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Analyzing Incomplete Categorical Data:  
Revisiting Maximum Likelihood Estimation (Mle) Procedure 

 
             Hoo Ling Ping                                  M. Ataharul Islam 

The University of Nottingham,                           University of Dhaka, 
Malaysia                                                  Bangladesh 

 
 
Incomplete data poses formidable difficulties in the application of statistical techniques and requires 
special procedures to handle. The most common ways to solve this problem are by ignoring, truncating, 
censoring or collapsing those data, but these may lead to inappropriate conclusions because those data 
might contain important information. Most of the research for estimating cell probabilities involving 
incomplete categorical data is based on the EM algorithm. A likelihood approach is employed for 
estimating cell probabilities for missing values and makes comparisons between maximum likelihood 
estimation (MLE) and the EM algorithm. The MLE can provide almost the same estimates as that of the 
EM algorithm without any loss of properties. Results are compared for different distributional 
assumptions. Using clinical trial results from a group of 59 epileptics, results from the application of 
MLE and EM algorithm are compared and the advantages of MLE are highlighted. 
 
Key words: Incomplete categorical data, maximum likelihood estimation (MLA), EM algorithm, 
multinomial distribution, binomial distribution, Poisson distribution, Newton-Raphson method. 
 
 

 
Introduction 

 
Incomplete data is referred to as data in which 
entries are missing, were a prior zero or are 
undetermined (Fienberg, 1980). Incomplete data 
is one of the main obstacles to researchers; this 
is especially true in the case of incomplete 
categorical data. The most common ways to 
solve this problem are by ignoring, truncating, 
censoring or collapsing those data; however, 
such procedures may lead to confusion and/or 
inappropriate conclusions because those data 
might contain important information. 

Little & Rubin (1987) defined the 
missing data mechanisms as ignorable missing 
data mechanism and non-ignorable missing data 
mechanism. The ignorable missing data 
mechanism involves process missing completely 
 

 
Hoo Ling Ping is Assistant Professor in the 
Department of Applied Mathematics, Faculty of 
Engineering. Email: lphoo_04@yahoo.com. M. 
Ataharul Islam is Professor in the Department of 
Statistics, Biostatistics and Informatics. Email: 
mataharul@yahoo.com. 

 
at random (MCAR) and missing at random 
(MAR). When the missingness is independent of 
both unobserved and observed data, the non-
response process is named as MCAR. However, 
if the missingness is independent of the 
unobserved measurement conditionally on the 
observed data, the non-response process is called 
MAR. Non-ignorable missing data mechanisms 
involve informative process. When the process is 
neither MCAR nor MAR, then the process is 
termed informative. This article considers the 
missing data mechanism as a non-ignorable 
missing data mechanism. 

The problem of estimation for 
incomplete contingency tables under the quasi-
independence model was examined by Fienberg 
(1970), who used the maximum likelihood 
estimation (MLE) procedure. Similarly, MLE 
for the Poisson and Multinomial sampling 
distributions for the incomplete contingency 
tables in the presence of missing row and 
missing column data were considered by Chen 
& Fienberg (1974). Chen & Fienberg (1976) 
extended their works which focused on cross-
classifications containing some totally mixed up 
cell frequencies with multinomial sampling. In 
the following year, Dempster, Laird & Rubin 
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presented MLE of incomplete data and named 
the algorithm EM since each iteration of the 
algorithm involved expectation (E) and 
maximization (M) steps. This method has been 
used extensively by other researchers especially 
for incomplete categorical data. Among others, 
Fuchs (1982), Nordheim (1984), Fay (1986), 
Baker & Laird (1988), and Philips (1993) have 
used the EM algorithm for analyzing incomplete 
categorical data. The EM algorithm was used to 
improve the convergence of the EM by 
incorporating the Newton-Rapson approach by 
Baker (1994) and Galecki & Molenberghs 
(2001). The EM algorithm is well developed 
(Lauritzen, 1995) to exploit the computational 
scheme of Lauritzen & Spiegelhalter (1988) to 
perform the E-step of EM algorithm to find 
MLE in hierarchical log-linear models and 
recursive models for contingency tables with 
missing data. Molenberghs & Goetchebeur 
(1997) presented a simple expression of the 
observed data log-likelihood for the EM 
algorithm. Tang, et. al. (2007) also found that 
the EM algorithm is the most widely used 
approach for finding the maximum likelihood 
estimate for incomplete data situations, but it 
lacks the direct provision of a measure of 
precision for the estimators and has a slow rate 
of convergence. 

