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A Weighted Moving Average Process for Forecasting 
 

Shou Hsing Shih Chris P. Tsokos 
University of South Florida

 

 
 
The object of the present study is to propose a forecasting model for a nonstationary stochastic 
realization. The subject model is based on modifying a given time series into a new k-time moving 
average time series to begin the development of the model. The study is based on the autoregressive 
integrated moving average process along with its analytical constrains. The analytical procedure of the 
proposed model is given. A stock XYZ selected from the Fortune 500 list of companies and its daily 
closing price constitute the time series. Both the classical and proposed forecasting models were 
developed and a comparison of the accuracy of their responses is given. 
 
Key words: ARIMA, moving average, stock, time series analysis 
 
 

Introduction 
 
Time series analysis and modeling plays a very 
important role in forecasting, especially when 
our initial stochastic realization is nonstationary 
in nature. Some of the interesting and useful 
publications related to the subject area are 
Akaike (1974), Banerjee et al. (1993), Box et al. 
(1994), Brockwell and Davis (1996), Dickey and 
Fuller (1979), Dickey et al. (1984), Durbin and 
Koopman (2001), Gardner et al. (1980), Harvey 
(1993), Jones (1980), Kwiatkowski et al. (1992), 
Rogers (1986), Said and Dickey (1984), 
Sakamoto et al. (1986), Shumway and Stoffer 
(2006), Tsokos (1973), Wei (2006). 

The subject of the present study is to 
begin with a given time series that characterizes  
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an economic or any other natural phenomenon 
and as usual, is nonstationary. Box and Jenkins 
(1994) have introduced a popular and useful 
classical procedure to develop forecasting 
models that   have been shown to be quite 
effective. In the present study, we introduce a 
procedure for developing a forecasting model 
that is more effective than the classical approach 
is introduced. For a given stationary or 
nonstationary time series, }{ tx , generate a k-day 

moving average time series, }{ ty , and the 

developmental process begins. 
Basic concepts and analytical methods 

are reviewed that are essential in structuring the 
proposed forecasting model. The review is based 
on the autoregressive integrated moving average 
processes. The accuracy of the proposed 
forecasting model is illustrated by selecting from 
the list of Fortune 500 companies, company 
XYZ, and considering its daily closing prices for 
500 days. The classical time series model for the 
subject information along with the proposed 
process was developed. A statistical comparison 
based on the actual and forecasting residuals is 
given, both in tabular and graphical form. 
 
Proposed Forecasting Model: k-th Moving 
Average 

Before introducing the proposed 
forecasting model, several important 
mathematical concepts will be defined that are 
essential in developing the analytical process. It 
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is known that it is not possible to proceed in 
building a time series model without conforming 
to certain mathematical constrains such as 
stationarity of a given stochastic realization. 
Almost always, the time series that are given are 
nonstationary in nature and then, it is necessary 
to proceed to reduce it into being stationary. Let  
{ }tx be the original time series. The difference 

filter is given by 

                               dB)1( − ,                        (1) 
 

where jtt
j xxB −= , and d is the degree of 

differencing of the series.  
In time series analysis, the primary use 

for the k-th moving average process is for 
smoothing a realized time series. It is very useful 
in discovering a short-term, long-term trends and 
seasonal components of a given time series. The 
k-th moving average process of a time series 
{ }tx  is defined as follows: 

                         
−

=
++−=

1

0
1

1 k

j
jktt x

k
y ,              (2) 

 
where  nkkt ,...,1, += . It can be seen that as k 
increases, the number of observations k of 
{ }ty decreases, and { }ty  gets closer and closer 

to the mean of { }tx  as k increases. In addition, 

when nk = , { }ty  reduces to only a single 

observation, and equals μ , that is 

                         
=

==
n

j
jt x

n
y

1

1 μ ,               (3) 

 
 The proposed model is developed by 
transforming the original time series { }tx  into 

{ }ty  by applying (2). After establishing the new 

time series, usually nonstationary, the process of 
reducing it into a stationary time series is begun. 
Kwiatkowski,  Phillips,  Schmit, and Shin 
(1992) introduced the KPSS Test to check the 
level of stationarity of a time series. The 
differencing order d is applied to the new time 

series }{ ty  for ,...2,1,0=d , then verify the 
stationarity of the series with the KPSS test until 
the series become stationary. Therefore, the 

nonstationary time series is reduced into a 
stationary one after a proper number of 
differencing. The model building procedure is 
then developed via the proposed forecasting 
model.  

