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PREFACE 

 
 
 

In this thesis, I present my work Development of a human heart rate and skin temperature 

monitoring system. 

Chapter 1 gives an introduction of HR, HRV, medical applications, problems and different 

kinds of heart rate devices available in market along with basic understanding of 

photoplythosmographic concept. 

Chapter 2 explains about system design, which explains about the whole product design   

along with components integrated to the MCU.  

Chapter 3 explains the test setup and method. 

Chapter 4 demonstrates the experimental results carried out in this project. 

Chapter 5 discusses the conclusion of the project.  
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CHAPTER 1: INTRODUCTION 

1.1 Background/Motivation  

The growth of population in the United States, including the elderly population, has led to 

significant challenges in US Healthcare. One such challenge is the increasing costs of managing 

chronic disease, including cardiovascular disease, diabetes, and mental health disorders [1].  

Chronic disease is often linked to lifestyle factors, such as high blood pressure, obesity, poor diet, 

stressful environments, and alcohol consumption [2]. In the effort to reduce chronic disease, there 

is a great interest in encouraging patients to adopt a healthy lifestyle choices [1]. One philosophy 

is to provide patients with frequent, quantitative data about their health, and giving appropriate 

guidance based on such data [3].  

Among the major chronic diseases, cardiovascular disease is the most common [4], 

affecting 611,105 Americans annually [5]. It is also the most expensive, costing the US healthcare 

system an estimated $315.4 billion in 2010 [6]. Quantitative methods for managing heart disease 

include heart rate monitoring, electrocardiography, nuclear stress testing, chest x-ray, and blood 

tests [7]. Most of the above tests require the patient to be at a medical clinic, which increases the 

cost of care. From a personal standpoint, patients often prefer home monitoring technologies and 

treatments for managing chronic disease [8]. Hospitals and healthcare organization are also 

interested in remote patient monitoring (RPM) technologies because they have been shown to 

significantly improve patient outcomes while reducing costs [1]. In order to encourage adoption 

of remote monitoring technologies, they must be accurate, simple to use, low cost, and provide the 

required data at regular intervals. Some notable examples of home health monitoring technologies 

used for cardiovascular disease include home blood pressure monitors, handheld ECG units, 
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smartphone heart rate monitors, chest strap ECG monitors, and most recently, heart rate 

monitoring watches.  

1.2 Wearable sensors 

Among home health monitoring technologies, wearable sensors are useful when 

continuous physiological monitoring is required [9]. For example, continuous assessment of heart 

rate enables one to diagnose cardiac arrhythmias and assess heart rate variability (HRV), an 

indicator of cardiovascular and psychophysiological state [10]. In rehabilitation health care, 

wearable sensors allow caregivers to monitor physiological changes like fall detection etc., sense 

heartbeat to detect heart attack, wherein all these disorders can be monitored remotely [1] [2].  

Other wearable sensors like skin temperature play an important role in sensing activity, 

energy expenditure, and potential medical emergencies. For example, an acute stroke could be 

assessed by increase in body temperature and fall detection, and  skin temperature play an 

important role in diagnosis [11] [9]. When combined with wireless transmission, the 

implementation of these sensors will help in monitoring medical emergencies remotely [12]. There 

are several other emerging applications of wearable sensors. A few examples: clinicians use 

motion sensors to monitor neonatal lung development [13] by recording the number of breathing 

cycles; by golfers to monitor improper swings[14]; and by divers to detect harmful chemicals 

underwater which are a threat to human and aquatic life [15].  The most popular use is in the fitness 

market, where athletes and coaches track motion, energy expenditure, cardiovascular state, and 

other conditions using wearable sensors [10].  

A decade earlier, wearable sensors were not feasible because technology could not meet 

the size and power constraints required for wearable devices. However, recent advances in 

microsensors, radio communication ICs, open software, low power microcontrollers, and 
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smartphone technology has led to breakthrough advancements in developing wearable sensors [1]. 

This technology advancement has also helped researchers in various other ways to implement 

wearable sensors. Wearable sensors are a combination of software and hardware, these sensors are 

designed to help us detect various emerging medical conditions prior to serious symptoms. The 

sensor technology consists of important building blocks: 1) displays for visualization, 3) software 

and hardware required for sensing, 4) communication protocols like GSM, Zigbee, Bluetooth [16] 

for remote monitoring, 5) information technology for analyzing the data according to the 

requirement. After collecting and analyzing the raw data, the next important step is to communicate 

of the filtered data to the Android application.   

As human life expectancy and chronic disease increases, healthcare costs have also 

increased [16]. Wearable sensors can potentially help mitigate issues such as cost, size, efficiency, 

accuracy, and power consumption [17] [18].  

1.3 Heart Rate Monitoring Technologies 

Heart rate is a universal physiological parameter, which responds to both physical and 

psychological load. The heart responds to increases in physical activity, and also to emotions such 

as fear, stress, and anxiety. Increases and decreases in heart rate are controlled by the central 

nervous system [18] [19], which includes the sympathetic and parasympathetic nervous system. 

The sympathetic nervous system controls the ‘flight or fight’ response, generally increases heart 

rate, while the parasympathetic nervous system brings the heart rate and blood pressure down 

during moments of relaxation [18] [19]. Continuous heart rate monitors (CHRM) can document 

these regular changes in heart rate, and therefore important play an important role in diagnosing 

physical and psychological load.  
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A popular device used for continuous heart rate monitoring is the Holter monitor (Figure 

1.1), a portable electrocardiography (ECG) unit with electrodes attached to the chest area, and a 

recording device attached to the patient’s waist. The Holter monitor records continuous ECG 

waveforms, which can identify irregularities in heart function, including arrhythmias, palpitations, 

and others. Due to the size and bulk of the device, it is prescribed only on a short term basis, such 

as weekly or monthly, before they are returned to the doctor for data analysis.  Holter monitors are 

prescribed to diagnose atrial fibrillation, multi focal atrial, palpitation, fainting etc.[21] [20]. 

 

Figure 1.1: Holter monitoring [21] 

1.4 Photoplethysmography (PPG)                                                                                                    

Photoplethysmography (PPG) is an optical method of measuring heart rate, which can be 

used in wearable sensors [16]. When the heart contracts, it generates a pulsatile flow of blood in 

the circulatory system. Capillary beds experience and increase in blood volume, which can be 

detected by infrared optical sensors [20].  When PPG is measured in the transmission mode, it 

must be placed at extremities such as the fingertip or earlobe.  
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Figure 1.2: Concept of Reflectance Mode PPG 

Reflectance mode PPG (Figure 1.2) is an alternative to transmission mode, which 

simplifies the sensor design, and enables measurement at more anatomical locations. A reflectance 

mode PPG sensor consists of an infrared (IR) light emitter and adjacent photodetector. When the 

sensor is placed close to a fingertip or an earlobe, it can detect local changes in blood flow. When 

a pulse of blood passes through the capillary bed just above the sensor, the increased capillary 

volume scatters the emitted light, reducing the intensity of the reflected light received at the 

photodetector. The periodic fluctuations in reflected light, typically about 1-5% of the total signal, 

correlates with  heart rate [22]. The period of fluctuation, referred to as the r-r interval, is used to 

calculate heart rate. Transmission mode PPG, where the emitter and receiver are placed on opposite 

sides of a tissue, is a more common method, but are limited to extremities such as the fingertip or 

earlobe.  

Signal processing is an important aspect of PPG, particularly in wearable sensors. PPG 

signals are often filtered to within a 0.5-5Hz passband using a combination of low pass, high pass, 

band pass, and moving average filters. The role of signal processing includes removing unwanted 

noise and signals resulting from electronic noise, ambient light, and motion artifacts.  High pass 

filtering also removes the DC component of the optical signal, which is up to 100X larger than the 
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AC component. After filtering, the frequency of pulses are counted using a zero crossing threshold 

detector, and this is used to calculate the number of beats per minute (BPM).  Signal processing 

will be discussed in chapter 3. 