Because the EM algorithm was 
introduced, the MLE procedure was largely 
ignored by researchers until 1985. Stasny (1985) 
used MLE to process the model based on data 
from a Current Population Survey, and also used 
a Labor Force Survey to estimate gross flow 
data. Most recently, Lyles & Allen (2003) 
proposed MLE with multinomial likelihood, 
properly accounting for missing data and 
assuming that the probability of missing 
exposure depends on true exposure. 

In this article, not only is the missing 
row or missing column data redistributed, but 
also both row and column missing data for 
multinomial sampling by extending the works of 
Chen & Fienberg (1974). Both row and column 
missing data are also investigated for the EM 
algorithm which has not been studied before. 
The MLE method for Poisson and Binomial 
sampling distributions was also examined as an 
extension of the works of Chen & Fienberg 
(1974). The binomial distribution can be 

considered a special case of the Multinomial 
distribution. The same sampling patterns for the 
EM algorithm are considered here. The Newton-
Raphson method was adopted in the MLE 
procedure to make convergence faster. Results 
of the MLE and EM algorithm are compared 
and the advantages of MLE are highlighted. 

This article is organized as follows: data 
taken from Diggle, Liang & Zeger (1994) is 
described, followed by the formulation of the 
MLE and EM algorithms. Finally, results are 
discussed, testing independence is presented and 
conclusions are put forth. 
 

Methodology 
 
The data considered herein was referred from 
Diggle, Liang & Zeger (1994) based on a 
clinical trial of 59 epileptics. For each patient, 
the number of epileptic seizures was recorded 
during an eight week baseline period. Patients 
were then randomized to either a treatment 
group with anti-epileptic drug progabide (0) or 
to a placebo group (1) and the number of 
seizures was recorded in four consecutive two-
week intervals. Table 1 shows the 2x2 artificial 
incomplete contingency table; rows refer to the 
treatment and columns refer to the results of the 
last treatment for the patient. The result of 
treatment is recorded as Y. 
 
Maximum likelihood estimation (MLE), Poisson 
and multinomial distribution 

Chen & Fienberg (1974) considered the 
MLE for incomplete contingency tables when 
missing row and column data existed. Their 
works are extended by considering incomplete 
contingency tables where either row or column, 
or both row and column are missing. 

Let the fully cross-classified count for 
the (i, j)th cell of an r x c contingency table be xij, 
Ri (i = 1, 2, …, r) is the count of the partially 
classified individuals corresponding to the ith 
row, Cj (j = 1, 2, …, c) is the count of the 
partially classified individuals corresponding to 
the jth column, and D is the count of missing in 
both row and column. (See Figure 1.) Therefore 
the total sample size is: 
 
N= ij i j

ij i j
x R C D+ + +   =x+++R++C++D.    (1) 
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Table1: Incomplete data
 

a) No missing on treatment and Y 

  Y 
Total

  ≤ 5 > 5

Treatment
0 13 7 20 
1 12 7 19 

Total 25 14 39 
 

b) Missing Y, treatment, Y and treatment 
  Missing Y   Y Total 

Treatment 
0 3  Missing Yes No  
1 7  Treatment 2 2 4 

Total 10      
 

 
Missing 

Y
Total

Missing 
Treatment 

6  

Total  6 

Figure 1: Illustration for complete observed and incomplete data 
 

a) Complete observed data 

   Row  Total 

Column 

x11 x12 … x1c x1+ 

x21 x22 … x2c 2+ 

          
xr1 xr2 … xrc xc+ 

Total x+1 x+2  X+c x 
 

b) Incomplete units 

  Missing column    Column Total 

Row R1+  Missing row C+1 C+2 … C+c C 

  R2+        

          

 Rr+        

Total R        
 

  Missing column Total

Missing row D  

Total  D 
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When the original sampling scheme is 
Poisson with an expected value mij for the (i, j)th 
cell, parameters associated with the cells 
(illustrated in Table 2) where ( )1 iλ , ( )2 jλ  and λ  

are referred to the probabilities of losing its row, 
column, and both row and column identity, 
respectively. The cell probability of multinomial 
sampling for a completely classified (i, j)th cell is 

ijπ  and ij
i j

π = 1. By replacing ijπ  with mij, 

the likelihood function for Poisson is 
 

( ) ( )( )

( )( ) ( )( ) ( )

1 2

1 2

exp 1
ij

i i

x

ij iji j
i j i j

R C D
i ji j

i j

m m

m m m

λ λ λ

λ λ λ+ + ++

   − − − −    
 ∏∏

∏ ∏
(2) 

 
where 

mi+= ij
i

m , m+j= ij
j

m , and m++= ij
i j

m  

for all i and j. 
Equation (2) is a product of functions f1 

and f2 defined as follows 

f1 = 
( ) ( )( )

