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Adaptive Estimation of Heteroscedastic Linear Regression Model 
Using Probability Weighted Moments 

 
Faqir Muhammad       Muhammad Aslam       G.R. Pasha 

    Allama Iqbal Open University        Bahauddin Zakariya University       Bahauddin Zakariya University 
 
 
An adaptive estimator is presented by using probability weighted moments as weights rather than 
conventional estimates of variances for unknown heteroscedastic errors while estimating a heteroscedastic 
linear regression model. Empirical studies of the data generated by simulations for normal, uniform, and 
logistically distributed error terms support our proposed estimator to be quite efficient, especially for 
small samples. 
 
Key words: Adaptive estimator, estimated weighted least squares, heteroscedasticity, probability 
weighted moments. 
 
 

Introduction 
 
The basic version of linear regression model 
assumes homoscedasticity of error terms. If this 
assumption is not met then the regression 
disturbances whose variances are not constant 
across observations are heteroscedastic. In the 
presence of heteroscedasticity, the method of 
ordinary least squares (OLS) does not result in 
biased and inconsistent parameter estimates. 
However, OLS estimates are no longer best 
linear unbiased estimators (BLUE). That is, 
among all the unbiased estimators, OLS does not 
provide the estimate with the smallest variance. 
In addition, the standard errors of the estimates 
become biased and inconsistent when 
heteroscedasticity is present. This, in turn, leads 
to bias in test statistics and confidence intervals. 
Depending on the nature of the 
heteroscedasticity, significance tests can be too   
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high or too low. These effects are not ignorable 
as earlier noted by Geary (1966), White (1980) 
and Pasha (1982), among many others. 
 When the form of heteroscedasticity is 
known, using weights to correct for 
heteroscedasticity is very simple by weighted 
least squares (WLS). If the form of 
heteroscedasticity is not known, the standard 
method of replication is used as given by Fuller 
and Rao (1978). In this approach, the unknown 
variance of each residual can be estimated first 
and these estimates can be used as weights in a 
second step and the resultant estimates are 
referred to as estimated weighted least squares 
(EWLS) estimates. 
 Pasha (1984) gave a comparison among 
EWLS and minimum norm quadratic unbiased 
estimator (MINQUE) and reported EWLS to be 
better than MINQU-based estimators for 
estimation of heteroscedastic linear regression 
model. Pasha and Ord (1994) presented two 
adaptive estimators, one based on overall test of 
heteroscedasticity and other on paired 
comparison procedures following the idea of 
Bancroft (1964) and Bancroft & Hans (1977). 
These estimators were also based on EWLS and 
the attractive performances of these adaptive 
estimators were reported for efficiency gain. 
 An adaptive estimator is presented in 
this article by using probability weighted 
moments (PWM) as weights for transforming 
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matrix rather than conventional estimates of 
unknown error variances as usually used in 
EWLS. Downton (1966) suggested a linear 
estimate of the standard deviation of the normal 
distribution as 
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Here Xi indicates ordered observations in a 
sample of size n. The estimate of the standard 
deviation using PWM is also a function of 
ordered observations as 
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The estimate of the mean is 
n

X
n

i
i

=1 . The Xi’s are 

the ordered observations and (i – 0.5)/n is the 
empirical distribution function Fn(X). Such 
estimator is also used by Muhammad et al. 
(1993). Greenwood (1979) explained the 
robustness of the PWM over the conventional 
moments to outliers by drawing more efficient 
inferences using PWM.  

A heteroscedastic linear regression 
model and a usual EWLS estimator are given 
below. In addition, a new estimator based on 
probability weighted moments, denoted as 
PEWLS estimator, is presented. Finally, 
empirical results, an application for this 
approach and conclusions are put forth. 
 

Methodology 
 
Linear Regression Model with Heteroscedastic 
Errors and EWLS 

Consider the following heteroscedastic 
linear regression model: 
yij = 

x i′  β + uij, i=1, 2, …, k, j=1, 2, …, ni, 
k

i
in =n 

(2.1) 
 
where yij is the jth response at the ith design 
point xi, xi are known p-vectors, β is a p-vector 
of unknown parameters and uij are the mutually 

independent with E (uij ) = 0 and E (uij
2 ) = σ 2

i ,  j 
= 1, 2, …, ni. The variancesσ 2

i ’s are unknown 
and heteroscedastic. A matrix form of model 
(2.1) is 
 

y = Xβ + u,                      (2.2) 
 
where 
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and 
 

X = (x11 .  .  .  x1n
1
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)

/

n x p , 
xij = xi,    j = 1, 2, …, ni, 

 
with heteroscedastic error terms of covariance 
matrix Ω having typical ith diagonal elements 

σ 2
i . 

