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Correlation between the Sample Mean and Sample Variance  

Ramalingam Shanmugam 
Texas State University-San Marcos 

 
 
This article obtains a general formula to find the correlation coefficient between the sample mean and 
variance. Several particular results for major non-normal distributions are extracted to help students in 
classroom, clients during statistical consulting service. 
 
Key words: Skewness, kurtosis, non-normal data, count and continuous distributions. 
 
 
 

Introduction 
 
Interest about the relationship between the 
sample descriptive measures is growing among 
the statisticians. For example, Zhang (2007) 
using a lengthy combinatorial argument obtained 
an expression for computing the covariance of 
sample mean and sample variance without the 
assumption of normality to help teachers explain 
to students. Such a tedious combinatorial new 
derivation is obsolete as it is a direct 
consequence of the results in Stuart and Ord 
(1994). Their result is helpful to find 
additionally the covariance between the sample 
mean and any even moment about the mean. 
However, no formula appears for computing the 
correlation between the sample mean and 
variance of a non-normal sample. Yet, almost all 
students in statistics courses and the clients 
during statistical consulting service curiously 
seek to know an estimate of such correlation in 
their data. So, there is a need to have a list of 
expressions for non- normal data which the 
statisticians can readily use to answer the 
clients’ query.   
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= − − be the sample mean 

and variance of a random sample drawn from a 
given population, where 1m  and 2m are the 

notations in Stuart and Ord (1994, volume 1, 
page 350). A consequence of their results is that  

2 3
1 2[ , ] [ ' , )Cov X S Cov m m

n
μ= = .         (1) 

 
Methodology 

 
In the next two sections, the general formula for 
finding the correlation and results for particular 
specified non-normal samples are obtained. The 
results for Poisson, geometric, and Bernoulli 
samples are illustrated with data from the 
literature for better understanding. 
 

Derivation of formula for 2( , )Corr X S  

Because
2

1[ ] [ ' ]Var X Var m
n

σ= =        (2) 

and 

2
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2 2 2 2
4

[ ] [( ) ]
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( ) 2( )
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nVar S Var m
n

n n n
μ σ σ

=
−

−= +
−

 

due to (10.9) in Stuart and Ord (1994) where 2σ
is the population variance. The kurtosis is 
measure of tail flatness of the frequency trend of 
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the data. Because the kurtosis is defined to be

4
2 2( )uK μ

σ
= , rewrite 

2 2
2 ( ) 2

[ ] [ 1 ]
( 1)uVar S K

n n
σ= − +

−
       (3). 

Similarly, the skewness is a measure of the lack 
of symmetry in the frequency trend of the data. 

The skewness is defined as 
2
3
2 3( )kS μ

σ
= . Using 

(1) through (3), the correlation coefficient 
between the sample mean and sample variance is 
obtained and after algebraic simplifications, it is 

 2[ , ] , 2
2

1
1

k

u

SCorr X S n
K

n

= ≥
− +

−

       (4). 

With only one observation (that is, n = 
1), the correlation between the sample mean and 
variance cannot be determined if the skewness is 
non zero, according to (4) as it requires multiple 
observations. Also, from expression (4), notice 
that the correlation is zero when the skewness is 
zero and it occurs in a random sample from a 
symmetric population. The t, Laplace, error 
distribution, the discrete and continuous uniform 
probability distributions in addition to normal 
distribution are symmetric population with zero 
skewness. Hence, the zero correlation between 
the sample mean and sample variance does not 
necessarily mean only the normal population 
due to (4). Furthermore, notice in (4) that the 
correlation weakens as the sample size increases. 
The skewness and kurtosis moderate the 
correlation coefficient in a way. The details are 
discussed, listed and illustrated below in several 
cases. In the next section, the results for 
particular non-normal cases which are come 
across in graduate courses and statistical 
consulting service. 
 
Special non-normal cases 

The power of mathematical statistics 
enables to group several probability distributions 
under one “umbrella” as they possess a common 
property.  
 
