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CHAPTER 1: Introduction 

Skin cancer is the most common form of cancer in the world.1,2,3  It is generally split 

between two main categories: melanoma from melanocytes, and non-melanoma skin cancer 

(NMSC), which consists of basal cell and squamous cell carcinomas.  Melanoma is the least 

common, but the most malignant.  Basal cell carcinoma (BCC) is the most benign and also the 

most prevalent.  It accounts for 80% of all skin cancers, making it the most common form of any 

cancer in the world.1  BCC presents as a “flat, firm, pale areas” or “small, raised, pink or red bumps 

that may bleed after a minor injury.”1,2  Treatment often involves surgical removal of the affected 

area and can leave disfiguring scars, especially in cases of large tumors.1  Additionally, scarring 

from tumors located in regions around the eyes, ears, and mouth may be structurally 

compromising and aesthetically displeasing.4  Instances of BCC are increasing, and because of its 

prevalence and recurrence, the cost to healthcare is tremendous.  Over the last decade or so the 

cost of treating skin cancer has jumped from $3.6 billion to $8.1 billion annually, an increase of 

126.6%.  Of that, NMSC accounted for an increase from $2.7 to $4.8 billion.3  For these reasons, 

non-invasive outpatient treatments for basal cell carcinoma are of great interest.4   

Vitamin D3 supplementation is often considered in the treatment of cancer, including BCC, 

due to its well-documented anti-proliferative effects.5,6  In the absence of vitamin D signaling, 

mice exposed to ultraviolet (UV) light develop skin cancer, underscoring its importance.7,8  

Indeed, the regulatory role of vitamin D most likely evolved from a necessity to protect against 

the harmful effects of UV light.6  However, while adequate levels may be protective, 

supplementation may not necessarily add additional benefit.  Animal and cell culture studies 

have in fact found protective effects of vitamin D in several forms of cancer models, and clinical 
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studies of supplementation have been positive in cases of breast and colorectal cancer.8,9  

Unfortunately, human clinical studies of BCC have been rare and inconclusive as to its actual 

benefit, and intervention studies are essentially non-existent.  Analysis of two prospective cohort 

studies found no association between dietary vitamin D intake and BCC occurrence in men or 

women.10,11  Another study found an inverse relationship between serum levels of the circulating 

form of vitamin D and NMSC in elderly men.12  On the other hand, studies have also shown that 

high serum levels actually increase the risk of developing BCC.13,14  The data is further confounded 

because of the varied impact of vitamin D3 on multiple signaling pathways and the mutagenic 

nature of the cancer.  More data is needed to elucidate the actual effects of vitamin D treatment 

in BCC.   

Vitamin D is a general term for a group of fat soluble vitamins that are most notably 

responsible for calcium homeostasis in the body.15  The most common forms are vitamin D2 

(ergocalciferol) and D3 (cholecalciferol), and it is D3 that shows promise in the treatment of 

cancer.  The metabolism of vitamin D3 involves several steps that occur in different organs (Figure 

1.1).  The body is capable of synthesizing 7-dehydrocholesterol in the skin, however, this form of 

the vitamin requires UV light to convert it to cholecalciferol.  Cholecalciferol can also be provided 

in the diet by a limited number of foods, such as eggs and fortified milk.6,16  It is this form that is 

referred to as vitamin D3, although it still requires the addition of two hydroxyl groups before it 

is biologically active.  Cholecalciferol first must travel to the liver, where the enzyme vitamin D 

25-hydroxylase (25-OHase) converts it to 25-hydroxycholecalciferol, also known as calcidiol.  

Next, the vitamin precursor travels to the kidneys, where the enzyme 25-hydroxyvitamin D3 1-

alpha-hydroxylase (1α-OHase) converts it to 1,25-dihydroxycholecalciferol, or calcitriol.6,16  This 



3 

 

 

is the active form, which is capable of binding the vitamin D receptor (VDR), a transcription factor 

that controls the expression of over 900 genes, many of which are involved in cell cycle 

regulation, differentiation, and apoptosis.17  Therefore, vitamin D3 and its receptor may play an 

important role in the treatment of cancer, possibly by way of controlling cellular proliferation.   

One theory behind vitamin D3 supplementation in cases of BCC is that by providing 

additional vitamin D3 one can prevent uncontrolled cell growth by encouraging VDR-induced 

inhibition of cellular proliferation.  Also present in the kidneys is an enzyme called 25-

hydroxyvitamin D3-24-hydroxylase (24-OHase), which adds a third hydroxyl group to vitamin D3.  

This enzyme is up-regulated in response to calcitriol, and results in its inactivation and 

degradation to calcitroic acid.6,16  High expression of 24-hydroxylase was associated with poor 

survival in lung cancer patients.17  Interestingly, all three of these enzymes are also expressed in 

the skin, demonstrating the importance of a reliable balance of vitamin D3 in this organ, perhaps 

as an immediate defense mechanism against the harmful effects of UV radiation.18 

 

Figure 1.1 Vitamin D3 metabolism 

 

 

One of the signaling cascades that VDR regulates is the mTOR pathway (Figure 1.2).  The 

mammalian target of rapaycin (mTOR) is a major control switch involved in cell survival, growth, 



4 

 

 

and proliferation.  mTOR phosphorylates its targets, S6K and 4EBP, which results in the activation 

of protein synthesis.19  This pathway is often up-regulated in cancer, whereas down-regulation is 

associated with differentiation and apoptosis.  Therefore, compounds that can negatively 

regulate the mTOR pathway have the potential to be powerful anti-cancer drugs.  When calcitriol 

binds to VDR, one of the genes that is up-regulated is DNA-damage-inducible transcript 4 (DDIT4), 

also known as regulated in development and DNA damage response 1 (REDD1).19  REDD1 

activates TSC1 and TSC2.  These proteins are responsible for inhibiting Rheb, which in turn is an 

activator of mTOR.  By up-regulating REDD1 via VDR, vitamin D3 is thought to inhibit mTOR and 

thus its ability to phosphorylate S6K and 4EBP.19  In fact, Lisse et al. saw a 50% reduction in cellular 

proliferation of osteoblasts in response to calcitriol treatment.20  They determined this to be an 

effect of the demonstrated increase in REDD1 protein, resulting in a decrease in phosphorylation 

of S6K. 

 

Figure 1.2 Vitamin D3 and the mTOR pathway 

 

The described vitamin D – mTOR pathway is just a small segment of a much larger signal 

transduction picture.  This pathway shares downstream targets of the RAS-RAF-MEK-ERK and 
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PI3K/AKT pathways (Figure 1.3).21  Ras is a GTPase that is active when bound to GTP, and inactive 

when bound to GDP.  When activated, Ras induces translocation and phosphorylation of RAF, 

resulting in its activation.  Activated RAF then phosphorylates MEK, which phosphorylates 

extracellular signal-regulated kinases 1 and 2 (ERK1/2).  ERK1/2 can then activate mTOR.  Ras is 

also capable of activating phosphinositide-3 kinase (PI3K).  PI3K phosphorylates 

phosphatidylinositol bisphosphate (PIP2), forming PIP3, which activates protein kinase B (AKT).  