( ) ( )1 2

1 21
ij

ji

i j

x

i j
i j

CR D

i j

λ λ λ

λ λ λ

 
− − − 

 
           

∏∏

∏ ∏
            (3) 

and 

f2= 

exp ij

ji

x
ij ij

i j i j

CR D
i j

i j

m m

m m m+ + ++

  
−   
   

           

 ∏∏

∏ ∏
.            (4) 

when considering the unrestricted log linear 
model where 

log mij = i j ijμ α β γ+ + + .              (5) 

 
Therefore, 

log f2 = 

log

log log log

ij ij ij
i j i j

i i j j
i j

m x m

R m C m D m+ + ++

− + +

+ +

 

 
 

=
( ) ( )

i j ij
ij

i j i j

i j ij i i i
i

e x

R

μ α β γ

μ α β γ μ α β γ

+ + +

+ +

− +

+ + + + + + +

 


 

( )
( )

j j i
j

C

D

μ α β γ

μ α β γ

+ +

+ + ++

+ + + +

+ + + +


               (6) 

 
Differentiating (6) with μ , iα , jβ  and ijγ ,t, 

results in: 

2log f
μ

∂
∂

 = 

i j ij

i j

ij i j
i j i j

e

x R C D

μ α β γ+ + +−

+ + + +



  
 

 = ij ij i j
i j i j i j

m x R C D− + + + +     

 = - m++ + x++ + R+ + C+ + D 
 

2log

i

f
α

∂
∂

= - mi++xi++Ri +
ij i

j
j j

m mC D
m m

+

+ ++

   
+       

  

2log

j

f
β

∂
∂

 = - m+j+x+j+
ij

i
i i

m
R

m +

 
 
 

 +Cj+
jm

D
m

+

++

 
 
 

 

2log

ij

f
γ

∂
∂

=mij+xij+
ij ij ij

i j
i j

m m m
R C D

m m m+ + ++

    
+ +          

 

(7) 
 
When (7) is equal to 0, 

ˆ ˆ ˆ
ˆ ij ij ij

ij ij i j
i j

m m m
m x R C D

m m m+ + ++

    
= + + +         

. (8) 

 
As from Chen & Fienberg (1974), (8) is not able 
to be solved in closed from; initial estimates of 
the { ˆ ijm } will be considered as 

( )0 ij
ij

x
m N

x++

 
=  
 

.                       (9) 

 
On the first iteration, from (8) 

( )
( )

( )

( )

( )

( )

( )

0 0 0

1

0 0 0

ˆ ˆ ˆ
ˆ ij ij ij

ij

i j

ij i j

m m m
m x R C D

m m m
+ + ++

     
     = + + +
     
     

, (10) 

 
therefore on (k+1)th iteration,  

( )
( )

( )

( )

( )

( )

( )
1 ˆ ˆ ˆ

ˆ
k k k

k ij ij ij
ij ij i jk k k

i j

m m m
m x R C D

m m m
+

+ + ++

     
     = + + +
     
     

 
(11) 

When k → ∞ , ( ) ( )1ˆ ˆk k
ij ijm m ε+ − ≤ . 
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Since 
ij

ij

x
x

π
++

=  for complete classified 

multinomial sampling, from (9) results, 

( )
( )0

0 ˆ
ˆ ij

ij

m
N

π = , 

and on the (k+1)th iteration, ( )
( )1

1 ˆ
ˆ

k
k ij

ij

m
N

π
+

+ = . 

 
Poisson and binomial distributions 

Now consider the complete contingency 
tables where there exist missing column. The 
fully cross-classified count for the (i, j) cell of an 
r x 2 contingency table is xij, and Ri (i = 1, 2, …, 
r) is the count of the partially classified 
individuals corresponding to the ith row. 
Therefore the total sample size is 

 

N = ij i
ij i

x R+   

= x++ + R+ (12) 
 
When the original sampling scheme is Poisson 
with expected value mij for the (i, j) cell, then the 
parameters associated with the cells (illustrated 
in Table 3) where ( )1 iλ , is referred to the 

probabilities of losing its row. 
The cell probability of Binomial 

sampling for complete classified of (i, j) cell is  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ijπ  and ij
i j

π = 1. By replacing ijπ  with mij, 

the likelihood function for Poisson is 

( )( ) ( )( )1 1

exp

1
ij i

ij
i j

x R

ij ii i
i j i

m

m mλ λ +

 
− 
 

 − 



∏∏ ∏
, 

(13) 

where mi+ = ij
i

m  for all i and j. 

