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A Randomization Method to Control the Type I Error Rates 
in Best Subset Regression 

           Yasser A. Shehata    Paul White 
              Productivity and Quality Institute      University of the West of England 

 
 
A randomization method for the assessment of statistical significance for best subsets regression is given. 
The procedure takes into account the number of potential predictors and the inter-dependence between 
predictors. The approach corrects a non-trivial problem with Type I errors and can be used to assess 
individual variable significance. 
 
Key words: best subset regression, randomization, Type I error, bias. 
 
 

 
Introduction 

 
Subset selection in multiple linear regression is 
long established: computational algorithms for 
forward selection techniques date back at least to 
the 1950’s, (see Kramer, 1957), and Canning 
(1959) gave an example of backward 
elimination. The use of subset selection 
techniques is widespread and continuing. 
George (2000) wrote “The problem of variable 
selection is one of the most pervasive model 
selection problems in statistical application. The 
use of variable selection procedures will only 
increase as the information revolution brings us 
larger data sets with more and more variables. 
The demand for variable selection will be strong 
and it will continue to be a basic strategy for 
data analysis.” 

The use of automated computer 
techniques for model building is rife. Some 
researchers use automated search algorithms as a  
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data mining exercise (Lovell, 1983), examining 
a research question by collecting data on 
virtually every variable that could possibly be 
related to the phenomenon under investigation 
and attempting to obtain a parsimonious model 
based on patterns in sample data. In recognition 
of this type of problem Larzelere and Mulaik 
(1977) suggested basing inferences on the total 
number of potential predictors rather than the 
number of predictors in a given subset. 

It is commonly argued that a purpose of 
automated selection techniques is to obtain a 
simple, high-quality representation of the 
phenomenon under investigation. This is 
accomplished by not including potential 
predictors deemed to be uninformative in a final 
model. Models based on smaller numbers of 
predictor variables are comparatively easier to 
understand and it is hoped that a parsimonious 
model will give greater insight into the 
underlying processes that generated the data. In 
some instances smaller subsets may lead to 
greater economy (Derksen & Keselman, 1992). 

Problems relating to variable selection 
from using backward elimination, forward 
selection, best subset regression and other 
automated model building techniques are well 
documented in the context of multiple linear 
regression. Investigations have generally been 
through simulation work in which the theoretical 
underpinning model assumptions are satisfied 
and any deviation between simulation results 
and anticipated theoretical results is therefore 
attributable to the variable selection technique. 
For instance, the simulation work of Derksen & 
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Keselman (1992) gave broad the conclusions 
that automated selection techniques overly 
capitalize on false associations between potential 
predictors and the criterion variable with too 
many purely random (noise) variables being 
wrongly classified as authentic (true) predictors. 
The inclusion of noise variables in a final model 
necessarily implies a model misspecification or 
misidentification and incorrect inferences are 
drawn. Derksen & Keselman (1992) additionally 
found that the incidence with which noise and 
authentic variables find, or do not find, their way 
into a final model depends upon the degree of 
correlation between predictor variables. As such, 
it would seem that controlling the error rate may 
require a solution which explicitly utilizes 
within sample correlation information. 

Hurvich & Tsai (1990) pointed out that, 
if a model is not fully pre-specified and, if a 
model selection technique is used, then the 
number of regression parameters is a random 
variable. Moreover, once a model has been 
decided upon by some technique, the model 
estimation and the associated hypothesis tests 
usually proceed on the assumption that the data 
driven and technique selected model is the true 
model. In other words, the data is analyzed “as 
though they were a fresh data set generated by 
the selected model” (Hurvich & Tsai, 1990, p. 
214). Under these conditions, as pointed out by 
Miller (1984), the regression estimators may be 
biased and standard hypothesis tests may not be 
valid. 

Automated model building techniques, 
such as stepwise regression, proceed on the basis 
of performing many statistical tests and do so in 
instances whereby the hypothesis test procedure 
may not be valid. Multiplicity of testing 
contributes to model selection problems. In the 
context of stepwise regression Derksen & 
Keselman (1992) wrote “when many tests of 
significance are computed in a given 
experiment, the probability of making at least 
one Type I error in the set of tests, that is, the 
maximum familywise Type I error rate 
(MFWER), is far in excess of the probability 
associated with any one of the tests” (p. 269). In 
subset selection there are a potentially large 
number of statistical tests to be performed to 
drive the algorithms. The number of such tests is 
not known in advance and simple Bonferroni 

corrections may be too liberal in correcting this 
problem, especially when potential predictors 
are not orthogonal. Paradoxically, others have 
suggested that a more liberal approach is 
appropriate. Bendel & Afifi (1977) advocated 
the use of nominal significance levels between 

0.15α =  and 0.25α =  in forward selection so 
as to include all authentic variables at the 
expense of an increased risk of including 
additional noise variables in a final model. 