AKT is a kinase that is responsible for phosphorylating several proteins, including TSC 2.  This 

phosphorylation inhibits TSC1 and TSC2, preventing them from down-regulating Rheb, which can 

potentially lead to the activation of mTOR.  Therefore, Ras can indirectly activate mTOR through 

both of these pathways, contributing to increased cell growth and proliferation.  

 

Figure 1.3 RAS activation of mTOR via RAF/MEK/ERK (a) and PI3K/AKT (b) 

 

 

Indeed, both pathways were shown to be involved synergistically in the development of 

esophageal cancer.  Wei and Xu showed that phosphorylation of both AKT and ERK was increased 

in cancer patients.22  Interestingly, in many cancers, and as observed in our laboratory in human 

BCC tissue, a gain of function mutation is often seen in Ras.23  Our lab also reported an increase 

in expression of Ras mRNA in cancer tissue.  Over-activity of Ras signaling pathways may 
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overwhelm any inhibition from vitamin D3 supplementation via VDR/REDD1/mTOR signaling.  To 

make matters worse, oncogenic Ras may also reduce the expression of VDR.  Rozenchran et al. 

found that over-expression of Ras led to reduced levels of VDR due to mRNA instability.24  

Considering all of these factors collectively may help explain why the effectiveness of vitamin D3 

treatment is so inconsistent in clinical studies. 

Another pathway involved in BCC progression is the Hedgehog (HH) pathway (Figure 1.4).  

Patched1 (PTCH1) is a membrane receptor that binds to and inhibits Smoothened (SMO).  Sonic 

hedgehog protein (HH) disrupts this inhibition, allowing SMO to activate Gli proteins.  These 

proteins are transcription factors that then up-regulate genes involved in cellular proliferation.  

Mutations in this pathway, such as those that destroy the ability of PTCH1 to inhibit SMO, are the 

most common found in basal cell carcinoma.25  

 

Figure 1.4 The Hedgehog pathway 

 

 

In a second mechanism of the anti-cancer effects of vitamin D3, Uhmann et al. showed 

that calcitriol inhibits the HH pathway in a VDR-independent fashion by inhibiting SMO directly.26  

Tang, et al. disagree with this finding, on the basis of the form of vitamin D3 that is responsible 

for the inhibition of SMO.  They showed that only the non-hydroxylated vitamin D3, 
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cholecalciferol, could inhibit cellular proliferation.27  They also showed that cholecalciferol could 

reduce Gli1 mRNA, but the hydroxylated forms could not.   

In contrast to the studies by Uhmann and Tang, Teichert et al. found that calcitriol is 

involved in the VDR-dependent gene down-regulation of several of the hedgehog signaling 

pathway proteins.8  They also demonstrated that in the absence of VDR several of these genes 

were over-expressed.  Despite their disagreement on the mechanism involved, these studies 

make a strong argument for the inclusion of vitamin D3 in the treatment of basal cell carcinoma. 

Complicating the picture further, Wang et al. showed that activation of the mTOR 

pathway is capable of activating Gli proteins.27  This activation was shown to come from S6K and 

occurred in the absence of SMO, signifying the complex inter-relationship of the hedgehog and 

RAS/PI3K pathways.  This data was supported by another study in which a RAS/RAF pathway 

inhibitor was able to decrease Gli1 mRNA and protein expression.28  Furthermore, in a study 

published in 2013, researchers demonstrated that mice with RAS mutations required Gli for the 

formation of pancreatic cancer.29  They also found that RAS up-regulated the expression of HH, 

thus resulting in the activation of Gli.   

Mutations resulting in dysfunction of the HH pathway are the most common in BCC.  

However, as mentioned, they are often not the only mutations present.  Up-regulation of RAS or 

other oncogenes may negate the protective effect of vitamin D3 by overwhelming it and/or 

circumventing it.  This complex relationship stresses the importance of dual-pathway inhibitors 

in the treatment of cancer.  A compound that is capable of down-regulating aspects of both 

pathways could have tremendous benefit in the treatment of this form of cancer. 
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Despite its promise in vitro, vitamin D3 has yet to be proven effective in the clinical 

treatment of basal cell carcinoma.  In a personal communication between clinical practitioners 

and our laboratory, the need for more research into the molecular mechanisms involved in this 

treatment was discussed.  If supplementation is not beneficial perhaps it should no longer be 

prescribed.  Previous work in our laboratory involved comparison of gene expression in cancer, 

proximal, and distal tissue taken from the head and neck regions of human patients.  Our 

research indicated that genes involved in both the metabolism and signaling of vitamin D3 were 

up-regulated in cancer tissue.  Whether this is an innate defense against cancer, an effect of the 

cancer itself, or a combination of the two is yet to be determined. 

 

Specific Aim  

In addition to its role in bone mineralization and calcium homeostasis, Vitamin D3 has 

been implicated as a major regulator of cellular proliferation and differentiation.  The anti-

proliferative impact of Vitamin D3 is observed in clinical studies of breast and colon cancer, where 

vitamin D3 treatment is generally positive.  However, clinical data on vitamin D3 treatment of 

basal cell carcinoma (BCC) is lacking and inconclusive at best.  Because the majority of the in vitro 

studies in support of the protective effects of vitamin D3 in onset and progression of cancer were 

not performed in skin cells these findings may not be applicable to BCC.  Unfortunately, the non-

metastatic nature of BCC makes cell lines difficult to grow in culture.30  The goal of this study is 

to determine the impact of vitamin D3 on proliferation of an immortalized human keratinocyte 

cell (HaCaT), a model for the basal layer of the skin.  The HaCaT cells were spontaneously 

immortalized in vitro without transformation.  Their name references their Human Adult origin, 
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and their immortalization treatment of low Calcium and high Temperature.  The HaCaT cells 

exhibit normal differentiation markers and are non-tumorigenic.31  

Previous data in our laboratory indicate that the Hedgehog and mTOR-signaling pathways 

are activated in BCC tissue, despite increased expression of active vitamin D3.23  Therefore, I 

hypothesize that vitamin D3 treatment will increase proliferation of HaCaT cells by modulating 

the mTOR-signaling pathway and failing to inhibit the Hedgehog pathway.  Thus, vitamin D3 

treatment of skin cancer is ineffective and potentially detrimental.  This hypothesis will be tested 

by the following specific aims: 

1. To determine the impact of calcitriol and cholecalciferol on proliferation of HaCaT 

cells 

2. To dissect the molecular mechanism by which vitamin D3 supplementation alters the 

proliferation of HaCaT cells. 



10 

 

CHAPTER 2: Materials and Methods 

 

Cell Culture 

Human keratinocyte (HaCaT) cells were obtained from AddexBio.  Cultures were grown in 

Gibco DMEM High Glucose media supplemented with 10% FBS and antibiotics.  Cells were 

subcultured approximately twice weekly.  Media was purchased from Life Technologies. 