After choosing a proper degree of 
differencing d, assume different orders for the 
autoregressive integrated moving average 
model, ARIMA(p,d,q), also known as Box and 
Jenkins method, where (p,d,q) represent the 
order of the autoregressive process, the order of 
differencing and the order of the moving average 
process, respectively. The ARIMA(p,d,q) is 
defined as follows: 

                tqt
d

p ByBB εθφ )()1)(( =−  ,         (4) 

 
where { }ty  is the realized time series, pφ and 

qθ  are the weights or coefficients of the AR and 

MA that drive the model, respectively, and tε  is 

the random error. Write  pφ  and qθ   as  

 

         ( )p Bφ = 2
1 2(1 ... )p

pB B Bφ φ φ− − − − ,  (5)              

and 
                                                                             

( )q Bθ = 2
1 2(1 ... )q

qB B Bθ θ θ− − − − .             (6)                   

      
In time series analysis, sometimes it is 

very difficult to make a decision in selecting the 
best order of the ARIMA(p,d,q) model when 
there are several models that all adequately 
represent a given set of time series. Hence, 
Akaile’s information criterion (AIC) (1974), 
plays a major role when it comes to model 
selection. AIC was introduced by Akaike in 
1973, and it is defined as: 
 
AIC(M)= -2ln[maximum likelihood]+2M,      (7)                  
             
where M is the number of parameters in the 
model and the unconditional log-likelihood 
function suggested by Box, Jenkins, and Reinsel 
(1994), is given by 

2ln ( , , , )L εφ μ θ σ = 2
2

( , , )
ln 2

2 2

n S
ε

ε

φ μ θπσ
σ

− − ,(8)                           

where ),,( θμφS  is the unconditional sum of 
squares function given by 
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( , , )S φ μ θ = 2[ ( , , , )]
n

t
t

E yε φ μ θ
=−∞
                 (9)           

          

where ),,,( yE t θμφε  is the conditional 

expectation of tε  given y,,, θμφ . 

The quantities 
∧
φ , 

∧
μ , and 

∧
θ  that 

maximize (8) are called unconditional maximum 

likelihood estimators. Since ),,,(ln 2
εσθμφL  

involves the data only through ),,( θμφS , these 
unconditional maximum likelihood estimators 
are equivalent to the unconditional least squares 
estimators obtained by minimizing ),,( θμφS . 
In practice, the summation in (9) is 
approximated by a finite form 
 

 ( , , )S φ μ θ =
2[ ( , , , )]

n

t
t M

E yε φ μ θ
=


            (10) 
                       
where M is a sufficiently large integer such that 
the back cast increment 

),,,(),,,( 1 yEyE tt θμφεθμφε −−  is less 

than any arbitrary predetermined small ε  value 
for )1( +−≤ Mt . This expression implies that 

μθμφε ≅),,,( yE t ; hence, ),,,( yE t θμφε  

is negligible for )1( +−≤ Mt .   
After obtaining the parameter estimates 

∧
φ , 

∧
μ , and 

∧
θ , the estimate 

∧
2
εσ  of 2

εσ  can then 

be calculated from 

                        
n

S ),,(2

∧∧∧
∧

= θμφσε  .                  (11) 

For an ARMA(p,q) model based on n 
observations, the log-likelihood function is 

   ln L =   2
2

1
ln 2 ( , , )

2 2

n
Sε

ε

πσ φ μ θ
σ

− − .    (12)                        

                     
Proceed to maximize (12) with respect to the 

parameters ,,, θμφ  and 2
εσ , from (11),  

    ln L
∧

=  2ln (1 ln 2 )
2 2

n n
εσ π

∧

− − + .             (13) 

 

Because the second term in expression (13) is a 
constant, we can reduce the AIC to the following 
expression 

                      AIC(M) Mn 2ln 2 +=
∧

εσ .        (14) 

 
Then, an appropriate time series model is 
generated and the statistical process with the 
smallest AIC can be selected. The model 
identified will possess the smallest average 
mean square error. The development of the 
model is summarized as follows. 