 
 

(Modified) power series family sample 
One such property is power series nature of 

the probability mass function (pmf). The pmf of 
power series distribution is defined (it seems 
earliest by Kosambi, 1949) to be 

Pr[ ]
( )

x
xax θ

η θ
=           (5) 

with a non-negative and differentiable function 
( )η θ  of a natural parameterθ . The variance in 

this family is 
 

2 2 2 ln ( ) ln ( )θθ θσ θ η θ θ η θ= ∂ + ∂      (6) 

 

where k
θθ∂ means the k-th derivative with respect 

to the natural parameter. The skewness is 
 

             2 2 6( ) /kS θθ σ σ= ∂  .       (7) 

 
The kurtosis is 
 

          4 4
3( 3 ) /uK θθ μ σ σ= ∂ +   .      (8) 

 
Substituting (6), (7), and (8) in (4), the 
correlation for the power series family could be 
readily computed.  
 This family is modified in several ways. 
One modification is by Gupta (1974), who 
introduced a modified power series distribution 
(MPSD) with pmf 

    
[ ( )]

Pr[ ]
( )

x
xa ux θ
η θ

=  

The variance, skewness, and kurtosis in (6), (7), 
and (8) change to 

2

ln ( )
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u
u

θ
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θ
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∂=

∂
, 

2
2 6( ) /

ln ( )kS
u

θ

θ

σ σ
θ

∂=
∂

 , 

and 

4 4ln ( )
( [ ] 3 ) /

ln ( )uK
u

θ
θ

θ

η θ σ σ
θ

∂= ∂ +
∂

. 

for MPSD. By substituting in (4), the correlation 
for the modified power series family can be 
computed. 
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Binomial sample (with replacement) 
For binomial sample, one need to 

consider ( ) (1 )rη θ θ= + with 1r ≥ denotes the 
number of trials and the natural parameter

/(1 )p pθ = − . By substituting the skewness 

2 12ˆ (1 ) ( [1 ])k
x xS x
r r

−= − −  

and the kurtosis 

16ˆ 3 (1 [1 ])( [1 ])u
x x xK x
r r r

−= + − − − , 

in (4), the correlation of the binomial sample 
mean and variance is noticed. When the number 
of trials is large (that is, r → ∞ ), the correlation 
diminishes but not to zero.  
 
Bernoulli trials 

With r=1 in the above binomial results, 
note that the correlation for Bernoulli sample 
mean and variance is 

2

1

ˆ [ , ]

2
(1 2 )[1 ( 6) (1 )]

1

Corr X S
nx x x

n
−= − + − −

−

 .      (9) 

This is useful in discussions of the logistic 
regression data. Consider the following partial 
data (Dalal, et al., 1989) of n = 5 observations 
with respect to failure (X = 1) and non failure (X 
= 0) of O-rings in space rockets. The shuttle 
challenger exploded after its launch on 28 
January 1986 with a loss of seven lives. A 
commission was charged with determining the 
causes of that tragedy. Their report concluded 
that the failure of O-rings in nozzle joints due to 
thermal stress was the reason. The gas went 
through the cracks in the stressed O-rings caused 
the explosion. 
 
Poisson sample  

The Poisson distribution is a limiting 
case of binomial distribution when the Bernoulli 
chance p is small but the number of trials is 
large enough to make a finite meanθ . If the 
number of O-rings to be investigated is large and 
the chance of any failure is very slim, then the 
expected number of O-ring failures is 0θ >  and 
it is the mean of Poisson frequency trend. For 

such a Poisson sample, note that ( ) eθη θ = with  
 
 
 

Table 1. Date and O-ring failure (X = 1)  
or non-failure (X =0) of n = 5 cases  

Date
21 

April 
81 

12 
Nov 
1981 

8 
Nov 
1984 

30 
Aug 
1984

21 
Jan 

1986

X = 0 1 0 1 1 

Note: the sample mean 0.6x = and 

sample variance 2 0.24s = with n = 
5. Substituting in (9), the correlation 
coefficient between the Bernoulli 
sample mean and sample variance is 
computed and it is 2ˆ [ , ] 0.489Corr X S = . 

 
the natural parameterθ denoting the incidence 
rate in the power series family. Substituting the 
Poisson skewness and kurtosis 

1 3k uS Kθ −= = −  

in (4), the correlation of the Poisson sample 
mean  and  variance  could  be  obtained.  It is 

             

2

1/ 2

1/ 2

ˆ [ , ]

1ˆ[2( ) 1]
1

1
[2( ) 1]

1

Corr X S

n

x
n

θ −

−

= + −
−

= + −
−

.       (10) 

With the larger incidence rate, the Poisson 
correlation diminishes.  
  