 

Treatment 

Calcitriol was purchased from Sigma Aldrich.  A 10-5 M stock solution was prepared in 

ethanol.  Cholecalciferol was purchased from Fisher Scientific.  A 1 M stock solution was prepared 

in ethanol.  Ten-fold serial dilutions were made from each stock.  Treatments were prepared 1% 

v/v in complete media.  Concentrations tested were 10-8  M and 10-7  M calcitriol, and 5x10-6  M 

and 10-5  M  cholecalciferol, as found in the literature.12 

5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) was purchased from 

Toronto Research Chemicals.  This molecule phosphorylates AMPK, mimicking low energy status 

([ATP]/[AMP]), which then results in inhibition of proliferation.32  It will be used as a positive 

control, as vitamin D3 inhibits proliferation independently of AMPK.  A 1 M stock solution was 

prepared in DMSO.  Ten-fold serial dilutions were made.  Treatments were prepared 1% v/v in 

complete media.  Concentrations tested were 10-4 M and 10-3 M, as found in the literature.32 
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WST-1 Cell Proliferation Assay 

 WST-1 cell proliferation reagent was purchased from Roche.  Viable, proliferating cells 

express active mitochondrial dehydrogenases.  This assay exploits the activity of these enzymes 

to compare proliferation of cells following different treatment conditions.  The enzymes cleave 

tetrazolium salts in the WST-1 reagent to produce formazan, a dye that absorbs at 420-480 nm.  

The absorbance directly correlates to the number of viable cells in the sample. 

 Cells were plated in 96-well tissue culture-treated plates at a concentration of 4000 cells 

per well and allowed to recover overnight.  The next day, media was replaced with the treatments 

listed in Table 2.1.  After 24 or 48 hours, treatment media was replaced with complete media 

containing 10% WST-1 reagent.  Three wells were reserved for blanks, in which no cells had been 

plated.  Following four hours of incubation at 37°C the absorbance was read at 450 nm.  Average 

blank absorbance was subtracted from all samples.  Changes in proliferation following vitamin or 

AICAR treatment were compared to controls treated with vehicle alone.  Results are given as 

fold-change versus controls, with controls normalized to 1. 

 

Table 2.1 Treatment of HaCaT keratinocyte cells for MTT cell proliferation assay. 

EtOH Vehicle 1 µL EtOH 100 µL Media 

10 nM Calcitriol 1µL 1 µM Stock 100 µL Media 

100 nM Calcitriol 1 µL 10 µM Stock 100 µL Media 

5 µM Cholecalciferol 1 µL 500 µM Stock 100 µL Media 

10 µM Cholecalciferol 1 µL 1 mM Stock 100 µL Media 

DMSO Vehicle 1 µL DMSO 100 µL Media 

0.1 mM AICAR 1 µL 10 mM Stock 100 µL Media 

1 mM AICAR 1 µL 100 mM Stock 100 µL Media 
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RNA Isolation and cDNA Synthesis 

 Cells were plated in 6-well tissue culture-treated plates at a concentration of 5x104
 cells 

per well and allowed to recover overnight.  The next day, media was replaced with the treatments 

listed in Table 2.2.  After 24 or 48 hours of treatment, cells were rinsed with PBS, and RNA was 

extracted using the TRIzol method (Life Technologies).  RNA concentrations were measured with 

the Nanodrop UV/Vis spectrophotometer.  Next, 1 µg of RNA was used to synthesize cDNA using 

the Promega ImProm-II™ Reverse Transcription System.  RNA was first incubated with random 

primers in a volume of 10 µL at 70°C for five minutes.  Next, master mix was added to each tube, 

which contained 4 µL 5x buffer, 4 µL MgCl2, 1 µL dNTPs, and 1 µL reverse transcriptase. Samples 

were placed in an Eppendorf thermocycler.  The reverse transcription (RT-PCR) program 

consisted of the following steps: 25°C for five minutes, 42°C for one hour, 70°C for 15 minutes, 

and a 4°C hold.  The reaction products were then purified with the Qiagen QIAquick® PCR 

Purification Kit.  From the four samples from each treatment group, the three with the highest 

concentrations were chosen to use for RealTime PCR. 

 

Table 2.2 Treatment of HaCaT keratinocyte cells for RNA isolation 

EtOH Vehicle 20 µL EtOH 2 mL Media 

100 nM Calcitriol 20 µL 10 µM Stock 2 mL Media 

10 µM Cholecalciferol 20 µL 1 mM Stock 2 mL Media 

 

Real-Time PCR 

 Primers were purchased from Sigma Aldrich and reconstituted as 100 µM Stocks.  

Working stocks consisted of 5 µM forward plus 5 µM reverse primer.  Primer sequences are listed 

in Table 2.3.  The LightCycler® 480 SYBR Green I Master kit from Roche was used to prepare 
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samples for qPCR.  Samples consisted of 12.5 µL MasterMix from the kit, 1 µL primer mix (0.75 

µL for 25OHase), 3 µL cDNA (30.3 ng for 24 hour samples, 41.55 ng for 48 hour samples) and 

DNAse-free water to 23 µL.  Reactions were performed in a Stratagene thermocycler, and 

consisted of a five minute 95°C pre-incubation step, followed fifty cycles of amplification (ten 

seconds at 95°C followed by 30-60 seconds at the annealing temperature listed in Table 2.3) after 

which SYBR Green fluorescence was measured.  A third segment generated dissociation curve 

data, and consisted of heating the samples to 95°C for one minute, cooling to the proper 

annealing temperature for 30-60 seconds, and then heating to 95°C again, while constantly 

measuring fluorescence.  Threshold cycle (Ct) values were collected.  First, data was compared 

to the average of the controls (ΔCt) and then calculated as fold-change versus controls (2-ΔCt).  

Data is presented with controls normalized to 1. 

 

Table 2.3 Real-Time PCR Primer Sequences and Annealing Temperatures 

Target Sequence Tm Annealing Temp 

VDR fwd CCAGTTCGTGTGAATGATGG 64.1 57.0 

VDR rev GTCGTCCATGGTGAAGGA 62.3 57.0 

25OHase fwd GGCAAGTACCCAGTACGG 60.6 55.0 

25OHase rev AGCAAATAGCTTCCAAGG 57.0 55.0 

1αOHase fwd TGTTTGCATTTGCTCAGA 59.0 59.0 

1αOHase rev CCGGGAGAGCTCATACAG 61.0 59.0 

24OHase fwd GCAGCCTAGTGCAGATTT 58.1 55.0 

24OHase rev ATTCACCCAGAACTGTTG 55.7 55.0 

Gli1 fwd CTCCCGAAGGACAGGTATGTAAC 64.5 57.0 

Gli1 rev CCCTACTCTTTAGGCACTAGAGTTG 62.3 57.0 

REDD1 fwd GGTCACTGAGCAGCTCGAA 64.6 63.0 

REDD1 rev CCTGGACAGCAGCAACAGT 64.3 63.0 

KRAS fwd AAACTTGTGGTAGTTGGAGCTGG 55.3 50.0 

KRAS rev TGATTCTGAATTAGCTGTATCGTCAA 53.2 50.0 
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Protein Isolation and Quantification 

 Cells were plated in 100 mm tissue culture-treated dishes at a concentration of 5x105  cells 

per dish and allowed to recover overnight.  The next day, media was replaced with the treatments 

listed in Table 2.4.  After 24 or 48 hours of treatment, plates were rinsed with PBS, and cells were 

incubated in 700 µL lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.1% Triton X-100, 1 mM 

EDTA, 1 mM EGTA, 1 mM PMSF, 0.1% SDS, 0.5% sodium deoxycholate, 1x protease inhibitor) for 

30 minutes at 4°C.  Following incubation, cells were collected with a cell scraper and placed at -

80°C overnight.  Following freeze-thaw, lysates were spun to remove pellet and then 

concentrated to <100 µL in 10 kDa spin column concentration units.  Concentrations were 

determined using the Pierce BCA Assay Kit.  Samples were prepared in Laemmli buffer and heated 

to 70°C for 5 min before running SDS PAGE. 

