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CHAPTER 1 

BACKGROUND 

Structure and Function of Striated Muscle 

Muscle is a contractile tissue that is responsible for a variety of body movements via the 

ability to convert ATP into mechanical energy (Marieb & Hoehn, 2013).  There are three types 

of muscle: skeletal, cardiac and smooth muscle.  Around 40% of the human body mass is 

skeletal muscle while another 10% is smooth and cardiac muscle (Hoyle, 1969; Hall & Guyton, 

2011).  Skeletal muscle is attached to the skeleton and primarily responsible for voluntary 

movement.  Cardiac muscle is primarily found in in the heart where it constitutes the majority 

of the chamber walls.  Smooth muscle is found in hollow visceral organs such as the stomach, 

the urinary bladder and the vasculature, and plays a role in the facilitation of fluid and substance 

motility (Hall & Guyton, 2011).  

Both skeletal muscle and cardiac muscle are classified as striated muscle, due to the 

visible striations under a light microscope (A. F. Huxley & Niedergerke, 1954; H. Huxley & 

Hanson, 1954; Hanson, 1968).  To give a background of my thesis study, this chapter will focus 

on striated muscle and the function of troponin T (TnT) in the regulation of striated muscle 

contraction. 

Overall Organization of Striated Muscle Cells  

Striated muscle consists of myocytes or muscle fibers, which are in turn comprised of 

myofibrils.  These myofibrils contain contractile units called sarcomeres that consist of 

myofilaments including the actin thin and myosin thick filaments.  The actin thin filaments and 

myosin thick filaments overlap and are integrated together in an array to comprise the 

sarcomere (Figure 1).  During contraction and relaxation of muscle, the actin and myosin 

filaments slide along each other to alter lengths of the sarcomere (H. E. Huxley, 1990).  Under 
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the light microscope, dark anisotropic bands (A-bands) occur where the thin and thick filaments 

overlap.  Light isotropic bands (I-bands) solely consist of thin filaments are present in areas of 

non-overlapping with the thick filaments.  Both the A and I bands repeat along the length of the 

myofibril to create the visible striations under the light microscope (A. F. Huxley & 

Niedergerke, 1954; H. Huxley & Hanson, 1954; Hanson, 1968; Marieb & Hoehn, 2013).  

 

Figure 1 - Organization of striated muscle (OpenStax College, CC BY-SA 3.0) 

The thick filaments contain myosin and extend the entire length of the A band (Figure 1) 

while the thin filaments containing actin extend the length of the I-band, and also partly into the 

A-band.  The Z-disc (Z-lines), mostly comprised of alpha-actinin, defines the border of the 

individual sarcomeres, and is responsible for anchoring the thin filaments (H. Huxley & 

Hanson, 1954; Ebashi & Ebashi, 1965; Maruyama & Ebashi, 1965; Hanson, 1968; Hall & 

Guyton, 2011).  
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Striated Muscle Myofilaments  

Contraction of striated muscle relies on the interactions of the thin and thick filaments.  

Thick filaments are around 16 nm in diameter and contains around 300 myosin molecules.  

Each myosin molecule consists of four light and two heavy polypeptide chains, and contains 

three domains: the head, neck and tail (Figure 2).  The head domain binds to the actin in the thin 

filament to form a cross-bridge, will allows force generation via ATP hydrolysis.  The neck 

domain of myosin associates with several light-chain regulatory subunits and the tail domain 

affects the specific function of myosin within cells (Gazith, Himmelfarb, & Harrington, 1970; 

Marieb & Hoehn, 2013). 

The thin filament is primarily composed of actin.  This 42 kDa protein is found in the 

thin filament as globular actin (G actin,) which polymerizes to form two intertwined of fibrous 

actin (F actin).  F actin is comprised of approximately multiple actin monomers (Hanson & 

Lowy, 1963; Holmes, Popp, Gebhard, & Kabsch, 1990; Herman, 1993), Tropomyosin (Tm) and 

the troponin complex are also proteins located within the thin filament that are involved in 

striated muscle contraction.  Tropomyosin is a rod-shaped molecule containing a 40 nm coiled 

units of two parallel dimeric chains, similar to that of a myosin tail.  Tropomyosin is almost 

always found physiologically as a dimer, and these dimers may comprise of different 

tropomyosin isoforms.  Muscle tissue usually contains α/β heterodimers with the exception of 

cardiac muscle that expresses only a single α-Tm isoform (Gimona, Watakabe, & Helfman, 

1995).  The two strands of tropomyosin molecules run diametrically opposed along the actin 

filaments and help stiffen and stabilize the thin filament. Each tropomyosin dimer is in contact 

with seven actin units and are arranged end to end along the actin filaments (Figure 2).  In a 

relaxed muscle fiber, they block the myosin-binding sites on actin so that myosin heads on the 

thick filaments cannot bind to the thin filaments (Ebashi & Ebashi, 1965; Marieb & Hoehn, 
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2013). 

 

Figure 2 – The striated muscle myofilaments (OpenStax College, CC BY-SA 3.0) 

Titin is a giant protein around 3000 kDa that connects the Z line to the M line in the 

sarcomere (Figures 3 & 4) (K. Wang, McClure, & Tu, 1979; Horowits, Kempner, Bisher, & 

Podolsky, 1986).  Titin’s role is to function as a molecular spring and scaffold by regulating the 

sarcomere tension via contributing to the overall passive tension in striated muscle(Horowits et 

al., 1986; Linke et al., 1997; Jin, 2000; Sanger & Sanger, 2001).  Titin is modular in structure as 

around 90% of its mass consists of repeating fibronectin-III and immunoglobulin-C2 domains 

and which provide binding sites for a variety of myofibrillar proteins, such as actin, α-actinin, 

myosin, telethonin, myosin binding protein-C  myomesin, and obscurin (Pfuhl & Pastore, 1995; 
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Rief, Gautel, Schemmel, & Gaub, 1998; Sanger & Sanger, 2001) .  

Nebulin is another giant protein (600-900 kDa) only found in skeletal muscle (Figure 3) 

that associates with the thin filament (Horowits et al., 1986; K. Wang & Wright, 1988).  

Nebulin is mostly compromised of 35 residue repeats that allows a tight association with the 

thin filament via a central consensus sequence of SDxxYK (Jin & Wang, 1991).  Each actin 

polymer is associated with two nebulin molecules, with each nebulin filament spanning the 

length of the actin monomer within the thin filament.  Nebulin binds to other actin-associated 

proteins such as tropomyosin, which indicates that nebulin is well integrated into the thin 

filament.  Nebulin’s close association with the thin filament allows it to stabilize the thin 

filament and modulate thin filament length (K. Wang & Wright, 1988; Jin & Wang, 1991; Ogut, 

Hossain, & Jin, 2003; Castillo, Nowak, Littlefield, Fowler, & Littlefield, 2009).  In cardiac 

muscle, nebulette (Figure 4) is an 800 kDa protein that exhibits high homology with nebulin and 

fulfills similar roles such as sarcomere assembly and contractile function (Moncman & Wang, 

1995; Ogut et al., 2003).   

 
Figure 3 - Organization of the skeletal muscle sarcomere. Retrieved from 
http://www.pradeepluther.com/pklwork19may02/images/Sarcomere_diagram.jpg 
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Figure 4 - Organization of the cardiac sarcomere, modified from  (Veselka, 2012).   

Striated Muscle Contraction 

In 1954, the molecular basis of muscle contraction was described by two groups: A. F. 

Huxley and R. Niedergerke and H. E. Huxley and J. Hanson (A. F. Huxley & Niedergerke, 

1954; Hoyle, 1969).  Their findings described the relative positions of myosin and actin 

filaments during various stages in muscle contraction, and how these interactions resulted in the 

production of contractile force.  Under the microscope, it was shown that the length of the A-

band does not change during muscle contraction.  However, it was found that the I-band, rich in 

actin thin filaments, changed its length along with the sarcomere (A. F. Huxley & Niedergerke, 

1954; H. Huxley & Hanson, 1954).  Based on these observations, the sliding filament theory 

was developed, which proposes that the sliding of actin past myosin generates muscle tension.  

Since the actin thin filaments are anchored to the Z-disc, shortening of the thin filament results 

in increased overlapping of the thin and thick filaments and subsequent shortening of the 

sarcomere, which ultimately results in the shortening of the muscle (Hoyle, 1969). 

Muscle contraction on the molecular level occurs when the myosin head on the thick 
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filament attaches to an actin filament to form a cross-bridge (Figure 5).  Then, the myosin head 

rotates toward the myosin tail, which pulls on the thin filament, causing the thin filament to 

move relative to the thick filament (power stroke).  The myosin head detaches and rotates back 

to the initial orientation, completing one cross-bridge cycle.  This process is coupled with ATP 

hydrolysis catalyzed by the ATPase activity of the myosin head during its interaction with actin 

in the thin filament (Ebashi & Ebashi, 1965; Vale & Milligan, 2000; Volkmann & Hanein, 

2000; Goody, 2003). 

When striated muscle is relaxed, the cross-bridges are unattached and the myosin heads 

on the thick filaments are at a 90 degrees angle in regards to the thin filaments (Figure 5, step 

2).  In this relaxed state, the myosin head is ATP-bound.  When intracellular Ca2+ increases 

upon the stimulation of muscle contraction, Ca2+ binds to troponin and induces a conformational 

change in tropomyosin, which exposes the myosin binding sites on the actin thin filaments 

(Ebashi, 1963; Potter & Gergely, 1974; Zot & Potter, 1987).  The myosin head is then able to 

weakly bind to the actin thin filament to form a cross-bridge (Figure. 5, step 3).  The inorganic 

phosphate is then released in order to facilitate a strong attachment between actin and myosin.  