(Figure 1.3) shows a typical arterial pulsation waveform obtained from a PPG sensor. The 

waveform has a systolic phase, dicrotic phase, and diastolic phase. The ascending limb is the 

systolic phase and the descending limb is the diastolic phase, while the dicrotic notch indicates the 

closure of the aortic valve. The dicrotic notch changes according to the closure and opening of the 

valve [23]. The different parts of the waveform indicate the functioning of the right and left valve.   

 

Figure 1.3: Normal arterial pulsation waveform [23] 

1.5 Heart Rate Target Zones 

In the consumer fitness market, one of the popular uses of heart rate monitoring is to help 

athletes maintain target heart rates during training. There are several predefined target zones, and 

a wearable heart rate monitor can help the athlete remain in one or more target zones to reach a 

specific training goal. The zones are defined as a percentage of maximum heart rate, which is age 

dependent. There are several algorithms available to calculate maximum heart rate (HRmax), but 

the simplest is HRmax = 220 – age in years. 
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 Heart Rate Target Zone 

50-85% 

Avg. Maximum Heart 

Rate100% 

Age Beats/minute Beats/minute 

20 100–170 200 

25 98–166 195 

30 95–162 190 

35 93–157 185 

40 90–153 180 

45 88–149 175 

50 85–145 170 

55 83–140 165 

60 80–136 160 

65 78–132 155 

70 75–128 150 

Figure 1.4: Heart rate target zones 

The fat burning or the fat loss zone, also called the recovery zone, accounts to a heart rate 

of 60% to 70%. The aerobic training zone, in the 70-80% of HRMax, helps an athlete to become 

stronger and fitter by developing the cardiovascular system endurance. The anaerobic zone, falling 

within 80-90% of HRMax, builds the lactic acid system which in turn helps burning the glycogen 

in lactic acid.  The red line zone, between 90% to 100% of HRMax, is used for high intensity 

Interval training (HIIT) or other high level fitness training [24]. The recommended target zones 

are a general guideline, and individuals are recommended to consult with physician, and proceed 

with a stress test, to determine his or her exercise program.  
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1.6 Comparison of Wayne State Earlobe CHRM with existing devices 

A medical-grade continuous heart rate monitor (CHRM) must meet several key criteria: 1) 

it must provide beat-to-beat accuracy even when the subject is in motion, 2) it must be small and 

comfortable to wear, 3) it must have low power consumption for all day operation on a 

rechargeable battery, and 4) it must be inexpensive to encourage wide adoption by healthcare 

organizations and the competitive consumer market.  

Several commercially available heart rate monitors are shown in (Figure 1.6). Although 

these devices are adequate for consumer fitness, do not meet all these criteria need for medical 

monitoring. Most are based on Photoplethysmographic (PPG), which is prone to motion artifacts 

if used in fingertip and wristwatch devices. On the other hand, electrocardiography (ECG) 

monitors such as the Holter monitor, are tolerant to motion artifacts, but are typically in the form 

of chest straps, which are not comfortable for all-day use. 

The Microfluidics and Bioinstrumentation lab is currently developing a CHRM which is 

both comfortable and free of motion artifacts, as shown in (Figure 1.5). It is based on a patented 

sensing technology which uses digital optical proximity sensors to detect heart rate [25] [26]. It 

results in a small (4×4 mm2), low power (300 μW), and inexpensive (<$4 US) heart rate sensing 

technology. The miniature form factor enables placement on the earlobe where motion artifacts 

are minimized.   
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A    B  
Figure 1.5: (A) Photograph of patented heart rate sensor showing the sensor size. (B) High 

quality heart rate waveforms obtained using this sensor in various anatomical locations [25] 

[26].  

We are incorporating this sensor into a small earlobe, mounted system (1cmx1.5cm), which 

consists of the heart rate sensor, skin temperature sensor. Preliminary testing found that the signal 

received at the ear is more precise and accurate than anywhere else in the body due to fewer motion 

artifacts.  By contrast, commercial products designed for the wrist or chest have substantial motion 

artifacts, which are difficult to remove even by filtering.  

 In addition to the on chip sensors, the earlobe sensor includes a Bluetooth Low Energy 

transmitter for sending data to an Android, iOS, or windows app, and an a built-in flash memory 

which stores 7-30 days of data when not connected. Designed for low power consumption, the 

device will enter sleep mode when not used. The two sensors for heart rate and skin temperature 

all consume low energy. It is expected the system will have full day battery life on a small 

rechargeable cell.  Compared to existing devices, the improved accuracy, low power, and data 

caching capabilities make the current system well suited for continuous heart rate monitoring 

(CHRM).  
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Figure 1.6: Comparison of Wearable Heart Rate Monitors 
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1.7 Objective of this Thesis 

The overall goal of this thesis is to develop the firmware for the CHRM sensor described above, 

which will run on the Texas Instruments CC2541, a low power microcontroller with an integrated 

bluetooth low energy radio. Specific goals include: 

1. Acquire photoplethysmography (PPG) data from the Vishay VCNL4000 proximity sensor, 

using an I2C interface.  

2. Acquire skin temperature from the Texas Instruments TMP112 sensor, using an I2C 

interface.  

3. Acquire battery level data from the CC2541 analog to digital sensor.  

4. Save PPG, and temperature data to a serial flash memory chip (Macronix MX25L6445E), 

using a serial peripheral interface (SPI) 

5. Improve PPG data by optimizing the VCNL4000 sensor for heart rate monitoring. 

6. Perform low power signal processing onboard the microcontroller to process PPG data, 

Perform median filtering to reduce noise, high pass filtering to remove the offset from the 

PPG signal, and calculate heart rate using a peak detector.  

7. Send all data to an Android application via Bluetooth low energy.   

All of the above tasks, and the individual sensors and ICs, must be optimized for low power 

consumption to improve battery life.  
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CHAPTER 2: SYSTEM DESIGN 

2.1 System Block Diagram 

The block diagram as shown in (Figure 2.1) represents various components which are used 

to build this application. The Texas Instruments CC2541, a low power microcontroller with 

integrated Bluetooth radio, is the master component of the system, while all other sensors such as 

skin temperature, and memory chip act as slave. The CC2541 collects data from the heart rate 

sensor, skin temperature sensor through I2C serial interface, saves the data to a local flash memory 

via a serial peripheral interface (SPI), and sends the data to an Android application via Bluetooth 

low energy. The CC2541 acts a peripheral as per the GAP roles, and sends sensor data to the GATT 

table. The GATT table will load the profiles with this data which will be sent over the air to the 

slave upon connection. When sending data, the CC2541 acts as a master, and the slave is the 

Android application or a PC based software (Btool).                                                                         

The CC2540 has several low power modes which allows it to reduce power consumption 

when it completes taking measurements, and the Bluetooth low energy protocol also reduces 

power consumption during wireless transmission.  Since wireless transmission consumes the most 

power, the system saves data locally on an on-board flash memory.  By implementing these power 

saving measures, the system can provide long battery life.  
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Figure 2.1: Block diagram of the sensor system 

The following sections describe the individual components of the system.  

2.2 Proximity Sensor for Heart Rate detection 

The VCNL4000 is an optical proximity sensor with an integrated ambient light sensor. 

 

Figure 2.2: VCNL Pin Diagram [37] 

Android 

App 
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As shown below, the pin configurations and connections are to be made to connect the 

microcontroller to the VCNL4000 board using the SmartRF05 (describe in the testing section). 