 

Table 2.4 Treatment of HaCaT keratinocyte cells for protein isolation. 

EtOH Vehicle 100 µL EtOH 10 mL Media 

100 nM Calcitriol 100 µL 10 µM Stock 10 mL Media 

10 µM Cholecalciferol 100 µL 1 mM Stock 10 mL Media 

DMSO Vehicle 100 µL DMSO 10 mL Media 

1 mM AICAR 100 µL 100 mM Stock 10 mL Media 

 

SDS PAGE and Western Blot 

 50 µg of whole cell extract samples were separated by SDS polyacrylamide gel 

electrophoreses (PAGE) using 4-15% or 10% Criterion™ TGX Stain-Free™ Precast gels (Bio-Rad).  

These gels were run at 250 V until the dye front reached the bottom of the gel (approximately 

thirty minutes).  They were then activated in the Bio-Rad Gel Doc™ EZ Imager, using the Image 

Lab™ software prior to being transferred onto nitrocellulose membrane at 75 V for 15 minutes.  
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The activation step involves the UV linkage of trihalo compounds in the precast gels to tryptophan 

residues in the proteins.  This produces fluorescence that can be detected by the imaging 

software.  The membranes were then imaged post-transfer to observe transfer efficiency.  After 

transfer membranes were blocked in 5% milk for 45-60 minutes.  Membranes were then 

incubated overnight in primary antibody solutions of TBS-Tween containing 5% BSA and sodium 

azide (Table 2.5).  HRP-conjugated secondary antibody solutions were prepared in TBS-Tween 

containing 5% BSA.  Blots were first probed with phospho-antibodies, followed by a stripping step 

(Restore™ Thermo Scientific) before probing with their total protein-specific antibody 

counterparts.  Blots were incubated with SuperSignal® West Pico or Femto chemiluminescent 

substrate (Thermo Scientific) before detection in the gel imager using the Quantity One® 1-D 

Analysis software.  Bands were detected and quantified with the Image Lab™ software.  The 

change in phosphorylation of three proteins of interest was calculated.  Results are given as fold-

change versus controls, with controls normalized to 1. 

 

Table 2.5 Antibodies used in Western Blot 

Target Vendor Catalog # Dilution Species 

phospho-4EBP, Thr 37/46 Cell Signaling 236B4 1:1000 Rabbit 

Total 4EBP Cell Signaling 9644 1:1000 Rabbit 

phospho-p70-S6K, Thr 389 Cell Signaling 9206 1:1000 Mouse 

Total p70-S6K Cell Signaling 2708 1:1000 Rabbit 

phospho-mTOR, Ser 2448 Cell Signaling 5536 1:1000 Rabbit 

Total mTOR Cell Signaling 2983 1:1000 Rabbit 

Anti-rabbit Santa Cruz Sc-2301 1-10,000 Goat 

Anti-mouse Santa Cruz Sc-2302 1:10,000 Goat 

 

Statistical Analysis 

A t test was performed to analyze all data.  A p value of less than 0.05 was considered significant.
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CHAPTER 3: Results 

WST-1 CELL PROLIFERATION ASSAY 

 HaCaT cells were treated for 24 or 48 hours with two forms of vitamin D3, calcitriol and 

cholecalciferol.  Results presented are from three independent experiments.  Following 24 hours 

of treatment 100 nM calcitriol increased cellular proliferation significantly (p = 0.03).  The 

absorbance at 450 nm increased by 19%, which directly correlates to a 19% increase in viable 

cells.  The other three treatment groups at this time point were not significantly different from 

controls (Figure 3.1).  Following 48 hours of treatment, all four groups had a significant increase 

in proliferation versus controls (p < 10-5).  10 nM and 100 nM Calcitriol increased proliferation by 

23% and 25%, respectively.  5 µM and 10 µM cholecalciferol increased proliferation by 29% and 

32%, respectively (Figure 3.2). 

 HaCaT cells were treated for 24 or 48 hours with AICAR.  Results presented are from three 

independent experiments.  Following 24 hours of treatment 1 mM AICAR decreased cellular 

proliferation significantly by 32% (p < 10-5) (Figure 3.3).  After 48 hours of treatment, both 

treatment groups had a significant decrease in proliferation versus controls; 0.1 mM AICAR 

decreased proliferation by 14% (p = 0.004), and 1 mM AICAR decreased proliferation by 42% (p 

< 10-10) (Figure 3.4). 

 

REAL-TIME PCR 

HaCaT cells were treated in with 100 nM calcitriol, 10 µM cholecalciferol, or EtOH vehicle 

for 24 or 48 hours.  Isolated RNA was used to create cDNA, which was then used to perform Real-

time analysis of several genes of interest.  Dissociation curves were analyzed for all genes to 
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exclude amplification results attributed to the presence of primer dimers.  The 25OHase reaction 

was repeated with 25% less primer to remove primer dimer amplification.  Genes tested were 

the vitamin D3 metabolizing genes (25OHase, 1αOHase, and 24OHase), three genes hypothesized 

to be affected by vitamin D3 treatment (VDR, REDD1, and Gli1), and Ras.  Ras was chosen because 

previous data from our laboratory showed an increased in Ras expression alongside increases in 

vitamin D activating enzymes in BCC tissue.  We wanted to determine whether or not this was 

directly caused by an increase in active vitamin D.  The samples called 24h Calcitriol-3 and 48h 

Calcitriol-2 both appear to be outliers, and each increases the average CT values for their groups.  

They have not been excluded, but will be addressed for each gene when necessary. 

 

25-OHase) Calcitriol treatment did not have an effect on expression of this gene following 24 

hours of treatment.  On average, the 48 hour treatment samples did not have an effect on this 

gene.  One sample, Calcitriol-3, had a two-fold increase, which brought the average close to that 

of controls.  When this sample is excluded the group has a reduction in 25OHase expression, 

although the data is not significant (p = 0.1).  Cholecalciferol appeared to increase expression 

following 24 hours, however the data is not significant.  Following 48 hours of treatment with 

cholecalciferol, 25OHase cDNA is significantly decreased compared to controls (p = 0.01) (Figure 

3.5). 

 

1α-OHase) Calcitriol treatment did not have an effect on expression of this gene.  Removal of 

both the 24 and 48 hour outliers brought the averages of these groups closer to that of controls.  

