Let K be a homotopy finite complex with hodim(K) = k ≤ n − 3. Assume

that f : K → Sn is an r-connected map of spaces, r ≥ 1. Then the induced map

π0(c ◦ σ) : π0(Ef (K,Sn))→ π0(ESf (SK,Sn+1))

is surjective for n ≥ 2(k − r) + 3 and injective for n ≥ 2(k − r) + 4.

Theorem D. With the assumptions of the previous theorem, the induced map
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π0(θ) : π0(Ef (K,Sn))→ π0(SWf (K,S
n))

is surjective for n ≥ 2(k − r) + 3 and injective for n ≥ 2(k − r) + 4.

Note that the results above imply the smooth manifold embedding statements of Con-

nolly and Williams after a suitable application of the Browder-Casson-Sullivan-Wall the-

orem ([Kl00], Theorem 5.3). Moreover, our theorems dispense with the extra assumptions

on n found in ([CW78], PP.385-386). In contrast to the surgery-theoretic methods used in

[CW78], the proofs of our theorems are purely homotopy-theoretic. We rely heavily on fiber-

wise homotopy theory, a large portion of which can be found in [Kl99a], [Kl02a], [Kl07]. The

proofs of our results also rely to a great extent on the “higher homotopy excision” theorems

of Goodwillie ([Go92]).
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Conventions and Notation

As mentioned in the introduction, T will denote the category of compactly-generated

topological spaces equipped with the model structure based on weak homotopy equivalences

and Serre (co)fibrations. Constructions in T , such as products and function spaces, will be

understood to be topologized using the compactly-generated topology. The term “space”

will mean “cofibrant object of T ” unless otherwise specified. A space X is n-connected if

πi(X) = 0 for every i ≤ n and for every choice of basepoint. In particular, a nonempty space

is always (−1)-connected and, by convention, the empty space is (−2)-connected. A map of

spaces X → Y is n-connected if its homotopy fiber, with respect to any basepoint of Y , is

an (n− 1) connected space. A weak equivalence in T is an ∞-connected map. In the event

that we specify a basepoint ∗ for a given space X, we will assume that the inclusion ∗ → X

is a cofibration. We will use the language of model categories frequently. In particular, every

object in a given model category has a (co)fibrant replacement. We will assume that the

reader is familiar with homotopy limits and homotopy colimits, as well as the language of

homotopy (co)-cartesian diagrams. The notation (X,Y ) will be used to denote the mapping

cylinder X of a given a map X
f−→ Y with the inclusion of Y as Y × 0. Lastly, a note

about set theory. Most of the categories that we will work with are not small. To avoid

set-theoretic difficulties when working with such categories, we fix a Grothendieck universe

U and use only U -sets to form the objects of the category. In particular, we will write |C | for

the geometric realization of the nerve of the (possibly large) category C . This convention is

not the only feasible option (see, e.g., [GK08], P.9).
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CHAPTER 1

The Stabilization and Classification Maps

1.1 Poincaré Duality Embeddings

The following definitions can be found in [Kl99a] and [Kl02b]. They are included for the

sake of completeness.

Definition 1.1.1. Let X be a homotopy finite space equipped with a local coefficient system

L which is pointwise free abelian of rank one. Let [X] denote a homology class in Hn(X; L ).

The data (X,L , [X]) equip X with the structure of a Poinacré Duality space of formal

dimension n if cap product with [X] induces an isomorphism

∩[X] : H∗(X,L )
∼=→ Hn−∗(X; L ⊗M )

for every local coefficient system M . We call [X] the fundamental class of X and we will refer

to such a space X as a PD space of dimension n. A cofibration pair (X, ∂X) of homotopy

finite spaces along with L and a class [X] ∈ Hn(X, ∂X; L ) is called a Poincaré Duality pair

of formal dimension n if

• For all local systems M , there is an induced isomorphism

∩[X] : H∗(X; L )
∼=→ Hn−∗(X, ∂X; L ⊗M )
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• The restriction of L to ∂X along with the image of the fundamental class [X] under

the boundary homomorphism Hn(X, ∂X; L ) → Hn−1(∂X; L ) equips ∂X with the

structure of a PD space of dimension n− 1.

We will call such a pair (X, ∂X) a PD pair of dimension n.

Definition 1.1.2. Let K
f−→ X denote a map from a connected, homotopy finite space K

to a PD space X or PD pair (X, ∂X) of dimension n. A PD embedding for f is specified by

homotopy finite spaces A and C along with a choice of factorization ∂X → C → X fitting

into a commutative diagram

A //

��

C

��

∂Xoo

(D)

K
f
// X

such that

(i) (Stratification) The square is∞-cocartesian, i.e., there is a weak homotopy equivalence

of spaces K ∪A C ' X.

(ii) (Poincaré Duality) The image of the fundamental class [X] under the composite

Hn(X, ∂X) ∼= Hn(X, ∂X)→ Hn(X,C) ∼= Hn(K,A)

equips (K,A) with the structure of a PD pair and, similarly, the image of [X] with

respect to the map Hn(X, ∂X)→ Hn(C, ∂XqA) equips (C, ∂XqA) with the structure

of a PD pair.
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(iii) (Weak Transversality) If hodim(K) ≤ k, then the map A→ K is (n−k−1)-connected.

We call A the gluing space, C the complement, and f the underlying map of the PD embed-

ding D .

We can relativize the above as follows: Let (K,L) be a cofibration pair, with K and L

homotopy finite, and let (X, ∂X) be a PD pair of dimension n. Recall that hodim(K,L) = k

if K can be obtained from L, up to homotopy, by attaching cells of dimension k, and k is

the smallest such number so that this holds. Fix a map f = (fK , fL) : (K,L)→ (X, ∂X).

Definition 1.1.3. A relative PD embedding for f consists of a commutative diagram of

pairs of homotopy finite spaces

(AK , AL) //

��

(CK , CL)

��
(E )

(K,L)
f
// (X, ∂X)

such that

(i) (Stratification) Each of the associated squares of spaces

AK //

��

CK

��

AL //

��

CL

��
(DK) (DL)

K
fK

// X L
fL
// ∂X

is ∞-cocartesian, and the square DL is a PD embedding for fL.

(ii) (Poincaré Duality) The image of the fundamental class [X] under the composite
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Hn(X, ∂X) ∼= Hn(X, ∂X)→ Hn(X, ∂X ∪CL CK) ∼= Hn(K,L ∪AL AK)

equips (K,L∪AL AK) with the structure of a PD pair and, similarly, the image of [X]

with respect to the map

Hn(X, ∂X)→ Hn(CK , CL ∪AL AK)

equips (CK , CL ∪AL AK) with the structure of a PD pair. (Here, coefficients are given

by pulling back the given local system on X).

(iii) (Weak Transversality) If hodim(K,L) ≤ k, then the map AK → K is (n − k − 1)-

connected.

Remark 1.1.4. In the situation above, if a PD embedding DL for fL is given, then a PD

embedding of f which coincides with DL on L is said to be a PD embedding for f relative to

DL. By taking L = ∅, we recover the definiton of PD embedding given in Definition 1.1.2.

We may denote such a PD embeding by a diagram of pairs

(A, ∅) //

��

(C, ∂X)

��
(K, ∅)

f
// (X, ∂X).

Definition 1.1.5. Let D0 and D1 be PD embeddings with underlying maps f0,f1 : K → X

and suppose that we are given a homotopy F : K ×D1 → X from f0 to f1. Then we have

an associated embedding with underlying map
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f0 + f1 : K qK → ∂(X ×D1).

Denote this embedding by DKqK and consider the associated map of pairs

F : (K ×D1, K qK)→ (X ×D1, ∂(X ×D1)).

A concordance from D0 to D1 is a PD embedding of F relative to DKqK .

1.2 The Space of PD Embeddings

Fix an object (f,K) ∈ (T ↓ X). Define a category Df (K,X) as follows. An object of

Df (K,X) is a commutative square of spaces

A //

��

C

��
(D)

K
f
// X

and a morphism of Df (K,X) is specified by a commutative diagram

A′ //





C ′





A

��

??

// C

??

��
K

f
// X

Proposition 1.2.1. Df (K,X) is a model category.

Proof. Let n denote the category associated to the ordinal n as a poset, i.e., the category with

n objects 1, 2, . . . , n and a morphism i → j whenever i ≤ j. Then the functor category T 2
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is the same as the arrow category of T , whose objects are the morphisms (arrows) of T and

whose morphisms are maps of arrows forming commutative diagrams of spaces. Moreover,

the category T 2 carries the structure of a model category (see [Ho99], Theorem 5.1.3). The

fixed object (f,K) ∈ (T ↓ X) used to define Df (K,X) determines an object K
f−→ X in the

arrow category. The proposition then follows by noting that the category Df (K,X) is the

same as the model category (T 2 ↓ f).

In particular, it follows (for example, from [Ho99], Theorem 5.1.3) that a morphism

A //

��

C

��
A′ // C ′

in Df (K,X) is a

• weak equivalence (respectively, fibration) if each of the maps A→ A′ and C → C ′ are

weak equivalences (respectively, fibrations) in T

• cofibration if both A→ A′ and the induced map A′ ∪A C → C ′ are cofibrations in T .

Remark 1.2.2. The object D of Df (K,X) is cofibrant (respectively, fibrant) precisely when

A is cofibrant in T and the map A → C is a cofibration in T (respectively, when both of

the maps A→ K and C → X are fibrations in T ).

Remark 1.2.3. In the situation of Definition 1.1.3, a more general version of the model

structure above exists. In this case, we have a category Df (K,X rel L) in which the objects

are commutative squares
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(AK , AL) //

��

(CK , CL)

��
(E )

(K,L)
f
// (X, ∂X)

as in Definition 1.1.3. A morphism is a square of pairs

(AK , AL) //

��

(CK , CL)

��
(A′K , A

′
L) // (C ′K , C

′
L)

covering the map (K,L) → (X, ∂X) in E . The weak equivalences in Df (K,X rel L) are

morphisms as above in which both of the vertical maps are weak homotopy equivalences of

pairs. The object E is fibrant if the vertical maps are both fibrations betweeen the larger

spaces that restrict to fibrations of the subspaces. Moreover, E is cofibrant when AL is

cofibrant in T , (AK , AL) is a cofibration pair of spaces, and the induced map AK ∪AL CL →

CK is a cofibration in T . In the case that L and AL are both empty, and CL = ∂X, we

recover the model structure on Df (K,X) described above.