Equation (13) is a product of a function 

f1 = ( )( ) ( )111
ij

i

i

x R
i

i j i
λ λ

   −   
  

∏∏ ∏  

(14) 
and 

f2= exp ij ix R
ij ij i

i j i j i
m m m +

    −     
    

 ∏∏ ∏ . 

(15) 
 
When considering the unrestricted log linear 
model where 

log mij = i j ijμ α β γ+ + + , 

(16) 
then, 

Table 2: Underlying probabilities for a 2x2 table 

 Fully Classified Table 
Row 

Supplemental 
Margin 

    

 ( ) ( )( ) 111 1 2 11 λ λ λ π− − −  ( ) ( )( ) 121 1 2 21 λ λ λ π− − −  ( ) 11 1λ π +  

 ( ) ( )( ) 211 2 2 11 λ λ λ π− − −  ( ) ( )( ) 221 2 2 21 λ λ λ π− − −  ( ) 21 2λ π +  

    

   
Missing 

row and column 
    

Column 
Supplemental 

Margin 
( ) 12 1λ π+  ( ) 22 2λ π+  λπ++  
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log f2 = 

log

log

ij ij ij
i j i j

i i
i

m x m

R m +

− +

+

 


 

= ( )
( )

i j ij
ij

i j i j

i j ij

i i i
i

e x

R

μ α β γ

μ α β γ

μ α β γ

+ + +

+ +

− +

+ + +

+ + + +

 


. 

(17) 
 
Differentiating (17) with μ , iα , jβ  and ijγ , 

results in 
 

2log i j ij
ij i

i j i j i

f e x Rμ α β γ

μ
+ + +∂ = − + +

∂   
 

= ij ij i
i j i j i

m x R− + +    

= −m++ + x++ + R+ 
 

2log

i

f
α

∂
∂

= −mi+ + xi+ + Ri 

2log

j

f
β

∂
∂

= −m+j + x+j + ij
i

i j

m
R

m+

 
  
 

  

2log

ij

f
γ

∂
∂

= −mij + xij + ij
i

i

m
R

m +

 
 
 

 

(18) 
and, when (18) is equal to 0 

ˆ
ˆ ij

ij ij i
i

m
m x R

m +

 
= +  

 
.              (19) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Initial estimates of the { ˆ ijm } were considered as 

( )0 ij
ij i

i

x
m m

x +
+

 
=  
 

.                 (20) 

where i i im x R+ += + . 

 
On the first iteration, from (19), 

( )
( )0

1 ˆ
ˆ ij

ij ij i
i

m
m x R

m +

 
 = +
 
 

.             (21) 

So, on the (k+1)th iteration, 

( )
( )

1 ˆ
ˆ

k
k ij

ij ij i
i

m
m x R

m
+

+

 
 = +
 
 

,            (22) 

when k → ∞ , ( ) ( )1ˆ ˆk k
ij ijm m ε+ − ≤ . 

 
If an underlying Binomial sampling scheme is 
assumed, then 

ij
ij

i

x
p

x +

= . 

Therefore, from (20),  
( ) ( )0 0ˆ ˆ

ijij ip m m +=  

and 
( ) ( )0 0ˆ ˆ ij

i j
p m N= . 

 
On the (k+1)th iteration, 

( ) ( )1 1ˆ ˆk k
ij ij ip m m+ +

+=  

and 
( ) ( )1 1ˆ ˆk k

ij
i j

p m N+ += . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Underlying probabilities for a 2x2 table 

Fully Classified Table 
Row 

Supplemental 
Margin 

( )( ) 111 11 λ π−  ( )( ) 121 11 λ π−  ( ) 11 1λ π +  

( )( ) 211 21 λ π−  ( )( ) 221 21 λ π−  ( ) 21 2λ π +  
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Formulation of Newton-Raphson 
From Le (1992), the iterative solution 

for a parameter estimation on (k+1)th iteration 
will be considered as 

( ) ( )1ˆ ˆ ˆk kθ θ θ+ = + Δ ,                   (23) 
 
where θ  is the parameter and 

2

2

ln lnˆ d L d L
d d

θ
θ θ

  Δ = −   
   

. 