 
The usual OLS estimator for  β  in (2.2) is 
 

yXXXOLS ′′= −1)(β̂  

 
Fuller and Rao (1978) presented EWLS 
estimator of  β as 
 

)ˆ()ˆ(ˆ 111 yXXXEWLS Ω′Ω′= −−−β ,       (2.3) 

 
where 

 

Ω̂  = diag{σ̂ 2
1 , σ̂ 2

2 , …, σ̂ 2
n }, 

 

σ̂ 2
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PWM-based Adaptive Estimator (PEWLS) 
 Probability weighted moments are used 

as weights in transforming matrix Ω̂  in (2.3) 
and propose a new estimator as 
 

)ˆ()ˆ(ˆ 111 yXXXPEWLS Φ′Φ′= −−−β , 
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The estimate of the mean is 
n

Y
n

i
i

=1 . The Yi’s are 

the ordered observations and (i – 0.5)/n is the 
empirical distribution function Fn(Y). 
 

Results 
 
A Monte Carlo study was performed on the 
model used by Jacquez, et al. (1968) among 
others in their numerical work. 
 
yij = 
1 + xi + uij ;    i = 1, 2, 3,…, k;    j = 1, 2, 3,…, ni  

 
(4.1) 

 
The uij are independently distributed with zero 
mean and varianceσ 2

i . Different versions for the 
model (4.1) were used according to the 
following formations: ni were set to be equal to 
m; m = 5, 10. k was chosen as k = 6, 8, 10. xi 
were selected as ; for k = 6, xi were (1, 2, 4, 7, 9, 
10), for k = 8, xi were (1, 2, 4, 5, 6, 7, 9, 10), and 
for k = 10, xi were (1, 2, 3, 4, 5, 6, 7, 8, 9, 10). 
For each pair (m, k), two σ-pattern (data 
generating process: DGP) were chosen; DGP-I: 
σi = (xi +8)/9, and DGP-II: σi = (0.5 xi +1)/3. 
 Different data sets are generated for 
each pair of (m, k) and σ-pattern for normal, 
uniform, and logistically distributed error terms. 
For each pair of (m, k) and σ-pattern, 2,000 
simulations are run. On the basis of the 
generated data, in Table 4.1 and Table 4.2, the 
efficiency of the EWLS estimator relative to the 
PEWLS estimator for β, is compared as  R.E =

)ˆ(/)ˆ( ββ EWLSPEWLS
MSEMSE . 

 The mean values of standard error of 
estimates of the regressions are compared by 
computing the ratios SE (PEWLS)/SE (EWLS). 
These ratios are shown in Table 4.3 and 4.4. 

 Table 4.1 shows the relative efficiencies 
under DGP-I. For normally distributed errors, 
PEWLS performs better than EWLS for all the 
pairs (m, k) in terms of efficiency. But for small 
samples (m = 5, k = 6), PEWLS is more efficient 
and the gain in efficiency reaches to 20% while 
comparing with that of EWLS. For m = 10, both 
estimators tend to become equal efficient as k 
increases from 6 to 10. For uniform and logistic 
errors, no substantial efficiency is observed 
while using PEWLS. 
 Table 4.2 (DGP-II) shows the same 
trend of efficiency as shown by Table 4.1 for all 
the tried error patterns. It is noted again that 
when m = 5 is fixed, the new proposed estimator 
shows more efficient behavior for small values 
of k, namely, for k = 6. 

Table 4.3 and 4.4 show that the results 
of the adaptive estimator PEWLS are brightly 
encouraging with respect to the standard error of 
estimate for the fitted model even for all the 
selected pairs of (m, k) and the error patterns. 
For normal errors and small samples (m = 5), the 
results are quite impressive by using PWELS as 
compared to its competitor for all chosen k. The 
standard errors of estimates of the fitted model 
are about double for EWLS as compared to that 
of our proposed PEWLS (e.g., for k = 6, 8). 
Almost similar are the findings for the other 
tried error distributions so far. Same fashion of 
less standard error of estimates is observed for 
DGP-II in Table 4.4. These findings show that 
by using the proposed adaptive estimator, one 
can find better regression estimates as compared 
to that by using EWLS. 
 