We can now define the space of PD embeddings for a given map of homotopy finite,

cofibration pairs (K,L)
f−→ (X, ∂X) such that K is connected and (X, ∂X) is a PD pair of

dimension n. To this end, for such a map f , let wDf (K,X rel L) denote the category with

the same objects as Df (K,X rel L) but whose only morphisms are weak equivalences, and

let Ef (K,X rel L) denote the full subcategory of wDf (K,X rel L) with objects given by

commutative squares E that determine PD embeddings for f in the sense of Definition 1.1.3.

Definition 1.2.4. The space of PD embeddings for f , denoted by Ef (K,X rel L), is the
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geometric realization of the nerve of Ef (K,X rel L). That is,

Ef (K,X rel L) = |Ef (K,X rel L)|.

1.3 The Space of Fiberwise Duals

We now set out to define the space SWf (K,X rel L) of fiberwise duals for a given PD

embedding for f . To do so, we will need to develop some fiberwise homotopy theory, most

of which can be found in [CK09] and [Kl07].

Let (sZ , Z, rZ) and (sW ,W, rW ) be objects of the category T (X
id→ X) which are both

fibrant and cofibrant. When no confusion will arise, we will refer to these objects as Z and

W without mention of the structure maps.

Remark 1.3.1. The category T (X
id→ X) is probably known better as the category of retrac-

tive spaces over X and is often denoted by R(X). It carries a model structure as described

in the introduction. In particular, under the assumption that Z and W are cofibrant, we

have the following diagram of cofibrations in T :

Z
sZ←− X

sW−→ W

and the canonical map

hocolim(Z
sZ←− X

sW−→ W )
∼=−→ colim(Z

sZ←− X
sW−→ W )

is thus a homeomorphism of spaces. We will write Z ∪X W for the common value of the

spaces displayed above.
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Definition 1.3.2. The fiberwise smash product of Z and W is the object of T (X
id→ X)

given by

Z ∧X W := Z ×X W ∪Z∪XW X

which we will regard as an object of (T ↓ X) via the forgetful functor from T (X
id→ X).

Here, Z ×X W is the fiber product along X via the maps rZ and rW . As in the previous

remark, our assumption that Z and W are both fibrant ensures the homotopy invariance of

the fiber product construction. That is, Z ×X W will be used to denote the common value

of the spaces

lim(Z
rZ−→ X

rW←−− W ) ∼= holim(Z
rZ−→ X

rW←−− W ).

Definition 1.3.3. Let Y ∈ (T ↓ X) with structure map g : Y → X. The j-fold unreduced

fiberwise suspension functor

SjX : (T ↓ X)→ (T ↓ X)

is defined by

SjXY = Y ×Dj ∪Y×Sj−1 X × Sj−1.

That is, SjXY is the fiberwise join over X of Y with Sj−1, denoted by Y ∗X Sj−1. In general,

we define the fiberwise join of an object Y ∈ (T ↓ X) and a space U to be the space

Y ∗X U = hocolim(Y ← Y × U → X × U)

considered as a space over X. Note that SXY is just the double mapping cylinder of g:
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SXY = X × 0 ∪g×0 Y × [0, 1] ∪g×1 X × 1.

Definition 1.3.4. Given an object Y ∈ T (X
id−→ X), its reduced fiberwise suspension is

given by

ΣXY = SXY ∪SXX X.

Note that ΣX is an endofunctor of T (X
id−→ X).

Definition 1.3.5. A fibered spectrum E over X consists of objects Ej ∈ T (X
id−→ X) for

j ∈ N together with morphisms (structure maps)

ΣXEj → Ej+1

for each j ≥ 0. A morphism E → E ′ of fibered spectra over X is given by a collection of

morphisms Ej → E ′j which are compatible with the structure maps.

We say that E is fibrant if the adjoints to the structure maps are weak homotopy equiv-

alences of underlying spaces. That is, E is fibrant if the spectrum of underlying spaces

is an Ω-spectrum in the sense of [CK09]. Moreover, any fibered spectrum E has a fibrant

replacement Ef in which

Efj = hocolimn Ωn
XEj+n.

Here, the homotopy colimit is taken in the category T (X
id−→ X), and Ωn

X is the adjoint to

the n-fold reduced fiberwise suspension.
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Remark 1.3.6. There is a category SPX of fibered spectra over X whose morphisms are

defined as above. Furthermore, this category can be equipped with a model structure (see

[MS06]) where a morphism E → E ′ is a

• weak equivalence if the associated morphism of fibrant replacements Ef → (E ′)f is a

levelwise weak equivalence: the map Efj → (E ′)fj is a weak equivalence in T (X
id−→ X).

• cofibration if the maps E0 → E ′0 and Ej ∪ΣXEj−1
ΣXE ′j−1 → E ′j are cofibrations in

T (X
id−→ X).

• fibration if it has the right lifting property with respect the trivial cofibrations.

Definition 1.3.7. For a morphism A→ B in T (X
id−→ X) which is an inclusion, define the

fiberwise quotient to be the object of T (X
id−→ X) given by

B//A = B ∪A X.

We may regard B//A as an object of (T ↓ X) by means of the forgetful functor. Write

X+ = X//∂X

for the double of X. That is, X+ is the object whose underlying space is X ∪∂X X.

Remark 1.3.8. For objects (rZ , Z) and (rW ,W ) of (T ↓ X), we can write their fiberwise

join as

Z ∗X W = Z ×X CX(W ) ∪Z×XW CX(Z)×X W
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where CX(W ) is the space over X given by taking the mapping cylinder of rW , and similarly

for CX(Z). The inclusion

CX(Z)×X W → Z ∗X W

allows us to form the fiberwise quotient

(Z ∗X W )//(CX(Z)×X W )

which is equivalent to

Z+ ∧X SXW.

Thus, we have a quotient morphism in (T ↓ X) given by

Z ∗X W
γ−→ Z+ ∧X SXW.

Definition 1.3.9. A fiberwise duality map for objects objects Z and W of T (X
id−→ X) is a

morphism

d : X+ → Z ∧X W

such that for all (cofibrant and fibrant) fibered spectra E over X, the assignment g 7→

(g ∧X idW ) ◦ d determines an isomorphism of abelian groups

[Z, E ]X ∼= [X+, E ∧X W ]X

where [ , ]X denotes fiberwise homotopy classes, and the fiberwise smash product E ∧X W

is defined by (E ∧X W )j = Ej ∧X W .
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Now, fix an object (f,K) ∈ (T ↓ X), where K is a connected, homotopy finite complex

and X is a PD space, possibly with boundary ∂X. Further, assume that L → K is a

cofibratoin in T such that f(L) ⊂ ∂X and f |L : L → ∂X is the underlying map of a given

PD embedding with complement CL. Then Richter duality ([Kl07], Proposition 8.3) provides

us with a fiberwise duality map

d̃L : (∂X)+ → L+ ∧∂X S∂XCL

for L+ and S∂XCL. Define a category FDf (K,X rel L) (of fiberwise duals of f) as follows.

An object of FDf (K,X rel L) is a pair (dK , CK) such that (CK , CL) is a cofibration pair of

spaces and

dK : X → K ∗X CK

is a morphism of spaces over X. This morphism gives rise to a based morphism

d̃K : X+ → K+ ∧X SXCK

by composing with the quotient morphism constructed in Remark 1.3.8, and sending the

new copy of X given by the “+” to the base section of the target via the identity map. We

require d̃K to be a fiberwise duality map for K+ and SXCK which restricts to the given

fiberwise duality map d̃L. A morphism (dK , CK) → (d′K , C
′
K) in FDf (K,X rel L) is given

by a map α : CK → C ′K and a cofibration CL → C ′K such that the diagram
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CL

�� ��
CK

α //

��

C ′K

��
X

commutes and such that (idK ∗X α) ◦ dK = d′K . Similar to the above, there is a map

d̃′K : X+ → K+ ∧X SXC ′K

which we again require to be a fiberwise duality map for K and SXC ′K which agrees with

d̃L when restricted to (∂X)+. Let wFDf (K,X rel L) denote the category with the same

objects as FDf (K,X rel L) but whose only morphisms are weak equivalences CK → C ′K .

Definition 1.3.10. The space of fiberwise duals for f , denoted by SWf (K,X rel L), is the

geometric realization of the nerve of the category wFDf (K,X rel L). That is,

SWf (K,X rel L) = |wFDf (K,X rel L)|.

1.4 The Stabilization and Classification Maps

Let (K,L) and (X, ∂X) be as in Definition 1.1.3. In this section we define the stabi-

lization and classification maps from the introduction. We first consider the stabilization

map:

σ : Ef (K,X rel L)→ ESXf (SXK,X ×D1 rel SXL).
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Let

(AK , AL) //

��

(CK , CL)

��
(D)

(K,L)
f=(fK ,fL)

// (X, ∂X)

be an object of Ef (K,X rel L). That is, D is a PD embedding for f = (fK , fL) relative to

the PD embedding

AL //

��

CL

��
(DL)

L
fL
// ∂X

We can picture the given Poincaré stratification of the pair (X, ∂X) as follows:

AL

AL

L K AK CK CL

Figure 1.1: A PD Decomposition of (X, ∂X)

The motivation for the definition of the stabilization map below comes from “crossing the

stratification above with the interval”.

