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REGULAR ARTICLES 
Comparing Factor Loadings in Exploratory Factor Analysis: 

A New Randomization Test 

W. Holmes Finch                   Brian F. French 
Ball State University              Purdue University 

 
 
Factorial invariance testing requires a referent loading to be constrained equal across groups. This study 
introduces a randomization test for comparing group exploratory factor analysis loadings so as to identify 
an invariant referent. Results show that it maintains the Type I error rate while providing adequate power 
under most conditions. 
 
Key words: Exploratory factor analysis, randomization test, multigroup confirmatory factor analysis, 
invariance testing. 
 
 

Introduction 
 
Score validity evidence can be considered the 
primary focus in instrument development and 
evaluation (AERA, APA, & NCME, 1999). For 
instance, Standard 1.1 of the Standards for 
educational and psychological testing states “A 
rationale should be presented for each 
recommended interpretation and use of test 
scores, together with a comprehensive summary 
of the evidence and theory bearing on the 
intended use or interpretation” (p. 17, AERA et 
al., 1999). Measurement invariance (MI) or 
equivalence is one form of validity evidence that 
is important when scores are used for group 
comparisons. MI refers to the case where an 
assessment measures one or more latent 
constructs identically across groups. The 
presence of this property helps ensure that the 
measurement of the specified construct is the 
same across groups, thus allowing for accurate  
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comparisons in score parameters. Otherwise 
group comparisons may be meaningless, as 
observed differences could be the result of 
ability differences or measurement differences. 

Factor invariance is one form of 
measurement invariance (MI) and is typically 
established using multi-group confirmatory 
factor analysis (MCFA). Through MCFA, an a 
priori theoretically specified latent structure of 
an instrument is evaluated for MI across groups 
(Alwin & Jackson, 1981; Golembiewski, 
Billingsley, & Yeager, 1976). The presence of 
MI is tested using differences in the chi-square 
goodness-of-fit statistics for more (loadings held 
equal across groups) and less restrictive 
(loadings allowed to vary by group) models. If 
the fit of the models differs significantly, as 
measured by the chi-square difference test, the 
researcher concludes a lack of invariance. This 
method is well documented (e.g., Bollen, 1989; 
Byrne, Shavelson, & Muthén, 1989; Jöreskog & 
Sörbom, 1996; Maller & French, 2004; Raju, 
Laffitte, & Byrne, 2002; Reise, Widaman, & 
Pugh, 1993). 

The requirement of an equality 
constraint of a referent indicator across groups in 
MCFA calls for methodological attention 
(Millsap, 2005). Comparison of a latent factor 
model can only occur if the same coordinate 
system is used for all groups in question 
(Wilson, 1981). Model identification procedures 
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ensure this required comparability by assigning 
the same units of measurement to the latent 
variables for groups in question (Jöreskog & 
Sörbom, 1996). Model identification is often 
accomplished by assigning the latent factors to a 
scale based on a common indicator across 
groups, typically either a factor variance or a 
factor loading for a single variable. The most 
common practice is to set one of these parameter 
values to 1.0 across groups, with the factor 
loading method being the most common 
(Brown, 2006; Vandenberg & Lance, 2000). 
This factor loading referent approach requires 
the assumption that the referent loading is equal 
for all groups in the population (i.e. the loading 
is assumed to be invariant).  

When the referent parameter is not 
invariant, estimates of other model parameters, 
such as factor loadings, may be distorted and 
hypothesis tests for the group invariance of these 
other parameters may be inaccurate (Bollen, 
1989; Cheung & Rensvold, 1999; Millsap, 
2001). Therefore, a circular situation exists 
where (a) the referent loading must be invariant, 
(b) invariance of the referent (or any other) 
loading cannot be established without estimating 
a model, and (c) model estimation requires an 
invariant referent loading. Thus, we return to the 
original invariant referent assumption, which is 
commonly not assessed in practice, most likely 
due to the fact that there is not a relatively 
straight forward way of doing so. A procedure to 
locate an invariant referent variable would be 
useful to ensure the remainder of invariance 
assessment is accurate. 