2.2.1 Pin Connections 

 

Figure 2.3: VCNL4000 Application circuit and Pin connection [37] 

The VCNL4000 board is connected to the SmartRF05 board via the debug connector. The 

connections are mentioned below: 

 VCNL4000 SmartRF05 

SDA 4 3(p18) 

SCL 5 5(p18) 

GND 6, 12 20(p18) 

Vdd 7 3(p20) 

 

Figure 2.4: Assigning VCNL4000 pin to SmartRF05 for connection 
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The connections are made for p18 and p20 accordingly. The (Figure 2.4) describes the 

connections.  

 

Figure 2.5: TI CC2541 Debug connectors 

The VCNL4000 is used as a heart rate monitoring sensor. The VCNL4000 application 

document and datasheet gives a clear understanding of working procedure of the sensor. Make the 

hardware connections as shown in the (Figure 2.4 and 2.5).  IAR workbench was used as a compiler 

to execute <simpleBLEperipheral> sample code [37]. The below figure explains the conceptual 

overview of designing an I2C communication. 

 

Figure 2.6: I2C Interface Concept diagram [37] 
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The VCNL4000 registers will be read using I2C protocol, the (Figure 2.7) explains the 

register settings and flow chart.  

 

Figure 2.7: Register settings and flowchart [37] 

2.2.2 Code Development 

Based on the (Figure 2.7) flow chart, the following steps are used to communicate to the 

VCNL according to the I2C protocol: 

1. Set the LED current and other options. Some options, such as the blinking frequency, has 

default option, and is therefore not mandatory to set. 

2. Set the command register. 

3. Set the proximity register. 

4. Read and write the value using HalI2CRead(), HalI2CWrite() function. 
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5. Reset the command register. 

Available sample codes were leveraged to design the sensor as a heart rate monitor. The 

<simpleBLEperipheral.c> file is a sample code which is developed according to the project 

requirement. In this project the file had all basic functions required for the application, although 

there were few added from <keyfob.c>.  

The <simpleBLEperipheral> project doesn’t include header files for I2C implementation, 

so first the available files must be downloaded. There are two files, <hal_i2c.c> and <hal_i2c.h>. 

Add these files in the source and target folders accordingly. The header file is located at: 

<C:\TexasInstruments\BLE-CC254x1.2.1\Components\hal\include>. The compiler file is located 

at: <C:\TexasInstruments\BLE-CC254x-1.2.1\Components\hal\target\CC2540EB>. The code 

functions when the below two variables are defined in <simpleBLEPeripheral.c>, <hal_i2c.h> and 

<ioCC2541.h>. 

#define HAL_I2C TRUE 

#define HAL_I2C_MASTER TRUE 

These functions must be defined prior to this part of the below function:   

#if (defineHAL_I2C) && (HAL_I2C==TRUE)  

After defining and implementing the changes, the code is compiled. The <hal_i2c.h> edited 

code should be added to IAR workbench hal_i2c.h code. Referring to the <HAL_API.pdf> manual, 

carefully verify <hal_i2c.h> file when using the below function. In this project, three functions are 

used, HalI2CInit, HalI2CRead and HalI2CWrite. 

For example, HalI2CInit (uint8 address, i2cClock_t clockRate); 

It should be, HalI2CInit (I2CADDR, i2cClock_123KHZ); 

Uint8 address (I2CADDR) comes from <ioCC2541.h>, and i2cClock_t clockRate 
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(i2cClock_123KHZ) comes from <hal_i2c.h>. 

To design an appropriate testing code, the <HAL Driver API.pdf> file should be verified 

for more functions. The <simpleBLEPeripheral.c> file contains <performPeriodicTask> section. 

The performed periodic task is an event generated function which is called every 30 milliseconds. 

The output received is the raw data from the sensor. Data is collected from the sensor at a rate of 

33.3Hz (sampling period 30 ms), and saved into a buffer of size 100.  Figure 2.8 shows 100 points 

of raw data. 

The perform periodic task function is an event generated task which occurs every 30 

milliseconds.  Choosing a smaller time interval i.e. less than 30 milliseconds was shown to reduce 

the reliability of Bluetooth data transmission.  Bluetooth generally requires a minimum time to 

initialize and execute other tasks in the OSAL layer before executing the application layer. The 

application layer consists of the Bluetooth stack.  The Bluetooth low energy specification states 

throughputs of 0.27 Mbits/sec, which should be more than enough bandwidth to support faster data 

transmissions below 30 ms.  However, in experiments with the Texas Instruments CC2540 chip, 

BLE communication proved unreliable when the acquisition time was set <30 ms.  With 

troubleshooting, higher speed may be possible in the future.  For the present application however, 

the periodic interval of 30 ms, corresponding to a data rate of 30.3 Hz, is sufficient for heart rate 

monitoring.  Other wearable heart rate monitors, such as a wrist watch operate at 12HZ, was 

adequate for PPG sampling [39]. 

2.2.3 Signal Processing 

The raw heart rate data received from the proximity sensor must be signal processed to 

remove noise and offset, and then calculate the r-r intervals (the time between heart contractions), 

and the beats per minute (BPM). Implementation of signal processing onboard the microcontroller 
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allows the system to send the BPM to the smartphone app, rather than the raw data, which would 

require roughly a 10X higher data transmission rate. The power cost of onboard signal processing 

is small compared to the power required for wireless transmission.   

The first signal processing step is a 3 point median filter which was implemented to remove 

the spurious noise. The median filter offers simple implementation and is more suitable for 

removing large spikes in the signal due to digital transmission errors. (Figure 2.8) compares typical 

raw data with the median filtered data.  

 

Figure 2.8: Raw heart rate and median filter data of 100 points plotted in 30 milliseconds  

After the signal is median filtered, the 2nd step is to remove DC offset using a moving 

average high pass filter.  In a typical PPG raw signal obtained from the heart rate sensor, the AC 

component is only 1-5% of the total signal [16]. We first low pass filter the signal using a moving 

average low pass filter. The high pass filtered signal is then obtained by subtracting the low pass 

filtered signal from original signal.   

The moving average low pass filter is implemented recursively, and can be explained as 
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follows.  Consider a buffer which contains the last 5 data values from the heart rate sensor:  d1, 

d2, d3, d4, d5.  The earliest value is d1, followed by the others.  When the pointer moves the 

present – next value i.e. d2-d3 is divided by 5 which is added with d1 to give an output of E1 for 

the first iteration and then when the pointer moves again E1+(d3-d4)/5 = E2 for the second iteration.  

The recursive formulae is used, which is the previous value of moving average + the current data 

point - the earliest data point. The moving average filter acts as a low pass filter, with the pass 

frequency set by the length of the filter.  In the above illustrative example, the filter length is 5, 

but in our implementation it was set to 100 to select a lower transition frequency.   

To obtain the high pass filtered signal, the low pass filtered signal is subtracted from the 

median filtered signal. Given the raw PPG waveform in (Figure 2.8), the moving average filtered 

signal and the high pass filtered signal are shown in (Figure 2.9) and (Figure 2.10), respectively.  

The moving average filtered signal tracks the DC value of the PPG waveform, and the high pass 

filtered is similar to the median filtered signal, but with zero offset.  

 

       Figure 2.9: Moving average filtered data 
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                   Figure 2.10: High pass filtered data. 

To calculate RR-intervals and BPM, a threshold crossing detector is implemented. When the signal 

crosses a predefined threshold (100), the time is recorded using the OSAL system timer.  At each 

crossing, the r-r interval is measured by calculating the time between the current and previous peak. 

The formulae BPM=60000(in milliseconds)/r-r interval is used to obtain BPM.  Further testing of 

the heart rate sensor is shown in the subsequent chapter. Specifically, it explores the effect of 

changing the moving average filter length, the LED current, acquisition rate, and threshold settings.  