Differentiating (7) with ijγ  and equal to 0, then 

results in  
2

2 2

ij ij
ij i

i i

ij ij ij ij
j

j j

m m
m R

m m

m m m m
C D

m m m m

+
+ +

+
+ + ++ ++

  
 = −  
   
         + − + −            

(24) 
 
To avoid the confusion of ijm  for (7) and (24), 

let m1ij and m2ij for (7) and (24), respectively. 
For application of the Newton-Raphson 

method in the two-way incomplete contingency 
table, consider 

( )
( )

( )

( )

( )

( )

( )

0 0 0
1

0 0 0

ˆ ˆ ˆ
ˆ1 ij ij ij

ij ij i j
i j

m m m
m x R C D

m m m+ +
+ + ++

     
     = + + +
     
     

(25) 

( )
( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

20 0
1

0 0

20 0

0 0

20 0

0 0

1 1
2

1 1

1 1

1 1

1 1

1 1

ij ij
ij i

i i

ij ij
j

j j

ij ij

m m
m R

m m

m m
C

m m

m m
D

m m

+
+ +

+
+ +

++ ++

  
 = −      
  
 + −      

  
 + −      

. 

(26) 

where ( )0ˆ ijm  is the same with (9) and 

( ) ( )
( )

( )

0
1 0

0

1
ˆ 1

2
ij

ij ij
ij

m
m m

m
= − .           (27) 

On the (k+1)th iteration, 

( )
( )

( )

( )

( )

( )

( )

1

1

1 1

1 1

ˆ
ˆ1

ˆ ˆ

k
k ij

ij ij i k
i

k k
ij ij

j k k
j

m
m x R

m

m m
C D

m m

−

+ −
+

− −

+ − −
+ ++

 
 = +
 
 

   
   + +
   
   

. 

(28) 

( )
( )

( )

( )

( )

( )

( )

( )

( )

2
1 1

1 1

2
1 1

1 1

1 1
2

1 1

1 1

1 1

k k
k ij ij

ij i k k
i i

k k
ij ij

j k k
j j

m m
m R

m m

m m
C

m m

− −

+ − −
+ +

− −

+ − −
+ +

  
 = −      
  
 + −      

 

( )

( )

( )

( )

21 1

1 1

1 1

1 1

k k
ij ij
k k

m m
D

m m

− −

− −
++ ++

  
 + −      

 

(29) 

( ) ( )
( )

( )
1 1

ˆ 1
2

k
k k ij

ij ij k
ij

m
m m

m
+ = − .                (30) 

For an accelerated convergence, these 
equations were employed to obtain the 
maximum likelihood estimators. 
 
The EM algorithm: Formulation of the EM 
algorithm for contingency table 

The EM approach for incomplete 
categorical data on the basis of Multinomial, 
Binomial and Poisson assumptions is now 
investigated. 
 
Multinomial Distributions 

For Multinomial distributions, the 
complete data log likelihood is 

log Lc(πi) =
1

1

n

i

−

=
  (xi+zi) log πi + (xn+zn) 

log(
11 21 ... nπ π π

−
− − − − ),         (31) 

where unobservable or missing data are referred 
to as zi = (z1, z2, …, zn)

T and zi = ri+ci+di with ri 
being missing column data, ci missing row data, 
and di both row and column missing data on cell 
ith. Differentiating (31) with respect to πi, results 
in 

ˆ i i
i n

n n

x z
x z

π π+=
+

.                      (32) 



PING & ISLAM 

495 
 

Since 
1

n

i
i

π
=
 = 1, therefore from (32), 

ˆ i i
i

x z
N

π +=                            (33) 

where ( )
1

n

i i
i

x z
=

+ = N. 

The E- and M-values on the first 
iteration for cell (i, j) were considered as 
follows. 
 
E-step: 

( )1
ijm = xij+ Ri+

ij

i

π
π +

 
 
 

+ C+j
ij

j

π
π +

 
  
 

+ Dπij 

where ( )1
ijm  is the expected of cell (i, j) on the 

first iteration. 
 
M-step: 

( ) ( )1 1ˆij ijm Nπ = , 

where ( )1
ijπ  is the probability for cell (i, j). 

 
On the (k+1)th iteration, the E- and M-steps were 
defined as follows: 
 
E-step: 

( )1k
ijm + = xij+ Ri+

( )

( )

ˆ

ˆ
ij

i

k

k

π

π
+

 
 
 
 

+ C+j

( )

( )

ˆ

ˆ
ij

i

k

k

π

π
+

 
 
 
 

+ Dπij 

 
M-step: 

( ) ( )1 1ˆ k k
ij ijm Nπ + += . 

 
The E- and M-steps were alternated and repeated 
until 

( ) ( )1

ˆ ˆ
k k

ij ijπ π
+

− =
( ) ( )1k k

ij ijm m
N N

+

−  

=

( ) ( )1k k

ij ijm m
N

+

−
 ≤ ε. 