• Transform the original time series }{ tx  

into a new series }{ ty . 

• Check for stationarity of the new time 
series }{ ty  by determining the order of 

differencing d, where ,...2,1,0=d  
according to KPSS test, until stationarity 
is achieved. 

• Decide the order m  of the process. For 
this case, let 5=m  where mqp =+ . 

• After (d, m ) is selected, list all possible 
set of (p, q) for mqp ≤+ . 

• For each set of (p, q), estimate the 
parameters of each model, that is, 

qp θθθφφφ ,...,,,,...,, 2121  
• Compute the AIC for each model, and 

choose the one with smallest AIC. 
 
According to the criterion mentioned 

above, the ARIMA(p,d,q) model can be obtained 
that best fit a given time series, where the 
coefficients are qp θθθφφφ ,...,,,,...,, 2121 . 

 Using the model that we developed for 
}{ ty  and subject to the AIC criteria, we forecast 

values of }{ ty  and proceed to apply the back-

shift operator to obtain estimates of the original 
phenomenon }{ tx , that is,  

tx
∧

=  1 2 1...t t t t kk y x x x
∧

− − − +− − − − .               (15) 

 
The proposed model and the 

corresponding procedure discussed in this 
section shall be illustrated with real economic 
application and the results will be compared 
with the classical time series model. 
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Figure 1. Daily Closing Price for Stock XYZ 
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Figure 2. Comparisons on Classical ARIMA Model VS. Original Time Series for the Last 100 

Observations 
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Figure 3. Time Series Plot of the Residuals for Classical Model 

 
 
 
Application: Forecasting Stock XYZ  
 A stock was selected from Fortune 500 
companies that we identify a (XYZ). The daily 
closing price for 500 days constitutes the time 
series }{ tx . A plot of the actual information is 

given by Figure 1.  
First, develop a time series forecasting 

model of the given nonstationary data using the 
ordinary Box and Jenkins methodology. 
Secondly, we shall modify the given data, 
Figure 1, to develop the proposed time series 
forecasting model. A comparison of the two 
models will be given. 

The general theoretical form of the 
ARIMA(p,d,q) is given by 
 

                 tqt
d

p BxBB εθφ )()1)(( =−       (16) 

 
Following the Box and Jenkins’ methodology 
(1994), the classical forecasting model with the  

 
 
best AIC score is the ARIMA(1,1,2). That is, a 
combination of first order autoregressive (AR)  
and a second order moving average (MA) with a 
first difference filter. Thus, write it as 
 

(1 .9631 )(1 ) tB B x− − = 2(1 1.0531 .0581 ) tB B ε− +                     

                                                                       (17) 
 
After expanding the autoregressive operator and 
the difference filter,  

             2(1 1.9631 .9631 ) tB B x− + =          (18) 

               2(1 1.0531 .0581 ) tB B ε− +  

 
and rewrite the model as 
 

Table 1. Basic Evaluation Statistics 

r   
2
rS  rS  

n
Sr  

0.02209169 0.1445187 0.3801562 0.0170011 
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1 21.9631 .9631t t tx x x− −= − +        (19) 

                 1 21.0531 .0581t t tε ε ε− −− +  

 

by letting 0=tε , there is the one day ahead  

forecasting time series of the closing price of 
stock XYZ as 
                    

1 21.9631 .9631t t tx x x
∧

− −= −          (20) 

                     1 21.0531 .0581t tε ε− −− + . 

  
  
 

 
 
 
 
Using the above equation, graph the forecasting 
values obtained by using the classical approach 
on top of the original time series, as shown by 
Figure 2. 

The basic statistics that reflect the 

accuracy of model (20) are the mean r , variance 
2
rS , standard deviation rS  and standard error 

n
Sr  of the residuals. Figure 3 gives a plot of 

the residual and Table 1 gives the basic 
statistics. 