Incidence rate restricted Poisson sample 

In spite of rarity in the Poisson data, 
sometimes the data might not be well governed 
by the above described Poisson distribution. A 
modification in the Poisson probability 
distribution is necessary. One such modification 
is due to Shanmugam’s (1991). When the 
regular Poisson distribution does not fit a given 
data, one could consider the incidence rate 
restricted Poisson distribution (IRRPD) because 
it is versatile enough to fit the data. The pmf of 
IRRPD is 

1(1 ) ( )
Pr[ ]

!

x xx ex
x e

γθ

θ
γ θ− −+=  

where the incidence rate
1θ
γ

≤ andγ is the 

restriction parameter. The restriction is removed 
whenγ approaches zero and in which case, it 
reduces to the Poisson distribution in section 
(3.4). The skewness and kurtosis are 
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2 1(1 2 ) [ (1 )]kS γθ θ γθ −= + −  

and  
2 2 13 (1 8 6 )[ (1 )]uK γθ γ θ θ γθ −= + + + −  

The estimates of the IRRPD parameters are 

2
ˆˆ 1

x
s

γθ = −  and
2

ˆ xx
s

θ = . Substituting 

these estimates in (4), the correlation of the 
Poisson sample mean and variance can be 
obtained. When γ approaches zero, the above 
results reduce to those in Section 3.4 for the 
Poisson distribution. 
  To illustrate, consider the following data 
in the literature about the number of tram 
accidents, X in Belgrade during 1965 and 1970 
from Shanmugam and Singh (2001) as re-
displayed in the Table 2 below. The estimate of 
the IRRPD parameters with data on n =134 

drivers are ˆ 3.724θ =  and ˆ 0.101γ = . 
 

Table 2. # Tram Accidents in Belgrade 
 
 
 
 
 

With these estimates, the skewness, 
kurtosis, and hence the correlation between the 
sample mean and variance are obtained and they 

are ˆ 1.321kS = , ˆ 5.089uK =  and 
2ˆ [ , ] 0.567Corr X S = , respectively. 

For another example, consider the 
number of injury accidents that occurred in the 
Interstate-95 during January 1, 1969 through 
October 31, 1970 as reported in Shanmugam and 
Singh (1981). 
 

Table 3. # Injury Accidents in Virginia State 
during January 1, 1969 & October 31, 1970  

X= 0 1 2 3 4 5 + 

f= 286 216 92 30 14 1 

 
With n = 639, the estimates of IRRPD are 
ˆ 0.06θ =  and ˆ 13.5γ = . Hence, the skewness, 

kurtosis, and the correlation between the IRRPD 
sample mean and variance are 

ˆ 287.3kS = , ˆ 1003.403uK =  

and 
2ˆ [ , ] 0.535Corr X S = , 

respectively. 
  
Inverse binomial sample 

With ( ) (1 ) rη θ θ −= − in the power series 

family, 1r ≥ denoting the number of cases to be 
of a particular, and the natural parameter pθ =
be the probability of outcome of a type, the 
number of cases to be investigated is an inverse 
binomial random variable. Substituting its 
skewness 

2 1ˆ ˆ ˆ(2 ) ( [1 ])kS p r p −= − −  

and the kurtosis 
2ˆ ˆ6[1 ]ˆ 3

ˆ[1 ]u
p pK

r p
+ −= +

−
 

with
1

ˆ
1

xp
r x

−=
+ −

. Substituting in (4), the 

correlation of the inverse binomial sample mean 
and variance is obtainable. 
 
Geometric sample  

With 1r = in the above results for the 
inverse binomial sample, the correlation 
between the geometric mean and sample 
variance of a geometric sample is obtained and it 
is  

      2

1 1

1
[ , ]

(7 2[ 1] )

xCorr X S
x x x n− −

+=
+ + −

.     (11) 

For illustration, consider the geometric sample 
data on the number of heart failures experienced 
by a random sample of n = 15 cardiology 
patients in Alabama state as used in Bartolucci 
et al (1999). The sample mean is 1.2 in that 
geometric data. Substituting in (11) the sample 
mean, the correlation between the sample mean 
and variance of the geometric data is obtained 
and it is 2[ , ] 0.657Corr X S = .  
 
Log series sample  

For sample from a logarithmic series 
distribution, note that ( ) ln(1 )η θ θ= − −  with 

the natural parameterθ  in power series family. 
Substituting its skewness 

X= 0 1 2 3 4 5 6 7 8 9 ≥  
10 

f= 1 8 14 17 16 19 16 9 6 6 21 
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2
2

2

2 3

3 2
[(1 ) ]

ln(1 ) (ln(1 ))

[ ] [1 ]
ln(1 ) ln(1 )

kS

θ θθ
θ θ

θ θ
θ θ

+ + +
− −=

+
− −

 

 
and the kurtosis 

2

2 3

2 3

2

4 (1 )
[1 4

ln (1 )

6
3 ]

(ln (1 )) (ln (1 ))

[ ][1 ]
ln (1 ) ln (1 )

uK

θ θθ θ
θ

θ θ
θ θ

θ θ
θ θ

++ + + +
−

+
− −= − +

− −

 

in (4), the correlation between the binomial 
sample mean and variance could be obtained. 
 