2.3 Temperature sensor 

The sensor TMP112 is used to measure the skin temperature. This temperatures sensor is 

a low power two-wire sensor. This high precision sensor does not require external components. It 

reads digital temperature to a resolution of 0.0625 degree centigrade. This device operates with a 

temperature range less than -40 degree centigrade. The temperature of the skin is measured by 

touching the sensor with a tip of the finger. The 12-bit resolution sensor requires a maximum of 

3.6 volts and minimum of 1.4 volts with a location accuracy of 0.5(+/-).  An attractive feature in 
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this sensor is the programming alert, which sends an interrupt when the temperature crosses a 

threshold value; this can potentially be used in the future for triggered detection.  The design here 

explains on how to build the sensor. 

The temperature sensor is first mounted onto the breadboard for prototype design, as per 

the pin configurations the connections are made as shown below. 

 

Figure 2.11: Pin diagram [40] 

The TI CC2541 pins are shown below: 

 

 

 

Figure 2.12: CC2541 I2C connections for the pin [40] 

I2C protocol is used to communicate between the sensor and the CC2540 microcontroller. 

The microcontroller pins SDA, SCL are connected to the temperature sensor SDA, SCL pins. SDA 

and SCL are open drain bus lines used for I2C communication. The connections are made 

accordingly to read the register values.   

I2C communication is enabled by setting up the HALI2C command in the CC2540 system 

firmware. To initiate communication between the CC2540 and sensor, one must first handshake 

the sensor and the microcontroller by setting up the connection after initializing the I2C clock.  
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Read/write commands are then sent to the “who am I?” register, a command register value which 

is read from the sensor to verify if the sensor is communicating. The sensor supports transmission 

protocol between 1 kHz to 400 kHz [40]. Initializing the write values to the register gives the 

temperature values. The I2C slave address of the TMP112 can be configured depending on the A0 

pin connection (Figure 2.13). 

  
Figure 2.13: Pin and slave address [40] 

The sensor is initialized by writing the 0x14 command with a clock of 144 kHz. The default 

mode of the TMP112 device is continuous conversion mode. During this mode, the ADC performs 

continuous temperature conversions and stores the output in a CC2541 buffer to read. The 

conversion rate settings as shown in (Figure 2.14) are used to set the conversion at particular rate 

required in the application.  By default the value is set to 4 Hz, and the conversion time is 26ms.  

 

Figure 2.14: Conversion rate settings [40] 

After setting 4 Hz acquisition rate, the p0 and p1 will be set to 0 to read value from 

temperature register.  
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Figure 2.15:Pointer address[40] 

The write register timing diagram is as shown below. 

 

Figure 2.16: Two-wire timing diagram for write word format [40] 

The timing diagram for read register is as shown below: 

 

Figure 2.17: Two-wire timing diagram for read word format [40] 

Here A0, A1 represents the read and write values and P0, P1 represents the sensor enable 

values. Read the temperature register value into the buffer of the microcontroller. The register of 
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the TMP112 device is configured as a 12-bit read-only register that stores the most recent 

conversion. Two bytes have to be read from the sensor, 1 byte from the least significant byte (LSB) 

and another from the most significant byte (MSB).  

 

Figure 2.18: High and low temperature registers values [40] 

The temperature values after receiving from these registers must be converted into digital 

format and then to temperature values.  The temperature is divided by the resolution and LSB.   

Example: (50°C) / (0.0625°C / LSB) = 800 = 320h = 0011 0010 0000, multiply the decimal number 

by the resolution to obtain the temperature value: 

Example: 0011 0010 0000 = 320h = 800 × (0.0625°C / LSB) = 50°C 

The temperature output values are demonstrated in chapter 4. 

2.4 Local Flash Memory 

The MX25L6445E is a serial flash memory, used to store sensor data when the device is 

not connected. During initial prototyping, before implementing the MX25L, the internal flash 

memory chip available in the SmartRF05 board was used to store the data. It was found that the 

data will not erase due to read/write restrictions. Hence, serial flash memory MX25L6445E was a 

preferred solution [41]. The device consists of 3 bus signals they are clock input (SCLK), a serial 

data input (SI), and a serial data output (SO). Access to the device is enabled by CS# input. 
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MX25L6445E latches address on both rising and falling edge. The data throughput doubles when 

MX25L6445E is used because it provides a high performance read mode. Moreover, this leads to 

direct code execution saving RAM size and cost. The continuous program mode execution is based 

on byte basis, or page (256 bytes) basis, or word basis. The CS# low and high is used to control 

the operation of the device, when the chip select is high the device enters standby mode which 

draws less than 100uA current [41]. (Figure 2.19) shows the input/output pin-out. The CC2541 

board hardware schematics were verified for SPI pin connections. The data from the VCNL4000 

is communicated through I2C but the value is stored into the SPI buffer.  

 

Figure 2.19: I/O connector p18 pin-out of TI CC2541 

 

Figure 2.20: MX25L Pin Connections [41] 

The MX25l Pin connections are connected accordingly to the figures above. The memory 

chip has 4 pins SCLK (serial clock), CS (chip select), MISO (SPI data master input slave output), 

and MOSI (SPI data master output slave input). In the above description the pins are connected to 

the serial flash memory.  The way SPI works is similar to I2C but the chip select pin must be 
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enabled and disabled in CC2541 to communicate to the sensor.  

The firmware requires the SPI <flash.c> library. Here, the function <spiWriteByte> is 

working as “Save”, and function <spiReadByte> is working as “Load”. Even though 

<simpleBLEperipheral> project has UART functionality in the HAL, the SPI function were 

required so <keyfobdemo> project had SPI functions wherein these library files <cma3000d.c> 

and <cma3000c.h> were copied and pasted into <simpleBLEperipheral> code. After copying these 

files to the source directory <C:\TexasInstruments\BLECC254x1.2.1\Projects\ble 

\simpleBLEPeripheral\Source>, in <cma3000d.h> files, we can observe these two functions for 

SPI.  In this library files it can be observed that the SPI read and write functions are available along 

with chip select and clock. Hence, these functions helped to build the code directly in 

<simpleBLEperipheral> without any major changes. 

 

Figure 2.21: Debug connector for SPI connection 

In (Figure 2.21), the debug connectors are connected to the Macronix memory chip. In 

typical operation, the proximity sensor data is first read using I2C and then the I2C buffer is read 

by the SPI buffer. First, the SPI chip select is enabled, then the read mode is initialized and then 

page programming method is selected. The preferred size is selected to store data in flash, and then 

the data from I2C buffer is read and loaded into the size selected. Later, the stored data is read in 

UART terminal, as shown in the following chapter.  
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2.5 Bluetooth Low Energy (BLE) 

Bluetooth protocol is designed to communicate low bandwidth data over a short distance. 

There are currently existing two different kinds of Bluetooth, one is Bluetooth Low Energy (BLE) 

and another is classic Bluetooth[42]. Also called Bluetooth Smart, BLE consumes less power and 

is cheaper compared to classic Bluetooth, by maintaining the similar range of communication. 

Bluetooth is designed for applications which require short range communication such as medical 

care, fitness, and home applications [43]. They both operate at 2.4 GHz frequencies. 

 

             Figure 2.22: Comparison between Bluetooth low energy and Classic Bluetooth 

[42][43] 

Even though they are wireless technologies using Bluetooth there are many advantages and 

disadvantages. The advantages are that it is easy and inexpensive to implement Bluetooth, and 

they can communicate within the range of 100m. But disadvantages include sending limited data 

at a time. Bluetooth low energy cannot be used for voice communication due to its data bandwidth 
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requirements. Bluetooth low energy master and slave communication requires GATT and GAP 

roles implemented [43] which is secure compared to Classic Bluetooth. 

2.5.1 GAP ROLES 

Gap roles are four profile roles wherein the Bluetooth low energy can operate in [43]: 

1) Observer: Observer scans for advertisements. Example: Temperature display 

2) Broadcaster: Connection cannot be established it just broadcasts the data, Example: 

Temperature sensor. 