Cholecalciferol did not have an effect on expression following 24 hours.  However, following 48 
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hours of treatment with cholecalciferol, 1αOHase cDNA was significantly elevated above controls 

(p = 0.04) (Figure 3.6). 

 

24-OHase) Both calcitriol and cholecalciferol treatment increased the expression of this gene.  

The 24 hour data is not significant due to the variation within the groups, even when the outlier 

is excluded.  However, the trend is clearly evident and is supported by the several thousand-fold 

scale of the y-axis.  Following 48 hours of treatment the increase in expression with calcitriol and 

cholecalciferol treatment is significant (p < 0.015 and 10-5, respectively).  Excluding the outliers 

in the calcitriol treatment groups does not eliminate the significance (Figure 3.7). 

 

VDR) Calcitriol treatment did not have an effect on this gene.  Average fold-change was similar 

to controls, and exclusion of outliers brought the data even closer to controls.  Cholecalciferol 

treatment significantly increased VDR gene expression (p = 0.04).  This increase was gone after 

48 hours (Figure 3.8). 

 

REDD1)  24 hour treatment with calcitriol did not affect the expression of this gene, especially 

when the outlier was removed.  48 hour treatment indicated a trend of increased expression (p 

= 0.08), however the variation within the data prevented it from being significant, even with 

exclusion of the outlier.  Cholecalciferol treatment had a trend of increasing expression at 24 

hours.  This increase was significant following 48 hours of treatment (p = 0.01) (Figure 3.9). 
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Gli1)  Neither calcitriol nor cholecalciferol treatment had an effect on the expression of this gene 

following 24 or 48 hours of treatment (Figure 3.10). 

 

RAS) Neither calcitriol nor cholecalciferol treatment had an effect on the expression of this gene 

following 24 or 48 hours of treatment (Figure 3.11). 

 

WESTERN BLOT 

HaCaT cells were treated with Calcitriol, Cholecalciferol, or AICAR for 24 or 48 hours.  

Whole cell extract was isolated and analyzed by western blot.  Membranes were probed with 

antibodies for phosphorylated mTOR and total mTOR; phosphorylated S6K and total S6K; and 

phosphorylated 4EBP and total 4EB. 

 

mTOR) Both calcitriol and cholecalciferol 24 hour treatment resulted in a significant increase in 

phosphorylated mTOR (p = 0.04 and 0.02, respectively).  Calcitriol increased levels by 2.8 fold, 

while cholecalciferol increased levels by 2.3-fold.  Phosphorylation of mTOR returned to control 

levels after 48 hours (Figure 3.12). 

 

P70-S6K)  Both calcitriol and cholecalciferol treatment appeared to increase phosphorylation of 

S6K following 24 hours of treatment, however the data was not significant (p = 0.14 and 0.17, 

respectively).  The trend is gone following 48 hours of treatment (Figure 3.13).  Data are a 

combination of two western blots with the same samples. 
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4EBP)  Neither calcitriol nor cholecalciferol treatment significantly increased phosphorylation of 

4EBP following 24 hour treatment, however, a trend is evident.  After 48 hours of treatment, 

both forms of the vitamin significantly increased 4EBP phosphorylation status (p = 0.0008 and 

0.005, respectively) (Figure 3.14).  Calcitriol treatment resulted in a two-fold increase in 

phosphorylated 4EBP, while cholecalcitriol increased the levels by 2.5-fold.  Data are a 

combination of two western blots with the same samples. 

 

AICAR Treatment) As a control, cells were treated with 1 mM AICAR for 48 hour and whole cell 

extract was analyzed via western blot.  The same proteins were probed for as the vitamin D3 

treatment blots.  Treatment with AICAR resulted in a significant decrease in phosphorylation of 

all three proteins tested (pmTOR = 0.03, pS6K = 0.02, p4EBP = 0.04) (Figure 3.15).  The decrease is 

phosphorylation of mTOR was by 91%.  Phosphorylation of P70-S6K decreased by 55%.  

Phosphorylation of 4EBP decreased by 45%.  The data for 4EBP were a combination of two 

western blots with the same samples.



21 

 

Figure 3.1. Cellular proliferation following 24 hour treatment with vitamin D3.  HaCaT cells were 

treated for 24 hours with calcitriol (10 nM and 100 nM), cholecalciferol (5 µM and 10 µM), or 

vehicle.  Cells were then incubated with WST-1 reagent for four hours at 37°C.  Absorbance was 

read at 450 nM.  Results are presented as percentage versus controls.  A p-value of less than 0.05 

is considered significant.  Bars with different symbols are significantly different from each other. 
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Figure 3.2. Cellular proliferation following 48 hour treatment with vitamin D3.  HaCaT cells were 

treated for 48 hours with calcitriol (10 nM and 100 nM), cholecalciferol (5 µM and 10 µM), or 

vehicle.  Cells were then incubated with WST-1 reagent for four hours at 37°C.  Absorbance was 

read at 450 nM.  Results are presented as percentage versus controls.  A p-value of less than 0.05 

is considered significant.  Bars with different symbols are significantly different from each other. 
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Figure 3.3. Cellular proliferation following 24 hour treatment with AICAR.  HaCaT cells were 

treated for 24 hours with AICAR (0.1 mM and 1 mM) or vehicle.  Cells were then incubated with 

WST-1 reagent for four hours at 37°C.  Absorbance was read at 450 nM.  Results are presented 

as percentage versus controls.  A p-value of less than 0.05 is considered significant.  Bars with 

different symbols are significantly different from each other. 
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Figure 3.4. Cellular proliferation following 48 hour treatment with AICAR.  HaCaT cells were 

treated for 48 hours with AICAR (0.1 mM and 1 mM) or vehicle.  Cells were then incubated with 

WST-1 reagent for four hours at 37°C.  Absorbance was read at 450 nM.  Results are presented 

as percentage versus controls.  A p-value of less than 0.05 is considered significant.  Bars with 

different symbols are significantly different from each other. 
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Figure 3.5. 25-OHase transcript fold change following treatment with vitamin D3.  HaCaT cells 

were treated with 100 nM calcitriol, 10 µM cholecalciferol, or vehichle for 24 hours (a,b) or 48 

hours (c,d).  Real-time PCR was performed using primers specific for 25-hydroxylase.  Changes 

in expression of this gene are presented as fold change relative to controls.  A p-value of less 

than 0.05 is considered significant.  Bars with different symbols are significantly different from 

each other. 
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Figure 3.6. 1α-OHase transcript fold change following treatment with vitamin D3.  HaCaT cells 

were treated with 100 nM calcitriol, 10 µM cholecalciferol, or vehichle for 24 hours (a,b) or 48 

hours (c,d).  Real-time PCR was performed using primers specific for 1α-hydroxylase.  Changes in 

expression of this gene are presented as fold change relative to controls.  A p-value of less than 

0.05 is considered significant.  Bars with different symbols are significantly different from each 

other. 
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Figure 3.7. 24-OHase transcript fold change following treatment with vitamin D3.  HaCaT cells 

were treated with 100 nM calcitriol, 10 µM cholecalciferol, or vehichle for 24 hours (a,b) or 48 

hours (c,d).  Real-time PCR was performed using primers specific for 24-hydroxylase.  Changes in 

expression of this gene are presented as fold change relative to controls.  A p-value of less than 

0.05 is considered significant.  Bars with different symbols are significantly different from each 

other. 