Application 
 To illustrate the computations of the 
proposed PEWLS estimators and to compare its 
performance with the EWLS, already available 
in the literature, take the example of 
compensation per employee ($) in Nondurable 
Manufacturing Industries of US Department of 
Commerce as quoted by Gujarati (2003, p. 392). 
This example is used to compare these findings 
in practical data with findings already available 
in the literature. 
 Table 5.1 reports the performance of 
OLS, EWLS and the proposed PEWLS 
estimators. First, OLS estimates are found and 
the presence of heteroscedasticity is noted by 
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using White’s test (1980) with p-value 0.07. It is 
noted that the proposed estimator bear lower 
standard errors among all the remaining 
estimators presenting an adequate reliability for 
its adaptation. It is further noted that the 
proposed estimator give better R2 and much 
improved standard errors of regression that 
confirms the adequacy of the fitted model. 
Similarly, the proposed adaptive estimator gives 
lowest Akaike Information Criteria (AIC) values 
that indicate the right specification of the 
weighting mechanism. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
 

It was found that use of probability 
weighted moments as estimates of unknown 
heteroscedastic weights rather than conventional 
estimates of variances for unknown 
heteroscedastic errors while estimating a 
heteroscedastic linear regression model, makes 
more efficient estimations. This new 
formulation, considerably, contributes in 
reducing standard errors of estimates for fitted 
models. The gain in efficiency and the reduction  
 
 

Table 4.1: Relative Efficiency of PEWLS and EWLS Estimators of β (DGP-I) 

k 
Normal Uniform Logistic 

m = 5 m = 10 m = 5 m = 10 m = 5 m = 10 
6 0.8088 0.9779 0.9887 0.9344 0.9885 1.0000 

8 0.8526 0.9839 0.9921 0.9617 0.9891 1.0051 

10 0.9400 0.9899 0.9989 0.9625 0.9911 0.9656 
 

Table 4.2: Relative Efficiency of PEWLS and EWLS Estimators of β (DGP-II) 

k 
Normal Uniform Logistic 

m = 5 m = 10 m = 5 m = 10 m = 5 m = 10 
6 0.8918 0.9915 1.0000 0.9268 0.9831 0.9943 

8 0.9112 0.9652 0.9471 0.9915 0.9962 0.9952 

10 1.0031 0.9705 1.0252 0.9966 0.9986 1.0000 
 

Table 4.3: Ratios of Standard Error of Estimates of PEWLS and EWLS (DGP-I) 

k 
Normal Uniform Logistic 

m = 5 m = 10 m = 5 m = 10 m = 5 m = 10 
6 0.5721 0.9244 0.6592 0.9068 0.8470 0.9650 

8 0.5944 0.9287 0.6720 0.9325 0.8169 0.9661 

10 0.6515 0.9365 0.6263 0.9317 0.7474 0.9317 
 

Table 4.3: Ratios of Standard Error of Estimates of PEWLS and EWLS (DGP-II) 

k 
Normal Uniform Logistic 

m = 5 m = 10 m = 5 m = 10 m = 5 m = 10 
6 0.6770 0.9477 0.7011 0.9616 0.6329 0.9899 

8 0.6839 0.9234 0.6531 0.9577 0.7378 0.9965 

10 0.6833 0.9307 0.7139 0.9603 0.6859 1.0011 
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in standard errors of estimates of regression 
model are appealing, especially, for small 
samples and thus make our new adaptation more 
attractive for many of practical situations of 
small samples. 
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Table 5.1: Comparative Statistics 

 
Estimators 

Estimation of  β 0  Estimation of β 1  
 

R2 

 
S.E. of 

Regression 

 
AIC β̂ 0

 SE 
t-

statistic β̂ 1
 SE 

t-
statistic

OLS 3417.70 81.04 42.17 148.81 14.40 10.33 0.9385 111.56 12.46

EWLS 3406.20 80.86 42.13 154.24 16.93 9.11 0.9645 126.54 12.71

PEWLS 3437.40 79.39 43.29 142.99 17.69 10.44 0.9842 103.87 12.31
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