Heretofore, this assumption of referent 
invariance could not be directly tested (Bielby, 
1986; Cheung & Rensvold, 1999; Wilson, 
1981). A search procedure, the factor-ratio test 
and stepwise partitioning procedure, has been 
suggested (Rensvold & Cheung, 2001). The 
procedure uses each variable as the referent in a 
set of models with each other variable 
constrained to be invariant. The iterative 
procedure tests all pairs of variables (i.e., p (p – 
1) / 2 pairs) and becomes quite complex as the 
number of indicator variables increases, making 
it not “user-friendly” for practitioners 
(Vandenberg, 2002). For example, a moderate 
length instrument (i.e., 30 indicators) requires 
435 individual invariance tests to fully identify 

which loadings could be used as a referent in the 
final MCFA analysis. Evaluation of this 
procedure demonstrated adequate (e.g., 
acceptable false and true positives) but not 
perfect performance (French & Finch, 2006a). 

Exploratory factor analysis (EFA) has 
been suggested as an alternative approach for 
identifying an invariant referent loading. In its 
relative simplicity, EFA overcomes the 
limitations associated with the factor-ratio test 
and search procedure. The EFA based approach 
involves conducting a single EFA for each group 
separately and descriptively comparing their 
respective loading estimates to ascertain which 
appear to be invariant in the sample. Such an 
analysis may be considered a weak test of 
factorial invariance (Zumbo, 2003) and is in 
accord with suggestions that EFA be used to 
examine loadings with an “interocular eyeball 
test” (Vandenberg, 2002, p. 152) to judge the 
similarity of loadings to identify referent 
variables. Evaluation of this procedure has been 
favorable (Finch & French, in press), though it 
does not offer a formal hypothesis test of 
invariance, instead allowing for the comparison 
of parameter estimates across groups in order to 
provide a sense of factor loading differences 
without the need to conduct a large number of 
analyses. Specifically, pattern coefficients 
appearing most similar would be eligible for 
serving as a referent variable in the MCFA. The 
obvious limitation to the current EFA procedure 
is the lack of a statistical test to give a formal 
determination about the differences between 
factor loadings.  

The purpose of this study was to 
develop a randomization test based on EFA and 
to assess its utility in identifying invariant factor 
loadings between two groups. This procedure 
would be used prior to conducting the actual 
MCFA, as a purification process for identifying 
a loading that is likely to be group invariant and 
thus eligible for use as the referent parameter. 
The procedure entails conducting one EFA per 
group and then comparing the factor loadings 
(i.e., pattern coefficients) from the separate 
analyses via the test statistic to determine 
differences of individual loadings. Loadings that 
are significantly different would not be used as a 
referent.  
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Factor loading invariance randomization test 
(FLIRT) 

Statisticians have developed exact tests 
for a number of applications involving group 
comparisons (see Good, 1994, for a thorough 
description of exact tests). Regardless of the 
context, every exact test for group comparison 
involves finding all possible permutations of the 
data, with respect to group membership. For 
each of these permutations the test statistic of 
interest is calculated and the collection of these 
statistics across all permutations forms a 
sampling distribution. The test statistic for the 
observed sample is also calculated and, if it is 
more extreme than a predetermined (e.g., 95th) 
percentile of the permutation distribution, the 
null hypothesis of no group difference can be 
rejected. 

One common problem in the actual 
application of permutation tests is that, even for 
modestly sized samples, the number of 
permutations that must be determined can be 
large. For example, for a simple two group 
comparison with a total sample of 30 individuals 
(15 per group), the number of permutations 
would be 155,117,520. The computer time 
necessary to conduct analyses for each of these 
permutations would be prohibitive for any real 
application. An alternative approach to using all 
possible permutations is known as 
randomization, or Monte Carlo, testing 
(Edgington, 1980). With this methodology, a 
random sample of the permutations is selected 
and the test statistic of interest is calculated for 
each to create the sampling distribution as 
described above. As with the full permutation 
testing approach, the test statistic value obtained 
from the observed data is compared with this 
distribution and, if it is more extreme than some 
predetermined (e.g. 95th) percentile, the null 
hypothesis of no group difference is rejected. 
The description of the specific randomization 
test statistic for comparing two groups’ factor 
loadings appears below. 