Definition 1.4.1. Define a functor

σ̃ : Ef (K,X rel L)→ ESXf (SXK,X ×D1 rel SXL)
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on objects by

(AK , AL) //

��

(CK , CL)

��

(SCKAK ,SCLAL) //

��

(CK ×D1, CL ×D1)

��
7−→

(K,L)
f

// (X, ∂X) (SXK,SXL)
SXf

//(X ×D1, ∂(X ×D1))

(D) (σ̃D)

Note that SXX = X × D1. We will use both notations in what follows. The Poincaré

stratification of σ̃D can be pictured as follows:

SCLAL

SCLAL

SXL SXK SCKAK SCKCK SCLCL

Figure 1.2: A PD Decomposition of (X ×D1, ∂(X ×D1))

Definition 1.4.2. The stabilization map σ is defined by applying the geometric realization

functor to σ̃:

σ = |σ̃| : Ef (K,X rel L)→ ESXf (SXK,X ×D1 rel SXL).

Establishing the connectivity of this map is the content of Theorem A.

We now turn to the definition of the classification map
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θ : Ef (K,X rel L)→ SWf (K,X rel L).

To this end, let

(AK , AL) //

��

(CK , CL)

��
(D)

(K,L)
f
// (X, ∂X)

be an object of the category Ef (K,X rel L). Then D gives rise to a map

dK : X → K ∗X CK

constructed as follows. By definition, X is equivalent to hocolim(K ← AK → CK). The

square D provides us with a map AK → K ×X CK and, thus we have an induced map

hocolim(K ← AK → CK)→ hocolim(K ← K ×X CK → CK).

The target of this map is just the fiberwise join K ∗X CK . Since the source is equivalent to

X, we have the desired map

dK : X → K ∗X CK .

Now, composing this map with the quotient map γ constructed in Remark 1.3.8 replaces the

target above with K+ ∧X SXCK , where K+ = K q X. As we did when constructing the

category of fiberwise duals, we can convert this composed map into a based morphism

d̃K : X+ → K+ ∧X SXCK

by sending the new copy of X (provided by the “+”) to the base section of the target via
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the identity map. This map is a fiberwise duality map, which can be seen by noting that it

coincides with the following construction. There is a fiberwise collapse map (see [Kl07])

X+ → K//AK

in (T ↓ X) which arises as a fiberwise homotopy class by taking fiberwise quotients in the

chain of fiberwise pairs

(X, ∂X)← (K ∪AK CK , ∂X)→ (K ∪AK X,X).

Notice that the first arrow in the chain above is a weak equivalence by the definition of PD

embedding. Compose the fiberwise collapse above with the ‘excision’ weak equivalence

K//AK = K ∪AK X
∼−→ X ∪CK X = SXCK

given by the embedding diagram D to get a map X+ → SXCK . Finally, compose with the

fiberwise diagonal (see [Kl07], Section 8)

SXCK → K+ ∧X SXCK

to get the map

d̃K : X+ → K+ ∧X SXCK .

By Richter duality ([Kl07], Proposition 8.3), this map is a fiberwise duality map. Note

that by restricting the entire construction just made to the associated PD embedding with

underlying map L → ∂X, we obtain the given fiberwise duality map d̃L. We can use this

construction to define a functor
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θ̃ : Ef (K,X rel L)→ wFDf (K,X rel L)

which is given on objects by

D 7→ (dK , CK).

This correspondence respects the restriction to dL and, thus, we have the classification map:

Definition 1.4.3. The classification map θ is defined by applying the geometric realization

functor to θ̃:

θ = |θ̃| : Ef (K,X rel L)→ SWf (K,X rel L).

Establishing the connectivity of this map is the content of Theorem B.
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CHAPTER 2

Classfication

2.1 Proof of Theorems B and D

We will now give proofs of Theorems B and D assuming Theorem A:

Theorem A (Stabilization). Let f : (K,L) → (X, ∂X) be a map from a cofibration pair

of homotopy finite spaces (K,L), with hodim(K,L) = k, to a PD pair (X, ∂X) of dimension

n. Assume that f : K → X is r-connected (r ≥ 1) and that k ≤ n−3. Then the stabilization

map

σ : Ef (K,X rel L)→ ESXf (SXK,X ×D1 rel SXL)

is (n− 2(k − r)− 3)-connected.

Define a functor

ψ̃ : wFDf (K,X rel L)→ wFDSXf (SXK,X ×D1 rel SXL)

as follows. Recall that an object of the domain category is specified by a given PD embedding

with underlying map L→ ∂X and complement CL, along with a pair (dK , CK) such that

dK : X → K ∗X CK

is a morphism of spaces over X which induces a fiberwise duality map d̃K for K+ and SXCK .
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The j-fold fiberwise suspension SjXX coincides with X ×Dj. In particular, we can take the

fiberwise suspension of the map dK to obtain

SXdK : X ×D1 → SXK ∗X CK .

This map again induces a fiberwise duality map

S̃XdK : (X ×D1)+ → SXK+ ∧X SXCK

(see, e.g., [Kl07], Section 8). Thus, define the functor ψ̃ on objects by sending (dK , CK) to

(SXdK , CK). Applying the geometric realization functor to ψ̃ produces a map of spaces

ψ : SWf (K,X rel L)→ SWSXf (SXK,X ×D1 rel SXL).

Lemma 2.1.1. The map ψ is (n− 2(k − r)− 1)-connected.

Proof. Consider the map

F (X,K ∗X CK)→ F (SXX,SXK ∗X CK)

of underlying function spaces induced by fiberwise suspension. By the fiberwise Freuden-

thal suspension theorem ([Kl99a], Theorem 4.7), this map of function spaces induces a πj-

isomorphism provided that

dim(SjXX) < 2 conn(K ∗X CK) + 1

where the connectivity of K ∗X CK is defined to be one less than the connectivity of the

structure map K ∗X CK → X, and dim(SjXX) is the relative cohomological dimension

of SjXK. Furthermore, the map induces a surjection on πj when the inequality above is
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replaced with equality. Since CK → X is (n− k− 1)-connected, and K → X is r-connected,

we conclude that conn(K ∗X CK) = n − k + r − 1. As noted above, SjXX is just X × Dj.

We may regard X as having homotopy dimension n, since X is a PD space of dimension n

([Wa65]). Thus, dim(SjXX) = n+ j, and the inequality above becomes

j < n− 2(k − r)− 1.

That is, the map of function spaces is (n− 2(k − r)− 1)-connected. Let

D(X,K ∗X CK)

denote the component of the space F (X,K ∗X CK) consisting of those maps that induce

fiberwise duality maps for K+ and SXCK . Then the induced map of components

D(X,K ∗X CK)→ D(SXX,SXK ∗X CK)

is also (n− 2(k− r)− 1)-connected. This implies that ψ is (n− 2(k− r)− 1)-connected, and

finishes the proof.

Our goal is to show that the classification map (see Definition 1.4.3)

Ef (K,X rel L)
θ−→ SWf (K,X rel L)

is (n− 2(k− r)− 3)-connected. Recall that this is the connectivity of the stabilization map,

σ. Write ψ0 for the map ψ constructed above and, in general, write

ψj : SWSjXf (S
j
XK,X ×D

j rel SjXL)→ SWSj+1
X f (S

j+1
X K,X ×Dj+1 rel Sj+1

X L).
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By the previous lemma, we have conn(ψ0) = conn(σ) + 2. Furthermore, it is straightforward

to check that conn(ψj) increases with j. Thus, to verify that conn(θ) = conn(σ), it will

suffice to show that the composed map (which we still call θ)

θ : Ef (K,X rel L)→ SWst(K,X rel L)

is (n− 2(k − r)− 3)-connected, where

SWst(K,X rel L) = colimj SWSjXf (S
j
XK,X ×D

j rel SjXL).

Using the map θ, along with the stabilization map, form the square

Ef (K,X rel L) θ //

σ

��

SWst(K,X rel L)

=

��
(B)

ESXf (SXK,X ×D1 rel SXL)
θ1
// SWst(SXK,SXX rel SXL)

where θ1 is a suitably adjusted version of the classification map.

Lemma 2.1.2. The square B is conn(σ) = (n− 2(k − r)− 3)-cartesian.

Proof. Recall that we are assuming Theorem A. The lemma follows from ([Go92], Prop. 1.6

(ii)).

The square B gives rise to the infinite ladder
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Ef (K,X rel L) θ //

��

SWst(K,X rel L)

=

��
ESXf (SXK,X ×D1 rel SXL)

θ1
//

��

SWst(SXK,SXX rel SXL)

=
��

...

��

...

=

��
EStXf (S

t
XK,X ×Dt rel StXL)

θt
//

��

SWst(StXK,StXX rel StXL)

=
��

...
...

where the tower on the left is obtained by repeated application of the stabilization map.

Lemma 2.1.3. The map θ∞, obtained after passing to homotopy colimits in the tower above,

is a weak homotopy equivalence.

Proof. A 0-cell of SWst(K,X rel L) is represented by a space C along with a stable map

d : X → K ∗X C

which induces a (stable) fiberwise duality map d̃ for K+ and C. For t large, write hofiberC(θt)

for the homotopy fiber of θt with respect to the space C. Suppressing the notation of pairs,

we can think of a 0-cell in hofiberC(θt) as a PD embedding of C in X ×Dt:

A //

��

W

��
C // X ×Dt

which, after application of θt, gives rise to the stable fiberwise duality map
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d̃ : X+ → K+ ∧X SXC.

For t large, the uniqueness of fiberwise duals then provides us with a stable identification

StXK | //W.