The all subsets approach searches 
through all possible subsets for each subset size 
of 1,2,....., J  and best subsets chooses the one 
that has the best summary statistics for a given 
subset size. A possible best summary statistic is 

the 2R  statistic (the coefficient of 
determination). An advantage of the best subsets 
and all subsets approach over sequential 
procedures is that this approach, by definition, 
will not miss finding the best fitting subset of 
any given size. Indeed, Mantel (1970) pointed 
out, and gave instances and explanations that a 
multivariate combination of variables might 
produce the best fit, but these multivariate 
combinations might not be identified by 
sequential procedures. Further, Kuk (1984) 
pointed out a relative weakness of sequential 
procedures in that “they lead to a single subset 
of variables and do not suggest alternative good 
subsets” unlike all subsets and further points out 
that sequential procedures have “the possibility 
of premature termination” (Kuk, 1984, p. 587). 
Identification of best subsets need not 
necessarily be computationally burdensome as 
the identification of the best subset does not 
require the calculation of all possible subsets 
(Furnival & Wilson, 1974). 

The above provides a strong rationale 
for considering best subsets regression. The 
standard inferential approach for best subsets 
regression has problems arising from using 
standard hypothesis tests based on a global null 
hypothesis of no effect for a model determined 
by sample data. Motivated by the stance of 
Larzelere & Mulaik (1977) the use of 
randomization to control Type I error rates in 
best subsets regression is considered, and the 
approach takes into account the total number of 
predictors under consideration. Derksen & 
Keselman (1992) concluded that the extent of 
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the problem with automated techniques depends 
upon the degree of correlation between predictor 
variables. The use of randomization permits the 
correlation structure between potential predictor 
variables to be accounted for. The approach 
adopted is to compute p-values for overall model 
significance and for each variable under a global 
null model (as per standard approaches) but 
which will correct the bias associated with the 
procedural aspects of best subsets regression. 
Randomization additionally permits a like-for-
like comparison for individual variables that 
comprise a best subset solution; topics which are 
expanded in this article. 

A brief overview of the traditional least 
squares approach to determine overall model 
significance of a best subset regression solution 
in addition to the individual significance of the 
variables that comprise the model is first given. 
Next, a randomization approach that empirically 
estimates overall and individual significance of 
best subset regression is described. Descriptions 
of two models are given, namely a global null-
model and a non-null model. These two models, 
under certain conditions, are used to compare 
the performance of the randomization algorithm 
with the traditional approach. Results of the 
simulation, effects of number of predictors and 
effects of sample size are provided. The 
discussion addresses issues concerning the 
paradoxical problems associated with judging 
inference in best subsets regression. 

 
Methodology 

 
Best Subsets Regression 

Consider the classic linear regression 
model 

0 1 1 2 2 ...... J JY X X Xβ β β β ε= + + + + + (1) 

where Y is the dependent variable with J 
predictors 1 2, ,......, JX X X  and where ε  denotes 
a normally distributed random variable. Let 

1 2, , ,......, ,  ( 1,2,......, )i i i Jiy x x x i I=  denote I 
independent cases generated from the above 
model. 

In best subsets regression, the best 
subset of size j is the subset of j predictor 
variables that maximizes the within sample 
prediction of the dependent variable, y, in a 

linear least squares regression. This is the 
percentage of variation in y that is accounted for 

by a regression equation is the usual 2R  

statistic. In the following, 2
jR  will be used to 

denote the 2R  statistic for the best subset of size 
j. Overall significance of the best subset of size j 
is judged using the standard F statistic, 

2 2
R EF S S=  where 2

RS  is the mean square due to 

regression, 2
ES  is the mean square error and 

overall model significance is judged by making 
reference to the F distribution with 

1 2( , ) ( , 1)j I jυ υ = − −  degrees of freedom. 
The relative magnitude of the observed 

value of the F statistic is quantified by the p-
value and contemporary practice is to declare a 
statistically significant subset of predictors 

whenever 0.05p < . In addition, let 2
pS  denote 

the change in the error sum of squares for 
deleting a variable pX  from a regression model. 

An assessment of the statistical significance of 

pX  in the model is made by referring 
2 2/p EF S S=  to the F distribution with degrees of 

freedom 1 2( , ) (1, 1)I jυ υ = − − . For a detailed 
explanation of best subsets of regression see 
Draper & Smith (1981, p. 303). 