The factor loading invariance 
randomization test (FLIRT) for comparing two 
groups’ factor loadings is based upon the 
supposition that there exists configural 
invariance for the two groups; i.e., the basic 
factor structure is the same, though the actual 
factor loading values may not be. To test the null 

hypothesis of equal (invariant) group loadings 
for a single indicator variable, EFA is run 
separately for the two groups and the difference 
in the loadings for the target indicator is 
calculated. Next, 100 random samples are taken 
from the population of all possible permutations 
and for each of these EFA is conducted by 
group. The difference in the target loadings is 
calculated for each permutation to develop a 
distribution against which the group loading 
difference for the observed data is compared. If 
this observed difference is larger than the 95th 
percentile from the randomization distribution, 
the null hypothesis of no group differences on 
the target loading is rejected. The current study 
evaluated FLIRT through the use of a Monte 
Carlo simulation, as well as the analysis of a real 
dataset. The performance of the test was judged 
in terms of power and Type I error under a 
variety of conditions (e.g., sample size, factor 
model) in the simulation study, and by 
comparing hypothesis test results for the 
observed data with those presented in Thompson 
(2004). 
 

Methodology 
 

Simulated data were used to control 
variables that could influence the magnitude of 
factor loading estimates, with 1,000 replications 
for each combination of conditions described 
below. Simulations and analyses were 
completed in SAS, V9.1 (The SAS Institute, 
2003). Conditions were held as consistent as 
possible with previous studies (e.g., Finch & 
French, 2008 in press) for comparability of 
results. Second, a real data set, the LibQUAL+ 
study (Thompson, 2004), was employed to 
provide an applied example. 
 
Number of Factors and Indicators 

Data were simulated from both 1- and 2-
factor models, with interfactor correlations set at 
.50 to represent moderately related factors, and 
simple structure for continuous and normally 
distributed subtest level data. The number of 
indicators per factor was 6. 
 
Sample Size 

The necessary sample size to obtain 
reasonable estimates in factor analysis varies 
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depending on the data conditions. Four sample 
size conditions were simulated: 100, 250, 500, 
and 1,000 per group in order to reflect small, 
medium and large samples. These values are 
consistent with other factor analysis simulation 
studies (Cheung & Rensvold, 2002; Lubke & 
Muthén, 2004; Meade & Lautenschlager, 2004), 
ranging from poor (n = 100) to excellent (n = 
1,000) (Comery & Lee, 1992), and may not be 
of much concern here as communalities were 
high (MacCallum, Widaman, Zhang, & Hong, 
1999). 
 
Magnitude of Difference with the Non-Invariant 
Indicators 

Six levels of factor loading values for 
the non-invariant indicator were simulated. A 
baseline condition was established where no 
group differences in loadings were present, with 
all variables having a loading value of 0.75, 
including the target. The remaining 5 conditions 
were characterized by declines in the target 
loading from 0.10 to 0.50 in increments of 0.10 
(i.e., 0.65, 0.55, 0.45, 0.35, and 0.25). This wide 
range of levels was selected since there is no 
effect size, at least to our knowledge, for what 
represents a meaningful difference (Millsap, 
2005) and the range covers previously used 
values in MCFA simulation work (e.g., French 
& Finch, 2006b; Meade & Lautenschlager, 
2004). 
 
Contamination 

The location of invariant parameters 
may be influenced by the number of indicators 
that lack invariance (Millsap, 2005; Yoon & 
Millsap, 2007). Thus, the presence of a factor 
loading, other than for the target indicator, 
exhibiting a group difference was varied as 
either present or absent. In other words, for half 
of the simulated conditions only the target 
indicator loading was contaminated, while for 
the other half of the simulations a second target 
indicator loading also was contaminated at the 
same difference as the target indicator. This 
allowed assessment of the influence of 
additional contaminated variables. 
 
Analysis 

All analyses were conducted by group 
using maximum likelihood factoring with 

PROMAX rotation in the 2-factor condition. 
These settings follow recommendations for 
using EFA for a referent indicator search and are 
more consistent with educational and 
psychological data (e.g., presence of 
measurement error, correlated factors; 
(Vandenberg, 2002). 
 
Evaluation Criteria 

The outcomes of interest for this study 
were the power and Type I error rates of the 
FLIRT. Specifically, the Type I error rate was 
calculated as the proportion of simulation 
replications for which the test statistic rejected 
the null hypothesis when the groups’ loadings 
on a target indicator did not differ. In similar 
fashion, power was calculated as the proportion 
of the simulation replications for which the test 
statistic rejected the null hypothesis when the 
groups’ loadings on the target indicator did in 
fact differ. To determine which conditions 
influenced the outcomes of interest, ANOVA 
and variance components analysis were used 
with each of the manipulated factors serving as 
an independent variable. For the applied data set 
results are presented in terms of locating 
differences in factor loadings as would be for an 
application. 
 