Hypergeometric sample (without replacement)  

In many health applications, random 
sampling is done without replacement. For an 
example, once the virus infected individuals are 
identified in the population and are kept 
removed from the community. Suppose that Np
individuals are suspected to be infected where 
0 1p< <  indicates the prevalence level of the 
virus in the community. The number of infected 
individuals in a random sample of n persons 
without replacement is a hypergeometric 
outcome. Its skewness and kurtosis in data of 
this type are respectively 

2

1 2
(1 ) (1 2 )(1 )

[ ]
2

(1 )(1 ) (1 )
k

np
N NS nnp p

N N

− − −
=

− − −
 

and 

2

2

[( 1)[ ( 1 6 )

3 (1 )( 2) 6( / )

3 (1 )( / )(6 )

18 (1 )( / ) ]
3

( )( 2)( 3)u

N N N n
p p n n N
p p n N n

p p n NK
np N n N N

− + −
+ − − +
+ − −
− −= +

− − −
 

 
Substituting in (4), the correlation between the 
hypergeometric sample mean and variance could 
be obtained. 
 
 
 

Katz’s family sample 
The pmf of the Katz’s family is denoted 

by Pr[ 1] ( ) Pr[ ]
1

xx x
x

α β++ =
+

. Its skewness 

and kurtosis are 

22
( 1) /kS σ
β

= −  

and 

2
2

6 6
3 ( 1) /

(1 ) (1 )uK σ
β β

= + − +
− −

 

respectively. Substituting in (4), the correlation 
between the sample mean and variance of Katz’s 
family can be obtained.  
 
Log-normal sample 

Consider a random sample is drawn 
from a log-normal population with the threshold, 

location, and scale parameters 2, ,θ ξ σ
respectively. The skewness and kurtosis are 

2( 2) ( 1)kS ϖ ϖ= + −  

and 
4 3 22 3 3uK ϖ ϖ ϖ= + + −  

with 
2

.eσϖ =  Substituting in (4), the 
correlation between the log-normal sample mean 
and variance could be obtained.  
 
Gamma sample 

The skewness and kurtosis of the 
gamma population with pdf 

2
2

( )( ) 1 2
2 2

( ) ( )( ) / (( ) )
xxf x e
μμ

σ σμ μ μ
σ σ σ

−−
= Γ  

 

are
2

4( )kS
μ
σ

−
= and

2
3 6( )uK

μ
σ

−
= + where μ and

2σ denote the mean and variance. Substituting 
in (4), the correlation between the gamma 
sample mean and variance is obtained. In the 
gamma case, it is 
 

2
2

2 2 1

2
[ , ]

3 [ 1]
Corr X S

n
σ

μ σ −=
+ + −

. 
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Exponential sample  
When μ σ= in the above results, they 

reduce to those for exponential population. The 
exponential population is an interesting special 
case. Then, the correlation between the 
exponential sample mean and variance is 

            
2

2
2 1

2
ˆ [ , ]

4 [ 1]

xCorr X S
x n −=

+ −
       (12) 

For an illustration, consider Zelen’s exponential 
data below about the number of weeks a random 
sample of n = 11 tumor patients survived in a 
health clinic. The data are well fit by an 
exponential distribution as it is verified in 
Shanmugam (1991). 
 

Table 4. Zelen’s data of survival weeks of n = 
11 tumor patients 

3 4 5 8 8 10 12 16 17 30 33

 
The sample mean is equal to 13.6 weeks. 
According to (12), the correlation between the 
exponential sample mean and variance of this 
exponential data is 2[ , ] 0.71Corr X S = .  
 
Inverse gaussian sample 

The inverse Gaussian distribution is 
considered as an alternate model for positive but 
skewed data. Its skewness and kurtosis are 

1 1

1

9 [ ( ) ]
ˆ

1

n

i
i

k

x x x
S

n

− −

=

−
=

−


 

and 

1 1

1

15 [ ( ) ]
ˆ 3

1

n

i
i

u

x x x
K

n

− −

=

−
= +

−


 

respectively. Substituting in (4), the correlation 
between the sample mean and variance of 
inverse Gaussian data can be obtained.  
 