If the potential predictor variables 
,( 1,2,......, )jX j J= , are noise variables, i.e. 

unrelated to Y in as much as 
0,( 1,2,......, )j j Jβ = = , then the p-values for 

judging overall model significance for any 
subset of size j, should be uniformly distributed 
U(0, 1). Thus, if a researcher works at the α  
significance level and, if none of the potential 
predictor variables are related to Y, then a Type I 
error in assessing significance of the overall best 
subset model should only be made %α of the 
time for any value (0,1)α ∈ . Arguably, the 
same requirement should also apply to 
individual predictor variables. An alternative 
procedure for assessing the overall significance 
of any best subset of size j and for assessing the 
statistical significance of each variable included 
in the best subset model is proposed. This 
alternative procedure, a randomization method, 
does not make explicit use of the properties of 
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the F distribution. Ordering the variables that 
comprise a best subset solution in terms of their 
individual F values is also considered along with 
deriving an estimate of their p-value by 
considering similarly ordered F values under 
randomization. 

 
Randomization 

Consider sample data 

1 2, , ,......, ,  ( 1,2,......, )i i i Jiy x x x i I= , and let 2
jR  

denote the coefficient of determination for the 
best subset of size ,( 1,2,......, )j j J= . Next 
consider where the order of cases for the 
predictor variables in the data is randomly 
permuted but with the response variable held 
fixed at 1 2 1 2, , ,......, , , ,......,i i i Ji i k k Jky x x x y x x x→ . 
This random permutation of predictor records 
ensures that the sample correlation structure 
between the predictors in the original data set is 
precisely preserved in the newly created 
randomized data set. The random permutation 
also ensures that the predictor variables in the 
randomized data set are stochastically 
independent of the response, Y, but may be 
correlated with Y in any sample through a 
chance arrangement. 

Best subsets regression can be 
performed on the newly created randomized data 

set. Let 2
jS  denote the coefficient of 

determination for the best subset of size 
,( 1,2,......, )j j J=  for the randomized data set. If 

for subset 2 2, j jj S R> , then the randomized 

chance solution may be viewed as having better 
within sample predictability than the observed 
data. 

For any given data set many 
permutations of the original data set may be 
generated by taking another random 
permutation. In what follows the proportion of 

instances that 2 2
j jS R>  is estimated through 

simulation. This estimate is taken to be an 
estimate of the p-value for determining the 

statistical significance of 2
jR  for any subset of 

size j. For a given data set, an increase in the 
number of random permutations will serve to 
increase the accuracy of the estimated value. 

The above procedure may be summarized as 
follows: 
For given data set and for a subset of size j: 
1. Determine the best subset of predictors of 

size j and record the coefficient of 

determination 2
jR  

2. Set KOUNT = 0 
3. DO n = 1 TO N 

a. Randomly permute 1 2, ,......,i i Jix x x  

independently of iy  i.e. 

1 2 1 2, , ,......, , , ,......,i i i Ji i k k Jky x x x y x x x→  
b. For the newly created fake data set 

determine the best subset of size j and 
record the coefficient of determination 

2
jS  

c. If 2 2
j jS R>  then KOUNT = KOUNT+1 

4. ENDDO 
5. Estimated p-value = KOUNT/N 

The counting process effectively 
estimates rank position of the original solution in 
relation to randomization solutions. Under the 
randomization process all permutations are 
equally likely. Likewise if the original predictors 
are generated under a system whereby none of 
them are related to the outcome then the 

observed value of 2
jR  is just a likely to be as 

large as any value of 2
jS  obtained from random 

permutation. 
In a similar way for best subset of size j, 

consider the F-values for each predictor variable 
arranged in order, (1) (2) ( )........ jF F F> > > . The F-

values from a random permutation may be 
ordered in a similar way, i.e. 

* * *
(1) (2) ( )........ jF F F> > > . The proportion of times 

*
( ) ( )p pF F>  provides an estimate of the p-value 

of the p-th ordered variable in the observed best 
subset solution. 
 
Simulation Design 

For a specific application consider the 
model:  

0 1 1 2 2 3 3 4 4Y X X X Xβ β β β β ε= + + + + + . (2) 

To illustrate the properties of the proposed 
technique, four specific parameter settings 
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(referred to in the following as Model A and 
Model B) with two different correlation 
structures have been considered. 

Model A is a genuine null model with 

0 1β =  and 1 2 3 4 0β β β β= = = =  so that all 
proposed predictors are noise variables and are 
unrelated to the outcome Y. For Model B 
consider 0 1β = , 1 0.5β = , 2 3 4 0β β β= = =  
(i.e., one authentic variable and three noise 
variables). 