 

Therefore, when k → ∞ , 
( ) ( )1

ˆ ˆlim
k k

ij ijk
π π

+

→∞
− = 0, 

and 
( )1

ˆ
k

ijπ
+

= ( )ˆ k
ijπ = π *. 

 
Binomial distribution 

For the binomial distribution, the 
complete-data log likelihood is 

 
log Lc( 1ip )=(xi1+zi1)log 1ip +(xi2+zi2)log(1- 1ip ), 

for i = 1, …, n, and zi is referred to as 
unobservable or missing data on the ith row 
where zi1 + zi2 =  zi. Differentiating with respect 
to 1ip  results in 

1 1
1

1 2

ˆ i i
i

i i i

x z
p

x x z
+

=
+ +

.                   (34) 

From (34), if all rows are summed, the following 
is obtained 

1 1
1

1
1

1 2
1

ˆ

I

i iI
i

i I
i

i i i
i

r z
p

r r z

=

=

=

+
=

+ +





. 

Since 1 2
1

I

i i i
i

r r z N
=

+ + = , total sample, 

( )1

1ˆ

n

ij
i

j

x
p

N
=

+ =


. 

The E- and M-values on the first iteration for 
cell (i, j) were considered as follows: 
 
E-step: 

( )1
ijm = xij+ Ri+pij 

where ( )1
ijm  is the expected value of cell (i, j) on 

the first iteration and pij  = xij/xi+. 
 
M-step: 

( ) ( ) ( ) ( )( )1 1 1 1
1 2ˆ ij ij i ip m m m= + , 

and 

( )

( )1

1 1ˆ

n

ij
i

j

m
p

N
=

+ =


 

 
On the (k+1)th iteration, the E- and M-steps were 
defined as follows: 
 
 



ANALYZING INCOMPLETE CATEGORICAL DATA: REVISITING MLE PROCEDURE 

496 
 

E-step: 
( )1k
ijm +

= xij+ Ri+
( )k
ijp .

 

M-step: 
( ) ( ) ( ) ( )( )1 1 1 1

1 2ˆ k k k k
ij ij i ip m m m+ + + += + , 

and 

( )

( )1

1 1ˆ

n
k

ij
k i
j

m
p

N

+

+ =
+ =


. 

The E- and M-steps were alternated and repeated 
until 

( ) ( )
( )

( ) ( )

( )

( ) ( )

1

1

1 1

1 2 1 2

ˆ ˆ
k k

ij ijk k
ij ij k k k k

i i i i

m m
p p

m m m m

+
+

+ +− = −
+ +

ε≤ , 

and 

( ) ( )1

ˆ ˆ
k k

j jp p
+

+ +− =

( ) ( )1

1 1

n n
k k

ij ij
i i

m m

N N

+

= =−
 

 

=

( ) ( )1

1 1

n n
k k

ij ij
i i

m m

N

+

= =

− 
 ε≤ . 

Therefore, when k → ∞ , lim
k→∞

( ) ( )1ˆ ˆk k
ij ijp p+ −  = 0 

and ( ) ( )1ˆ ˆlim k k
j jk

p p+
+ +→∞

− = 0. 

 
Poisson distribution 

For the Poisson distribution, the 
complete-data log likelihood is 
 
Log Lc(y; θi) =  

( ) ( ) ( )
1

log log !
n

i i i i i i
i

x z x zθ θ
=

+ − − +    

(35) 
 
where z1 + z2 +…+zn is referred to as 
unobservable or missing data. By differentiating 
(35) with respect to θi, 

î i ix zθ = + .                     (36) 

Referring to Figure 1, the E- and M-
values on the first iteration for the cell (i, j) was 
considered as: 
 

E-step: 
( )1
ijz = ( ) ( ) ( )1 1 1

ij ij ijR C D+ + , 

where 

( )1
ijR = Ri+

ij

i

x
x +

 
 
 

, ( )1
ijC = C+j

ij

j

x
x+

 
  
 

, and 

( )1
ijD = D ijx

x
 
 
 

. 

 
M-step: 

( ) ( )11
îj ij ijx zθ = + . 

 
On the (k+1)th iteration, the E- and M-steps were 
defined as follows: 
 
E-step: 

( )1k
ijz +

= ( ) ( ) ( )1 1 1k k k
ij ij ijR C D+ + ++ + , 

where 

( )1k
ijR +

= Ri+

k
ij
k
i

θ
θ +

 
  
 

, ( )1k
ijC +

= C+j

k
ij
k

j

θ
θ+

 
  
 

, and 

( )1k
ijD +

= D
k
ij

N
θ 
  
 

, 

and N is total sample. 
 