At the expense of (possibly) suspending further, we can assume that we have an unstable

identification of StXK with W . Hence, hofiberC(θt) in nonempty. Suppose, now, that we are

given two embeddings in hofiberC(θt):

A //

��

C

��

A′ //

��

W

��
(D1) (D2)

StXK // X ×Dt StXK // X ×Dt

As above, for large t, we have an identification up to homotopy of the pairs (C,A) and

(W,A′). Moreover, the duality data provides us with a commutative triangle

K+ ∧X SXC

h∧X id
��

X+

d̃ 44

d̃
**
K+ ∧X SXC

which shows that we have a stable self-equivalence h : K+ → K+. This gives rise to an

associated map of pairs

(StXK ×D1,StXK × S0)→ (X ×Dt+1, ∂(X ×Dt+1))

which, when combined with the identifications above, produces a concordance from D1 to

D2. Thus, hofiberC(θt) is connected. It only remains to show that h is equivalent to the



32

identity map of StXK. But the existence of the stable fiberwise duality map d̃ for K+ and

SXC means precisely that we have an isomorphism of ableian groups

{
K+, K+

}
X

∼=−→
{
X+, K+ ∧X SXC

}
X

where {, }X denotes stable fiberwise homotopy classes. Moreover, by construction, the self-

equivalence h and the identity map idK+ both map to d̃ under this isomorphism. Thus, h

is stably equivalent to the identity and, as above, after suspending further, we may assume

that we have the desired unstable equivalence. Recalling that we are working relatively,

the uniqueness statement, along with ([Kl07], Theorems A, B, and Remark 1.1) show that

hofiberC(θt) is highly-connected, with connectivity increasing with t.

We can now prove

Theorem B (Classification). With the assumptions of Theorem A, the classification map

θ : Ef (K,X rel L)→ SWf (K,X rel L)

is (n− 2(k − r)− 3)-connected.

Proof. The squares in the tower above become highly cartesian as we move downward. Thus,

in light of the previous lemma, we may assume, by a downward induction, that the map θ1

in the square B is (conn(σ) + j)-connected, for some j ≥ 0. Let Q denote the homotopy

limit of the diagram gotten from B by considering only the bottom horizontal and right

vertical maps. Then the canonical map
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Q→ SWf (K,X rel L)

is conn(θ1)-connected. By Lemma 2.1.2, the canonical map

Ef (K,X rel L)→ Q

is (n− 2(k − r)− 3)-connected and, thus, we have a commutative triangle

Ef (K,X rel L) θ //

��

SWf (K,X rel L)

Q

77

Using this triangle and ([Go92], Prop. 1.5 (i)), we conclude that conn(θ) = conn(σ). This

completes the proof of the theorem.

Theorem B implies the PD analog of the Connolly-Williams Classification Theorem:

Theorem D. Let K be a homotopy finite complex with hodim(K) = k ≤ n − 3. Assume

that f : K → Sn is an r-connected map of spaces, r ≥ 1. Then the induced map

π0(θ) : π0(Ef (K,Sn))→ π0(SWf (K,S
n))

is surjective for n ≥ 2(k − r) + 3 and injective for n ≥ 2(k − r) + 4.

This establishes Theorems B and D assuming Theorem A. In the following section, we prove

a technical result that will play a crucial role in the proof of Theorem A.
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2.2 The 4-D Face Theorem

Recall that n denotes the category associated to the ordinal n as a poset, and write

P (n) for its poset of subsets, which we also regard as a category.

Theorem 2.2.1. (4-Dimensional Face Theorem)

Let X : P (4) → T be the 4-dimensional cubical diagram of spaces represented by the com-

mutative diagram

X∅ //

��

��

X3

��

��
X4

��

//

��

X34

��

��

X1
////

��

X13

��

��

X14
//

��

X134

��

//

X2
//

��
X23

��
X24

//

��
X234

��
X12

// X123 X124
// X1234

Assume that

• The 4-cube X is ∞-cartesian

• The spaces XS are connected for each nonempty S ⊂ 4

• Each 3-dimensional face which meets X1234 is strongly cocartesian

• Each map XS → XS∪{i} is ki-connected for S and {i} nonempty subsets of 4, i /∈ S.

• ki, kj ≥ 2 for some i 6= j.

Then each of the squares

X∅ //

��

Xj

��
Xi

// Xij

is
(∑4

i=1 ki − 1
)
-cocartesian for 1 ≤ i < j ≤ k.
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Remark 2.2.2. Let T be a nonempty subset of 4 and let ∂4−TX denote the |T |-face of X

terminating in X1234. Suppose each of these |T |-faces is kT -cartesian. One can easily check

that min {
∑

α kTα} =
∑4

i=1 ki − 2, where the minimum is taken over all partitions {Tα}α of

4 by nonempty subsets. By Goodwillie’s generalized dual Blakers-Massey Theorem ([Go92],

Theorem 2.6) X is
(∑4

i=1 ki + 1
)
-cocartesian. Write X as a map of 3-cubes Y → Z. By

hypothesis, Z is strongly cocartesian. Let H∗(X) denote the reduced homology of the total

cofiber of X, and similarly for Y and Z. Then Hn(Z) = 0 for all n and Hn(X) = 0 for

n ≤
∑4

i=1 ki + 1. From the long exact sequence

· · · → Hn(Z)→ Hn(X)→ Hn−1(Y )→ Hn−1(Z)→ · · ·

we conclude that Hn(Y ) = 0 for n ≤
∑4

i=1 ki. This result motivates the first claim made in

the proof below.

Proof of 4D Face Theorem. As above, let X denote the 4-cube. Without loss in generality,

assume that all of the maps in X are fibrations. Using Remark 2.2.2 and an argument similar

to that given in the proof of ([Kl99a], Theorem 5.1), our final hypothesis in the statement

of the theorem guarantees that X∅ is nonempty and connected.

Claim 2.2.3. Each of the 3-dimensional subcubical diagrams

X∅ //

��

��

Xk

��

��
Xi

////

��

Xik

����
Xj

//

��
Xjk

��
Xij

// Xijk
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is
∑4

i=1 ki-cocartesian for 1 ≤ i < j < k ≤ 4.

Proof of Claim: Choose one of the 3-cubes meeting X∅ and call it Y , say

X∅ //

��

��

X3

��

��
X1

////

��

X13

����
X2

//

��
X23

��
X12

// X123

It will be enough to prove the claim for this 3-cube. Let Z denote the 3-cube opposite Y in

X. That is, Z is the 3-cube

X4
//

��

��

X34

��

��
X14

////

��

X134

����
X24

//

��
X234

��
X124

// X1234

Let hocolim (X −X1234) denote the homotopy colimit of the restriction of X to the subposet

of proper subsets of P (4). Similarly, let hocolim (Y −X123) and hocolim (Z −X1234) denote

the analogous homotopy colimits associated with Y and Z, respectively. Then there is an

induced map

hocolim (Y −X123)→ hocolim (Z −X1234) .

Let A denote the diagram

X123 ← hocolim (Y −X123)→ hocolim (Z −X1234)

Then hocolim(A) is equivalent to hocolim (X −X1234) and we have the following commuta-
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tive diagram:

hocolim (Y −X123) //

��

hocolim (Z −X1234)

'

��

fss
(2.1) hocolim(X −X1234)

g ++
X123

//

??

X1234

The right vertical map is an equivalence since Z is strongly cocartesian. The canonical

map g is
(∑4

i=1 ki + 1
)
-connected since X is

(∑4
i=1 ki + 1

)
-cocartesian. By ([Go92], Prop

1.5(ii)) the map f is
(∑4

i=1 ki
)
-connected. Rewrite the upper left triangle of (2.1) as the

∞-cocartesian square

hocolim (Y −X123) //

��

hocolim (Z −X1234)

f

��
(2.2)

X123
//hocolim(X −X1234)

Our goal is to show that the left vertical map is
(∑4

i=1 ki
)
-connected. By ([Kl99a], Lemma

5.6(2)) it will be enough to show that the top horizontal map is 2-connected. To this end,

note that each of the spaces in (2.2) admits a map to X1234. For any choice of basepoint

in X1234, the square of homotopy fibers over X1234 is ∞-cocartesian. The homotopy fiber of

the map hocolim(Z −X1234)→ X1234 is equivalent to a point since Z is ∞-cocartesian. So,

we have an ∞-cocartesian square
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hofiber(hocolim(Y −X123)→ X1234) //

��

∗

��
(2.3)

hofiber(X123 → X1234) // hofiber(hocolim(X −X1234)→ X1234)

Let s denote the connectivity of the space

hofiber(hocolim(Y −X123)→ X1234)

Then the top horizontal map in (2.3) is s+ 1-connected. Hence, the homotopy cofiber of the

top horizontal arrow in (2.3) is s+ 1-connected. Let Ctop denote this homotopy cofiber.

Now, by hypothesis, the map X123 → X1234 is k4-connected. Since the map g in (2.1) is(∑4
i=1 ki + 1

)
-connected we have that the map

X123 → hocolim(X −X1234)

is k4-connected ([Go92], Prop 1.5(ii)). The five-lemma applied to the map of long exact

sequences on homotopy induced by the diagram

hofiber(X123 → X1234) //

��

X123
//

��

X1234

=

��
hofiber(hocolim(X −X1234)→ X1234) // hocolim(X −X1234) // X1234

implies that the left vertical arrow, and hence the bottom horizontal arrow in (2.3), is

k4-connected. Thus the homotopy cofiber of the bottom horizontal arrow in (2.3) is k4-

connected. Let Cbottom denote this cofiber. Since (2.3) is ∞-cocartesian, we have a weak

equivalence Ctop
∼−→ Cbottom. This implies that s + 1 = k4. But we assumed that k4 ≥ 2,
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so s ≥ 1. That is, the connectivity of the space hofiber(hocolim(Y − X123) → X1234) is at

least 1. This implies, by definition, that the map hocolim(Y − X123) → X1234 is at least

2-connected. But hocolim(Z−X1234) is weakly equivalent to X1234. Hence the top horizontal

map in (2.2) is at least 2-connected, and the claim follows.

Now we prove the statement concerning the degree to which each 2-face meeting X∅ is

cocartesian. Choose one of these 2-faces and call it V , say

X∅ //

��

X1

��
X2

// X12

It will be enough to show that V is
∑4

i=1 ki − 1-cocartesian. By hypothesis, the 3-cube

X3
//

��

��

X34

��

��
X13

////

��

X134

����
X23

//

��
X234

��
X123

// X1234

is strongly cocartesian. Thus, the face

X3
//

��

X13

��
X23

// X123

is ∞-cocartesian. Call this face W . As in the claim above, there is an induced map

hocolim (V −X12)→ hocolim (W −X123)
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and a commutative diagram

hocolim (V −X12) //

��

hocolim (W −X123)

'

��

αss
(2.4) hocolim(Y −X123)

β

++
X12

//

??