Furthermore, restructure the model (20) 
with 475=n  data points to forecast the  last 25  

 
Table 2. Actual and Predicted Price 

N Actual Price Predicted Price Residuals 
476 26.78 26.8473 -0.0673 
477 26.75 26.7976 -0.0476 
478 26.67 26.7673 -0.0972 
479 26.8 26.6922 0.1078 
480 26.73 26.8064 -0.0764 
481 26.78 26.7490 0.0310 
482 26.27 26.7911 -0.5211 
483 26.12 26.3277 -0.2077 
484 26.32 26.1631 0.1569 
485 25.98 26.3364 -0.3564 
486 25.86 26.0349 -0.1749 
487 25.65 25.9068 -0.2568 
488 25.67 25.6670 0.0031 
489 26.02 25.7119 0.3081 
490 26.01 26.0335 -0.0235 
491 26.11 26.0427 0.0674 
492 26.18 26.1343 0.0457 
493 26.28 26.2032 0.0768 
494 26.39 26.2986 0.0914 
495 26.46 26.4043 0.0557 
496 26.18 26.4743 -0.2943 
497 26.32 26.2219 0.0981 
498 26.16 26.3354 -0.1754 
499 26.24 26.1953 0.0447 
500 26.07 26.2602 -0.1902 
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observations using only the previous 
information. The purpose is to see how accurate 
our forecast prices are with respect to the actual 
25 values that have not been used. Table 2 gives 
the actual price, predicted price, and residuals 
between the forecasts and the 25 hidden values. 

The average of these residuals is 05608.0−=r . 
 Proceed to develop the proposed 
forecasting model. The original time series of 
stock XYZ daily closing prices is given by 
Figure 1. The  
new time series is being created by 3=k  days 
moving average and the analytical form of }{ ty  

is given by 
 

                   
3

12 ttt
t

xxx
y

++= −−                   (21) 

Figure 4 shows the new time series }{ ty  along 

with the original time series }{ tx , that will be 

used to develop the proposed forecasting model. 
 
Following the procedure stated above, the best 
model that characterizes the behavior of }{ ty is 

ARIMA (2,1,3). That is, 

   
 
 

         2(1 .8961 .0605 )(1 ) tB B B y− − − =     (22) 

           2 3(1 .0056 .0056 ) tB B B ε+ − −  

 
Expanding the autoregressive operator and the 
first difference filter, we have 
 

 2 3(1 1.8961 .8356 .0605 ) tB B B y− + + =    (23) 

 2 3(1 .0056 .0056 ) tB B B ε+ − −  
 
Thus, write (23) as 
 
 ty = 1 2 31.8961 .8356 .0605t t ty y y− − −− −                                        

              

         +  1 2 3.0056 .0056t t t tε ε ε ε− − −+ − −       (24) 

 
The final analytical form of the proposed 
forecasting model can be written as 
 

     ty
∧

=    1 2 31.8961 .8356 .0605t t ty y y− − −− −                                   

      1 2 3.0056 .0056t t tε ε ε− − −+ − −                   (25) 

 
Using the above equation, a plot of the 

developed model (25), showing a one day ahead  
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Figure 4. Three Days Moving Average on Daily Closing Price of Stock XYZ VS. the Original Time 

Series 
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Figure 5. Comparisons on Our Proposed Model VS. Original Time Series for the Last 100 

Observations 
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Figure 6. Time Series Plot for Residuals for Our Proposed Model 
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Table 3. Basic Evaluation Statistics 