M-step: 

( ) ( )11
îj ij ijx zθ = + . 

The E- and M-steps were alternated and repeated 
until 

( ) ( )1ˆ ˆk k

ij ijθ θ
+

− = ( )( ) ( )( )1k k
ij ij ij ijx z x z++ − +  

=
( ) ( )1k k

ij ijz z
+

−  ≤ ε 

Therefore, when k → ∞  
( ) ( )1ˆ ˆlim
k k

ij ijk
θ θ

+

→∞
− = 0, 

and it may be said that ( )1ˆ k
ijθ +  = ( )ˆ k

ijθ  = *θ . 

 
Results 

 
The results of MLE, adopting Newton-Raphson 
in MLE and the M-step of the EM algorithm for 
the Poisson distribution are presented in Tables 
4, 5 and 6 respectively. 



PING & ISLAM 

497 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The results of MLE, adopting Newton-
Raphson in MLE and the M-step of the EM 
algorithm for the Multinomial distribution are 
presented in Tables 7, 8 and 9 respectively. The 
results of MLE and the M-step for the Binomial 
distribution are presented in Tables 10, 11 and 
12 respectively. 

Based upon results, both the MLE and 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the EM algorithms converge on the 7th iteration 
(see Tables 4 and 6), and both methods give the 
same results. However, by adopting the Newton-
Raphson in the MLE, the results on the 5th 
iteration were obtained (see Table 5). Although 
it seems that the EM algorithm was converging 
the same as the MLE, the EM algorithm 
involves two calculation steps on each iteration. 

Table 4 MLE for Poisson distribution 

Iteration 

Cells 

(1,1) (1,2) (2,1) (2,2) 

1 17.99 10.13 19.23 11.66 

2 17.72 10.05 19.35 11.89 

3 17.67 10.03 19.35 11.96 

4 17.66 10.02 19.34 11.98 

5 17.67 10.02 19.33 11.99 

6 17.67 10.01 19.33 11.99 

7 17.67 10.01 19.33 11.99 

Table 5: Adopting Newton-Raphson in MLE for Poisson 
distribution 

Iteration 

Cells 

(1,1) (1,2) (2,1) (2,2) 

1 17.92 9.7 19.62 11.76 

2 17.68 9.38 19.87 12.06 

3 17.66 9.34 19.78 12.22 

4 17.65 9.34 19.77 12.24 

5 17.65 9.34 19.77 12.24 
 

Table 6: M-step for Poisson distribution 

Iteration 

Cells 

(1,1) (1,2) (2,1) (2,2) 

1 17.99 10.13 19.22 11.66 

2 17.72 10.04 19.35 11.9 

3 17.67 10.02 19.35 11.96 

4 17.67 10.02 19.34 11.98 

5 17.67 10.01 19.33 11.98 

6 17.67 10.01 19.33 11.99 

7 17.67 10.01 19.33 11.99 
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In other words, the EM takes longer to compute 
the results compared with the MLE. After 
adopting the Newton-Raphson in the MLE, it 
was able to give faster convergence without as 
much deviance in the results as the EM 
algorithm. Tables 7 and 8 were obtained by 
considering the last iteration of Tables 4 and 5 
respectively. The results were also the same for 
the Multinomial distribution for the MLE and 
the EM algorithm. By comparing the results of 
Table 8 with the last iteration of Table 9, it is 
observed that the results are not much different. 
However Table 11 was obtained by considering 
the last iteration of Table 10. Results shown in 
Tables 11 and 12 were the same as those 
obtained for the Binomial distribution. 
 
Testing independence 

For two-way contingency tables, the 
null hypothesis of statistical independence is H0 
: πij = πi+ π+j for all i and j. The likelihood-ratio 
statistic, G2 is asymptotically equivalent to 2χ  
when n → ∞ with d.f. = (r – 1)(c – 1) where r is 
the number of rows and c is the number of 
columns in the contingency table. 

According to Schafer (1997), G2=
( ) ( )ˆ2 | |obs obsY Yπ π−    , where ( )ˆ | obsYπ  is the 

unrestricted ML estimate ( π̂ ) and ( )| obsYπ  is 

the restricted ML estimate (π ). Thus,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )| obsYπ  is considered as: 

( )| obsYπ = ( )|A obsYπ + ( )|B obsYπ  

+ ( )|C obsYπ + ( )|D obsYπ . 

For the Multinomial and Poisson distributions 
with the MLE and EM algorithm, 

G2 = ( ) ( )ˆ2 | |obs obsY Yπ π−    . 