3) Peripheral:  Advertises and checks for connections after connection established, acts as a 

slave. 

4) Central: Scans for advertisers, acts a master in connection 

2.5.2 GATT ROLES 

GATT roles send out commands to the client to discover profiles. The profiles are 

characteristic profiles which are designed to communicate data to and fro from the client. Every 

GATT role has a handle and notification which are designed using the profiles in the GATT 

table(user defined). The <simpleBLEperipheral> code consists of <simplegatt.c> file explains all 

the profiles which are designed. Major difference between GATT role, profile and table is that 

every GATT role should either have a handle or a notification which are designed in the GATT 

table(user defined).There is some information to be used by the server and the GATT profiles 

provide those commands [44] 

Discover UUIDs for all primary services 

 For the available UUID Find a service 
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 Find the primary and secondary services 

 Discover characteristics for a service 

 For a UUID find the matching characteristic 

 Read descriptors  

In addition, there are commands which provide data transfer from server to client and vice versa: 

 Characteristic UUID value can be sued to determine the handle value. 

 Write operations always identify response from a server for the particular characteristic 

UUID 

The client can send a request to the server for the notification values. For example, 

whenever the sensor takes measurements it can request its client for notifications. When the 

CC2540 USB dongle is connected to the PC, the Btool will generate commands over the air to 

read and write the data, and the <simpleProfile_WriteAttrCB> will write a value to the 

characteristic profiles. The <simpleProfile_ReadAttrCB> will read a value from a characteristic 

profile. These are registered in the <simpleBLEPeripheral_SimpleProfileCBs> this is a default 

file which is already available. The <simplegatt.h> and <simplegatt.c> files should contain all the 

profiles expansion with a new one as defined for the previous ones. Once the header is defined 

with new profiles are added into file.                                                  

2.5.3 GATT Table for simpleBLEperipheral 

The designing of characteristic profiles is a key part of Bluetooth low energy links. The 

Characteristic profile has different attributes for each service (e.g. temperature). The characteristic 

is a hex value which is defined in the table for a particular service and all these services with 
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characteristics are called attributes. Every attribute has a UUID. Every attribute is given a unique 

notification or handle [44]. There are 128-bit UUID which can used for custom build. The GATT 

table in Figure 2.23 is a basic overview of all the attributes used in our application. The data from 

the sensors like heart rate data, skin temperature data, are loaded into the attributes. Some are 

designed to act only on notifications and these profiles only read the real-time data.  There are also 

profiles which are password enabled.  In the <simpleBLEperipheral> application, the sample file 

<simplegatt.h> and <simplegatt.c> are used to build the GATT table [44]. 

 

Figure 2.23: GATT Table [44] 

2.6 OSAL                                                                                                                                                                                                               

The OSAL is the operating system abstraction layer and it’s a layer where the entire 

software architecture is built. The OSAL consists of interrupts for the tasks in the main code [45]. 

There are 12 tasks in the OSA, and each is assigned a priority number. The lower the priority 

number,  the higher the priority it is assigned. In the <simpleBLEapplication>, the final task i.e 
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the 12th task is the <simpleBLEapplication>, it is related to <perform_periodic_task> in the main 

code. This task consists of events to be executed.  For example, if the event is pressing a button 

then when the button is pressed an event is created and the system will wake up from the sleep 

mode to perform the specific task [45]. There are few key API functions which must be used:  

 osal_init_system: Initializes OSAL 

 osal_start_system: Starts OSAL main loop 

 osal_set_event: Sets OSAL event for a task 

 osal_msg_allocate: allocates memory for OSAL 

 osal_msg_send: Sends a message to a specific task, 

 osal_msg_deallocate: Deallocates an OSAL.  

For timers and clocks, 

 osal_start_timer: Sets an OSAL event schedule time for a task 

 osal_stop_timer: Cancels an existing event,  

 osal_start_timerEx: start a timeout for a specific task 

 osal_stop_timer:Ex :stop indicated timer  

 osal_GetSystemClock: reads clock Memory  

 osal_setClock: initializes real-time clock 

 osal_getClock:retrieve the time 

 osal_ConvertUTCTime: time in seconds 

2.7 Non Volatile Memory 

 The Non volatile memory is used to store the Security key for the master and slave to 

connect.   An identifier is defined for a data structure <ZComDef.h>, and uses the APIs to read 
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and write to/from this structure; on start-up, the NV_RESTORE is a compile option that allows 

restoring dynamic data like security keys and routing information. Osal_nv_item_init: init is an 

item in non-volatile memory, osal_nv_read: reads item, osal_nv_write: writes item, osal_offsetof: 

calculates memory offset.  

2.8 HAL 

HAL is a hardware abstraction layer and it’s the driver API for the board which is defined 

for all peripherals. The peripherals include the ADC, UART, SPI, I2C, Flash, Timers, Keys, Sleep, 

LED, and LCD. In our application we use everything apart from Keys. I2C and SPI are two most 

important protocols used in this project. The data rate in I2C is 3.4MHZ whereas the data rate in 

SPI is 10MHZ [45]. The SPI data rate is very high compared to I2C. There is a big difference 

between the HAL and OSAL, the hardware platform is HAL and the software platform is OSAL. 

The OSAL provides memory management, scheduling and messaging features, whereas the HAL 

provides programming access to hardware [45]. To understand the difference between the HAL 

timers and OSAL timers, the HAL initializes the hardware drivers required for the operating 

system to initialize all the peripherals. The OSAL controls the peripherals to perform specific task.  

2.9 Clocks, oscillators, Timers and power modes 

The CC2541 consists of 4 oscillators, of which 2 are high frequency oscillators and 2 are 

low frequency oscillators. The high frequency oscillators include a 32MHZ crystal oscillator and 

16MHZ RC oscillator, which can be used for system clocks. The high frequency oscillators 

consume more power, and are used when the microcontroller is active. The 16KHZ and 32KHZ 

are available low frequency oscillators which are used as sleep timers and watch dog timers. The 
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Bluetooth RF transceiver requires a 32KHZ crystal oscillator and for some applications the start 

time is too long using this oscillator. The 32KHZ XOSC is designed to operate in 32.768KHZ for 

timing accuracy. 

There are five different power modes, they are active mode, idle mode, PM1 mode, PM2 

mode, PM3 mode.  

 Active mode: the fully functional mode.  

 Idle mode: Waiting to perform functions or tasks.  

 PM1: the voltage regulator to the digital part is on. Any of the available oscillators can be 

used. The system enters active mode on reset, an external interrupt, or when the Sleep 

Timer expires.  

 PM2: The voltage regulator to the digital core is turned off. Any of the available oscillators 

can be used. The system goes to active mode on reset, an external interrupt, or when the 

Sleep Timer expires.  

 PM3: The voltage regulator to the digital core is turned off, none of the oscillators work. 

The system goes to active mode on reset, when an external interrupt is occurred.  

Here, there are 4 timers: Timer 1, Timer 3, and Timer 4 can be used as Timer/counter/PWM capture 

etc. Timer 1 is 16-bit, Timer3 and 4 are 8-bit timers, Timer 2 is 40-bit. It has a 16-bit counter and 

is a configurable timer. If the POWER_SAVING is implemented in the software then an accurate 

of 32 kHz clock is needed for the sleep timer to maintain the connection timing required by BLE.  