r   
2
rS  rS  

n
Sr  

0.01016814 0.1437259 0.3791119 0.01698841 
 

Table 4. Actual and Predicted Price 
N Actual Price Predicted Price Residuals 

476 26.78 26.8931 -0.1131 
477 26.75 26.7715 -0.0215 
478 26.67 26.7121 -0.0421 
479 26.8 26.7239 0.0761 
480 26.73 26.7854 -0.0554 
481 26.78 26.6892 0.0908 
482 26.27 26.8292 -0.5592 
483 26.12 26.3027 -0.1827 
484 26.32 26.0808 0.2392 
485 25.98 26.3603 -0.3803 
486 25.86 25.9868 -0.1268 
487 25.65 25.8443 -0.1943 
488 25.67 25.7115 -0.0414 
489 26.02 25.6499 0.3701 
490 26.01 25.9650 0.0450 
491 26.11 26.0526 0.0574 
492 26.18 26.0912 0.0888 
493 26.28 26.1449 0.1351 
494 26.39 26.3090 0.0810 
495 26.46 26.3752 0.0848 
496 26.18 26.4223 -0.2423 
497 26.32 26.2461 0.0739 
498 26.16 26.2964 -0.1364 
499 26.24 26.1437 0.0963 
500 26.07 26.2678 -0.1978 
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Table 5. Basic Comparison on Classical Approach VS. Our Proposed Model 

 

 r   
2
rS  rS  

n
Sr  

Classical 0.02209169 0.1445187 0.3801562 0.0170011 

Proposed 0.01016814 0.1437259 0.3791119 0.01698841 
 

 
 
 
forecasting along with the new time series, 

}{ ty , is displayed by Figure 5.Note the 

closeness of the two plots that reflect the quality 
of the proposed model. 

Similar to the classical model approach 
that we discussed earlier, use the first 475 

observations },...,,{ 47521 yyy  to forecast 
∧

476y . 

Then, use the observations },...,,{ 47621 yyy  to 

forecast 
∧

477y , and continue this process until 

forecasts are obtained for all the observations, 

that is, },...,,{ 500477476

∧∧∧
yyy . From equation 

(21), the relationship can be seen between the 
forecasting values of the original series }{ tx  and 

the forecasting values of 3 days moving average 
series }{ ty , that is,  

 

                        213 −−

∧∧
−−= tttt xxyx              (26) 

 

Hence, after },...,,{ 500477476

∧∧∧
yyy  is estimated, 

use the above equation, (26), to solve the 
forecasting values for }{ tx .  Figure 6 is the 

residual plot generated by the proposed model,  
and followed by Table 3, that includes the basic 
evaluation statistics. 

Both of the above displayed evaluations 
reflect on accuracy of the proposed model. The 
actual daily closing prices of stock XYZ from 
the 476th day along with the forecasted prices 
and residuals are given in Table 4.  

The results given above attest to the 
good forecasting estimates for the hidden data. 

 
 
 
Comparison of the Forecasting Models 

The two developed models are 
compared. The classical process is given by 

                1 21.9631 .9631t t tx x x
∧

− −= − −   .    (27) 

 1 21.0531 .0581t tε ε− −+  

 
In the proposed model, the following 

inversion is used to obtain the estimated daily 
closing prices of stock XYZ, that is, 
 

         ty
∧

=  1 2 31.8961 .8356 .0605t t ty y y− − −− −                           

               1 2 3.0056 .0056t t tε ε ε− − −+ − − .          (28) 

 
in conjunction with 
 

                          213 −−

∧∧
−−= tttt xxyx            (29) 

 
Table 5 given is a comparison of the 

basic statistics used to evaluate the two models 
under investigation. The average mean residuals 
between the two models show that the proposed 
model is overall approximately 54% more 
effective in estimating one day ahead the closing 
price of Fortune 500 stock XYZ. 
 
 

Conclusion 
 

In the present study a new time series model is 
introduced that is based on the actual stochastic 
realization of a given phenomenon. The propped 
model is based on modifying the given 
economic time series, }{ tx , and smoothing it 

with k-time moving average to create a new time 
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series }{ ty . The basic analytical procedures are 

developed through the developing process of a 
forecasting model. A step-by-step procedure is 
memorized for the final computational 
procedure for a nonstationary time series. To 
evaluate the effectiveness of our proposed model  
We selected a company from the Fortune 500 
list, company XYZ the daily closing prices of 
the stock for 500 days was used as our time 
series data , }{ tx , which was as usual 

nonstationary. We developed the classical time 
series forecasting model using the Box and 
Jenkins methodology and also our proposed 
model, }{ ty , based on a 3-way moving average 

smoothing procedure. The analytical form of the 
two forecasting models is presented and a 
comparison of them is also given. Based on the 
average mean residuals, the proposed model was 
significantly more effective in such terms of 
predicting of the closing daily prices of the stock 
XYZ. 
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