Because of this strong attachment, the myosin heads rotate at a 45 degree angle towards actin 

(Figure 5, step 4), generating a force on the thin filaments which results in the thin filaments to 

slide relatively to the thick filaments to generate the power stroke. Next, ADP disassociates 

from the myosin head and the subsequent binding of ATP causes the cross-bridge to detach (Fig 

5, step 1) (Hall & Guyton, 2011; Marieb & Hoehn, 2013).  Hydrolysis of ATP to ADP and Pi 

by the myosin-ATPase returns the myosin head’s orientation to 90 degrees relative to the thin 

filament (Figure 5, step 2).  This cycle is repeated as long as the intracellular Ca2+ concentration 

remains sufficiently elevated (Goody, 2003). 
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Figure 5 – The Cross-bridge cycle (Goody, 2003). AF: Actin filament, MF: Myosin filament 

Regulation of Striated Muscle Contraction  

Striated muscle contraction is regulated by intracellular Ca2+ concentration via the thin 

filament regulatory proteins, i.e., the troponin complex and tropomyosin.  In the absence of 

intracellular Ca2+, the interaction of myosin with actin is inhibited due to the unexposed myosin 

binding sites on the actin thin filaments.  After the intracellular Ca2+ concentration increases due 

to Ca2+ release from the sarcoplasmic reticulum, Ca2+ binds to the troponin complex, which 

reconfigures the position of tropomyosin and exposes the myosin binding sites on the actin thin 

filament, allowing the binding of the myosin head to actin to initiate cross-bridge cycling 

(Gomes, Potter, & Szczesna-Cordary, 2002; Goody, 2003). 

Structure of the Troponin Complex 

By the 1960’s Ebashi and colleagues identified a mixture of proteins that induced 

muscle relaxation when the mixture and ATP was added to muscle fibers (Ebashi, 1963; Ebashi 

& Endo, 1968; Potter & Gergely, 1974; Zot & Potter, 1987; Endo, 2008).  This relaxing factor 

was later discovered to the proteins that make up the troponin complex.  The troponin complex 
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consist of three protein subunits: Troponin C (TnC), the calcium sensor, Troponin I (TnI), 

which binds to actin, and Troponin T (TnT), which anchors the troponin complex to 

tropomyosin (Figure 6).  The overall role of troponin is to regulate the contraction and 

relaxation of striated muscle.  When the muscle is relaxed, TnI is bound to actin and blocks the 

myosin binding sites on actin (Drabikow.W & Nonomura, 1968; Spudich, Huxley, & Finch, 

1972; Drabikow.W, Nowak, Barylko, & Dabrowsk.R, 1973; Vaneerd & Kawasaki, 1973; 

Dabrowska, Nowak, Podlubnaya, & Drabikowski, 1975).  Thus, TnI-actin interactions are a 

regulatory mechanism to prevent cross-bridge formation and subsequent muscle contraction 

(Nakaoka, 1972; Yamamoto & Maruyama, 1973; Dabrowska, Podlubnaya, Nowak, & 

Drabikowski, 1976; Dowben, Ford, & Bunting, 1976).  Upon an increase in intracellular Ca2+, 

Binding of Ca2+ to TnC leads to a conformation change between the switch region of TnI and a 

hydrophobic patch in TnC’s N-terminal region.  This interaction between TnI and TnC releases 

TnI’s inhibition of cross-bridge formation by pulling TnI’s inhibitory region away from actin 

and consequently allowing the myosin head to bind to actin (Gomes, Potter, et al., 2002; Goody, 

2003; Endo, 2008).  

 

Figure 6 – The troponin complex (Sheng & Jin, 2014) 
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Troponin T 

Molecular Structure and Function 

Troponin T is a 30-35 kDa protein whose difference in size can be attributed to the 

variable length of the N-terminal region.  Even though a basic function of TnT is to anchor the 

troponin complex to tropomyosin, the variable structure of TnT across isoforms has various 

physiological and pathological implications in muscle function (Schachat, Diamond, & Brandt, 

1987; Pan & Potter, 1992; Anderson et al., 1995; Fisher, Wang, & Tobacman, 1995; Briggs & 

Schachat, 1996; Watkins, Seidman, Seidman, Feng, & Sweeney, 1996; J. Wang & Jin, 1998; 

Huang, Brozovich, & Jin, 1999; Jin, Chen, Ogut, & Huang, 2000; Zhang, Biesiadecki, & Jin, 

2006; Biesiadecki, Chong, Nosek, & Jin, 2007).  TnT is present in vertebrates in slow skeletal, 

fast skeletal and cardiac muscle isoforms with greatest variation in the N-terminal region across 

isoforms (Figure 7) (Hoyle, 1969; Mak & Smillie, 1981; Leavis & Gergely, 1984; Jin & Lin, 

1988).  TnT’s rather conserved C-terminal region contains binding sites for TnC, TnI, and Tm 

while the also conserved middle region contains a binding site for tropomyosin (site 1) (Mak & 

Smillie, 1981; Leavis & Gergely, 1984; Morris & Lehrer, 1984; Heeley, Golosinska, & Smillie, 

1987; Zot & Potter, 1987; Jin & Chong, 2010). 

Several decades ago, it was demonstrated that chymotrypsin treatment results in two 

TnT fragments named T1 (equivalent to the cyanogen bromide (CNBr) cleaved fragment CB1) 

and T2 that each contain a tropomyosin binding site (Pearlstone, Carpenter, & Smillie, 1977; 

Mak & Smillie, 1981; Morris & Lehrer, 1984; Heeley et al., 1987).  The T1 fragment containing 

site 1 consists of amino acids 2-158 in rabbit fast skeletal muscle TnT while the T2 fragment 

containing site 2 consists of amino acids 159-259.  T1 region tropomyosin binding site has been 

further localized (Figure 8) to amino acids 117–143 in mouse cardiac TnT (exon 10) and 72–97 

in rabbit fast TnT (exon 11). 
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Since there is limited crystal structure data only pertaining to TnT’s C-terminal region, 

TnT’s two binding sites have only been recently mapped out (Takeda, Yamashita, Maeda, & 

Maeda, 2003; Jin & Chong, 2010).  In previous literature, TnT’s Tm binding site on the C-

terminal region has been hypothesized to be located on the very end of the C-terminal.  

However, this assertion has not  been supported by experiments showing that deletion  in the 

very C-terminal end  does not significantly affect Tm binding or ATPase activity (Jha, Leavis, 

& Sarkar, 1996; Jin, Chong, & Hossain, 2007).  Rather, the T2 region binding site has  recently 

been localized to amino acids 180–204 in slow TnT (exon 11), and 174-198 in rabbit fast 

skeletal muscle (exon 14), which indicates that the T2 region binding site is actually located  

towards the beginning of the T2 region (Figure 6 & 8).  Both the middle and the T2 Tm binding 

sites  are highly conserved  muscle-fibre specific cross isoforms (Jin & Chong, 2010). 

 

 

Figure 7 – Structure of TnT isoforms. The TnT isoforms has a conserved core region and C-
terminal region with the greatest difference in the N-terminal region (Jin & Chong, 2010) 
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Figure 8 – Sequence 
alignment of Tm binding sites 
1 and 2 across TnT isoforms. 
Both Tm binding sites are 
highly conserved. The 
numbers of homologous 
exons encoding these 
segments are shown in the 
background while Identical or 
conserved residues encoded 
by the two Tm-binding sites 
main coding exons are 
outlined with the gray bars 
above the sequences (Jin & 
Chong, 2010) 
 
 

Muscle Type Specific Isoforms of TnT 

TNNT1, TNNT2, and TNNT3 are three homologous genes of TnT that encode 

respectively the slow, cardiac and fast isoforms of TnT.  These TnT isoforms are expressed 

specifically in their respective muscle fibers in a non-redundant manner (Cooper & Ordahl, 

1985; Breitbart & Nadalginard, 1986; Anderson et al., 1995; Jin, Chen, & Huang, 1998), as it 

has been shown that knockout of the cardiac TnT gene results in embryonic lethality (Nishii et 

al., 2008).  The three muscle fiber-type specific TnT isoforms have the greatest diversity in their 

N-terminal hypervariable region (Figure 7).  It is important to note that the diversity of TnT 

isoforms is greater across isoforms than that within the same isoform across species (Figure 9) 

(Verin & Gusev, 1988; Mesnard et al., 1995; Chandra, Kim, & Solaro, 1997; Jin & Root, 2000; 

Gomes, Guzman, Zhao, & Potter, 2002; Feng, Biesiadecki, Yu, Hossain, & Jin, 2008; Chong & 

Jin, 2009).  This feature suggests that the N-terminal hypervariable region has a muscle fiber-

specific role in regulating the function of TnT, and consequently, the function of specific 

muscle fiber types.  
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Figure 9 - Evolutionary 
lineage of TnT isoforms. 
Sequence divergence show 
that TnT isoforms vary 
greater across isoforms than 
between species. The 
evolutionary distances are 
indicated with a ruler bar for 
the rate of amino acid 
substitution (Modified from 
Chong & Jin, 2009) 
 

 

 
 

The N-terminal Hypervariable Region of TnT 

TnT’s N-terminal hypervariable region does not bind to any other thin filament proteins 

and its absence does not abolish the binding of TnT to tropomyosin.  Deletion of the N-terminal 

region from cardiac TnT has been observed not to abolish but to increase TnT’s overall binding 

affinity for tropomyosin, suggesting that the N-terminal region is a regulatory structure of TnT 

(Verin & Gusev, 1988; Pan, Gordon, & Potter, 1991; Jin et al., 2000; Jin & Root, 2000; 

Biesiadecki et al., 2007; Feng et al., 2008).  Furthermore, it has been observed that the N-

terminal variable region in TnT is regulated by alternate RNA splicing during muscle 

development and other physiological conditions, which suggests that the modulatory structure 

of the N-terminal region is a site that regulates muscle function via the modulation of TnT’s 

structure and function (Breitbart et al., 1985; Cooper & Ordahl, 1985; Breitbart & Nadalginard, 

1987; Gahlmann, Troutt, Wade, Gunning, & Kedes, 1987; Jin, Huang, Yeh, & Lin, 1992; 

Akella, Ding, Cheng, & Gulati, 1995; Anderson et al., 1995; Briggs & Schachat, 1996; Wei & 

Jin, 2011).  