X123

The right vertical arrow is an equivalence equivalence and, by the claim above, the map β is∑4
i=1 ki-connected. So, the map α is (

∑4
i=1 ki)−1-connected ([Go92], Prop 1.5(ii)). Rewrite

the upper left triangle of (2.4) as the ∞-cocartesian square

hocolim (V −X12) //

��

hocolim (W −X123)

α

��
(2.5)

X12
// hocolim(Y −X123)

Our goal is to show that the left vertical map in (2.5) is
(∑4

i=1 ki − 1
)
-connected. By ([Kl99a],

Lemma 5.6(2)) it will be enough to show that the top horizontal map is 2-connected. We will

make an argument similar to the one above. Map each of the spaces in the square (2.5) to

X123. As above, for any choice of basepoint in X123, the square of homotopy fibers over X123

is ∞-cocartesian. The homotopy fiber of the map hocolim(W −X123)→ X123 is equivalent

to a point since W is ∞-cocartesian. So, we have an ∞-cocartesian square

hofiber(hocolim(V −X12)→ X123) //

��

∗

��
(2.6)

hofiber(X12 → X123) // hofiber(hocolim(Y −X123)→ X123)

Let t denote the connectivity of the space
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hofiber(hocolim(V −X12)→ X123)

Then the top horizontal map in (2.6) is t+ 1-connected. Hence, the homotopy cofiber of the

top horizontal arrow in (2.6) is t+1-connected. Let C ′top denote this homotopy cofiber. Now,

by hypothesis, the map X12 → X123 is k3-connected. Since the map β in (2.4) is
(∑4

i=1 ki
)
-

connected we have that the map X123 → hocolim(X −X1234) is k3-connected ([Go92], Prop

1.5(ii)). The five-lemma applied to the map of long exact sequences on homotopy induced

by the diagram

hofiber(X12 → X123) //

��

X12
//

��

X123

=

��
hofiber(hocolim(Y −X123)→ X123) // hocolim(Y −X123) // X123

implies that the left vertical arrow, and hence the bottom horizontal arrow in (2.6), is

k3-connected. Thus the homotopy cofiber of the bottom horizontal arrow in (2.6) is k3-

connected. Let C ′bottom denote this cofiber. Since (2.6) is ∞-cocartesian, we have a weak

equivalence C ′top
∼−→ C ′bottom. This implies that t + 1 = k3. But we assumed that k3 ≥ 2, so

t ≥ 1. That is, the connectivity of the space hofiber(hocolim(V −X12)→ X123) is at least 1.

This implies, by definition, that the map hocolim(V −X12)→ X123 is at least 2-connected.

But hocolim(W −X123) is weakly equivalent to X123. Hence the top horizontal map in (2.5)

is at least 2-connected, and the theorem follows.
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CHAPTER 3

Stabilization

3.1 Decompression and Section Data for PD Embeddings

Standing Assumptions: From now on, we assume that we have a fixed object (f,K) ∈

(T ↓ X), where f : K → X is an r-connected (r ≥ 1) map from a connected, homotopy

finite space K to a PD space X of dimension n, possibly with boundary ∂X. Further, as-

sume that we are given a homotopy finite space L (possibly empty) and a cofibration L→ K

along with a map of pairs (K,L)→ (X, ∂X). Finally, assume that hodim(K,L) = k ≤ n−3.

Definition 3.1.1. Let

(AK , AL) //

��

(CK , CL)

��
(D)

(K,L)
f
// (X, ∂X)

denote an object of the category Ef (K,X rel L), which we will also think of as the corre-

sponding 0-cell of the space Ef (K,X rel L). Let f j denote the effect of the map f : K → X

followed by the inclusion X → X×Dj. Define a functor (called the decompression functor1)

δ̃ : Ef (K,X rel L)→ Ef1(K,X ×D1 rel L)

1For a detailed construction of the decompression functor, see [Kl02b], Definition 2.4.
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on objects by sending D to the relative PD embedding

(SKAK ,SLAL) //

��

(SXCK ,SXCL)

��
(δ̃D)

(K,L)
f1

// (X ×D1, ∂(X ×D1))

Applying the geometric realization functor to δ̃ gives the decompression map

δ = |δ̃| : Ef (K,X rel L)→ Ef1(K,X ×D1 rel L).

Remark 3.1.2. There is an alternative version of the decompression functor

δJ : Ef (K,X rel L)→ Ef×id(K × J,X ×D1 rel L× J)

where J = [1/3, 2/3](see [Kl02a]). The restriction

Ef×id(K × J,X ×D1 rel L× J)→ Ef1(K × 1/2, X ×D1 rel L× 1/2)

induces an equivalence on geometric realizations.

In what follows, we will apply the stabilization map to the decompression δ̃D . By

definition, this will land us in the space

(∗) ESXf1(SX×D1K,X ×D2 rel SX×D1L).

We will also apply the decompression map to a given PD embedding with underlying map

SXf . Using the previous remark, this will land us in the space

(∗∗) ESXf×id(SXK × J,X ×D2 rel SX×D1L× J).
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The restriction map displayed above, along with the weak equivalence

SX×D1K
∼−→ SXK

of spaces over X ×D2, induces an equivalence between the realizations (∗) and (∗∗). Write

ESXf1(SXK,X ×D
2 rel SXL)

for these equivalent spaces. Then the stabilization and decompression maps give rise to the

following square, which commutes up to preferred weak equivalence:

Ef (K,X rel L) //

��

ESXf (SXK,X ×D1 rel SXL)

��
(Dσ,δ)

Ef1(K,X ×D1 rel L) // ESXf1(SXK,X ×D2 rel SXL)

Remark 3.1.3. The bulk of the proof of Theorem A lies in proving that the square Dσ,δ is

0-cartesian. The rest of this section will be devoted to constructing certain maps (sections

of maps in given PD embeddings) that will allow us to use the 4-D Face Theorem (Theorem

2.2.1) to prove this claim.

Lemma 3.1.4. Let g : X → Y be a t-connected map of based spaces, and assume that

conn(X) = conn(Y ) = s. Then the square

X //

g

��

ΩΣX

��
Y // ΩΣY

is (s+ t)-cartesian.

Proof. Recall that for a based space Z with basepoint ∗, the homotopy fiber of the inclusion
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∗ ↪→ Z is the based loop space ΩZ. The square in question is then determined by taking

the homotopy fibers of the horizontal maps in the ∞-cocartesian 3-cube

X //

��

g ��

∗

��

��
∗ ////

��

ΣX

����
Y //

��

∗
��

∗ // ΣY

Denote the 3-cube by X . For T a nonempty subset of {1, 2, 3}, let k(T ) denote the degree

to which the front face ∂TX = {V →X (V ) : V ⊂ T} is cartesian. Labeling the “∗”’s in

the top face of X by 1 and 3, and labeling Y by 2, one can easily check that

k({1}) = k({3}) = s+ 1, k({1, 2}) = k({2, 3}) = t+ 1, k({2}) = t

and k({1, 3}) = k({1, 2, 3}) =∞

By Goodwillie’s generalized Blakers-Massey Theorem ([Go92], Theorem 2.5), X is (1− 3 +

s+ t+ 1 + 1) = (s+ t)-cartesian. An application of ([Go92], Proposition 1.18) completes the

proof.

The fiberwise suspension functor SX can be thought of as having target category T (X q

X
∇→ X), where ∇ is the fold map. It admits a right adjoint

OX : T (X qX ∇→ X)→ (T ↓ X)

given on objects by

Y 7→ holim(X
i+−→ Y

i−←− X)
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where i± denote the restrictions of X
∐
X → Y to each summand. Recall that an object

Y of (T ↓ X) is m-connected if the structure map Y → X is an (m + 1)-connected map of

spaces.

Lemma 3.1.5. Let Y ∈ (T ↓ X) be a cofibrant object which is m-connected. Then there is

a morphism

Y → OXSXY

of (T ↓ X) which is (2m+ 1)-connected.

Proof. Let g : Y → X be the structure map associated with the object Y . Then by definition,

we have the following ∞-cocartesian square of spaces over X:

Y
g //

g

��

X

i1

��
X

i0
// SXY

where i0 and i1 are the structure maps. By the Blakers-Massey Theorem, this square is

(2m+ 1)-cartesian. That is, the canonical map

Y → holim(X
i0−→ SXY

i1←− X) = OXSXY

is (2m+ 1)-connected.

Let
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(A′K , A
′
L) //

��

(WK ,WL)

��
(A ′)

(SXK,SXL)
SXf

// (X ×D1, ∂(X ×D1))

be a cofibrant and fibrant object of ESXf (SXK,X ×D1 rel SXL), which we also think of as

the corresponding 0-cell of ESXf (SXK,X ×D1 rel SXL). The underlying PD embedding

A′L
//

��

WL

��
SXL // ∂(X ×D1)

is the stabilization of the PD embedding with underlying map L → ∂X determined by D .

Thus, we have an identification

(WL, A
′
L) ' (CL ×D1,SCLAL)

which allows us to write A ′ as

(A′K ,SCLAL) //

��

(WK , CL ×D1)

��
(A ′)

(SXK,SXL)
SXf

// (X ×D1, ∂(X ×D1))

Similarly, let

(A′′K , B
′′
L) //

��

(W ′′
K ,W

′′
L)

��
(A ′′)

(K,L)
f1

// (X ×D1, ∂(X ×D1))

be a cofibrant and fibrant object of Ef1(K,X × D1 rel L), which we also think of as the
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corresponding 0-cell of Ef1(K,X×D1 rel L). By ([Kl02b], Proposition 4.1 and the preceeding

remark), there is a PD pair (C ′′L, A
′′
L) and an identification

(W ′′
L, B

′′
L) ' (SXC ′′L,SLA′′L)

along with an object C ′′K ∈ T (C ′′L → X) which allow us to write A ′′ as

(A′′K ,SLA′′L) //

��

(SXC ′′K ,SXC ′′L)

��
(A ′′)

(K,L)
f1

// (X ×D1, ∂(X ×D1))

Remark 3.1.6. We will suppress the notation of pairs from A ′ and A ′′, keeping in mind

that we are working relative to the PD embeddings of the underlying maps of subspaces that

are already given (see Definition 1.1.3).