Pareto sample 

The Pareto distribution is considered 
another alternate model for positive but skewed 
data. Its skewness and kurtosis are 

 

2 2 2

2 2 2

( 1 ( ) 2) ( 1 ( ) 1)
ˆ 4[ ]

( 1 ( ) 2) ( 1 ( ) 1)
k

x x
s sS
x x
s s

+ + + −
=

+ − + +
 

and 
 

2 2 2 2

2 2 2

3( 1 ( ) 1)[3( 1 ( ) 1) 1 ( ) 2]
ˆ

( 1 ( ) 1)( 1 ( ) 2)( 1 ( ) 3)
u

x x x
s s sK
x x x
s s s

+ − + + + + −
=

+ + + − + −

 
 
respectively. Substituting in (4), the correlation 
between the sample mean and variance of Pareto 
data can be obtained.  
 
Beta sample 

The beta distribution is considered 
suitable for percentage data. Its skewness and 
kurtosis are 

2

2

ˆ ˆˆ ˆ4( ) ( 1)ˆ ]
ˆ ˆˆ ˆ( 1)kS ϖ υ ϖ υ

ϖ υ ϖυ
− + +=

+ +
 

and 
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ3( )( 1)( 1)(2 ) ( )ˆ
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( 2)( 3) ( )uK ϖ υ ϖ υ υ ϖ υ υ υ ϖ

ϖυ ϖ υ ϖ υ ϖ υ
+ + + + − −= +

+ + + + +
 
respectively. Substituting in (4), the correlation 
between the sample mean and variance of beta 

data can be obtained where 
2

(1 )
ˆ { 1}

x xx
s

υ −= −  

and  

2

(1 )
ˆ (1 ){ 1}

x xx
s

υ −= − − . 

 
(Non) central chi-squared sample 

The non-central chi-squared sample is 
considered and analyzed in the discussion of 
statistical power calculation of hypothesis 
testing or analysis of variance. Its skewness and 
kurtosis are 

2 2

6

64( )ˆ
k

s xS
s

−=  

and 
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2

4

24(3 4 )ˆ 3u
s xK
s

−= +  

 
respectively. Substituting these in (4), the 
correlation between the sample mean and 
variance of non-central chi-squared observations 

can be obtained. When 2 2s x= , all the above 
results reduce to those of central chi-squared 
sample. 
 
(Non) central F sample 

The non-central F sample is considered 
in the discussion of statistical power calculation 
of hypothesis testing or analysis of variance. The 
results are too messy to mention. However, the 
skewness and kurtosis of the central F sample 
are 

ˆ ˆ ˆ8(2 2)( 4)ˆ
ˆ ˆˆ ˆ( 6)( 2)kS υ ϖ ϖ

υ ϖ υ ϖ
+ − −=
− + −

 

and 

2

ˆ

ˆ ˆˆ ˆ ˆ ˆ12[( 2) ( 4) ( 2)(5 22)]
3

ˆ ˆˆ ˆ ˆ( 6)( 8)( 2)

uK
ϖ ϖ υ υ ϖ ϖ

υ ϖ ϖ υ ϖ

=

− − + + − −+
− − + −

 
respectively, where  

2
ˆ

1

x
x

ϖ =
−

 

and  
2 2

2

( 1) (2 )
ˆ 2

x s x
x

υ − −= − . 

Substituting these in (4), the correlation between 
the sample mean and variance of central F 
observations can be obtained.  
 
(Non) central t sample 

The non-central t sample is considered 
in the discussion of testing one sided hypothesis. 
Its skewness and kurtosis are 

2
2

ˆ
ˆ ˆ ˆ(3 1.25 ) /

ˆkS δδ υ
υ

= +  

and 

1

ˆ ˆ1.406( 3.2) 3( 2)ˆ
ˆ ˆ( 4) ( 4)uK υ υβ

υ υ
− −= +

− −
 

Where 

2
2 2 1/ 2ˆ 2ˆ ( )( 1)

ˆ
s x υδ

υ
−= + −  

and 
2 2

2

ˆ ˆ 1
( )

2 2
ˆ ˆ

( )
2

x
υ υ

υδ

−Γ
=

Γ
 

Substituting these in (4), the correlation between 
the sample mean and variance of noncentral t 
observations can be obtained.  

 
Power function sample  

In financial studies, random sample of 
observations is well fit by a power function 
distribution. The skewness and kurtosis in power 
function distribution are estimated using 

2

2

ˆ ˆ4(1 ) (2 )ˆ
ˆ ˆ(3 )k

c cS
c c

− +=
+

 

and 
2ˆ ˆ ˆ ˆ3( 2 )[2 ( 1) ( 5)]ˆ

ˆ ˆ ˆ( 3)( 4 )u
c c c cK

c c c
+ + + +=

+ +
 

where 2ˆ 1 ( ) 1
xc
s

= + − .  

 
Substituting the skewness and kurtosis in 
formula (4), the correlation between the sample 
mean and variance of the power function sample 
can be obtained. 
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