In the following simulations each model 
is considered with potential predictor variables 
being (i) Case 1, stochastically independent in 
which their correlation matrix is the identity 
matrix, and (ii) Case 2, strongly correlated with 
elements of the correlation matrix being 

1 2( , )X Xρ  = 0.708, 1 3( , )X Xρ  = 0.802, 

1 4( , )X Xρ  = –0.655, 2 3( , )X Xρ  = 0.757, 

2 4( , )X Xρ  = –0.582, 3 4( , )X Xρ  = –0.593, 

where ( , )l mX Xρ  denotes Pearson’s correlation 

coefficient between lX  and mX . 
In all instances the error terms are 

independent, identically distributed realizations 
from the standard normal distribution

2( 0,  1)μ σ= = , so that the underpinning 
assumptions for the OLS linear regression 
models are satisfied. Simulations herein are 
reported based on I = 30 cases per simulation 
instance and increasing sample size and 
increasing the number of potential predictors are 
considered. 
 

Results 
 

Figure 1 is a percentile-percentile plot of 
the p-values obtained from implementing the 
aforementioned algorithm for step j = 1, 2, 3 in 
best subsets regression for Model A with 
potential predictor variables being stochastically 
independent. The vertical axis denotes the 
theoretical percentiles of the uniform 
distribution U(0, 1) and the horizontal axis 
represents the empirically derived percentiles 
based on 500 simulations with each simulation 
based on 1,000 randomization instances. Note 
that the p-values based on the traditional method 
are systematically smaller than required, 
indicating that the true Type I error rate for 
overall model significance is greater than any 

pre-chosen nominal significance level α . By 
contrast the estimated p-values based on the 
randomization algorithm have an empirical 
distribution that is entirely consistent with the 
uniform distribution U(0, 1) for any subset of 
size 1, 2, or 3 out of 4 predictors. 

Under Model A, qualitatively similar 
results are obtained for j = 1, 2, 3 for potential 
predictors being correlated, Case 2. For j = 4 
there is no subset selection under the simulations 
and in these cases both the traditional method 
and the randomization method have p-values 
uniformly distributed U(0, 1). 

Simulations under Model B for step j = 
1, 2 in best subsets regression with independent 
predictors, Case 1, or with correlated predictors, 
Case 2, correctly show that the proposed method 
retains power at any level of α ; the power is 
marginally lower than the power under the 
traditional method (see Figure 2), but this is 
expected due to the liberal nature of the 
traditional method. 

Once overall model significance has 
been assessed, a normal practice is to assess the 
individual significance of each variable alone. 
Figure 3 is a percentile-percentile plot of the p-
values for the variables that comprise the best 
subset of size j = 3 of 4 under Model A, Case 1. 
In this instance the three variables included in 
the model have been ordered according to their 
F-values. The traditionally computed p-value for 
the variable with the largest F-value is typically 
too small when judged against the uniform 
distribution, U(0, 1). Contrary, for the variable 
with the smallest F-value the p-values calculated 
using the standard method are typically too large 
when judged against the uniform distribution, 
U(0, 1). By contrast, the p-value under the 
randomization method, for all ordered effects, is 
entirely consistent with the uniform distribution 
U(0, 1). 

Qualitatively similar results are obtained 
for Model A but for potential predictors being 
correlated, Case 2. 

Simulations under a true null model (i.e. 
with all potential predictors being noise 
variables), for J = 4, 8, 16, 32, 64 keeping the 
number of cases fixed, I = 30, have been 
performed. In all of these cases the simulations 
show that the p-value for overall subset 
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Figure 1: Percentile – Percentile plot for p-values for overall significance for best subset of 
size j = 1, 2, 3 from 4 independent predictors, Model A. 
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Figure 2: Percentile – Percentile plot for p-values for best subset of size j = 1, 2 from 4 
independent predictors, Model B. 
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significance using the proposed randomization 
method is uniformly distributed U(0, 1). 

In every simulation instance the 
estimated p-value in the randomization method 
for overall model significance was not less than 
the p-value under the traditional method. The 
distribution of the differences for j = 1 and J = 4, 
8, 16, 32, 64 is summarized in Figure 4. Note 
that the discrepancy tends to increase with 
increasing values of J and that this discrepancy 
is a substantive non-trivial difference. 