2.10 CC2540 memory  

The local CC2540 memory is used to run the bluetooth processor, peripherals, store data 

temporarily before saving to the SPI memory, and for signal processing. There are 4 different types 

of memory spaces in CC2540 architecture. The memory spaces are: CODE: Read only memory 
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space for program memory, the space taken by the address is 64kb. DATA: It is a read/write data 

memory for 1 CPU instruction cycle, the space taken is 56 bytes. XDATA: Read/write data 

memory 4 CPU instruction cycles, the space taken is 64kb. The CODE and XDATA share same 

CPU core [45]. SFR: Read/write memory single CPU cycle, the space taken is 128 bytes [45]. The 

DMA allocates memory with an upper 23kb of XDATA and the rest of the banks with 32kb is 

mapped in the Figure 2.24. Any of the available 32 KB flash banks can be mapped in here: 

 
Figure 2.24: memory register 

The flash memory has the following features: 

 Page size: 1 KB or 2 

 Flash-page erase time: 20ms 

 Flash-chip (mass) erase time: 20ms 

 Flash write time (4 bytes): 20μs  

 Data retention (at room temperature): 100 years 

 Program/erase endurance: 20,000 cycles 



  

 

36 

 

 

 

 

The XDATA memory space consists of additional XREG registers. These registers are 

mainly used for radio configuration and control. Below is the memory footprint for 

<simpleBLEperipheral> used in our system, printed using IAR workbench.  

110 648 bytes of CODE memory  

     35 bytes of DATA memory (+ 72 absolute) 

  6 270 bytes of XDATA memory 

    194 bytes of IDATA memory 

      8 bits of BIT   memory 

    581 bytes of CONST memory 

Figure 2.25: Footprint for <SimpleBLEperipheral> application [39] 

2.11 Power management 

Care should be taken to reduce power consumption.  The highest power consumption is 

during Bluetooth communication. This is somewhat reduced due to the use of Bluetooth Low 

Energy.   The GAP role Peripheral is defined to show the amount of current consumed when the 

device goes to wake mode from sleep mode. The discharge times shown below assume a typical 

coin cell battery life with capacity 250mAh. 

SimpleBLEPeripheral - Advertising   

Time taken to wake up from sleep mode: 3.9 ms  

Average time taken by an event to draw a current: 8.6 Ma for 3.9ms 

Average time taken for a current to be drawn in 1s interval: 0.035 mA / ~260 days continuously 

 

SimpleBLEPeripheral - Notification from master,   

Time taken to wake up from sleep mode: 3.2ms  

Average time taken by an event to draw a current: 8.8 mA in 3.2ms 

Average time taken for a current to be drawn in 1s interval: 0.029 mA / ~316 days continuously 

SimpleBLEPeripheral - Notification from master,                                                                  

Time taken to wake up from sleep mode: 8.8ms                                                                                               

Average time taken by an event to draw a current: 7.89 mA in 8.8ms                                                                                                                

Average time taken for a current to be drawn in 1s interval: 0.071 mA / ~135 days continuously 
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SimpleBLEPeripheral - Read response from master                                                                                 

Time taken to wake up from sleep mode: 2.8ms: 1.3ms processing after Rx/Tx                                                                                        

Average time taken by an event to draw a current: 8.6 mA in 2.8ms                                                                                                  

Average time taken for a current to be drawn in 1s interval: 0.026 mA / ~352 days continuously  

 SimpleBLEPeripheral - Write response from master                                                              

Time taken to wake up from sleep mode: 3.1ms: 1.4ms processing after Rx/Tx                                                                                    

Average time taken by an event to draw a current: 8.8 mA in 3.1ms                                                                                                

Average time taken for a current to be drawn in 1s interval: 0.028 mA / ~327 days continuously 
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CHAPTER 3: TESTING SETUP AND METHODS 

3.1 Test Setup  

The Texas Instruments SmartRF05 prototype board used for firmware testing is shown in 

(Figure 3.1). This board allows mounting of the CC2541 sensor, and allows external connections 

to all the sensors on a separate breadboard. Note that in the final device, components will all be 

integrated on a small surface mount PCB. Using the SmartRF05 board, the CC2541 can be 

programmed using IAR workbench, connected via USB interface. The connections to the 

SmartRF05 board and sensors are designed and developed accordingly as discussed in the previous 

chapter. After implementing all the sensors on the breadboard the code is executed in the IAR 

workbench. 

 

Figure 3.1: Connection setup of the Device 

The below mentioned figures are the outputs from terminal, Btool and Android app, the 

results of the project will be demonstrated in the following chapter.  
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The system firmware is tested by writing the sensor values to IAR Terminal, Btool, and 

the Android BLE Device Monitor. 

   

Android output                   IAR TERMINAL OUTPUT 

Figure 3.2: Output terminals using Android and IAR 

3.2 Testing Tools and Methodologies 

3.2.1 IAR Embedded Workbench I/O Terminal (UART/USB) 

IAR Embedded Workbench (IAR Systems) is used to develop and test the firmware code.  

Through a USB connection to a PC or laptop, IAR also allows real time debugging.  In addition 

to code stepping, breakpoints, and variable watches, IAR also provides a console for printf 

statements for debugging.  Some guidelines are shown below. 

1. Use <printf> function properly. Such as printf("%d\n", data); 

2. Click the Make_Restart_Debugger 

3. Go to View>Terminal I/O 

4. Make this code Go 
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3.2.2 BTOOL  

Texas Instruments Btool is a PC based, Bluetooth communication tool also used for debugging. 

After the CC2541 from the SmartRF05 board the board reads data from various sensors, it sends 

the Bluetooth data to characteristic profile as designed in the <simpleBLEperipheral> code in 

system design. 

Btool is used for reading and writing the characteristic value and printing the sensor values 

accordingly. Understanding the basic concept of reading and writing a characteristic value is 

described.  To use Btool, the flash programmer SmartRF05 is installed and used  to program the 

USB dongle and CC2541 module on development board.  Here, the dongle and onboard module 

cannot be programmed at the same time, so they must be programmed separately. The hex file 

used to program these devices is available in the Texas instruments folder 

<C:/texasinstruments/blecc2541/accessories/hexfiles/cc2540_usbdongle_hosttestrelease.hex>. It 

is highly recommended to read through all the documents and have an in-depth understanding 

about reading and writing the data, which discusses configuring the respective firmwares (hex files) 

into the dongle and board.  After the hex files is loaded, the dongle is powered up and the drivers 

can be detected.  

Next, in the BTOOL terminal window, the port corresponding to the dongle is selected, 

and thee baud rate is set to 11500 and after the connection is established a Bluetooth configuration 

window opens as shown in (Figure 3.3). 
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Figure 3.3: Btool Overview 

The scan button is enabled to scan for available Bluetooth slave devices. The slave BDA 

box in the window will display the connection ID for verification as designed in the 

<simpleBLEperipheral.c> file.  Once it is verified, the GET, SET and ESTABLISH buttons are 

used to enter into read and write command window. 

 

Figure 3.4: BTOOL, read a characteristic by UUID [43] 
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(Figure 3.4) shows the read and write characteristics window.  The read/write tab in the 

sub-procedure tab is selected “read using characteristic UUID”.  The “characteristic UUID” value 

is set as “F1:FF” because here we are trying to read from the first characteristic profile i.e. profile 

1 0xF1FF.  The same procedure is followed to read the profile 2 value by entering “F2: FF” as 

defined in the <simplegatt.c> and <simplegatt.h> file. The value shown here will be 01 when the 

read button is clicked and a “success” will be displayed in the status box. When the read button is 

clicked there are few packets that are sent over the air by the slave to the master. Here, read is 

basically to read data from profiles which are designed for sensor output. 

 

Figure 3.5: BTOOL, write a characteristic by UUID [43] 

After reading the sensor data the next procedure is to write sensor data as shown in (Figure 

3.5). Writing is designed to send notifications or values to the defined profiles in the slave. Here, 

profile 4 and 6 are notifications enabled. The characteristic value handle will be either 0x0022 or 

the content in which the value tab displays. The 01, 02 are the notifications which are defined 

again in <simplegatt.h> file and they are entered in the value box of write section. After clicking 

the write button “success” shows up to read the real time value in the terminal [44].  
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When the Bluetooth connection is established after referring to the GATT table, the 

discover UUID is used to setup a connection between the receiver device to read appropriate sensor 

values using characteristic profiles. The characteristic profiles play an important role in the design. 