28 

 

Figure 3.8. VDR transcript fold change following treatment with vitamin D3.  HaCaT cells were 

treated with 100 nM calcitriol, 10 µM cholecalciferol, or vehichle for 24 hours (a,b) or 48 hours 

(c,d).  Real-time PCR was performed using primers specific for the vitamin D receptor.  Changes 

in expression of this gene are presented as fold change relative to controls.  A p-value of less than 

0.05 is considered significant.  Bars with different symbols are significantly different from each 

other. 
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Figure 3.9. REDD1 transcript fold change following treatment with vitamin D3.  HaCaT cells were 

treated with 100 nM calcitriol, 10 µM cholecalciferol, or vehichle for 24 hours (a,b) or 48 hours 

(c,d).  Real-time PCR was performed using primers specific for REDD1.  Changes in expression of 

this gene are presented as fold change relative to controls.  A p-value of less than 0.05 is 

considered significant.  Bars with different symbols are significantly different from each other. 
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Figure 3.10. Gli1 transcript fold change following treatment with vitamin D3.  HaCaT cells were 

treated with 100 nM calcitriol, 10 µM cholecalciferol, or vehichle for 24 hours (a,b) or 48 hours 

(c,d).  Real-time PCR was performed using primers specific for Gli1.  Changes in expression of this 

gene are presented as fold change relative to controls.  A p-value of less than 0.05 is considered 

significant.  Bars with different symbols are significantly different from each other. 
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Figure 3.11. Ras transcript fold change following treatment with vitamin D3.  HaCaT cells were 

treated with 100 nM calcitriol, 10 µM cholecalciferol, or vehichle for 24 hours (a,b) or 48 hours 

(c,d).  Real-time PCR was performed using primers specific for Ras.  Changes in expression of this 

gene are presented as fold change relative to controls.  A p-value of less than 0.05 is considered 

significant.  Bars with different symbols are significantly different from each other. 
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Figure 3.12. Change in phosphorylation of mTOR following treatment with vitamin D3.  HaCaT 

cells were treated with 100 nM calcitriol, 10 µM cholecalciferol, or vehichle for 24 hours or 48 

hours.  Whole cell extract (50µg per sample) was compared by western blot analysis.  Blots were 

probed with antibody specific for phosphorylated mTOR (Ser 2448) and total mTOR.  Changes in 

phosphorylation of this gene are presented as fold change relative to controls.  A p-value of less 

than 0.05 is considered significant.  Bars with different symbols are significantly different from 

each other. 
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Figure 3.13. Change in phosphorylation of P70-S6K following treatment with vitamin D3.  HaCaT 

cells were treated with 100 nM calcitriol, 10 µM cholecalciferol, or vehichle for 24 hours or 48 

hours.  Whole cell extract (50µg per sample) was compared by western blot analysis.  Blots were 

probed with antibody specific for phosphorylated P70-S6K (Thr 389) and total P70-S6K.  Changes 

in phosphorylation of this gene are presented as fold change relative to controls.  A p-value of 

less than 0.05 is considered significant.  Bars with different symbols are significantly different 

from each other. 
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Figure 3.14. Change in phosphorylation of 4EBP following treatment with vitamin D3.  HaCaT 

cells were treated with 100 nM calcitriol, 10 µM cholecalciferol, or vehichle for 24 hours or 48 

hours.  Whole cell extract (50µg per sample) was compared by western blot analysis.  Blots were 

probed with antibody specific for phosphorylated 4EBP (Thr 37/46) and total 4EBP.  Changes in 

phosphorylation of this gene are presented as fold change relative to controls.  A p-value of less 

than 0.05 is considered significant.  Bars with different symbols are significantly different from 

each other. 
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Figure 3.15. Change in phosphorylation of mTOR, P70-S6K, and 4EBP following treatment with 

AICAR.  HaCaT cells were treated with 1 mM AICAR or vehichle for 48 hours.  Whole cell extract 

(50µg per sample) was compared by western blot analysis.  Blots were probed with antibody 

specific for phosphorylated mTOR (Ser 2448) and total mTOR (a), phosphorylated P70-S6K (Thr 

389) and total P70-S6K (b), and phosphorylated 4EBP (Thr 37/46) and total 4EBP (c).  Changes in 

phosphorylation of this gene are presented as fold change relative to controls.  A p-value of less 

than 0.05 is considered significant.  Bars with different symbols are significantly different from 

each other. 
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CHAPTER 4: Discussion 

 The vast majority of research indicates that vitamin D3 has anti-proliferative effects in 

vitro.  These effects have even been shown in clinical studies of breast and colon cancer, and the 

results of vitamin D3 treatment are generally positive for these cancers.  Unfortunately, data is 

lacking and inconclusive in the treatment of basal cell carcinoma.  Perhaps one reason for the 

varied response to treatment for different tissues is the difference in exposure to UV light 

combined with the availability of vitamin D3 metabolizing enzymes.  The skin is unique because it 

has all of these, and thus it has the potential to synthesize active vitamin D3 de novo, as well as 

inactivate it when high levels are no longer desirable.  Because of this, it is necessary to perform 

cell culture experiments in skin cell models of basal cell carcinoma, and not cells from other 

tissues.  Unfortunately, experiments are difficult because BCC cells do not proliferate well in 

culture.  The HaCaT keratinocyte cell line, therefore, is a useful model for skin tissue because it is 

immortalized and grows rapidly in culture.   

 In the present study, HaCaT cells were treated with various concentrations of calcitriol or 

cholecalciferol for 24 or 48 hours.  As a positive control, cells were also treated with AICAR for 24 

or 48 hours, which significantly decreased proliferation relative to controls.  The AICAR results 

indicate that proliferation of these cells is capable of being inhibited despite high levels of growth 

factors in the media.  Interestingly, not only did treatments with both calcitriol and cholecalciferol 

fail to inhibit proliferation, they actually increased it.  Early research involving these cells 

indicated that high calcium concentrations may actually render calcitriol treatment proliferative, 

however current research rarely considers this.33,34  Calcium concentration in the skin is stratified 

and corresponds to the level of differentiation of the cells, with low levels in the stratum basale, 
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and high levels in the stratum granulosum.35  If high calcium correlates with a more differentiated 

phenotype, it seems counter-intuitive that high levels would also render calcitriol treatment 

proliferative, as differentiation is usually associated with growth cessation.  Analysis of the 

DMEM used in our experiments showed that our cell culture media contained 1.8 mM calcium, 

which corresponded to the high concentrations tested in these early experiments.  It should be 

noted that this is a common formulation used in many cell culture experiments, including those 

relevant to the current study.  Other early studies suggest that low, physiological concentrations 

of calcitriol promoted growth, however, the concentrations tested in the present study were 

higher than these and were expected to be inhibitory.36  Taking these older studies into 

consideration may make it feasible that vitamin D3 treatment may not inhibit growth under all 

conditions.  Based on these results, we decided to investigate key effectors in the mTOR and 

Hedgehog pathways to understand how their status may impact proliferation in our treatment 

groups. 