Simulations under a true null model (i.e.,   
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
with all potential predictors being noise 
variables), for J = 4, 8, 16, 32, 64, but with 
different sample sizes, I = 30, 60, 90, 120 have 
been performed. In all of these cases the 
simulations show that the distribution of p-value 
for overall subset significance using the 
proposed randomization method is uniform U(0, 
1). In every simulation instance the estimated p-
value using the randomization method is not less 
than the p-value under the traditional method. 
Figure 5 summarizes the extent of the 
differences. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Percentile – Percentile plot for p-values for each variable in a best subset of size j = 
3 from 4 independent predictors when the effect size is order by magnitude, Model A. 
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Figure 4: Discrepancy between randomized and traditional p-values for best subset of 
size j = 1 with I = 30 and different number of predictors.
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Figure 5: Distribution of the difference in p-values for overall model significance under both 
the randomization and the traditional methods for Model A for subset of size j =1. 
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Conclusion 
 

A computer based heuristic that uses 
randomization has been described. The 
algorithm allows control of Type I error rate for 
the overall statistical significance of a best 
subsets regression model and control for the 
variables that comprise the model based on their 
relative order. This randomization algorithm 
permits the Type I error rate to be controlled at 
any pre-determined nominal significance level, 
α . The data sets created under the 
randomization procedure, each precisely 
retained the correlation structure observed in the 
original data and, as such, the approach takes 
into account the data set dependent problems 
that arise due to the correlation structure 
between potential predictor variables (see 
Derksen & Keselman, 1992). For the j-th best 
subset the procedure produces p-values 
indirectly based on the number of potential 
predictor variables (J) rather than the number of 
predictor variables in a given subset (j) and, as 
such, retains some similarity with the stance of 
Larzelere & Mulaik (1977). Their approach, 
however, does not take into account the 
correlation structure between potential predictor 
variables. By contrast, the algorithm outlined in 
this article establishes the p-value for overall 
model significance based on the effective 
number of predictors. For example consider J  
potential predictors, and consider an extreme 
case whereby 1J −  of the predictors are 
mutually orthogonal but the other predictor is 
perfectly correlated with one of the other 
predictors in the orthogonal set. In this extreme 
case the number of predictors is J but the 
number of effective predictors is 1J − . 

The simulation work demonstrates that 
the randomization algorithm corrects a non-
trivial problem. This correction also applies in 
those particularly problematic cases whereby the 
number of predictors exceeds the number of 
cases (subject to subset size j being less than 
sample size I). 

Significance tests in classical least 
squares regression are based on the assumption 
that the underpinning error terms are 
independent, identically distributed normal 
random variables. When these assumptions are 
satisfied the p-value for overall model 

significance for a best subsets regression of size 
j still displays a bias. By contrast, the 
corresponding p-value estimation using the 
randomization algorithm does not suffer from 
this bias. In practice the underpinning normality 
assumptions are likely to be violated to some 
extent, and these violations may lead to 
additional biases in the estimated p-values for 
overall model significance in a best subsets 
regression using the standard approach. The 
randomization approach is based on the sample 
data and the estimation of the p-value does not 
explicitly rely upon distributional assumptions. 
Indeed, the algorithm is not peculiar to ordinary 
least squares regression and could be applied to 
other classes of model, including those models 
that rely upon inferential tests of significance 
based upon large sample asymptotic theory (e.g. 
binary logistic regression). 

The approach for assessing individual 
significance of variables that comprise a final 
best subset is to consider a rank ordering on the 
variables in the model according to the value of 
their corresponding F statistic. This imposition 
of an ordering allows for a fair comparison with 
similarly ordered variables in the randomized 
solutions. It is recognized that this may produce 
a seemingly paradoxical outcome in some 
situations. For instance, and for simplicity of 
exposition, consider a two variable subset 2j =  

with a variable, 1X  with F-value (1)F  and a 

variable, 2X , with F-value (2)F . Without loss of 

generality assume (1) (2)F F> . In evaluating the 

statistical significance of 1X , the value (1)F  will 

be compared against similarly ordered values 
*

(1)F  and the value (2)F  will be compared with 

similarly ordered values *
(2)F . No condition is 

imposed to ensure that the proportion of times 
*

(1) (1)F F>  is less than the proportion of times 

*
(2) (2)F F> . However it should be borne in mind 

that 1X  and 2X  were not specified in advance; 
rather the significance tests alluded to are tests 
of significance for the variable with the largest 
value (1)F  and for the variable with the second 

largest value (2)F . In practice, interest would 
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focus on those final solutions where all variables 
in the model met some pre-defined nominal 
level of significance (e.g. 0.05α = ). 

A motivation behind this research was 
to help develop a sound methodological process 
to assist researchers in constructing valid and 
good initial models in exploratory research. 
However, the use of automated techniques is not 
in itself a substitute for quality of thought in 
determining what may be a good predictor of an  
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