Alternate splicing of the N-terminal variable region during muscle development has been 
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shown to alter force production in skinned fibers and aberrant splicing of this region has been 

correlated with various cardiomyopathies such as dilated cardiomyopathy and other cardiac 

dysfunctions (Jin & Lin, 1988; Anderson et al., 1995; Wei & Jin, 2011; Feng, Chen, Nan, 

Huang, & Jin, 2014).  Alternate splicing of fast TnT (fTnT) has been observed to generate 

acidic and basic isoforms of TnT with significantly different binding affinities to Tm and TnI, 

indicating that the charge of the N-terminal region contributes to the TnT’s overall binding to 

Tm and TnI (J. Wang & Jin, 1997; Ogut, Granzier, & Jin, 1999; Biesiadecki et al., 2007).  

Because the N-terminal region is able to alter TnT’s binding to TnI and Tm, of which the 

binding sites are remotely located, it was hypothesized that the N-terminal region might affect 

the overall conformation of TnT.  This hypothesis was supported by epitope analysis data 

showing that alterations in the N-terminal region is propagated to the core and C-terminal 

regions (J. Wang & Jin, 1998; Jin et al., 2000).  Even though it is known that the N-terminal 

region can modulate TnT’s binding affinity to Tm, it is still unclear to what extent and how each 

of TnT’s tropomyosin binding sites contribute to the overall binding affinity to Tm. 

Hypothesis and Goal of the Present Study 

Although TnT’s C-terminal domain and middle region is very much conserved, the N-

terminal region is hypervariable (Figure 7), and varies significantly across isoforms and plays a 

modulatory role in the Ca2+ regulation of muscle contraction.  The N-terminal region 

contributes to the fine-tuning of Ca2+ regulation of contractility, as it has been observed that the 

activity of myosin ATPase varies across TnT isoforms despite the conserved core structure of 

TnT (Gomes, Guzman, et al., 2002).  An unresolved discrepancy in the literature shows variable 

differences in tropomyosin binding when comparing the T1 and T2 fragments of different TnT 

isoforms.  The fast TnT T1 fragment has been shown to have greater or equal affinity for Tm 

compared to the fast TnT T2 fragment, while the slow TnT T1 has been observed to have a 
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significantly lower binding affinity to Tm compared to slow TnT T2 (Pearlstone & Smillie, 

1982; Heeley et al., 1987; Jin & Chong, 2010).  This discrepancy in the literature may be 

attributed to the modulatory function of the N-terminal region that is variable among muscle-

fiber specific isoforms.  The N-terminal hypervariable region of TnT may affect the affinity of 

tropomyosin binding sites 1 and 2 across isoforms by changing the overall molecular 

conformation, as it is already known that there are differences in binding site affinity across 

isoforms despite conserved core structure.  To investigate this hypothesis in this thesis study, 

TnT fragments will be engineered, expressed and purified, and tropomyosin binding affinity 

will be evaluated in enzyme-linked immunosorbent assay (ELISA)-based solid phase protein 

binding experiments.  Understanding to what extent the N-terminal hypervariable region’s 

structure affects the affinities of the tropomyosin binding sites of TnT will deepen and further 

our understanding of how conformational changes in TnT affect tropomyosin-thin filament 

interactions, thus modulating contractile properties of striated muscle under a variety of 

physiological and pathological conditions.  

The overall goal of this thesis project is to compare the tropomyosin binding affinities of 

intact TnT and TnT fragments from different muscle fiber-specific isoforms to understand the 

effect of the N-terminal region on tropomyosin binding affinity of the middle binding site of T1 

(site 1).  This study will also be able to explain the previous discrepancies in the literature that 

show variable Tm binding affinities of the T1 fragments when compared to their respective T2 

fragments (Pearlstone & Smillie, 1982; Heeley et al., 1987; Jin & Chong, 2010). To investigate 

this issue, five sets of tropomyosin binding assays will be conducted, comparing intact TnT, T1 

and T2 fragments across muscle fiber specific isoforms, as well as N-terminal truncated T1 

fragments (middle fragments) across isoforms to examine the tropomyosin binding affinity of 

site 1 without the influence of the N-terminal region.  The last binding assay set will compare 
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intact TnT and the various TnT fragments within the same isoform and same species in order to 

understand how the intrinsic affinity of each Tm binding site differs within the same protein as 

well as the effect of the N-terminal hypervariable region on site 1.  The intact TnT and TnT 

fragments studied in the present research are summarized in Figure 10. 

 

Figure 10 – TnT constructs used in this study 
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CHAPTER 2 

METHODS 

Methodology Overview 

To meet the goals of this thesis project, a variety of basic science and biochemical 

techniques are employed (Figure 11).  In order to understand the Tm binding affinities within 

the intact TnTs and TnT fragments, vectors expressing the coding cDNA were generated, and 

proteins were purified from transformed bacterial cultures using various chromatographic 

techniques.  The protein preparations were verified for their authenticity and used in solid-phase 

microtiter plate assays to examine their binding affinities to Tm. 

Figure 11 – General 
biochemical tech-
niques used in this 
study 
 

 

 

 

 

 

 
Protein Engineering and Purification 

The purification steps for each protein used in this study are described below.  Some 

protein preparations were previously made in Dr. Jin’s laboratory and available for the present 

study while some needed further purification.  For some of the proteins, there was no 

engineered coding cDNA available and therefore the insert was generated using recombinant 

polymerase chain reaction (PCR) from cDNA template and then cloned into a vector for protein 
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expression (Table 1). 

Table 1 – Summary of Protein Purification 
Intact TnT 
TnT Protein Mouse Cardiac Mouse Slow Rabbit Fast 

Techniques 
Used 

Already available  Bacterial expression 
Ammonium sulfate 
precipitation  

 Anion exchange 
chromatography (DE52) 

 Size exclusion 
chromatography (G75) 

 Size exclusion 
chromatography 
(G75) of impure 
protein fraction 

TnT T1 Fragments 
TnT Protein Mouse Cardiac T1 Human Slow T1 Rabbit Fast T1 

Techniques 
Used 

 Primer design for PCR amplification 
of insert from intact cDNA 

 Cloning into insert 
 Bacterial expression 
 Ammonium sulfate precipitation 
 Affinity chromatography 

Already available Already available 

TnT Middle Fragments 
TnT Protein Mouse Cardiac Middle Mouse Slow Middle Mouse Fast Middle 

Techniques 
Used 

 Primer design for PCR amplification 
of insert from intact cDNA 

 Cloning into insert 
 Bacterial expression 
 Ammonium sulfate precipitation 
 Affinity chromatography 

Already available  Primer design for 
PCR amplification 
of insert from 
intact cDNA 

 Cloning into insert 
 Bacterial 

expression 
 Ammonium sulfate 

precipitation 
 Affinity 

chromatography 
TnT T2 Fragments 
TnT Protein Mouse Cardiac T2 Mouse Slow T2 Rabbit Fast T2 

Techniques 
Used 

 Primer design for PCR amplification 
of insert from intact cDNA 

 Cloning into insert 
 Bacterial expression 
 Ammonium sulfate precipitation 
 Affinity chromatography 

Already available Already available 

Analytical Methods 

Agarose Gel Electrophoresis 

Agarose gels were casted and run in Tris-Borate-EDTA (TBE) buffer, with a final 

concentration of 0.34 mcg/mL ethidium bromide (EtBr).  Based on the size of the DNA to be 

visualized on the gel, different concentrations of agarose was used in order to obtain the most 
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optimum resolution.  For linear double stranded DNA (dsDNA) 800 to 12,000 base pairs (bp), 

0.6% (w/v) gels were casted, and for dsDNA 500-10,000 bp, 200-3,000 bp, 1% (w/v) and 1.5% 

(w/v) agarose were used, respectively.  Samples were loaded after adding bromophenol blue 

tracking dye and glycerol to a final concentration of 10% and the gel was run at a constant 

voltage of 5-10V/cm in a horizontal tank.  

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE was used with a Bio-Rad mini-gel system for the analysis of protein 

samples. 14% resolving gels containing acrylamide/bis-acrylamide at the ratio of 180:1 were 

used to resolve proteins of 30 kDa or greater and 12% gels containing acrylamide/bis-

acrylamide at the ratio of (29:1) were used to resolve proteins 10-30 kDa for optimum 

separation of protein bands.  Protein samples were homogenized in SDS-PAGE sample buffer 

containing 2% SDS.  After being heated at 80°C for 5 min, the samples were clarified by 

spinning in a Beckman Coulter Microfuge 18 at 14,000 rpm (14,539 x g) at room temperature 

(RT) for 5 min.  The samples were then loaded into the gel and the gels were run with a 

constant current of 25 mA/0.75 mm of SDS-PAGE gel.  After running, the gel was fixed and 

stained in Coomassie Brilliant Blue R250 in 50% methanol and 10% acetic acid for 45 minutes 

and destained in 10% acetic acid to reveal the resolved protein bands. 

Western Blot 

Nitrocellulose (NC) membrane, thin and thick filter papers were soaked in transfer 

buffer (Tris-glycine buffer and 20% methanol) for 30 minutes on an orbital shaker at 65 rpm.  