There are 6 characteristic profiles designed and one for each sensor. (Figure 3.6) shows the profiles 

implemented. 

After implementing the code and before executing the output in the IAR terminal, the next 

step is to execute the output using Bluetooth in Btool and the Android app.  The <simplegatt.c> 

and <simplegatt.h> files are added and edited accordingly. In <simpleGATTProfile.h> we have 

the simplechar1-6 profiles added. The characteristic profiles are designed in 

<simpleGATTProfile.c>code as shown below in (Figure 3.6). The output of Btool and Android 

working is demonstrated the subsequent chapter. The final GATT table is shown below. 

Type 

(hex) 
Type (#DEFINE) 

Hex/Text 

Value(default) 
R/W Notes 

0x28

00 

GATT_PRIMARY_SERV

ICE_UUID 
0x180A READ 

Start device 

information 

service 

0x28

03 

GATT_CHARACTER_U

UID 

02 (read permission) 

READ 
My name String 

characteristic 
24 00 (handle 0x0024) 

51 2A (UUID 0x2A51) 

0x2A

51 

DEVINFO_MY_NAME_

UUID 
“GIRI BABU :D” READ Value 

0x28

00 

GATT_PRIMARY_SERV

ICE_UUID 

0XFFF0 

(SIMPLEPROFILE_SER

V_UUID) 

READ 

Start Simple 

GATT profile 

service 

0X28

03 

GATT_CHARACTER_U

UID 

0A (notify only) 

READ 
Characteristic 1 

declaration 
22 00 (handle 0x0037) 

F1 FF (UUID 0xFFF1) 

0xFF

F1 

SIMPLEPROFILE_CHAR

1_UUID 
1 (1bytes) 

GATT_P

ERMIT_

READ 
Value 1 

GATT_P

ERMIT_

WRITE 

02(read only) 
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0X28

03 

GATT_CHARACTER_U

UID 

25 00 (handle 0x0025) GATT_P

ERMIT_

READ 

Characteristic 2 

declaration F2 FF (UUID 0xFFF2) 

0xFF

F2 

SIMPLEPROFILE_CHAR

2_UUID 
2 (1bytes) 

GATT_P

ERMIT_

READ 

Value 2 

0X28

03 

GATT_CHARACTER_U

UID 

08 (write only) 

READ 
Characteristic 3 

declaration 
28 00 (handle 0x0028) 

F3 FF (UUID 0xFFF3) 

0xFF

F3 

SIMPLEPROFILE_CHAR

3_UUID 
3 (1 bytes) 

GATT_P

ERMIT_

READ 

Value 3 

0X28

03 

GATT_CHARACTER_U

UID 

10(notify only) 

READ 
Characteristic 4 

declaration 2B 00 (handle 0x002B) 

F4 FF (UUID 0xFFF4) 

0xFF

F4 

SIMPLEPROFILE_CHAR

4_UUID 
4(1 bytes) none Value 4 

0X28

03 

GATT_CHARACTER_U

UID 

02 (write only) GATT_P

ERMIT_

READ 

Characteristic 5 

declaration 
2F 00 (handle 0x002F) 

F5 FF (UUID 0xFFF5) 

0xFF

F5 

SIMPLEPROFILE_CHAR

5_UUID 
01:02:03:04:05 (5 bytes) 

GATT_P

ERMIT_

READ 

Value 5 

0X28

03 

GATT_CHARACTER_U

UID 

10 (notify only) 

READ 
Characteristic 6 

declaration 
37 00 (handle 0x0037) 

F6 FF (UUID 0xFFF6) 

0xFF

F6 

SIMPLEPROFILE_CHAR

6_UUID 
01:02 (2bytes) (none) Value 6 

0x29

02 

GATT_CLIENT_CHAR_

CFG_UUID 
00:00 (2bytes) 

READ | 

WRITE 
Configuration 

0x29

01 

GATT_CHAR_USER_DE

SC_UUID 

“Characteristic 6” 

(17bytes) 
READ User description 

Figure 3.6: GATT profile table 

All the profiles characteristics are designed accordingly so that every sensor data we have 

the characteristic profile designed to give respective sensor output. 

1) SimpleProfileCharacteristic 1: Battery output 

2) SimpleProfileCharacteristic 2: Temperature 
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3) SimpleProfileCharacteristic 3 

4) SimpleProfileCharacteristic 4: BPM 

5) SimpleProfileCharacteristic 5 

6) SimpleProfileCharacteristic 6: Raw heart rate data 

To test all characteristic profiles, Btool is connected to the CC2541. The discover 

characteristic UUID is selected in sub-procedure and in UUID row, profile 1 is entered as F1:FF 

and the read button allows one to read the vale [43]. The data from the battery output of the 

evaluation board is displayed. The profile 4(UUID=F4:FF) is the temperature data which is 

received on request so a notification must be set.  The profile 6 (UUID=F6:FF) is used to read the 

heart rate data from the sensor, also by writing the notification.  

The notification concept is explained below.  When the attribute displays the notification, 

for instance, <SIMPLEPROFILE_CHAR4_UUID> and <SIMPLEPROFILE_CHAR6_UUID>, 

the handle address should be added +1.  In other words, if we get the handle value as 00 37, then 

the corresponding notification address is 00 38. When 01 00 is added to write we get the value of 

the sensor in the window as shown in (Figure 3.7). The values are in hex so they must be converted 

to decimal. The value is read continuously.  
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Figure 3.7: Btool write table 

The profile 6 (UUID=F6: FF) is used to read the heart rate data from the sensor. The data 

read is selected which gives the handle value. When the read status button is pressed, we get 00 35 

and so value handle entered should be 0x0036 and the notification is 01 00. After writing the 

notification the output of heart rate is read, consider the output terminal below. For the rest of the 

profiles from 1-5 for other sensors the output is in general which is read and write, the output will 

be demonstrated in next chapter along with their respective profile.  
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Figure 3.8: Btool Output terminal using characteristic profile 6 

3.2.3 BLE Device Monitor 

The sensor data is also read in an Android device using the BLE Device Monitor (Texas 

Instruments), a free Android software which can be downloaded to an Android phone.  The 

protocol is similar to that used by Btool. The app connects to the CC2540 module, and then scans 

the characteristics in the profile.  The user can then select certain characteristics to monitor.  In our 

case, we use the <simpleBLEPeripheral> profile, with the GATT characteristics described above, 

and read the sensor values using the app. 

The BLE device monitor is a precursor to a custom application which will be developed in 

future work.  
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CHAPTER 4: EXPERIMENTAL RESULTS 

4.1 Verifying Bluetooth Streaming using BLE Device Monitor 

The first set of experimental results is to verify the ability to send sensor data to a 

smartphone via the BLE <simple_GATT> profile. The Android output as shown in below figures 

shows various profiles along with sensor data. After opening the BLE device monitor app, the 

profiles tab is opened, and the <simpleBLEPeripheral> is selected. The values from characteristics 

1, 2, 3, 4, and 6 are shown in (Figure 4.1). Each corresponds to a specific sensor as describe earlier. 

 

    Figure 4.1: The figures represent battery, temperature, raw heart data  

4.2 Temperature Output  

 To test the ability of the temperature sensor to monitor skin temperature, we plotted the 

variation of temperature with time after placing the finger on the sensor. The temperature rises to 

30 Celsius. The acquisition rate of the sensor is intentionally kept low (1 Hz) to save power.  

Skin temperature monitoring does not require high temporal resolution.  
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Figure 4.2:  Skin temperature vs Time 

4.3 Battery Output 

To simulate a draining battery, the power supply voltage is changed from 3.3 to 4.5. 