Results 
 
Simulation study 
Type I error 

None of the manipulated factors, or their 
interactions, was identified by the ANOVA as 
being significantly related to the Type I error 
rate of the FLIRT. Table 1 contains these Type I 
error rates by each of the manipulated variables. 
Overall, there is a very slight elevation of the 
error rate above the nominal 0.05, with the most 
notable difference between the 1 and 2 factor 
conditions. However, none of the sample 
differences evident in this table were statistically 
significant, suggesting that they may not be 
present in the population as a whole. 
 
Power 

Based on the results of the ANOVA and 
variance components analysis, the interaction of 
sample size by the difference in the groups’ 
target loadings, as well as the main effects of  
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sample size and difference in target loadings 
were statistically significant and contributed 
more than 10% of the variance to the power of 
the test statistic. Specifically, the interaction 
accounted for 38.4% of the variance as did the 
main effect of difference in loading values, 
while the main effect of sample size contributed 
an additional 20.2% to the variation of power. 
contains power rates by the interaction of sample 
size and group loading differences. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the largest sample size condition, power was 
well above 0.95 regardless of the difference 
between the groups’ loadings. Thus, even when 
the target loadings only differed by 0.1 the test 
statistic would virtually always identify this 
divergence. On the other hand, for samples of 
100 per group, the test had power rates below 
0.8 for differences of 0.1 and 0.2. In general, 
across the lower sample size conditions (100 and 
250 most particularly), power was 

Table 1: Type I Error Rates by Sample Size, Number of Factors, 
and Level of Contamination 

Sample size Type I error rate 
100 0.067 
250 0.064 
500 0.059 

1000 0.060 
Factors 

1 0.069 
2 0.057 

Contamination 
No 0.061 
Yes 0.064 

Table 2: Power by Sample Size and Group Difference in Target Loading 
Sample size per group Difference Power 

100 

0.1 0.23 
0.2 0.61 
0.3 0.87 
0.4 0.96 
0.5 0.97 

250 

0.1 0.49 
0.2 0.92 
0.3 0.96 
0.4 1.00 
0.5 1.00 

500 

0.1 0.80 
0.2 1.00 
0.3 1.00 
0.4 1.00 
0.5 1.00 

1000 

0.1 0.97 
0.2 1.00 
0.3 1.00 
0.4 1.00 
0.5 1.00 
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somewhat low for a difference of 0.1 but rose to 
above 0.8 for discrepancies in target loadings of 
0.3 or more. 

Table 3 shows power rates by the 
number of factors and level of contamination. 
Neither of these terms contributed more than 3% 
to the variance in power. A perusal of the results 
in this table shows that there were essentially no 
differences in power for 1 and 2 factors or when 
another loading beyond the target loading 
differed between the groups. 
 
 
 
 
 
 
 
 
 
 
 
 
Analysis of real data 

To demonstrate the FLIRT in real world 
conditions, data taken from the LibQUAL+ 
study were analyzed. For a more complete 
discussion of this dataset and the study from 
which it was drawn, the interested reader is 
encouraged to consult Thompson (2004). The 12 
items included on this survey could be divided 
into three factors, including service provided by 
library staff, the environment of the library and 
the quality of the library’s holdings. Each factor 
was represented by 4 items, which were on a 
rating scale with response options ranging from 
1 to 9. The dataset used, which is available in 
Thompson (2004), included a random sample of 
200 survey respondents, 100 of whom were 
graduate students and 100 who were faculty 
members. 

Thompson described differences in 
factor loading values between graduate students 
and faculty members for item 6, “A meditative 
place”. To demonstrate the utility of the FLIRT 
with real data, the faculty and student loadings 
for item 6 were compared using this new 
statistic. The factor loading values by group 
were 0.7587 for graduate students and 0.9079 
for faculty, leading to an observed loading 
difference of 0.1492. The distribution of 

differences across the 100 randomized datasets 
appears in Figure 1, a visual examination of 
which shows that the observed difference falls in 
the 99th percentile of the randomized values. 
Thus, if α= 0.05, we would conclude that there 
is a statistically significant difference between 
the loading values for the two groups, which is 
in line with the conclusion reached by 
Thompson. The two groups loadings for item 5, 
“A haven for quiet and solitude”, were also 
compared. This was not identified by Thompson 
as differing between the groups. The loading for 
the students was 0.9114, and 0.9342 for the 
faculty, leading to an observed difference of 
0.0228. This value fell at the 46th percentile of 
the randomized loading differences, which 
would lead to a conclusion of no significant 
difference between group loadings at the 
aforementioned level of 0.05. 