After the SDS-PAGE gels finished running, the gel was placed in a “transfer sandwich” 

(thick/thin filter paper-gel-NC membrane-thin/thick filter paper, from top to bottom) in a Bio-

Rad Laboratory semidry electrotransfer apparatus.  The current limit was set to 5 mA per cm2 

and the maximum voltage was set to 25 V during the 15 minutes of transfer.  
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The membrane was then incubated in blocking buffer (1% bovine serum albumin (BSA) 

Tris-buffered saline (TBS)) at room temperature for 30 minutes on a rocker.  After blocking, the 

membrane was incubated with the appropriate primary antibody diluted in TBS containing 0.1% 

BSA at a pre-tested concentration on a rocker at 4°C overnight.   

After the primary antibody incubation, the membrane was washed 3 times in TBS 

containing 0.5 Triton X-100 and 0.1% SDS at 80 rpm on a rotator for 7 minutes per wash.  The 

membrane was then washed 2 times with TBS for 3 minutes per wash.  After the washing step, 

the membrane was placed in TBS containing 0.1% BSA with the final concentration of 1:10,000 

of alkaline phosphatase conjugated goat anti-mouse IgG second antibody at RT on the rotator 

for 50 min. After second antibody incubation, the above washing procedure was repeated.  

For development of the substrate reaction, 10 mL of alkaline phosphatase buffer with 5-

Bromo-4-chloro-3-indolyl phosphate (3.3 mg/mL) and Nitro blue tetrazolium was used to 

develop the membrane at room temperature in a cardboard box to avoid light exposure.  The 

membrane was developed until the target protein band was clearly seen but not oversaturated 

(optimally 10-15 min).  

For visualization of agarose gels, a UV transiluminator was initially used to confirm 

optimal separation.  After good separation, the gels were again placed on the UV 

transiluminator and photographed with a 2 second exposure time using a FinePix S7000 camera. 

UV and Light Spectrometry 

For visible and UV light spectrometry, two different spectrophotometers were used.  A 

BioRad SmartSpec spectrophotometer was used to quantify the absorbance of bacterial cultures 

at OD600. 1 mL of growth media before inoculation was used a blank for baseline control and 1 

mL of bacterial culture was used to monitor bacterial growth during large scale protein 

purification.  For estimation of protein concentrations, a Beckman Coulter DU 520 
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spectrophotometer was used.  A Beckman Coulter microcell containing 100 µL of 1x ELISA 

buffer (see ELISA protocol) for baseline control.  Then, the protein in 1x ELISA buffer was 

loaded into a clean microcell and then scanned with the spectrophotometer across wavelengths.  

The absorbance value at 280 nm was recorded, and the concentration of the protein was 

calculated using the Beer-Lambert law by using the calculated extinction value obtained from 

the ExPASY database (Artimo et al., 2012). 

Molecular Cloning 

Design of Troponin T Fragments 

DNA sequences of the mouse cardiac TnT (McTnT) T1, McTnT T2, mouse fast TnT 

(MfTnT) middle and McTnT middle fragments were amplified from their respective intact 

complementary DNA (cDNA) sequences.  To obtain the coding cDNA fragment, forward and 

reverse PCR primers were constructed flanking the target sequence.  The forward primer 

contained an NdeI restriction enzyme cutting site and a Met initiation codon and the reverse 

primer contained a stop codon prior to an EcoRI restriction site to facilitate the ligation of the 

insert into the expression vector.  The primers were synthesized at Integrated DNA 

Technologies.  

Primer Sequences 

McTnT T1: 
Forward: 5’ CA CAT ATG TCK GAC VYV GAR GAR GWG GTG G 3’ 
                   Nde1 
Reverse:  5’ CTC TGT CTT GAA TTC TCA CCC TCC AAA GTG 3’ 
    EcoRI       Stop 

McTnT T2 
Forward: 5’ CC AAC CAT ATG CAC TTT GGA GGG TA 3’ 
                            NdeI 
Reverse: 5’ G AGA ATT CTA YTT CCA RCG YCC GGT GAC 3’ 
                            EcoR1     Stop 
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McTnT middle: 
Forward: 5’ AG CCC CAT ATG CTC TTC ATG CCC AAC TT 3’ 
        NdeI 
Reverse:  5’ CTC TGT CTT GAA TTC TCA CCC TCC AAA GTG 3’ 
    EcoRI       Stop  

MfTnT middle: 
Forward: 5’ AGA CCC AAA CAT ATG GCT CCT AAG A 3’ 
                     NdeI 
Reverse: 5’ C AGC CTT GAA TTC TCA GCT GCT GTA 3’ 
             EcoRI      Stop 

Polymerase Chain Reaction (PCR) 

PCR was used to amplify the cDNAs encoding TnT fragments from full length cDNAs 

of TnT.  Each reaction tube contained a final concentration of the following in Millipore 

ddH2O: 10 fmol/ μL of the forward and reverse primer, 0.1 mM dNTP, and 20 pg/μL of the 

plasmid DNA template.  The amount of DNA polymerase used consisted of 90% Taq DNA 

polymerase and 1 unit total of 10% pfu DNA polymerase with proofreading activity (Agilent), 

to reduce the rate of PCR-introduced random mutations.  PCR runs of 25 cycles were carried 

out in an Applied Biosystems 2720 Thermal Cycler.  The initial denaturation time at 95°C was 

4 min using hot start, and each PCR cycle consisted of denaturation at 95°C for 20 s, annealing 

at 55°C for 30 s and extension at 72°C for 1 min. PCR products were purified using the methods 

detailed in the later section “DNA Purification”. 

 

Figure 12 - PCR construction of McTnT T2 cDNA 
from full length McTnT cDNA 
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DNA Purification 

In order to ensure subsequent successful restriction enzyme digestion and vector 

ligation, PCR inserts and vectors were purified after restriction enzyme digestion using the 

following methods: 

Phenol/Chloroform Extraction  

Phenol/chloroform extraction was used to inactivate and denature any protein impurities 

after PCR or restriction enzyme digestion.  Phenol:chloroform:isoamyl alcohol was made in a 

25:24:1 ratio with a pH of 7.9 and the bottom organic layer was mixed with the DNA solution 

in a 1:1 ratio.  The mixture was vortexed at top speed for 20 s and then centrifuged in a 

Beckman Coulter Microfuge 18 at 14,000 rpm (14,539 x g) at RT for 2 min.  The DNA 

containing clear aqueous phase on top was collected using a pipette and transferred into a new 

tube. 

Ethanol Precipitation 

EtOH precipitation was used to further purify and concentrate the cDNA insert or 

vector. 3M NaOAc, pH 5, was added to the DNA at 10% of the original volume.  EtOH was 

added to the mixture at 2.5x the volume of the NaOAc-DNA mixture.  The tube was then 

chilled for 10 min in dry ice and then centrifuged in a Beckman Coulter Microfuge 18 at 14,000 

rpm (14,539 x g) at 4°C for 10 min.  The supernatant was discarded and the pellet that contained 

the DNA was washed with 100-200 μL of 75% EtOH without disturbing the pellet.  The tube 

was then centrifuged again as above for 2 min and the supernatant was discarded.  The pellet 

containing the DNA was allowed to air dry for 30 min and the pellet was resuspended in an 

appropriate volume of TE buffer (10 mM Tris-HCl and 1 mM ethylenediaminetetraacetic acid 

(EDTA)). 
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Gel Purification of DNA Bands 

To isolate the DNA product of interest, DNA bands isolated as agarose gel slices were 

extracted and recovered with glass bead absorption using the Prep-A-Gene system in order to 

remove any unwanted DNA and other impurities.  DNA was resolved in Tris-acetate-EDTA 

(TAE) agarose gel via electrophoresis at 5V/cm2.  After electrophoresis, the gel was visualized 

under a long wavelength UV transiluminator and the DNA band of interest was cut out using a 

clean razor blade.  The agarose gel piece was suspended in Prep-A-Gene binding buffer and 

then melted in a 50°C water bath.  After the gel piece was melted, glass beads were added to 

absorb the DNA.  The subsequent washes of the beads with binding and washing buffers, and 

the elution of purified DNA were carried out according to the manufacturer’s protocol.  

Restriction Enzyme Digestion 

Restriction enzyme digestion was used to cut the expression vectors and inserts to 

generate compatible sticky ends to facilitate the insertion of the PCR inserts of cDNA encoding 

TnT fragments into the expression vector.  Double digestion of the insert or vector was carried 

out in the digestion buffer for NdeI (NEB), with 10 units each of NdeI (NEB) and EcoRI (NEB) 

per μg of DNA at 37°C for 4 hr.  The mixture was then purified using the methods detailed in 

the Section of “DNA Purification”.  

DNA Ligation 

Insert and vector ligation was carried out in a 3:1 molar ratio of insert:vector, in T4 

ligase buffer (NEB) using 1 μL T4 ligase (NEB) per 10 μL total reaction volume.  The ligation 

mixture was incubated overnight at 16°C.  The ligation mixture was then used to transform (see 

Bacterial Transformation section) JM109 competent E. coli cells in order to produce ampicillin-

resistant colonies containing the expression vector of interest with high fidelity.  These colonies 

were later screened using PCR for the presence of expression vector of interest. 
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Figure 13 – Plasmid map of 
pAED4. pAED4 was used to 
express and purity untagged 
proteins  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 – Plasmid 
map of pTX3. pTx3 
was used to purify 
poorly expressed 
proteins with the aid 
of the N-terminal 
Tx3 
(HEEAHHEEAHHE
EAH) affinity tag 
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Bacterial Transformation 

Transformation of JM109 or BL21 (DE3)pLysS competent E. coli cells with DNA was 

used for a variety of purposes such as:  

1. E. coli K12 JM109 capable of replicating target plasmid with high fidelity that could be 

used for cloning the cDNA constructs followed by PCR colony screening and plasmid 

minipreparation. 