Applying the decompression map to A ′, and applying the stabilization map to A ′′, we

have

SSXKA′K //

��

SXWK

��

SSXC′′KA
′′
K

//

��

SXC ′′K

��
(δA ′) (σA ′′)

SXK // X ×D2 SXK // X ×D2

where we have implicitly used the equivalence D1 ' ∗ along with ([Kl99a], Lemma 2.5 (2))

to replace the spaces appearing in the lower left corner of δA ′ and the upper right corners of

both squares with homotopy equivalent spaces. Without loss of generality, assume that δA ′

and σA ′′ are both cofibrant and fibrant objects of the category ESXf1(SXK,X×D2 rel SXL).

Lemma 3.1.7. Assume that there is a path (i.e., “zig-zag” of weak equivalences) from δA ′
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to σA ′′ in the category

ESXf1(SXK,X ×D
2 rel SXL).

Then there is a weak equivalence

SXWK
∼−→ SXC ′′K

of spaces over X.

Proof. Without loss of generality, assume that WK is cofibrant in (T ↓ X). Since SX

preserves cofibrant objects, the object SXWK is cofibrant. Furthermore, since A ′′ is fibrant,

we know that the object SXC ′′K is fibrant. Hence, the hypothesis of the lemma provides us

with a “‘zig-zag” of weak equivalences in (T ↓ X) from a cofibrant object to a fibrant object.

This induces an isomorphism in the homotopy category which then lifts back to the desired

weak equivalence.

Remark 3.1.8. To show that the square Dσ,δ is 0-cartesian, we will assume that δA ′ and

σA ′′ lie in the same component of the space

ESXf1(SXK,X ×D
2 rel SXL)

and produce a 0-cell in Ef (K,X rel L) (i.e., a PD embedding with underlying map f) that

maps to both δA ′ and σA ′′, making the square Dσ,δ commute. In fact, it will be enough to

assume, as above, that there is a path (= “zig-zag” of weak equivalences) from δA ′ to σA ′′

in the category ESXf1(SXK,X ×D2 rel SXL) since this will produce the desired path after

passing to realizations.
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Lemma 3.1.9. Similar to the previous lemma, assume that there is a path from δA ′ to σA ′′

in the category

ESXf1(SXK,X ×D
2 rel SXL).

Then there are weak equivalences

(i) SSXKA′K
∼−→ SSXC′′KA

′′
K in (T ↓ SXK)

(ii) SSXC′′KA
′′
K
∼−→ SSXKA′K in (T ↓ SXC ′′K)

Proof. Using the squares above, regard the spaces SSXKA′K and SSXC′′KA
′′
K as objects of

(T ↓ SXK). Our assumption that A ′ is cofibrant implies that A′K is cofibrant, so that

SSXKA′K is cofibrant. Our assumption that σA ′′ is fibrant implies that SSXC′′KA
′′ is a fibrant

object of (T ↓ SXK). The hypothesis of the lemma implies that there is a “zig-zag” of weak

equivalences over SXK from the cofibrant object SSXKA′K to the fibrant object SSXC′′KA
′′
K .

Thus, as in the proof of the previous lemma, we have a weak equivalence

SSXKA′K
∼−→ SSXC′′KA

′′
K

of spaces over SXK. Using the previous lemma, regard SSXKA′ as a space over SSXC′′KA
′′.

Then an argument similar to the one just given produces a weak equivalence

SSXC′′KA
′′
K
∼−→ SSXKA′K

of spaces over SXC ′′K .

In the next two lemmas, we will use the weak equivalences above to construct sections to
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the maps A′K → WK and A′′K → K given the the diagrams A ′ and A ′′. To avoid notational

clutter, we will drop the subscript K.

Lemma 3.1.10. Along with the standing assumptions given at the beginning of this section,

assume that n ≥ 2(k− r) + 2. Then with the assumption of the previous lemma, there exists

a map

SW∅ = W × S0 → A′

such that each of the restrictions W → A′ is a section of the map A′ → W in the diagram

A ′.

Proof. The natural map SXK → X is an (r + 1) ≥ 2-connected map of spaces. Hence,

every local coefficient system on SXK arises by pullback from one on X. Let MK and ML

denote the mapping cylinders of the maps K → X and L→ X, respectively. Then there is

a relative Mayer-Vietoris sequence with coefficients in any local system given by

· · · → H∗(SXK,SXL)→ H∗(MK ,ML)⊕H∗(MK ,ML)→ H∗(K,L)→ · · ·

Since MK and ML both deformation retract onto X, this sequence gives an isomorphism

H∗(K,L) ∼= H∗+1(SXK,SXL) = 0 for ∗ > k

Thus, hodim(SXK,SXL) = k + 1. So, by definition, the map of spaces A′ → SXK given in

A ′ is (n+ 1)− (k + 1)− 1 = (n− k − 1)-connected. Furthermore, the diagram
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SXK
SXf //

��

X ×D1

'
��

X

implies that the map SXf is an (r + 1)-connected map of spaces. But k ≤ n − 3, so that

n − k − 1 ≥ 2. Using ([Kl99a], Lemma 5.6 (2)) we infer that map A′ → W in A ′ is an

(r+1)-connected map of spaces. Thus, the Blakers-Massey Theorem implies that the square

A′ //

��

W

��
SXK // X ×D1

associated to A ′ is (n− k + r − 1)-cartesian. In particular, since A ′ is fibrant, the map

A′ → holim(SXK → X ×D1 ← W ) = SXK ×X W

is (n− k + r − 1)-connected. Using this map and Lemma 3.1.5, form the square

A′ //

��

OSXKSSXKA′

��
(F )

SXK ×X W // OSXKSSXK(SXK ×X W )

of spaces over SXK. Let

F = hofiber(A′ → SXK)

F ′ = hofiber(SXK ×X W → SXK)

where the homotopy fibers are taken with respect to any choice of basepoint for SXK. Then

F and F ′ are both (n− k− 2)-connected spaces, the latter being true since the connectivity
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of the space F ′ is equal to one less than the connectivity of the map of spaces W → X,

and this connectivity is n − k − 1 since the squares associated to A ′ are ∞-cocartesian.

Furthermore, the induced map F
h−→ F ′ is (n − k + r − 1)-connected, as can be seen from

the square F . The map h fits into the square obtained by taking homotopy fibers (over any

choice of basepoint for SXK) of the maps from F . That is, we have a square

F //

h

��

ΩΣF

��
(F )

F ′ // ΩΣF ′

By Lemma 3.1.4, F is (2n − 2k + r − 3)-cartesian and, hence, so is F . Using the evident

map SW∅ → SXK, as well as the weak equivalence (i) given in Lemma 3.1.9, construct the

composite

SSXK(SW∅)→ SX(SW∅) = SSXW∅ → SSXWA′′
∼−→ SSXKA′

of spaces over SXK. Apply the functor OSXK (restricted to (T ↓ SXK)) to get a map

OSXKSSXK(SW∅)→ OSXKSSXKA′.

Precompose with the map from SW∅ provided by the Lemma 3.1.5 to get

SW∅ → OSXKSSXKA′.

Finally, combine this map with the map SW∅ = SX∅ ×X W → SXK ×X W and the square

F to form the following diagram of spaces over SXK:
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SW∅

&&

��

��
A′ //

��

OSXKSSXKA′

��
SXK ×X W // OSXKSSXK(SXK ×X W )

By obstruction theory, the dashed arrow exists provided that hodim(W ) ≤ 2n− 2k + r− 3.

Note that the codimension hypothesis implies that W → X is 2-connected. Hence, using

duality and excision, we have the following isomorphisms for all local coefficient systems:

H∗(W ) ∼= Hn+1−∗(W,A′) ∼= Hn+1−∗(X ×D1,SXK).

Since (X ×D1,SXK) is an (r+ 1)-connected pair of spaces, the isomorphism above implies

that W is cohomologically (n− r − 1)-dimensional (i.e., its cohomology vanishes in degrees

> n− r−1). But r ≤ k ≤ n−3, so that n− r−1 ≥ 2. Hence, by ([GK08], Proposition 8.1),

hodim(W ) ≤ n−r−1. Thus, the dashed arrow exists provided that n−r−1 ≤ 2n−2k+r−3,

which is equivalent to n ≥ 2(k − r) + 2. This establishes the existence of the map

SW∅ = W × S0 → A′.

We now make a similar construction associated with the square A ′′:

Lemma 3.1.11. With the assumptions of the previous lemma, there exists a map

SK∅ = K × S0 → A′′
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such that each of the restrictions K → A′′ is a section of the map A′′ → K in the diagram

A ′′.

Proof. By definition, the left vertical map in A ′′ is (n − k) ≥ 3-connected, so the top

horizontal map is r-connected by ([Kl99a], Proposition 5.6 (2)). By the Blakers-Massey

Theorem, the square

A′′ //

��

SXC

��
K // X ×D1

associated with A ′′ is (n− k + r − 1)-cartesian. Since A ′′ was assumed fibrant, the map

A′′ → K ×X SXC

is an (n − k + r − 1)-connected map of spaces. Using Lemma 3.1.5, form the following

commutative square of objects in (T ↓ SXC):

A′′ //

��

OSXCSSXCA′′

��
(G )

K ×X SXC // OSXCSSXC(K ×X SXC)

Similar to the argument given in the previous lemma, this map gives rise to the square of

homotopy fibers (for any choice of basepoint in SXC)

G = hofiber(A′′ → SXC) //

h′

��

ΩΣG

��
(G ′)

G′ = hofiber(K ×X SXC → SXC) // ΩΣG′

in which conn(G) = conn(G′) = r−1 and conn(h′) = (n−k+ r−1). By Lemma 3.1.4, G ′ is
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(n− k + 2r− 2)-cartesian and, hence, so is G . Using the evident map SK∅ → SXC and the

weak equivalence (ii) given in Lemma 3.1.9, construct the following composite of objects in

(T ↓ SXC):

SSXC(SK∅)→ SX(SK∅) = SSXK∅ → SSXKA′
∼−→ SSXCA′′.