 Real time PCR was performed on cDNA from cells that were treated with calcitriol, 

cholecalciferol, and ethanol vehicle.  Calcitriol treatment had no effect on expression of the 

metabolizing 25-hydroxylase and 1α-hydroxylase genes, as it is an end product of their sequential 

reactions.  Cholecalciferol appeared to increase 25-hydroxylase mRNA following 24 hours of 

treatment (p = 0.1), and then significantly decrease it after 48 hours.  A significant increase in 1α-

hydroxylase was seen after 48 hours.  Taken together, the expression of these enzymes may 

correlate with sequential hydroxylation of cholecalciferol to form calcitriol. 

Both calcitriol and cholecalciferol treatment significantly increased 24-hydroxylase (the 

vitamin D3 inactivating enzyme) mRNA after 48 hours of treatment.  The 24-hydroxylase 
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promoter contains two vitamin D response elements (VDREs) that bind the vitamin D receptor.37  

The increase seen here verifies that both calcitriol and cholecalciferol successfully entered the 

cells and were capable of exerting an effect on gene expression via the vitamin D receptor (VDR).  

Additionally, this verifies that cholecalciferol was successfully hydroxylated by 25-hydroxylase 

and 1α-hydroxylase, as only calcitriol binds VDR.38  The thousand-fold increase in expression of 

this gene is too substantial to be ignored.  24-hydroxylase is often considered an oncogene 

because it results in the degradation of vitamin D3.39  Indeed, inhibition of 24-hydroxylase 

enhanced the anti-proliferative properties of calcitriol in prostate cancer cells.40  Perhaps the 

major up-regulation of this gene is also somehow responsible for the increase in proliferation 

seen here. Another point to consider is that any effects seen in this study may be an artifact of 

the limitations of cell culture.  24-hydroxylase inactivation of calcitriol and cholecalciferol in vivo 

results in their clearance from the body, while in vivo these products accumulate in the media.   

 While both forms of vitamin D3 were able to regulate 24-hydroxylase gene expression, 

only cholecalciferol had an effect on the VDR transcript.  Levels increased significantly with 24 

hours of treatment, and then returned to control levels after 48 hours (as protein concentration 

was most likely sufficient).  However, it cannot be directly inferred that the difference in 

expression of VDR mRNA between calcitriol and cholecalciferol treatment groups affected the 

activity of VDR protein.  REDD1 (a target of VDR transcription regulation) mRNA was significantly 

increased by cholecalciferol treatment after 48 hours.  However, the trend is also evident for 

calcitriol treatment (p = 0.08), so it is most likely that REDD1 mRNA is also increased in this group.  

Perhaps cholecalciferol treatment increased VDR expression, which allowed for a faster 

accumulation of REDD1, however, this conclusion needs further investigation. 
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 The most common mutations found in BCC are those affecting the Hedgehog pathway.  

Vitamin D3 is perhaps so compelling in the treatment of BCC because multiple studies suggest 

that calcitriol and/or cholecalciferol can inhibit activation of this pathway.  While some suggest 

that the inhibition comes at the level of blocking Smo, independent of the VDR, others say that 

calcitriol, via VDR, controls the expression of several of the genes involved.  Ultimately, all 

suggested means of inhibition result in a decrease in Gli1 mRNA.  Analysis of Real Time PCR data 

showed that neither calcitriol nor cholecalciferol treatment had any effect on the expression of 

Gli1 transcript in the current study.  One possible explanation for this is that both forms of vitamin 

D3 are incapable of inhibiting this pathway due to the cell culturing conditions.  It could be that 

the presence of growth factors override the ability of VDR to control the expression of genes in 

the pathway.  It is possible that another nutrient in the media is blocking the ability of calcitriol 

and/or cholecalciferol to bind to and inhibit Smo.  A second explanation may be that Gli1 mRNA 

can only be reduced when it is over-expressed in the first place.  No studies suggest any mutations 

in this pathway in HaCaT cells, so it can be assumed that this pathway is not over-active.  Testing 

this theory might involve the introduction of a deregulating mutation to Ptch or Smo, and then 

observation of the effects of vitamin D3 treatment on Gli1 mRNA expression.  Regardless of the 

cause, the absence of an effect on Gli1 transcript expression in the present study provides two 

important pieces of information.  First, it supports our findings that vitamin D3 treatment does 

not always inhibit proliferation of HaCaT cells.  Second, it shows that vitamin D3 treatment does 

not upregulate this pathway, and therefore it is not the cause of the increase in proliferation seen 

in our WST-1 assay. 
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 We also looked at the expression of Ras in response to calcitriol and cholecalciferol.  

Earlier research in our laboratory showed that Ras was up-regulated in cancer tissue, along with 

up-regulation of 1α-hydroxylase.  We wanted to confirm that the increase in Ras transcript was 

due to a malfunction of the cancer cells, and not somehow caused by increasing concentrations 

of calcitriol.  Real Time PCR data showed that calcitriol and cholecalciferol treatments had no 

effect of Ras expression. 

 Taken together, the results from Real Time PCR indicate that cholecalciferol is converted 

to calcitriol by 25-hydroxylase and 1α-hydroxylase.  Calcitriol is then able to bind to VDR, resulting 

in up-regulation of REDD1 and 24-hydroxylase.  REDD1 inhibits the mTOR pathway, so the 

increase in REDD1 we see should lead to inhibition of proliferation.  Neither calcitriol nor 

cholecalciferol inhibited the Hedgehog pathway, as determined by the lack of effect on Gli1 

expression.  While this may be partially responsible for the lack of inhibition on cell proliferation, 

it does not explain the increase in proliferation seen.  To further probe the cause of the 

dysfunction, we decided to investigate what is occurring downstream of REDD1.  To do so 

required the utilization of western blotting, as the signaling involves the phosphorylation status 

of key proteins, including mTOR, P70-S6K, and 4EBP. 

 HaCaT cells were treated with calcitriol, cholecalciferol, or ethanol vehicle for 24 or 48 

hours.  As a control, cells were also treated with AICAR or DMSO vehicle for 48 hours.  The 

increase in REDD1 was expected to result in a decrease in phosphorylation of mTOR, which would 

inhibit proliferation.  After 24 hours of treatment with both calcitriol and cholecalciferol we see 

a significant increase in phosphorylation of mTOR (Figure 3.12).  After 48 hours the 

phosphorylation of mTOR returns to control levels.  Phosphorylation of mTOR results in its 
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activation, which leads to downstream signaling that encourages cellular proliferation.  This helps 

explain the increase in proliferation seen in the WST-1 assay.   

To probe whether the activation of mTOR had effects downstream, we also looked at the 

phosphorylation of its targets, P70-S6K and 4EBP.  Neither treatment had a significant effect on 

P70-S6K phosphorylation, however an increasing trend is seen at 24 hours (p < 0.2).  The 

treatment groups return to levels of controls after 48 hours (Figure 3.13).  Next we looked at 

4EBP.  Neither treatment had an effect on phosphorylation of this protein after 24 hours.  