The purpose of this analysis with 
previously analyzed real data using MCFA was 
to demonstrate the potential utility of FLIRT. If 
FLIRT had been used as a step prior to the 
MCFA in this example, item 6 would not have 
been selected as a referent variable whereas item 
5 could have been. The results presented are in 
accord with those of Thompson (2004), thus 
providing further evidence, beyond the 
simulation study, that this new statistic does 
appear to be reasonably accurate in correctly 
identifying group loading differences, even for 
samples as small as 100 per group. 
 

Conclusion 
 

The results suggest that in many instances, the 
FLIRT may be a useful tool for identifying 
potential indicator variables with invariant factor 
loadings across groups for use in a subsequent 
MCFA. This outcome was especially evident 
when the differences between loadings and/or 
the sample sizes were large. However, even for 
differences in loadings as small as 0.2 and 
samples of 100 per group, FLIRT was able to 
find differences more than 60% of the time. In 
all but one case, when sample size was 250 or 
more per group, the rates for correctly detecting 
loading differences were at least 0.8, and often 
near 1.0. Furthermore, the Type I error rates 
(identifying loadings as differing when they do 
not) were very close to the nominal rate of 0.05 

Table 3: Power by Number of Factors and 
Contamination 

Number of factors Power 
1 0.90 
2 0.88 

Contamination 
No 0.89 
Yes 0.89 
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for all studied conditions. The combination of 
these results supports the use of the new FLIRT 
statistic in conjunction with EFA for accurately 
detecting a non-invariant loading that could then 
be used as the referent in a subsequent MCFA. 

Correct specification of an invariant 
referent loading is a crucial step in MCFA. 
Failure to do so could lead to biased parameter 
estimates and, in turn, compromise other 
analyses, such as latent mean comparisons. The 
primary method suggested for identifying 
invariant indicators is the factor-ratio test and SP 
procedure (Rensvold & Cheung, 2001), which 
can be a very complex and time consuming 
multi-step technique. While this procedure does 
work reasonably well in identifying invariant 
referent loadings, it can become intractably time 
consuming with increasing model complexity 
(French & Finch, 2006a). To overcome such 
limitations, EFA is one approach that has been 
advocated for use in practice and involves 
comparison of factor loading estimates between 
two groups (Vandenberg, 2001; Zumbo, 2003). 
While this method does not have the advantage 
of significance testing that is offered by the 
factor-ratio test, it is much simpler to conduct. 
We have attempted to overcome the inference 
limitation of EFA, while maintaining its 
advantage of simplicity, by developing the 
FLIRT. 

The results seem to indicate that in need 
to locate an invariant referent for use in MCFA 
they may find that this simple approach 
performs well in a fairly wide variety of study 
FLIRT generally provides an accurate conditions 
such as those simulated; EFA with assessment 
of identifying the variables that may lack 
invariance. Therefore, when practitioners 
conditions. The FLIRT is more accurate (i.e., 
greater power) with larger sample sizes and a 
greater magnitude of difference between 
loadings and appears to have Type I error rates 
that are always close to the nominal level. 
 
Limitations and directions for future research 

The generalizability of the results is 
limited to the conditions simulated in this study. 
First, the factor models examined were fairly 
simple (1 or 2 factors with 6 indicators each). 
Thus, in future research the FLIRT should be 
evaluated with more complex models and data 

(e.g., greater number of factors, different 
variables, various levels of communalities). 
Second, a related area that deserves attention is 
the combination of loadings for the observed 
variables. In this study, all of the loadings were 
set at 0.75 (unless contaminated). Given that this 
is the first investigation of the randomization test 
to accurately identify invariant referent 
variables, clarity of result interpretation was 
considered paramount, and thus non-target 
loadings were not varied. However, further 
investigation should be carried out for a more 
complex combination of loading values and 
factor models, as well as data conditions (e.g., 
ordinal variables) before the test is applied 
unequivocally. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Distribution of randomized loading 
differences for item 6 
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