2. BL21(DE3)pLysS containing target plasmid for recombinant protein expression (Studier 

& Moffatt, 1986).  

3. BL21(DE3)pLysS expressing target protein for subsequent inoculation into culture 

media for large scale protein expression and purification. 

An aliquot of competent cells was put on ice until just thawed.  20 ng or more of 

recombinant plasmid DNA was added to the aliquot and the mixture was swirled with the tip of 

the pipet.  The solution was then incubated on ice for 30 min.  The tube was heat shocked at 

42°C for 90 s to facilitate uptake of plasmid into the cell, and then put back on ice for 2 min.  

Using proper sterile technique, LB media was added to the tube at 3-folds or more of the 

volume of the cell-DNA mixture and incubated at 37°C on a rotary shaker for 45 min.  During 

this time, the respective Luria-Bertani Broth (LB) plate was taken out of storage and warmed up 

in a 37°C incubator.  For the transformation of JM109 cells, LB plates containing 100 μg/mL 

ampicillin (amp) was used for selection since the pET/pAED4 vectors used in this study 

contained an ampicillin resistance gene (ampR).  For transformation of BL21(DE3)pLysS, LB 

plates containing 100 μg/mL amp and 12.5 μg/mL chloramphenicol (chl) were used for double 

selection since pLysS plasmid contained an additional chloramphenicol resistance gene (chlR).  

After the 45 min. incubation, the bacteria culture was spread evenly on the LB plate and put into 

the 37°C incubator.  After drying out the visible liquid, the LB plate was flipped, with the lid 
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facing down to avoid desiccation.  The plate was then incubated at 37°C overnight for bacterial 

growth. 

PCR Screening of Transformed Bacterial Colonies 

After ampicillin selection of the transformed JM109 cells, individual colonies were 

smeared onto 100-mm LB plate containing 100 μg/mL ampicillin, divided into ~20 separate 

quadrants, one for each colony and incubated at 37°C for 6 hr.  Next, a sterile toothpick was 

used to lightly scrape a small area of the colony smear, and then dipped into a PCR tube 

containing 15 μL of a Jin lab-made Redmix PCR mix solution added with specific PCR primers 

at final concentrations of 10 fmol/μL each.  To screen for the recombinant plasmid containing a 

specific cDNA insert by PCR, one flanking primer was placed in the vector and used together 

with the other flanking primer in the target cDNA (Figure 15A).  This strategy ensures that 

colonies positive with a PCR amplified band indicate the presence of recombinant plasmid 

containing the specific vector-insert pair (Figure 15B).  The PCR steps were identical to those 

mentioned in the ‘PCR’ section.  

After PCR, the Redmix PCR products were directly loaded into a TBE agarose gel and 

then visualized to identify colonies that had a band corresponding to the amplification of the 

fragment generated by the correct vector-insert combination.  Using a sterile toothpick, ~1/3 of 

a positive bacterial smear was picked up and dipped into extraction solution consisting 20 l 

each of phenol:chloroform:isoamyl alcohol and TE buffer.  The mixture was vortexed at top 

speed for 2 s and then centrifuged in a Beckman Coulter Microfuge 18 at 14,000 rpm (14,539 x 

g) at RT for 2 min.  The DNA in the clear aqueous phase was examined with agarose gel as 

above or pipetted out and transferred into a new tube for use in the transformation of BL21 cells 

for mini-protein expression screening (Figure 15B). 
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Figure 15 – PCR screening of transformed bacterial colonies. (A): Linear map of the DNA 
amplified from the pTx3-McTnT T2 plasmid. (B): Colony PCR screening of 7 colonies, 5 
which contain the plasmid of interest. 

Miniexpression and Identification of Recombinant Proteins  

Phenol:chloroform:isoamyl alcohol extracted DNA from positive JM109 colonies was 

used to transform BL21(DE3)pLysS competent cells in order to verify expression of the target 

protein.  The competent BL21(DE3)pLysS cells were transformed in a similar manner as that 

described in the ‘Bacterial Transformation’ section with some modifications.  A stock of 200 

L competent cells was divided into 6 aliquots and each transformed with 1 L of 

phenol:chloroform:isoamyl alcohol extracted DNA from different positive colonies.  The tubes 

were incubated on ice for 30 min and the tubes were then heat shocked at 42°C for 25 s instead 
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of 90 s to account for the small volume.  The addition of LB media and the incubation of the 

cells were carried out as above in a standard manner.  An Amp/Chl LB plate was divided into 6 

quadrants to accommodate up to 6 different positive clones, and care was taken to avoid the 

mixing of different competent cell aliquots on the plate.  The plate was then incubated overnight 

as described above in the standard conditions. 

After 14 hr., 6 sterile 8.5 mL capped 13 mm glass test tubes were prepared for mini-

cultures of the transformed E. coli. 10 mL of LB media was brought up to an ampicillin 

concentration of 100 μg/mL and chloramphenicol of 25 μg/mL.  1 mL aliquots of the media was 

then added to 5 culture tubes and 2 mL of was added to the last culture tube.  Around 10 

colonies per clone was picked from the transformation plate using an inoculating loop with 

proper sterile technique and then dipped into the respective labeled culture tube.  One of the 

clones was randomly chosen to inoculate into the culture tube containing 2 mL LB media as a 

control.  The inoculated bacterial cultures were grown at 37°C in a shaking incubator at 200 

rpm.  After 45 min. of bacterial growth, at which the culture tubes started to appear slightly 

cloudy, 1 mL of the control tube was separated into a clean empty tube as the uninduced 

control.  Isopropyl β-D-1-thiogalactopyranoside (IPTG) was added to the final concentration of 

0.4 mM to all other 6 culture tubes (excluding the control tube) and grown for an additional 3 

hr. to induce protein production.  

The induced bacterial cultures were then transferred to clean 1.5 mL eppendorf tubes 

and centrifuged in a Beckman Coulter Microfuge 18 at 14,000 rpm (14,539 x g) for 5 min. to 

harvest the cells.  The supernatant was discarded and 100-300 μL of 1x SDS-sample buffer was 

added to the pellet according to pellet size.  The bacterial pellets were then sonicated and heated 

at 80°C for 5 min to extract the total proteins and break up the bacterial genomic DNA.  SDS-

PAGE and western blot were then run to determine the level of the expression of the TnT or 
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TnT fragment, with the uninduced control included to help identification of the target protein in 

the SDS-PAGE gel and western blot.  A clone with the best protein expression would later be 

used for minipreparation of plasmid DNA for sequencing confirmation of the expression 

plasmid construct.  

Plasmid Minipreparation 

After the best clone was determined by miniexpression, the corresponding JM109 smear 

culture identified by the colony PCR screening was used to inoculate in a 50 mL tube with 5 mL 

of LB media brought up to a final ampicillin concentration of 100 μg/mL.  The culture was 

inoculated using an inoculating loop by lightly touching a colony from the smear and dipping 

into the media.  The bacterial culture was then incubated for 12 hr. at 37°C in a shaking 

incubator at 200 rpm.  After incubation, the 50 mL tube was spun down in a Beckman GS-6R 

centrifuge with a GH-3.8 rotor at 3,000 rpm (1,459 x g) for 15 min.  The supernatant was 

discarded and the tube was inverted on a paper towel to get rid of any excess supernatant.  The 

plasmid DNA from the pellet was then purified using the GenElute™ Plasmid Miniprep Kit 

(Sigma) according to the manufacturer’s instructions.  Briefly, the pellet was suspended in 

RNAse A solution, lysed in an SDS-alkali solution, and neutralized with binding solution.  The 

mixture was spun to remove cell debris, proteins, lipids, SDS, and chromosomal DNA, which 

all appear in a viscous precipitate.  The supernatant was then added to a silica spin column to 

absorb the plasmid DNA, followed by elution with TE buffer.  The purified DNA is then 

analyzed using agarose gel electrophoresis to confirm the presence of the target plasmid and is 

then sent for DNA sequencing at a commercial service facility (GENEWIZ). 

DNA Sequence Analysis 

To confirm the identity of the plasmid containing the target insert, an aliquot of the 

purified plasmid was sent to GENEWIZ for sequencing, using the T7 forward primer and T7 
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terminator reverse primer that flank the cDNA insert cloned into the pET or pAED4 plasmids.  

The chromatograph trace generated from DNA sequencing via capillary electrophoresis was 

checked to ensure the sequence was clean with minimal background noise, indicating high 

plasmid quality.  Any miscalled nucleotides and dye blots in the trace was corrected before 

finalizing the DNA sequence.  The coding sequence was then translated into the amino acid 

sequence using DNASTAR Lasergene and the amino acid sequence was compared to the 

reference sequence in the database to confirm a 100% match. 

Large Scale Protein Expression and Purification 

Large Scale Expression of Recombinant Troponin T and Fragments  

BL21(DE3)pLysS cells were transformed in the afternoon with recombinant plasmid 

containing the cDNA of interest on two 100-mm Amp/Chl plates and incubated at 37°C 

overnight.  In the next morning, Amp and Chl was added to 8 flasks of 1 L previously prepared 

autoclaved LB media, to the final concentrations of 100 μg/mL and 12.5 μg/mL respectively.  A 

2 mL aliquot of the LB media was used as blank for spectrometry measurements of bacterial 

growth.  A 20 mL aliquot of the LB media was transferred to a 50 mL sterile culture tube.  The 

BL21(DE3)pLysS cells were scraped off the LB plate with a glass spreader and suspended in 

the 20 mL aliquot of LB.  The bacterial cell suspension was pipetted up and down to ensure 

homogeneity and then distributed evenly to each flask.  The flasks were then incubated in a 

37°C incubator and shaken at 200 rpm.  Bacterial growth in the culture flask was monitored by 

measuring OD600.  When the OD600 reached 0.3, a 1 mL aliquot from one of the bacterial culture 

flasks was taken and the cells were spun down in a Beckman Coulter Microfuge 18 at 14,000 

rpm (14,539 x g) to serve as an uninduced control.  The bacterial cultures were then induced by 

adding IPTG to a final concentration of 0.4 mM.  The cultures were shaken at 37°C for an 

additional 3 hr. for the induction of protein expression.  After the protein induction phase, OD600 
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measurements of the cultures were recorded and 1 mL samples of bacterial cultures were taken 

for collecting cells and evaluating the protein expression using SDS-PAGE and western blot. 