As above, apply the (restricted) functor OSXC to get a map

OSXCSSXC(SK∅)→ OSXCSSXCA′′.

Precompose with the map from SK∅ provided by Lemma 3.1.5 to get

SK∅ → OSXCSSXCA′′

and combine this with the map SK∅ = SX∅ ×X K → SXC ×X K and the square G to form

the diagram

SK∅

&&

��

��
A′′ //

��

OSXCSSXCA′′

��
K ×X SXC // OSXCSSXC(K ×X SXC)

Again, by obstruction theory, the dashed arrow exists provided that k ≤ n − k + 2r − 2,

which is equivalent to n ≥ 2(k − r) + 2. Hence, we have the desired map

SK∅ = K × S0 → A′′.
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3.2 The 0-Cartesian Square Dσ,δ

Recall the square of spaces from the previous section:

Ef (K,X rel L) //

��

ESXf (SXK,X ×D1 rel SXL)

��
(Dσ,δ)

Ef1(K,X ×D1 rel L) // ESXf1(SXK,X ×D2 rel SXL)

Lemma 3.2.1. Assume that n ≥ 2(k − r) + 3. Then along with the standing assumptions

given at the beginning of the previous section, the square Dσ,δ is 0-cartesian.

Proof. Using the projection X × D1 → X, write the underlying squares of A ′ and A ′′ as

follows:

A′K
//

��

WK

��

A′′K
//

��

SXC ′′K

��
(A ′) (A ′′)

SXK // X K // X

Using the fact that these squares are ∞-cocartesian, along with the maps constructed in

Lemmas 3.1.10 and 3.1.11, we have the following ‘excision’ weak equivalences

(i) X ∪WK
A′K

∼−→ SXK ∪A′K A
′
K
∼−→ SXK

(ii) X ∪K A′′K
∼−→ X ∪X SXC ′′K

∼−→ SXC ′′K
and, using (i) (along with an argument similar to Lemma 3.1.7 for the first weak equivalence)

(iii) SXC ′′K ∪X SXK
∼−→ (X ∪WK

X) ∪X SXK
∼−→ X ∪WK

SXK
∼−→ (X ∪WK

A′K) ∪A′K SXK
∼−→ SXK ∪A′K SXK
= SSXKA′K
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What we have so far can be assembled to form the punctured 4-dimensional cubical diagram

WK

��

��
WK

��

//

��

A′K
��

��

K //

��

X

��

��

X //

��

SXK

��

//

K //

��
X
��

X //

��
SXK
��

A′′K
// SXC ′′K SXC ′′K // SSXKA′K

Let B denote the homotopy limit of this punctured 4-cube, so that we have an ∞-cartesian

4-cube

B //

��

��

WK

��

��
WK

��

//

��

A′K
��

��

K //

��

X

��

��

X //

��

SXK

��

//

K //

��
X
��

X //

��
SXK
��

A′′K
// SXC ′′K SXC ′′K // SSXKA′K

Remark 3.2.2. To avoid technical difficulties, we will assume that we have mapped the

original punctured cube to a new punctured cube by a pointwise weak equivalence, and that

the limit of the new punctured cube is the homotopy limit of the original punctured cube.

The new punctured cube, together with its limit, is a strictly commutative cube. Hence, we

will assume that the 4-cube above is strictly commutative, but will keep the notation as is.

We wish to apply the 4-D Face Theorem to this cube, so we check its hypotheses. As

noted above, the cube is∞-cartesian. The weak equivalences (i), (ii), and (iii) above, along

with the weak equivalences of Lemma 3.1.9 show that every 2-dimensional face which meets

SSXKA′K is ∞-cocartesian. So, by ([Go92], Definition 2.5), every 3-dimensional face which
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meets SSXKA′K is strongly cocartesian. One can easily check that, in the notation of the 4-D

Face Theorem, k1 = k2 = n− k− 1 and k3 = k4 = r. In particular, since k ≤ n− 3, we have

k1, k2 ≥ 2. Hence, the theorem applies and as a consequence, we have that B is connected

and that the square

B //

��

K

��
K // A′′K

is (2(n− k − 1) + 2r − 1) = (2n− 2k + 2r − 3)-cocartesian.

Claim 3.2.3. There exists a space A and a (2n− 2k + 2r − 5)-connected map A→ B such

that the square

A //

��

K

��
K // A′′K

(with B replaced by A) is ∞-cocartesian.

Proof of Claim 3.2.3. Our hypotheses that r ≥ 1 and k ≤ n−3 imply that 2(n−k+r)−3 ≥ 3.

Now, choose a basepoint for B (which, in turn, bases K and A′′K) and consider the map

K ∨ K → A′′K . Since A′′K → K is (n − k)-connected, we have a long exact sequence on

cohomology (with respect to any local coefficient system on A′′K) given by

· · · → H∗−1(K ∨K)→ H∗(A′′K , K ∨K)→ H∗(A′′K)→ · · ·

By definition, A′′K is a PD space of dimension n. So, since k ≤ n − 3, the sequence above
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implies that the relative cohomology of K ∨K → A′′K vanishes in degrees ≥ n+ 1. That is,

the relative cohomology of K ∨ K → A′′K vanishes in degrees > 2(n − k + r) − 3 provided

that n+ 1 ≤ 2n− 2k+ 2r− 2, which is equivalent to n ≥ 2(k− r) + 3. Hence, we can apply

the Cocartesian Replacement Theorem ([Kl99a], Theorem 4.2) to obtain the desired space

A. This proves the claim.

Now, consider one of the other 2-dimensional faces of the 4-cube labeled by

B //

��

WK

��

K // X

Replacing B with the A constructed in Claim 3.2.3, form the square

A //

��

WK

��
K // X

By ([Kl99a], Claims 6.5 and 6.6), this square is a PD embedding for f . Writing AK for A

and CK for WK (and recalling that we are working relatively), we have the desired object

(AK , AL) //

��

(CK , CL)

��
(K,L) // (X, ∂X)

of Ef (K,X rel L) and, hence, the desired 0-cell of Ef (K,X rel L). This proves that Dσ,δ is

0-cartesian.
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3.3 Proof of Theorem A

Recall the statement of Theorem A:

Theorem A (Stabilization). Let f : (K,L) → (X, ∂X) be a map from a cofibration pair

of homotopy finite spaces (K,L), with hodim(K,L) = k, to a PD pair (X, ∂X) of dimension

n. Assume that f : K → X is r-connected (r ≥ 1) and that k ≤ n−3. Then the stabilization

map

σ : Ef (K,X rel L)→ ESXf (SXK,X ×D1 rel SXL)

is (n− 2(k − r)− 3)-connected.

Further, recall that the object

(AK , AL) //

��

(CK , CL)

��
(K,L) // (X, ∂X)

constructed in the previous section specifies a PD embedding DL with underlying map L→

∂X:

AL //

��

CL

��
(DL)

L // ∂X

After applying j-fold fiberwise suspension, DL gives rise to the PD embedding
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SjAKAL //

��

SjCKCL

��

SjKL // SjX∂X

which, upon identifying SjX∂X with ∂(X×Dj), is the specified “boundary PD embedding” of

a relative PD embedding with underlying map f×id : K×Dj → X×Dj. This construction,

along with Proposition A.2 (see the appendix), allows us to write

πj(Ef (K,X rel L)) = π0(Ef×id(K ×Dj, X ×Dj rel SjKL)).

Proof of Theorem A. Lemma 3.2.1 tells us that the square

Ef (K,X rel L) //

��

ESXf (SXK,X ×D1 rel SXL)

��
(Dσ,δ)

Ef1(K,X ×D1 rel L) // ESXf1(SXK,X ×D2 rel SXL)

is 0-cartesian, provided that k ≤ n−3 and n ≥ 2(k−r)+3. That is, under these assumptions,

we have a 0-connected map Ef (K,X rel L) → P , where P denotes the homotopy limit of

the partial diagram gotten from Dσ,δ by considering only the bottom horizontal and right

vertical maps. Repeated application of the decompression map on both sides of Dσ,δ forms

an infinite tower of embedding spaces. Further, after decompressing infinitely many times,

we obtain contractible spaces on both sides of the tower. That is, we have a weak equivalence

after passing to homotopy colimits. Thus, by a downward induction on codimension, we may

assume that the bottom horizontal map in Dσ,δ is j-connected for some j ≥ 0. Since the

square
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P //

��

ESXf (SXK,X ×D1 rel SXL)

��
Ef1(K,X ×D1 rel L) // ESXf1(SXK,X ×D2 rel SXL)

∞-cartesian, we can then infer that the top horizontal map P → ESXf (SXK,X×D1 rel SXL)

is j-connected. Hence, we have a commutative diagram

Ef (K,X rel L) σ //

��

ESXf (SXK,X ×D1 rel SXL)

P

77

from which it is clear that the top horizontal map (the stabilization map) is 0-connected.

That is, the stabilization map induces a π0 surjection provided that k ≤ n − 3 and n ≥

2(k − r) + 3. Thus, by definition, the map σ induces a surjection

πj(Ef (K,X rel L))→ πj(ESXf (SXK,X ×D1 rel SXL))

provided that n+ j ≥ 2((k + j)− r) + 3, which is equivalent to

j ≤ n− 2(k − r)− 3.

This gives the desired surjectivity statement. For the injectivity statement, assume that we

are given two PD embeddings D0 and D1 with underlying maps f0, f1 : K → X and consider

the associated embedding DKqK with underlying map f0+f1 : KqK → ∂(X×D1). Further,

assume that f0 and f1 give rise to the same embedding with underlying map SXK → X×D1

after applying the stabilization map. Note that this embedding is relative to the embedding

DKqK . Then we have an associated map of pairs



64

F : (K ×D1, K qK)→ (X ×D1, ∂(X ×D1)).