(Figure 4.3) shows battery % vs supply voltage, demonstrating the ability to monitor battery 

levels.  

 

Figure 4.3: Battery Discharging (Percentage)  
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4.4 Heart Rate Output 

4.4.1 Effect of Data Acquisition Rate  

The data acquisition rate is tuned to balance power consumption and data integrity. A high 

data rate allows one to gather more data and provides flexibility in choosing signal processing 

filters which can improve signal quality.  However, a high acquisition rate increases power 

consumption in the VCNL4000 sensor due to more optical measurements, as well as the CC2540 

microcontroller for additional signal processing load.  Thus is advantageous to select a minimum 

acquisition rate to detect and calculate the heart rate.  The  maximum human heart rate is 220 beats 

per minute, or 3.6 Hz [24].  The basic Nyquist criterion states that the sampling frequency must be 

at least twice the bandwidth of the signal, or ~7Hz.  However, PPG signals can have higher 

frequency components in the systolic phase [23].  Thus to reduce the possibility of aliasing [45], a 

higher sampling rate may be used. 

To find the minimum suitable sampling rate, this experiment varied the acquisition rate 

from 10ms, 30ms, 50ms, and 100ms. The LED current is fixed at 110mA.  The data from the below 

experiments show how the heart rate PPG signals changes with data rate.  The 10ms acquisition 

has the highest time resolution but also shows noise. The noise falls at lower acquisition rate, and 

the signal is still visible even at 100ms acquisition; however, this comes at the expense of less time 

precision. The 30ms acquisition speed demonstrates a good balance of reasonable noise, signal 

amplitude, and time resolution. 
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Figure 4.4: PPG signal with acquisition rate of 10 ms 

 

Figure 4.5: PPG signal with acquisition rate of 30 ms 
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Figure 4.6: PPG signal with acquisition rate of 50 ms 

 

Figure 4.7: PPG signal with acquisition rate of 100 ms 

4.4.2 Effect of LED current 

Increasing the LED current increases the reflected optical signal, and therefore the signal 

to noise ratio. This experiment describes changing the LED current to 4 different values 70mA, 

90mA, 110mA, 130mA. The acquisition rate is kept constant at 30msec.  
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Figure 4.8: PPG signal with LED current of 70ma 

 

Figure 4.9: PPG signal with LED current of 90ma 
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Figure 4.10: PPG signal with LED current of 110ma 

 

Figure 4.11: Constant Acquisition rate of 30msec and Led current of 130ma 

 

Figure 4.12: Amplitude of the signal when Led current is changed 

Comparing the graphs shows that the amplitude of the signal increases when the LED 

current is increased. Hence, signal to noise ratio improves as shown in Figure 4.12. However, if 

the current is set too high (ie 130 mA), the signal becomes saturated, and the signal therefore has 

no amplitude.  Higher LED currents also consume more power, which represents a trade-off.  
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4.4.3 Effect of Moving Average Filter Length  

This experiment describes the effect of the different lengths of the moving average filters 

used. The filter length of 100 is used in this project while designing, and is used in all other 

experiments. Here, a test condition with a length of 200 is executed. Compared with length of 100 

the 200 affects the ability to remove DC offset. A long filter length slows down the ability of the 

filter to track the DC value and thus more time is needed to remove offset.  

 

Figure 4.13: Filter length of 200 (raw, median, moving) 

 

Figure 4.14: Filter length of 200 (High pass filter) 
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4.4.4 Effect of Filtering and Heart rate variability Monitoring 

This test condition demonstrates the effect filtering of median filtering and high pass 

filtering the raw signal. The 3 point median filter removes spurious noise, and it’s effect is shown 

below.  

 

Figure 4.15: Raw, median, moving average filter data led current 110ma and acquisition at 

30msec 

 

Figure 4.16: High pass filter data with led current of 110ma and acquisition at 30msec 
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The high pass moving average filter signal is obtained by subtracting the moving average 

signal from the median filtered signal. The signal here is offset to 0th level.  The data shown in 

Figure 4.16 is not completely centered at zero because the high pass filter was not operated for a 

sufficiently long time.  However, it shows the ability to remove DC offset.  

The rr-interval and BPM changes whenever a person stood up and sat down. This 

experiment was recorded in a video. The collected data recorded in the videos was used to plot the 

figures. The data is displayed in the LCD of SmartRF05 board.  

 

Figure 4.17: Data change in rr-interval 
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Figure 4.21: Data change in BPM 

4.4.5 Beats Per Minute Measurements 

The beats per minute (BPM) is calculated by a threshold detector as described earlier. 

Every peak here is an rr-interval which is calculated between the peaks using the OSAL system 

clock. This time between the peaks is used to calculate the BPM, using the formulae BPM=60/RR-

INTERVAL.  (Figure 4.) shows the BPM output sent to an Android application. 

0

10

20

30

40

50

60

70

0 10000 20000 30000 40000

B
P

M
 (

m
in

-1
)

Time (ms)

Stood Up
Sat Down



  

 

59 

 

 

 

 

 

Figure 4.22: BPM calculation shown in Android BLE device monitor 

Beats per minute measurements were taken on 3 individuals.  The sensor was mounted on 

the earlobe via an earclip. After placing the sensor the <simpleBLEperipheral> code was executed 

to read the BPM.  The data demonstrates that the firmware can successful calculate the heart rate.  

Individual differences as well as temporal variation in heart rate can be seen in the experimental 

data below.  

Person 1 Person 2 Person 3 

BPM: 62 BPM: 69 BPM: 86 

BPM: 63 BPM: 64 BPM: 71 

BPM: 63 BPM: 68 BPM: 76 

BPM: 65 BPM: 64 BPM: 77 

BPM: 62 BPM: 68 BPM: 83 

BPM: 62 BPM: 66 BPM: 87 

BPM: 64 BPM: 64 BPM: 83 

BPM: 64 BPM: 69 BPM: 80 

BPM: 58 BPM: 64 BPM: 83 

BPM: 60 BPM: 66 BPM: 79 

BPM: 62 BPM: 66 BPM: 77 

 Figure 4.23: Beats per minute data 
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CHAPTER 5: CONCLUSION 

The project objectives described earlier in the thesis has been successfully demonstrated.  

We found that the heart rate sensor, together with on-board signal processing, did indeed provide 

high precision in fingertip and earlobe measurements, as we had anticipated. The 3 point median 

filter was excellent in removing spurious noise without significant computational cost. The high 

pass moving average filter was able to remove the DC component, also with little cost when 

implemented recursively; however, it did add modest memory requirements. The current firmware 

allows integration of heart rate, skin temperature.  Future work will consider several items 

including acceleration data, triggered heart rate detection, file transfers, and implementing the 

Bluetooth heart rate profile for compatibility with a wide range of smartphone apps.  
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Continuous heart rate monitors (CHRM) can give unique insights into a person’s 

physiological and psychological state; however, existing CHRMs are not suitable for continuous 

monitoring because they do not provide beat-to-beat accuracy and comfort needed for all-day use. 

Our group is currently developing a miniature earlobe mounted CHRM system which is both 

comfortable and provides beat-to-beat accuracy, based on a miniature heart rate sensing 

technology developed previously in our lab. The objective of this thesis is to design low power 

system firmware to perform key tasks: i) acquire heart rate and skin temperature data from 

wearable sensors; ii) signal process the raw heart rate data to calculate r-r interval; iii) optimize 

the heart rate sensor parameters for power and noise; iv) store the sensor data in local flash memory, 

and v) stream the data to an Android device. Each of the above functions was successfully 

implemented with low power considerations.   
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