The bacterial cultures were transferred to 1 L centrifuge bottles and centrifuged at 8,000 

rpm (12,228 x g) for 15 min in a Beckman Coulter Avanti J-20 XPI using a JLA 8.1 rotor.  

After centrifugation, the supernatant was discarded.  The bacterial pellets were put on ice, 

combined together and suspended in lysis buffer (50 mM, 5 mM EDTA pH 8.0), supplemented 

with 0.5 mM phenylmethylsulfonyl fluoride (PMSF) and 15 mM β-mercaptoethanol to a final 

volume of 100 mL.  The bacterial cell suspension was then lysed using a French press at >500 

psi for 3 passes.  The lysate solution was then centrifuged at 12,000 rpm (13,845 x g) in a JA-14 

rotor for 30 min to remove cell debris. 0.1 mL of the supernatant was kept for SDS-PAGE and 

western blot analysis of total protein expression.  

Ammonium-Sulfate Precipitation  

Ammonium sulfate precipitation is used for the fractionation of proteins by altering 

protein solubility though changes in ionic strength.  Ammonium sulfate was added to the 

protein solution with step wise increments in concentration and the precipitate fractions were 

collected separately.  The amount of (NH4)2SO4 needed to bring up the protein solution to the 

desired saturation level at 0°C was calculated according to standard technical manuals.  The 

protein solution was kept on ice and stirred while slowly adding the desired amount of solid 

(NH4)2SO4.  After adding (NH4)2SO4, the solution was stirred on ice for 20 min. to reach 

equilibrium.  The solution was then centrifuged at 12,000 rpm (13,845 x g) in a JA-14 rotor for 

30 min.  The supernatant was separated and a sample of the supernatant and pellet was taken for 

dialysis and SDS-PAGE/western blot analysis to evaluate the enrichment of the recombinant 

TnT protein.  The supernatant was measured for actual volume, subsequently brought up to a 

higher saturation of (NH4)2SO4 and the previous steps were repeated to separate the next 
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supernatant and pellet.  Although the optimum (NH4)2SO4 steps were later determined and fine-

tuned experimentally, initial steps were collecting pellet of 0-20%, 20-40% and 60-80% in a 

new protein purification protocol.  The precipitate and supernatant fractions were dialyzed 

overnight with three changes.  The next day, SDS-PAGE and Western blot results were 

evaluated and the fraction containing the protein of interest was loaded into the column for 

further purification.  

 

Figure 16 – SDS-PAGE and Western blot of the expression of MsTnT 

Dialysis 

For dialysis of protein samples, Fisherbrand regenerated cellulose dialysis tubing with a 

molecular weight cut off (MWCO) of 6,000-8,000 daltons was used.  In order to dialysis 

ammonium sulfate precipitation fractions, the pellets were dissolved in a minimum amount of 

dialysis buffer (cold ddH2O with 0.1 mM EDTA and 0.1% formic acid).  The solution was then 

transferred into the dialysis tubing and the ends were clamped.  The dialysis bags were then put 

into a container of dialysis buffer to ensure a volume ratio of 100:1 or larger of the buffer to the 

dialysis tubing volume.  The dialysis container was kept stirring in 4°C for 4 hours or longer 
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between changes to ensure equilibrium between the dialysis tubing and the dialysis container.  

The supernatant samples were dialyzed directly  

Column Chromatography 

Anion Exchange Chromatography 

This technique separates proteins based on varying charge of proteins, in which protein 

solution (the liquid phase) is passed through a covalently cross-linked ion-agarose beads matrix 

(the solid phase).  In the present study, the solid phase is comprised of positively charged 

diethylaminoethyl cellulose (DE52) beads. In order for the target protein to bind to the beads, 

the proteins must be negatively charged.  This requires the pH of the column to be at least 1 unit 

higher than the PI of the target protein.  Elution of proteins bound to the column is achieved by 

increasing ionic strength through an increasing gradient of KCl.  The more tightly bound 

proteins elute out towards the end of the gradient, where a higher ionic strength is required to 

disrupt its interactions with the column beads. 

A 50 mL DE52 column was first regenerated using a BioLogic LP system with the 

following steps: 

1. 1 M KCl 20 mL 

2. ddH2O  50 mL 

3. 1 M HCl  20 mL 

4. 1 M NaOH  20 mL 

5. ddH2O Until pH 7 

6. 1 M Buffer A (pH depends on protein)  Until target pH reached (~10 mL) 

7. Buffer A Until target pH and conductivity reached 

Buffer A: With or without 6 M urea (for insoluble/soluble proteins), 10 mM Tris-HCl pH 

adjusted to target protein of interest. Buffer B: DE52: Buffer A + 300 mM KCl (adjust pH) . 
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Steps 6 and 7 were used to equilibrate the column beads to the desired pH for the run to 

ensure optimum separation of the target protein.  The protein solution was brought up to 6 M 

urea in the cases of insoluble proteins in Buffer A supplemented with 0.5 mM PMSF, 0.1 mM 

EDTA (for inhibition of any proteases).  The protein solution was centrifuged using a JA-14 

rotor at 12,000 rpom for 30 minutes. 15 mM β –Mercaptoethanol was added to the protein 

sample and 6 mM β –Mercaptoethanol was added to the column buffers.  The protein solution 

was then loaded into the column and the following program was run through the BioLogic LP 

system at a flow of 1 mL/min for all steps: 

1 Buffer C 100 min (Assuming sample size is  100 mL) 

2. Buffer A 50 min 

3. Buffer B 300 min 

4. Buffer B 0-100% 50 min 

Fraction collection 6 min per fraction, collect 56 min to 530 min 

The outflow of the column was monitored using an in line UV monitor for absorbance at 

280 nm. SDS-PAGE and western blots were run for the protein containing fractions to evaluate 

the peak fraction containing the target protein.  Those fractions were then dialyzed and 

lyophilized.  An example of the DE52 column profile is shown in Figure 17. 
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Figure 17 – DE52 anion exchange column purification of MsTnT. (A): MsTnT starts to elute at 
fraction 22 and ends at fraction 31. (B): Higher molecular weight contaminant proteins eluting 
at higher concentrations of KCl 

Size-exclusion Chromatography 

In order to further separate impure protein fractions by size, a 2.5 x 120 cm (588 mL) 

G75 gel filtration column was used.  The G75 column was first washed using a BioLogic LP 

system with one column volume equivalent of the buffer containing 6 M urea, 0.5 M KCl, 10 

mM imidazole, 0.1 mM EDTA, pH 7.0, and supplemented with 6 mM β –mercaptoethanol 

(“G75 buffer”) at a flow rate of 0.5 mL/min.  The lyophilized protein to be loaded into the 

column was dissolved in a minimum volume of G75 buffer (<5 mL when possible).  The 
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protein sample solution was centrifuged in a Beckman Coulter Microfuge 18 at 12,000 RPM 

(10,682 x g) for 5 minutes and loaded onto the G75 column.  The following program was run 

with BioLogic LP system: 

Flow rate set to 0.5 mL/min  

1. G75 Buffer 1280 min  

Fraction collection 12-16 min per fraction, collect 200 to 1280 min 

The column fractions were monitored using a UV monitor at 280 nm. SDS-PAGE and 

Western blot of the fractions were run to evaluate which fraction contained the target protein at 

the highest amount and purity.  Those fractions were then dialyzed and lyophilized. 

 
 
 
 
 
Figure 18 – G75 Size exclusion column 
purification of MsTnT. Pure fractions of 
MsTnT starts to elute at fraction 24 and 
ends at fraction 27 
 
 
 
 
 

 
Metal Ion Affinity Chromatography 

High efficiency metal ion affinity chromatography was used to purify TnT fragments 

that expressed in E. coli only at very low levels.  cDNAs encoding the TnT fragments were 

cloned into a modified plasmid vector encoding an N-terminal affinity tag, Tx3 

(HEEAHHEEAHHEEAH), to facilitate the purification via metal ion affinity chromatography.  

This repeating Tx sequence is a metal binding cluster that has been naturally found in fTnT in 

chicken breast muscle, which indicates that this sequence is well tolerated in TnT (Jin & 
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Smillie, 1994).  The use of Tx sequence as an affinity purification tag allows for highly 

effective purification of the target protein using a Zn(II) column in high stringency buffer 

conditions (e.g., 6 M urea, 1 M KCl), which demonstrate the greater effectiveness of Tx3 tag 

over the commonly used polyhistidine tags (Jin & Lin, 1988; Arnold & Haymore, 1991; Ogut & 

Jin, 1996; Jin et al., 2000).  

The column used for this procedure was a 20 mL column containing Chelating 

Sepharose Fast Flow beads (GE Healthcare).  The column was first regenerated and charged 

with Zn2+ in the following manner: 

1. 10 mM EDTA in 1 M KCl 20 mL 

2. ddH2O  50 mL 

3. 0.1M NaOAc (pH 4.0)  20 mL 

4. 0.1M ZnCl2 in 0.1 NaoAc (pH 4) 20 mL 

5. 0.1M NaOAc (pH 4.0)  20 mL 

6. ddH2O  20 mL 

7. 0.1 M phosphate buffer (pH 7.4) 20 mL 

8. Lysis buffer  (pH 7.4) 20 mL 

During this procedure, competent cells were transformed and protein was expressed as 

described above.  After centrifuging the bacterial cultures, the bacterial pellets were combined 

and suspended in a urea lysis buffer (6 M urea, 1 M KCl and 20 mM phosphate buffer, pH 7.4) 

or non-urea low salt lysis buffer (30 mM KCl, 20 mM phosphate buffer, pH 7.4).  In the present 

study, only Tx3-McTnT T1 required the use of the non-urea lysis buffer as it had weaker 

binding in the urea lysis buffer.  

