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Frequency Domain Modeling with Piecewise Constant Spectra 
 

Erhard Reschenhofer 
University of Vienna, Austria 

 
 
Using piecewise constant functions as models for the spectral density of the differenced log real U.S. 
GDP it was found that these models have the capacity to compete with the spectral densities implied by 
ARMA models. According to AIC and BIC the piecewise constant spectral densities are superior to 
ARMA. 
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Introduction 
 
Univariate ARMA models are used in empirical 
economics as simple, purely statistical models 
for properly transformed macroeconomic time 
series (such as the first differences of the logs of 
the real GDP), and for the description of the 
serial correlation in the errors of more complex 
models such as linear or nonlinear multivariate 
regression models. A typical example of the first 
type is the study by Campbell & Mankiw (1987) 
who used ARMA(p,q) models with p ≤ 3 and q 
≤ 3 to investigate the long-run behavior of 
aggregate output. The persistence of output 
shocks can be measured by the cumulative 
impulse response or, equivalently, by the value 
of the spectral density at frequency zero, 
however, two drawbacks exist. The first is that 
the model parameters must be estimated by 
numerical optimization routines, which depend 
heavily on the starting values and can easily get 
stuck at local optima (e.g., Hauser, et al., 1999). 
The second is the extreme sensitivity of 
inference to the order of the ARMA 
representation (e.g., Christiano & Eichenbaum, 
1990). 
 Recently, interest has shifted from 
univariate to multivariate modeling (e.g., 
Blanchard & Quah,  
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1989; Pesaran, et al., 1993; Pesaran & Shin, . 
However, a multivariate approach based on 
economic theory and the information contained 
in a much larger data set is not necessarily better 
than a simple univariate time series model, 
because both the estimation and the 
identification of multivariate models is many 
orders of magnitude more difficult. But even in 
situations where multivariate models outperform 
univariate models, the latter are often used as 
benchmarks for the former (see, e.g., 
Schumacher & Dreger, 2004). Thus, univariate 
ARMA models still have an important role to 
play. This article proposes competitive 
alternatives to ARMA models for the purpose of 
estimating the spectral densities of 
macroeconomic time series. 
 

Methodology 
 
The following piecewise constant functions are 
proposed: 
 
gr(ω) = a(b1 ),[ 10

1 αα + b2 ),[ 21
1 αα +… 

+ br-1 ),[ 1r2r
1

−− αα + ],[ r1r
1 αα − ), ω∈[0,π], 

(1) 
 
where r ≥ 2 and 0=α0<α1<…<αr=π, for the 
approximation of the spectral densities of 
macroeconomic time series. There are 2(r-1)+1 
parameters that must be estimated, a, b1, …, br-1, 
α1, …, αr-1. An obvious choice for the first 
parameter is: 
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where sj is the largest integer such that: 
 

n

s2 jπ
<αj.                         (3) 

 
The parameters b1, …, br-1, …, s1, …, sr-1 can be 
found by maximizing the Whittle likelihood 
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or, equivalently, 
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where  
 

ωk= n
k2π

, k=1,…,m.                (6) 

 
The parameters α1, …, αr-1 can be obtained from 
s1, …, sr-1 via 
 

αj= n

s2 jπ
+

n
π .                        (7) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To demonstrate the usefulness of this approach, 
the seasonally adjusted quarterly real U.S. GDP 
from  1947.1 to 2007.1 was downloaded from 
FRED® (Federal Reserve Economic Data) and 
the spectral density of the first differences of the 
log GDP was approximated by the piecewise 
constant functions gj, j=2,3,4.  

 
Results 

 
Figure 1 compares the three piecewise 

constant spectral densities with the best three 
ARMA spectral densities selected by BIC. One 
of these three ARMA models, namely the 
ARMA(3,2) model, is the best ARMA model 
according to AIC. Apart from the ARMA 
models of order (2,3) and (3,3), whose spectral 
densities are very similar to that of the 
ARMA(3,2) model, all other ARMA models 
(p≤8 & q=0, p=0 & q≤8, 1≤p, q≤3) have much 
higher AIC values than the ARMA(3,2) model. 
To facilitate the comparison between the 
piecewise constant spectral densities g2, g3, and 
g4, and the ARMA spectral densities slightly 
modified AIC and BIC values (AIC* and BIC*) 
obtained from the Whittle likelihood were used. 
Among the top models both according to AIC* 
and BIC* (see Tables 1 and 2) are g2, g3, and g4. 
Overall, g2 has the smallest BIC* value and g4 
has the smallest AIC* value. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: AIC values (obtained from the Whittle likelihood) for piecewise constant spectral densities g(r) & 
ARMA(p,q) spectral densities, respectively, fitted to the differenced log real U.S. GDP 

 1 2 3 4 5 6 7 8 

g(r)  -2456.8 -2457.5 -2461.6     

AR(p) -2447.3 -2446.9 -2447.7 -2448.6 -2448.1 -2446.2 -2444.2 -2442.4 

MA(q) -2440.5 -2448.2 -2447.8 -2445.9 -2447.7 -2445.7 -2443.8 -2445.2 

ARMA(1,q) -2446.2 -2447.2 -2445.8      

ARMA(2,q) -2445.8 -2450.7 -2457.6      

ARMA(3,q) -2449.1 -2459.2 -2457.1      
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Conclusion 
 
The results obtained show that piecewise 
constant spectral densities are extremely useful 
tools for the spectral analysis of macroeconomic 
time series and can outperform the more 
sophisticated ARMA spectral densities. This 
finding is striking given that twenty-five ARMA 
spectral densities were tried but only three 
piecewise constant spectral densities. It may also 
serve as a severe warning not to over-interpret 
certain characteristics of estimated ARMA 
spectral densities such as a decline or incline 
near frequency zero. 
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Table 2: BIC values (obtained from the Whittle likelihood) for piecewise constant spectral densities g(r) & 
ARMA(p,q) spectral densities, respectively, fitted to the differenced log real U.S. GDP 

 1 2 3 4 5 6 7 8 

g(r)  -2446.3 -2440.1 -2437.3     

AR(p) -2440.3  -2436.5 -2433.7 -2431.2 -2427.3 -2421.9 -2416.4 -2411.1 

MA(q) -2433.5 -2437.8 -2433.9 -2428.5 -2426.8 -2421.3 -2416.0 -2413.9 

ARMA(1,q) -2435.8 -2433.3 -2428.4      

ARMA(2,q) -2431.9 -2433.3 -2436.8      

ARMA(3,q) -2431.7 -2438.3 -2432.8      
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Figure 1: Periodogram of differenced log GDP together with piecewise constant spectral densities 
(with two, three, and four pieces) & ARMA spectral densities AR(1), MA(2), ARMA(3,2) 
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