Assume that n ≥ 2(k− r) + c for some constant c. This is equivalent to r ≥ 2k−n+ (c− r).

According to ([Kl02b], Corollary B), D0 is concordant to D1 provided that c − r ≤ 3. But

we have assumed that r ≥ 1, so c is at least 4. Hence the induced map

πj(Ef (K,X rel L))→ πj(ESXf (SXK,X ×D1 rel SXL))

is injective provided that n+ j ≥ 2((k + j)− r) + 4, which is equivalent to

j ≤ n− 2(k − r)− 4.

This completes the proof of Theorem A.

3.4 A Generalization of Smooth Stabilization

We now prove the PD analog of the Stabilization Theorem of [CW78]. To this end, fix an

object (f,K) ∈ (T ↓ Sn). Then there is a map

ESSnf (SSnK,S
n ×D1 rel SSn∅)

c−→ ESf (SK,Sn+1)

given by collapsing out the copies of Sn on either end of Sn ×D1.

Lemma 3.4.1. Assume that hodim(K) = k ≤ n − 3. Then the “collapse” map c is 0-

connected.

Proof. Let
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A //

��

C

��
(DSf )

SK
Sf
// Sn+1

denote a vertex of the space ESf (SK,Sn+1). To lift DSf back to a vertex of ESSnf (SSnK,Sn×

D1 rel SSn∅), it will be enough to solve the lifting problem

SSnK

q

��
A //

??

SK
Obstruction theory tells us that the problem has a solution provided that hodim(A) ≤

conn(q). Now, by definition A is a PD space of dimension n and, thus, is cohomologically

n-dimensional. By ([GK08], Proposition 8.1), we infer that hodim(A) ≤ n (This uses the

assumption that k ≤ n− 3, which implies that n ≥ 2). Thus, it will be enough to show that

conn(q) = n. Notice that the quotient map q is given by

hocolim(Sn
f←− K

f−→ Sn)
q−→ hocolim(∗ ← K → ∗)

which is induced by the diagram

Sn

��

K
foo

id

��

f // Sn

��
∗ Koo // ∗

Let g denote the map K → ∗, and assume that f and g are cofibrations by replacing their

targets with the appropriate mapping cylinders. Further, let
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Sn
f ′ // hocolim(Sn

f←− K
f−→ Sn)

∗ g′ // hocolim(∗ g←− K
g−→ ∗)

denote the canonical maps. Then there is a commutative square

cofiber(f)

��

∼ //

��

cofiber(f ′)

��
cofiber(g) ∼ // cofiber(g′)

where both horizontal maps are weak equivalences. Moreover, the left vertical map is n-

connected since the square

K

id

��

f // Sn

��
K g

// ∗

is n-cocartesian. Hence, the map cofiber(f ′) → cofiber(g′) is n-connected. Since Sn → ∗ is

n-connected, we can apply the Five Lemma to the map of long exact sequences on homology

induced by the diagram

Sn
f ′ //

��

SSnK

q

��

// cofiber(f ′)

��
∗

g′
// SK // cofiber(g′)

to conclude that q is homologically n-connected. Since K is connected, the source and target

of q are 1-connected. The Hurewicz Theorem then implies the lemma.

Theorem C. Let K be a homotopy finite complex with hodim(K) = k ≤ n − 3. Assume
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that f : K → Sn is an r-connected map of spaces, r ≥ 1. Then the induced map

π0(c ◦ σ) : π0(Ef (K,Sn))→ π0(ESf (SK,Sn+1))

is surjective for n ≥ 2(k − r) + 3 and injective for n ≥ 2(k − r) + 4.

Proof. Invoke Theorem A and Lemma 3.4.1.
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APPENDIX

The object of this appendix is to give a construction of a semi-simplicial set 2

EPD
f (K,X rel L)

whose geometric realization coincides, up to homotopy, with the space of Poincaré Duality

Embeddings Ef (K,X rel L). We will work under the standing assumptions given at the

beginning of Chapter 3. Write ∆m for the standard geometric m-simplex and define a j-

simplex of EPD
f (K,X rel L) to be a commutative square of pairs of (homotopy finite, CW)

(j + 2)-ads

(Aj•, A
j
•L) //

��

(Cj
• , C

j
•L)

��
(Dj)

(K ×∆j,SjKL) // (X ×∆j, ∂(X ×∆j))

where we think of SjKL as the amalgamated union L×∆j ∪L×∂∆j K × ∂∆j. This gives SjKL

the structure of a (j + 2)-ad, with j + 1 preferred subspaces given by decomposing K × ∂∆j

into j+ 1 copies of K×∆j−1. A similar statement applies for ∂(X×∆j) = SjX∂X. Further,

the (j + 2)-ad Aj• is given by the “total” space Aj• along with j + 1 subspaces indexed by

the faces of ∆j. Let Aji denote the subspace of A indexd by the ith face, di(∆
j), of ∆j. The

(j + 2)-ads Aj•L , Cj
• , and Cj

•L are specified similarly. Moreover, Dj should satisfy

(i) The associated squares are∞-cocartesian. That is, there are weak ad-homotopy equiv-

alences

2By semi-simplicial set we mean ∆-set, i.e., simplicial set without degeneracies.
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hocolim(K ×∆j ← Aj• → Cj
•)
∼−→ X ×∆j

hocolim(SjKL← Aj•L → Cj
•L)

∼−→ ∂(X ×∆j)

(ii) The associated square of (j + 2)-ads with underlying map SjKL → ∂(X × ∆j) is a

PD embedding (just as in Definition 1.1.2, with minor adjustments made to suit the

language of n-ads)

(iii) Aji → K × di(∆j) is (n− k − 1)-connected for all i

(iv) The pairs (K ×∆j,SjKL ∪Aj•L A
j
•) and (Cj

• , Cj
•L ∪Aj•L A

j
•) are (n + j)-dimensional PD

pairs

Note that that a vertex of EPD
f (K,X rel L) is nothing more than a PD embedding of K in

X relative to L (see Definition 1.1.3). The face maps dPDi : EPD(K,M)j → EPD(K,M)j−1

are given by restriction. Together with these face maps, EPD
f (K,X rel L) has the structure

of a semi-simplicial set.

Proposition A.1. EPD
f (K,X rel L) satisfies the Kan condition.

Proof. Fix j. For the sake of brevity, we will omit the notation of pairs, keeping in mind

that we are working relative to the underlying map SjKL → ∂(X ×∆j). Construct a space

AjΛi by gluing the j subspaces Ajl , l 6= i, along their intersections. The following picture

illustrates A2
Λ1.

1

A2
2 A2

0

0 2



70

Construct a space Cj
Λi similarly. Consider the space AjΛi × [0, 1] as the (j + 2)-ad

ÂjΛi = (AjΛi × [0, 1];
{
Ajk × [0, 1]

}
k∈{0,...,̂i,...,j} , A

j
Λi × 1).

and similarly for Cj
Λi × [0, 1]. Let Λj

i denote the ith horn of ∆j. Then there is a homeomor-

phism h : Λj
i × [0, 1] → ∆j that restricts to the identity on Λj

i × 0. The following picture

illustrates this homeomorphism in the case j = 2 and i = 1.

1 h(1)

0 2 h // h(0) h(2)

1′

h(0′) h(1′) h(2′)

0′ 2′

Thus, we have homeomorphisms idK × h : K × Λj
i × [0, 1] → K × ∆j and idX × h :

X × Λj
i × [0, 1] → X × ∆j. From Dj above, we see that there is a commutative square of

(j + 1)-ads

AjΛi
//

��

Cj
Λi

��
(Dj−1)

K × Λj
i

// X × Λj
i

Taking the product of all of the spaces in Dj−1 with [0, 1], we obtain the desired commutative

square of (j + 2)-ads
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ÂjΛi
//

��

Ĉj
Λi

��
K ×∆j // X ×∆j

Now, consider the nerve NEf (K,X rel L) of the category Ef (K,X rel L) (see the remarks

preceding Definition 1.2.4). Apply the subdivision functor ([GJ99]) to this nerve to obtain

the semi-simplicial set sdNEf (K,X rel L). By definition of the subdivision, one can identify

the set of components of sdNEf (K,X rel L) with the set of components of the semi-simplicial

set EPD
f (K,X rel L) constructed above. That is,

π0(sdNEf (K,X rel L)) ∼= π0(EPD
f (K,X rel L)).

Choose a vertex D ∈ EPD
f (K,X rel L)0 and recall ([GJ99]) that

πj(E
PD
f (K,X rel L),D) = πj−1(ΩEPD

f (K,X rel L),D)

where ΩEPD
f (K,X rel L) is the loopspace of the semi-simplicial set EPD

f (K,X rel L). Using

the identification of components given above, and passing to realizations, we have shown

Proposition A.2. πj(Ef (K,X rel L)) ∼= π0(Ef×id(K ×Dj, X ×Dj rel SjKL))
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[Kl99b] Klein, J.R.: Poincaré Immersions. Forum Math 11 (1999), 717-734.
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A map f : K → X from a homotopy finite complex of dimension ≤ k to a Poincaré Du-

ality space of dimension n is said to Poincaré Embed if f extends to a homotopy equivalence

K ∪A C ' X

such that (K,A) and (C,A) are Poincaré pairs of dimension n. For K and X as above, we

define a space Ef (K,X) of all such embeddings and show that there is a highly connected

stabilization map

Ef (K,X)→ E(SXK,X ×D1)

where SXK denotes the unreduced fiberwise suspension of K over X. This serves as a
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tool for classifying Poincaré Duality embeddings in terms of the homotopy types of their

complements. In particular, a Poincaré embedding with underlying map f : K → X gives

rise to a fiberwise duality map in the category of retractive spaces over X. We use this

construction to obtain a highly connected classification map

Ef (K,X)→ SWf (K,X)

where SWf (K,X) is a moduli space of unstable complements for Poincaré embeddings with

underlying map f : K → X. As consequences, we obtain stabilization and classification

results for smooth embeddings.
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