However, after 48 hours of treatment both calcitriol and cholecalciferol had a significant increase 

in 4EBP phosphorylation.  This clearly helps to explain the increase in cellular proliferation we see 

in response to treatment with both forms of vitamin D3.  Phosphorylation of 4EBP results in its 

inactivation, and removes its inhibition of the translation initiation factor, 4E.  This results in the 

recruitment of the translation machinery and assembly of the ribosome.  Therefore, 4EBP is 

essential in controlling the rate of translation in the cell, and its inactivation removes inhibition 

of protein synthesis.  This, in turn, can contribute to an increase in cellular proliferation. 

As mentioned, we also treated cells with AICAR as a positive control.  AICAR 

phosphorylates AMPK, which is a sensor of cellular energy status.  An increase in p-AMPK signals 

a decrease in ATP/ADP ratio, and results in inhibition of proliferation.  One way this happens is 

by direct control of mTOR activation.  Protein analysis via western blot yielded a significant 

decrease in phosphorylation of mTOR, P70-S6K, and 4EBP following 48 hours of AICAR treatment 

(Figure 3.15).  This is essential to explain the decrease in proliferation due to AICAR, but not 

Vitamin D3, treatment seen in the WST-1 assay.  When the mTOR pathway is inhibited 
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proliferation can also be inhibited.  However, more research is needed in order to prove causality, 

because AICAR may control other pathways as well. 

Under conditions in our laboratory, vitamin D3 treatment increased the proliferation of 

HaCaT cells.  AICAR treatment showed that cell proliferation was capable of being inhibited in 

the media formulation used.  Neither form of Vitamin D3 decreased Gli1 transcript levels, 

indicating that they do not inhibit the Hedgehog pathway in these conditions.  This helped us 

understand why proliferation was not inhibited, but to explain why it was increased required 

analysis of the mTOR pathway.  AICAR treatment also showed that the mTOR pathway was intact, 

and inhibition of this pathway may inhibit proliferation.  Real-time PCR data showed that REDD1 

transcript was increased by cholecalciferol, and most likely by calcitriol as well (p = 0.08).  An 

increase in REDD1 should result in a decrease in mTOR phosphorylation, but we saw the opposite 

effect.  Therefore, the dysfunction seen in the inhibition of proliferation by Vitamin D3 must be 

presenting at the level of the inhibition of mTOR by REDD1.  Somehow calcitriol and 

cholecalciferol treatment either block the negative regulation of REDD1 on mTOR, or they impact 

another pathway that activates mTOR, and this activity overwhelms the negative regulation 

coming from REDD1.  Either way, the negative regulation of vitamin D3 on cellular proliferation is 

reversed due to insensitivity of mTOR to REDD1, and activation of the mTOR pathway. 

The results presented here suggest that vitamin D3 treatment increases proliferation of 

HaCaT cells under conditions in our laboratory.  This goes against most current research, which 

generally supports the anti-proliferative activity of vitamin D3.  Early research from the 1990’s 

suggested that high calcium concentrations may render calcitriol proliferative in these cells.  Our 

media contains 1.8 mM calcium, which corresponds to these high concentrations.  Therefore, the 
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dysregulation seen in the current study may be occurring due to an interaction between vitamin 

D3 and extracellular calcium.  However, several current studies culture cells in media containing 

1.8 mM calcium, yet still show that vitamin D3 has anti-proliferative properties.12,25 

It should be noted that this research does not condemn the use of vitamin D3 in cancer 

treatment or nutritional supplementation.  The effects vitamin D3 has on bone remodeling, 

immune function, and cell proliferation are vast and varied.  Normal, physiological concentrations 

of vitamin D3 are essential for proper functioning of cells, tissues, organs, and organ systems.  The 

ability to increase concentrations of vitamin D3 are also essential to protect against stress from 

the environment, such as UV rays.  However, this research shows that over-supplementation is 

not always beneficial.  Under HaCaT cell culture conditions in our laboratory, too much of a good 

thing turned out to be bad. 

 

Future Directions 

 In order to determine whether these results are affected by the formulation of the media, 

more experiments are required.  The next logical experiments would include serum deprivation 

to control for the effects of growth factors in the media.  Also desirable are experiments 

performed in the presence of lower concentrations of calcium. 

 One interesting question that arose from this project is why treatment had no effect on 

control of the Hedgehog pathway.  I hypothesize that vitamin D3 only inhibits Gli1 expression 

when it is over-expressed.  Testing this would involve either mutating PTCH or Smo, or 

transgenically over-expressing Gli1.  Doing so would help explain why our data disagree with what 

so many other studies suggest. 
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 The main concern of the current study is that vitamin D3 treatment increased proliferation 

of these cells, when we expected to see a decrease.  I hypothesize that this is caused by the 

extreme increase in 24-hydroxylase gene expression.  The skin is unique in its ability to synthesize 

and activate vitamin D3, because it is directly exposed to the UV light and it possesses all of the 

enzymes required for its conversion to calcitriol.  This can lead to a rapid accumulation of 

calcitriol, which other organs do not experience.  Other organs gradually obtain calcitriol from 

the blood, after it has been activated in the liver and kidneys.  For this reason, the skin also needs 

to be able to inactivate calcitriol rapidly.  Treating skin cells with pharmacologic doses of vitamin 

D3 resulted in a several thousand-fold increase in 24-hydroxylase.  I propose that in addition to 

inhibition of calcitriol, 24-hydroxylase has other oncogenic effects.  I hypothesize that 24-

hydroxylase or its product, 1α,24,25(OH)3 D3, is involved in one or more signal transduction 

pathways that lead to increased proliferation.  Testing this would first involve silencing 24-

hydroxylase and looking for proliferation inhibition following vitamin D3 treatment.  Determining 

its direct effect would involve the analysis of the status of several signaling pathways, including 

the RAS/RAF/MEK/ERK and PI3K/AKT pathways. 

 The present study needs to be repeated in primary cells to confirm that our results are 

true under even more accurate physiological conditions.  While HaCaT cells are a good model for 

the skin, they are not the best.  Unfortunately, however strong an in vitro model may be, the 

results obtained may never truly replicate the influence of organ systems in vivo.  Due to the 

limitations of cell culture, the only true way to test our results is to sample human tissue. 
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 Vitamin D3 treatment has long been considered in the treatment of cancer due to its well-

documented anti-proliferative effects in vitro.  While clinical studies have been positive in other 

cancers, results are inconclusive in cases of basal cell carcinoma.  To better understand the 

reasons underlying this disconnect, this study employs an immortalized human keratinocyte cell 

line (HaCaT) to observe the effects of vitamin D3 treatment on cellular proliferation.  The results 

show that both activate vitamin D3 (calcitriol) and its precursor (cholecalciferol) increase 

proliferation of these cells.  Real-time PCR and western blot data indicate that the mTOR pathway 

becomes activated despite increased VDR signaling and expression of REDD1.  Treatment was 

also unable to inhibit the Hedgehog signaling pathway.
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