After suspending the bacterial pellet in lysis buffer and lysis of cells using French press 
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as above, the lysate was centrifuged using a JA-14 at 12,000 RPM (13,845 x g) for 30 min. and 

the supernatant was loaded into an equilibrated Zn2+ column.  After the flowthrough was 

collected, the column was washed with 100 mL of lysis buffer.  The column was then eluted 

with 1 column volume each step of increasing concentrations of imidazole (10 mM to 100 mM) 

to elute the metal-binding recombinant TnT fragment.  The peak fractions were identified with 

SDS-PAGE and Western blot, dialyzed, and lyophilized.  

 

Figure 19 – SDS-PAGE 
and Western blot of Zn2+ 
affinity column 
purification of Tx3-MfTnT 
middle fragment. Pure 
fractions of the fragment 
elute from 2 mM to 60 mM 
imidazole with bacterial 
protein contaminants 
eluting during the 
flowthrough and washing 
step. 

 

 

 

 
Lyophilization of Protein Samples 

Protein samples were lyophilized using a Labconco FreeZone 4.5 Liter system.  After 

fully dialyzed, the protein solutions were frozen in a dry ice box for 45 min while positioned to 

achieve a large surface area.  The flasks were then quickly connected to the drying chamber of 

the lyophilizer for freeze-drying.  

Tropomyosin Binding Assay 

Solid-Phase Microplate Protein-Binding Assay 

The tropomyosin binding assay used in the present study is an ELISA-based solid-phase 

SDS‐PAGE 12% (29:1) 
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microplate protein-binding assay which takes advantage of immunological detection in a high 

throughput plate form to assess the tropomyosin binding affinities of different TnT constructs 

(Biesiadecki & Jin, 2011).  

TnT was coated and immobilized non-covalently on a polystyrene microtiter plate while 

the binding partner applied to TnT was rabbit α/β skeletal muscle tropomyosin previously 

prepared in Dr. Jin’s laboratory (Smillie, 1982).  The primary antibody applied to detect the 

bound tropomyosin was a monoclonal antibody against both of the muscle Tm isoforms (Lin, 

Chou, & Lin, 1985).  The binding of Tm to different TnT constructs was elucidated by the 

binding of Tm at a series of concentrations and different amounts of Tm left binding to TnT 

after stringent washes.  The difference in Tm binding is quantitatively determined by 

colorimetric reaction via the use of Horseradish peroxidase (HRP)-labeled second antibody.  

Thus, this assay gives information regarding binding affinity and binding strength between the 

two proteins, Tm and TnT.  

The purified TnT proteins were dissolved in Buffer A (100 mM KCl, 1 mM ethylene 

glycol tetraacetic acid (EGTA), 3 mM MgCl2, 20 mM piperazine-N,N0-bis(2-ethanesulfonic 

acid) (PIPES), pH 7.0) at 5 μg/mL to coat 96-well polystyrene microtiter plates at 100 μL/well 

at 4°C overnight.  Free TnT proteins were removed by washing with Buffer T (Buffer A plus 

0.05% Tween 20) for three times over a 10 min. period.  The plate was then blocked with 

Buffer T + 1% BSA at room temperature for 1 hr.  Serial dilutions of rabbit α/β skeletal muscle 

tropomyosin in Buffer T containing 0.1% BSA were added to the plate at 100 μL/well and 

incubated at room temperature for 2 hr.  The plates were washed three times with Buffer T and 

an anti-Tm mAb CH1 (1:10,000) was added to the plate at 100 μL/well and incubated at room 

temperature for 1 hr.  After three Buffer T washes, goat anti-mouse HRP-labeled second 

antibody (1:4,500) was added to the plate at 100 μL/well and incubated at room temperature for 
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45 min.  After three Buffer T washes, the amount of Tm bound to the immobilized TnT in each 

well was quantified using H2O2–ABTS (2,20-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) 

substrate reaction catalyzed by HRP.  The A415nm values in the linear course of the color 

development were monitored for each assay well against the reference wavelength of 655 nm 

using a Bio-Rad Benchmark automated microplate reader and recorded to construct Tm-binding 

curves for each set of TnT proteins.  The experiments were done in triplicate wells and repeated. 

Statistical Analysis 

The raw absorbance values of each binding curve were compared via repeated measures 

using two-way ANOVA using GraphPad Prism software.  The column means were compared 

across raw data binding curves and a Tukey’s multiple comparisons test was conducted with a 

0.05 significance level. 

In order to obtain 50% maximum binding values, sigmoidal dose-response (variable 

slope) curves were fitted to each binding curve with the least squares fitting method. 
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Figure 20 - ELISA-based solid-phase protein binding assay 
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CHAPTER 3 

RESULTS 

Tropomyosin Binding Affinity of T2 Fragments of Different TnT Isoforms  

There was no significant difference in Tm binding affinity among the muscle fiber-

specific T2 fragments.  These fragments are comprised of their respective T2 binding regions, 

which have the site 2 Tm binding site. 

 

Figure 21 – No significant differences in Tm binding affinity between T2 fragments across 
isoforms. (P=0.8480 for cardiac T2 vs. slow T2, P=0.9895 for fast T2 vs. slow T2 by Fisher test 
in Two Way ANOVA). 

Tropomyosin Binding Affinity of T1 Fragments of Different TnT Isoforms 

There was a significant difference in Tm binding affinity among the T1 fragments of 

different muscle fiber-specific isoforms, with fast T1 having the highest Tm binding affinity, 

then cardiac and lastly slow T1 with the lowest Tm binding affinity.  These fragments are 

comprised of their respective N-terminal hypervariable regions and middle conserved regions, 

which contain the Tm binding site 1. 
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Figure 22 – Significant differences in Tm binding affinity between T1 fragments across 
isoforms. (****P < 0.0001 for cardiac T1 vs. slow T1, ****P < 0.0001 for fast T1 vs. slow T1 
by Fisher test in Two Way ANOVA) 
 

Tropomyosin Binding Affinity of Middle Fragments of Different TnT Isoforms 

There was no significant difference in Tm binding affinity between the middle 

fragments among different muscle-fiber specific isoforms.  These fragments are comprised of 

their conserved middle regions, which lack their respective N-terminal hypervariable regions 

but retain the site 1 Tm binding site.  

Figure 23 - No significant 
differences in Tm binding 
affinity between middle 
fragments across isoforms. 
(P=0.9814 for cardiac middle 
vs. slow middle, P=0.0538 for 
fast middle vs. slow middle by 
Fisher test in Two Way 
ANOVA) 
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Tropomyosin Binding Affinity of Intact TnT Isoforms 

There was a significant difference in Tm binding affinity among the intact TnTs of 

different muscle fiber-specific isoforms, with fast TnT having the highest Tm binding affinity, 

then cardiac and lastly slow TnT with the lowest Tm binding affinity. These TnTs are 

comprised of their respective T1 and T2 regions which each contain Tm binding sites 1 and 2, 

respectively. 

 
 

Figure 24 - Significant 
differences in Tm 
binding affinity between 
intact TnT isoforms. 
(****P < 0.0001 for 
cardiac intact vs. slow 
intact, ****P < 0.0001 
for fast intact vs. slow 
intact by Fisher test in 
Two Way ANOVA) 

 

 

 

 

Tropomyosin Binding Affinity of TnT Comparison within Species and Isoform 

Intact cardiac TnT had the highest Tm binding affinity, followed by the cardiac middle 

and T2 fragments, which contain the Tm binding site 1 and 2, respectively (these two did not 

have significantly different Tm binding). The cardiac T1 fragment had the lowest Tm binding 

affinity, and contained its respective N-terminal hypervariable region and site 1 Tm binding 

site. 
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Figure 25 - Comparison of Tm 
binding affinity of intact, T1, 
T2 and middle fragments of 
cardiac TnT. There were 
significant differences in Tm 
binding affinity between T2, T1 
and intact, with no significant 
difference between middle and 
T2; all TnTs are within the 
same species and isoform. (**P 
< 0.0026 for cardiac intact vs. 
cardiac T2, ****P < 0.0001 for 
cardiac T1 vs. cardiac T2, and 
P=0.4978 for cardiac middle vs. 
T2 by Fisher test in Two Way 
ANOVA) 
 

Below is a summary of each set of ELISA experiments.  In the Table, Tm binding refers 

to the qualitative difference of Tm binding, where Ref is the reference curve used for 

comparison, and + and - represent an increase and decrease in Tm binding, respectively.  EC50 

values are the Tm concentrations to reach 50% maximum Tm binding for each TnT construct. 