For the Binomial distribution, H0: p = pi1, 
therefore 

G2 = 2[ ( ) ( )ˆ | |obs obsp Y p Y−   ], 

where ( )ˆ | obsp Y  is the unrestricted ML estimate 

of p̂  and ( )| obsp Y  is the restricted ML estimate 

of p . For both the MLE and the EM algorithms 

( )| obsp Y  is considered as: 

( ) ( ) ( )| | |obs A obs B obsp Y p Y p Y= +   . 

Therefore, adopting the Newton-
Raphson in the MLE and EM algorithms for 
Multinomial and Poisson distributions, G2=0.02. 
However, for the Binomial distribution, 
G2=0.01. From these results, it may be 
concluded that treatment type is independent of 
the results of treatment for the Multinomial and 
Poisson distributions, and the number of seizure 
pain which is less than five is the same for 
treatment 0 and 1 for the Binomial distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7: MLE for the Multinomial distribution 

Cells 

(1,1) (1,2) (2,1) (2,2) 

0.2992 0.1697 0.3276 0.2032 
 

Table 8: Adopting Newton-Raphson in MLE for 
the Multinomial distribution 

Cells 

(1,1) (1,2) (2,1) (2,2) 

0.2992 0.1583 0.3351 0.2075 
 

Table 9: M-step for Multinomial distribution 

Iteration

Cells 

(1,1) (1,2) (2,1) (2,2) 

1 0.3049 0.1716 0.3259 0.1976 

2 0.3003 0.1702 0.3278 0.2017 

3 0.2995 0.1698 0.3278 0.2027 

4 0.2993 0.1698 0.3278 0.2031 

5 0.2992 0.1697 0.3276 0.2031 

6 0.2992 0.1697 0.3276 0.2032 

7 0.2992 0.1697 0.3276 0.2032 
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Conclusion 
 
The EM algorithm is more complicated than the 
MLE, because the EM algorithm involves the E-
(expectation) and M-(maximization) steps. This 
makes the calculations more complicated and 
also increases the amount of time required to 
calculate results as compared with the MLE, 
which is more straightforward for estimating cell 
probabilities in cases of incomplete categorical 
data. For example when consider a contingency 
table with a Poisson sampling scheme, for MLE, 
the expected value is obtained as in (11) by 
considering the previous iteration of the 
expected value. However, for the EM algorithm, 
before calculating the expected value in the M-
step, the E-step - which involves the estimation 
of initial cell probability first – must first be 
considered. For the Binomial sampling scheme, 
the convergence for estimation of pi1 and p can 
be obtained when first considering Poisson 
sampling employing the MLE procedure. Again, 
if the EM algorithm is considered, the E-step is 
required first in order to obtain an initial 
estimate for pij. Similar explanations may be 
given for Multinomial sampling cases where, if 
MLE is considered, the Poisson sampling must 
be addressed before using the last iteration to 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
obtain ˆijπ . The EM algorithm, however, requires 

step by step convergence starting from the initial 
value for ˆijπ  before convergence is achieved. 

The MLE can better perform by 
adopting the Newton-Raphson method, because 
this method helps to accelerate the convergence. 
When the MLE is adopted with that of Newton-
Raphson, as a convergence method, it is clear 
that the MLE and the EM algorithm are two 
different kinds of algorithms. The MLE 
algorithm provides a direct way to maximize the 
final expected value, while the EM algorithm 
involves expectation before the maximization; 
however, the EM algorithm demonstrates the 
distribution of missing values at each step until 
convergence on the basis of the marginal 
probabilities. 

The MLE is much simpler than the EM 
algorithm when one is interested simply in final 
results. If interest lies in understanding the 
distribution of missing values in more detail, the 
EM algorithm is the better choice. 
 
 
 
 

Table 10: MLE for the Poisson distribution 

Iteration 

Cells 

(1,1) (1,2) (2,1) (2,2) 

1 14.95 8.05 16.42 9.58 

2 14.95 8.05 16.42 9.58 
 

Table 11: MLE for the Binomial distribution 
Cells 

(1,1) (2,1) (+, 1) (1, 2) (2,2) (+, 2) 

0.65 0.6315 0.6402 0.35 0.3685 0.3598 
 

Table 12: M-step for the Binomial distribution 

Iteration

Cells 

(1,1) (2,1) (+, 1) (1, 2) (2,2) (+, 2) 

1 0.65 0.6315 0.6402 0.35 0.3685 0.3598 

2 0.65 0.6315 0.6402 0.35 0.3685 0.3598 
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