Table 2 – Summary of Protein Binding Experiments 
TnT Fragment Cardiac T2 Slow T2 Fast T2 

Tm Binding = Ref = 
EC50 2.279E-08 2.443E-08 2.545E-08 

Std. Dev. 0.01687 0.01546 0.01593 

TnT Fragment Cardiac T1 Slow T1 Fast T1 
Tm Binding + Ref ++ 
EC50 3.338E-08 5.103E-08 2.491E-08 
Std. Dev. 0.02425 0.03049 0.03195 

TnT Fragment Cardiac Middle Slow Middle Fast Middle 
Tm Binding = Ref = 
EC50 2.481E-08 2.744E-08 2.301E-08 

Std. Dev. 0.01482 0.01392 0.01428 

TnT Fragment Cardiac Intact Slow Intact Fast Intact 
Tm Binding + Ref ++ 
EC50 1.606E-08 2.007E-08 1.283E-08 
Std. Dev. 0.009816 0.01101 0.009500 

 

TnT/TnT Fragment Cardiac Intact Cardiac T1 Cardiac Middle Cardiac T2 
Tm Binding + - = Ref 
EC50 1.630E-08 3.213E-08 2.707E-08 2.270E-08 
Std. Dev. 0.01243 0.01825 0.01350 0.01721 
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CHAPTER 4 

DISCUSSION 

Methodology and Rationale 

This is the first study that has compared intact TnTs and TnT fragments in order to 

elucidate the differences in intrinsic site 1 and site 2 Tm binding affinity across muscle fiber-

specific isoforms.  Previous studies that investigated TnT’s Tm binding affinity have relied on 

enzymatic and chemical cleavage of intact TnT to generate various fragments that contain or 

lack specific TnT Tm binding sites (Mak & Smillie, 1981; Nakamura, Yamamoto, Hashimoto, 

& Ohtsuki, 1981; Pearlstone & Smillie, 1982; Heeley et al., 1987; Jin et al., 2000).  In this 

study, molecular biology techniques were used to generate intact TnT and TnT fragments that 

allowed comparison and elucidation of the structure and function of TnT beyond the 

conventional comparison of the T1 and T2 regions of TnT.  These two regions produced by 

enzymatic or chemical cleavage have been useful to investigate the Tm binding affinity of T1 

and T2 regions.  However, this approach was not particularly useful to understand the intrinsic 

Tm binding affinity of site 1 which was further explored in this study.  The expression and 

purification of TnT fragments with the aid of affinity tag chromatography has allowed further 

investigation into the role of TnT’s Tm binding sites and the role of the N-terminal 

hypervariable region in the modulation of TnT-Tm binding 

The Role of TnT’s N-Terminal Hypervariable Region in Muscle Fiber-Specific Isoforms 

One of the main findings in this study is that TnT’s N-terminal hypervariable region is 

responsible for the significant differences in tropomyosin binding across muscle-fiber specific 

isoforms. 

When the T1 fragments among different muscle fiber-specific isoforms are compared, 

there is a significant difference in Tm binding (Figure 22).  Among the T1 fragments across 
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isoforms, fast TnT was observed to have the highest binding affinity to Tm, followed by cardiac 

and then slow.  This pattern was also observed in the intact TnT, with significant differences 

across intact TnT isoforms (Figure 24).  Since the T1 fragments only contain their respective N-

terminal hypervariable region in addition to the highly conserved middle Tm binding site 1, the 

presence of this N-terminal hypervariable region is responsible for variably modulating site 1’s 

Tm binding affinity across isoforms, both in intact TnTs and TnT T1 fragments of muscle fiber-

specific isoforms.  

It is important to note that this significant differences in Tm binding affinity in intact 

TnTs is not decreased with the presence of both Tm binding sites despite this study’s 

observation that there is no significant difference in site 2’s binding affinity across isoforms 

(Figure 21).  The observation that the significant differences in intact TnT isoforms are still 

present despite the similar Tm binding affinity of site 2 across muscle specific isoforms indicate 

that the differences in TnT isoforms arise because of the modulation site 1’s Tm binding affinity 

by the N-terminal hypervariable region. 

When the N-terminal hypervariable region is removed and only the middle region of 

TnT is compared across isoforms, the significant difference in site 1 Tm binding affinity is 

abolished (Figure 23).  This indicates that the difference in site 1’s Tm binding affinity among 

the T1 fragments across isoforms is due to the presence of the N-terminal hypervariable region.  

This observation is consistent with previous data showing that the N-terminal hypervariable 

region not only alters TnT’s overall conformation, but most likely modulates the more proximal 

central Tm-binding site as opposed to the more distal TnT binding site (J. Wang & Jin, 1998; 

Jin et al., 2000).  

Additionally, this study also corroborated previous observations that the N-terminal 

truncation of cTnT results in an overall increase in intact TnT’s binding affinity to Tm (Fisher et 
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al., 1995; Feng et al., 2008).  The mechanism of this phenomenon is more apparently in this 

study, where it was shown that the cTnT middle fragment exhibited a higher Tm binding 

affinity than the T1 fragment (Figure 25).  This indicates that the N-terminal truncation of intact 

cardiac TnT results in an overall increase of Tm binding largely due to the lack of modulation 

of site 1’s Tm binding affinity by the N-terminal hypervariable region.  

Tm Binding Affinity of Sites 1 and 2 

This study also evaluated the Tm binding affinity of each site across isoforms as well as 

within a specific isoform and species. T2 fragments had an overall higher Tm binding affinity 

compared to the T1 fragments (Figure 25).  This is in line with previous observations decades 

ago showing that the fTnT T2 has the greater Tm binding affinity compared to fTnT T1 when 

both proteins are analyzed on an α-tropomyosin binding column (Heeley et al., 1987).  

Although this study used α-β tropomyosin in the binding assays, previous studies have 

shown that the TnT fragments do not each have their own “specific preference” in regards to 

Tm binding affinity.  Instead, it was observed that TnT fragments and intact TnT all exhibit a 

higher binding affinity to α- tropomyosin and a lower binding β- tropomyosin.  Because of this 

observation, the conclusions reached in this study regarding Tm binding affinity of TnT 

fragments would most likely hold if α-tropomyosin or β-tropomyosin was used (Heeley et al., 

1987).   

In the experiment comparing intact TnT and TnT fragments within the same isoform and 

species, the middle cTnT fragment’s binding affinity was not significantly different compared 

to cTnT T2.  This indicates that without the modulatory effect of the N-terminal hypervariable 

region, the intrinsic Tm binding affinity of site 1 is not significantly different to site 2’s Tm 

binding affinity, and that Tm binding affinity of both sites is high (Figure 25).  This is 

demonstrated by the observation that the T2 fragments across isoforms exhibit no significant 



50 

 

differences in binding affinity to tropomyosin while the T1 fragments across isoforms exhibit 

significant differences in binding affinity to tropomyosin due to their respective N-terminal 

hypervariable region. 

Conclusions 

This study demonstrated that N-terminal variable region is a regulatory structure for 

functional alteration of TnT muscle fiber-specific isoforms.  In the absence of the N-terminal 

variable region of TnT, TnT’s conserved site 1 and site 2 tropomyosin binding sites across 

isoforms do not have any significant difference in Tm binding affinity (Figure 25).  This 

indicates that the N-terminal hypervariable region is largely responsible for the functional 

difference of TnT across isoforms by variably modulating the Tm binding affinity of site 1.  A 

discrepancy in past literature (Pearlstone & Smillie, 1982; Heeley et al., 1987; Jin & Chong, 

2010)  showing different Tm binding of T1 fragments vs. T2 Tm binding is explained by the 

data in this study by demonstrating that site 1’s Tm binding affinity is differentially modulated 

by the N-terminal hypervariable region across isoforms (Figure 26). 

This difference in modulation of site 1 and possibly site 2 is largely responsible for 

altering the overall conformation of TnT and thus conformation of the troponin complex (Figure 

26), which subsequently modulates the calcium activated regulation of striated muscle 

contraction (Ebashi & Endo, 1968; Meinrenken, 1969; Gazith et al., 1970; Spudich & Watt, 

1971; Mihashi, 1972; Vaneerd & Kawasaki, 1973; Rupp, 1983; Biesiadecki et al., 2007; Sheng 

& Jin, 2014), and thus plays a role in the functional difference of muscle fiber type-specific, 

developmental, splice variant, and pathogenic TnT isoforms.  
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Figure 26 – A model summarizing the findings. The N-terminal hypervariable region 
modulates the Tm binding affinity of Tropomyosin Binding Site 1 and thus results in variable 
Tm binding affinity of Site 1 across TnT muscle fiber specific isoforms. The partial high 
resolution structure of the Troponin complex was redrawn from previously published 
crystallography data (Takeda et al., 2003; Vinogradova et al., 2005; Sheng & Jin, 2014) 
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The troponin complex plays a central role in the allosteric function of sarcomeric thin 

filaments by enacting conformational changes during the Ca2+-regulated contraction and 

relaxation of striated muscle.  The troponin subunit T (TnT) has two binding sites for 

tropomyosin (Tm) and is responsible for anchoring the troponin complex to the thin filament.  

Although the C-terminal and middle regions of the TnT polypeptide chain are highly conserved 

among the three muscle type isoforms, the hypervariable N-terminal region has evolutionarily 

diverged significantly among isoforms.  Previous studies have shown that the N-terminal 

variable region fine-tunes Ca2+ regulation of muscle contractility via modulation of the overall 

molecular conformation of TnT, and its interactions with Tm.  In the present study, intact TnT 

and representative TnT fragments were engineered, and expressed in E. coli.  The TnT proteins 

were then purified using various biochemical and chromatographic techniques and prepared for 

functional studies.  Tropomyosin binding affinity was analyzed using solid phase protein 

binding assays to investigate the modulatory effects of the N-terminal variable region.  The 

results demonstrated that in the absence of the N-terminal variable region, TnT’s conserved 

middle region and C-terminal T2 region Tm-binding sites showed comparable Tm-binding 

affinities across isoforms.  The data demonstrate that without the modulatory effect of the N-
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terminal variable region, the intrinsic Tm-binding affinities of the two sites are both high.  In 

contrast, the presence of the isoform specific N-terminal variable region differentially reduces 

the binding affinity of TnT for Tm, primarily at the middle region binding site.  These novel 

findings indicate that the N-terminal variable region plays a key role in the functional difference 

of muscle fiber type-specific, developmental, splice variant, and pathogenic TnT isoforms by 

modulating the interactions with Tm during the contraction and relaxation of cardiac and 

skeletal muscle. 
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