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An Evaluation of Standard, Alternative, and Robust Slope Test Strategies 
 

   Tim Moses     Alan Klockars 
Educational Testing Service  University of Washington 

 
 
The robustness and power of nine strategies for testing the differences between two groups’ regression 
slopes under nonnormality and residual variance heterogeneity are compared. The results showed that 
three most robust slope test strategies were the combination of the trimmed and Winsorized slopes with 
the James second order test, the combination of Theil-Sen with James, and Theil-Sen with percentile 
bootstrapping. The slope tests based on Theil-Sen slopes were more powerful than those based on 
trimmed and Winsorized slopes. 
 
Key words: slopes, least squares, Theil-Sen, robust regression, James second order, nonnormality, 
residual variance heterogeneity 
 
 

Introduction 
The question of whether group differences are 
constant or vary across levels of an individual 
difference variable (X) has been considered in 
many fields of social science, including clinical 
psychology (Dance & Neufeld, 1988), 
organizational research (Aguinis & Pierce, 1998; 
Hunter, Schmidt, & Hunter, 1979), learned 
helplessness (Seligman, 2002) and education’s 
search for Aptitude-Treatment Interactions 
(Cronbach & Snow, 1977). Several strategies 
have been proposed for evaluating the 
consistency of group differences across X based 
on fitting regression lines that predict outcome Y 
from X in separate treatment groups and then 
conducting a significance test for the 
homogeneity of the groups’ regression slopes. 
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The purpose of this study is to compare some of 
the recently-researched methods of slope 
estimation and testing under conditions of 
nonnormality and residual variance 
heterogeneity. 

The slope test strategies considered in 
this study are approaches to estimating the 
following model,  

 
          ij 0j 1j ij ijY = β + β X + ε ,         (1) 

 
where outcome Y for individual i (= 1 to N) in 
group j (= 1 to J) is a linear function of a 
continuous X, 0jβ  and 1jβ  are the population 

intercepts and slopes of the regression line for 
each of J groups, and the ijε  are the residuals. 

The strategies for assessing differences in the 

1jβ ’s reviewed below are most easily understood 

in terms of alternative expressions of (1). When 
J = 2, (1) can be expressed as, 
 

ij 0 1 ij 2 ij 3 ij ij ijY = β + β X + β G + β X G + ε ,    (2) 

 
where ijG  is a dichotomously-coded group 

membership variable. A more general matrix 
version of (1) and (2) is, 
  

= +Y Xβ e ,         (3) 
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where Y  is an N by 1 column vector, X  is an N 
by K “design matrix” corresponding to the K 
β ’s (including a column of 1’s for estimating 

0β ), β  is a K by 1 column vector ofβ ’s and e  is 
an N by 1 column vector of residuals. 
 
Standard slope estimation and slope test 
 The standard slope test uses “least 

squares” estimates of the β ’s (i.e., β̂ ’s) that 
minimize the sum of the squared residuals, 

( ) ( )ˆ ˆˆ ˆ
tte e = Y - Xβ Y - Xβ . Because ˆ ˆte e  is a 

convex function of β̂ , it can be minimized by 

differentiating with respect to β̂ , setting this 

derivative to zero and solving for β̂ , resulting in 
the closed form solution 
 

           ˆ t -1 tβ = (X X) X Y .       (4) 
 

Equivalently, group j’s slope can be estimated 
 

 
ij .j ij .j

i in j
1j 2

ij .j
i in j

(x -x )(y - y )

β̂ =
(x -x )




,       (5) 

 
where .jx  and .jy  are the means of X and Y in 

group j. 
 The standard test for assessing the 
differences of J slopes is an F test, 

( )2 2 2
1j 1.Standard ij .j

j i in j

SlopesStandard
2

j ej
j

1 ˆ ˆβ -β (x - x )
J -1

F =
1

ˆ(N - 2)σ
N - 2J

      
  
  
 

(6), where 
( )2

ij
i in j2

ej
j

ε̂
σ̂ =

N - 2


 and 

2
1j ij .j

j i in j
1.Standard 2

ij .j
j i in j

β̂ (x - x )
β̂ =

(x - x )

 

 
 is the variance-

weighted common slope (Myers & Well, 1995, 
p. 421-422). (6) is evaluated on an F distribution 
with J-1 and N-2J degrees of freedom. With J=2, 

a t-test of 3β̂  in model (2) that is equivalent to 
the F test in (6) can be conducted by obtaining 

the standard error of 3β̂  as the square root of one 
of the diagonal elements in the variance-

covariance matrix of β̂ , 1

N - K

ˆ ˆ
( )−

t
te e X X , and 

evaluating 3

3

β̂
ˆSE(β )

 on a t distribution with 

N - K = N - 4  degrees of freedom. The 
referencing of the standard test statistics to F and 
t distributions is justified when the data meet 
particular assumptions, namely that the ijε  are 

normally and independently distributed with 
equal variances across the J groups. 
 The standard methods for estimating and 
testing slopes are problematic when data are 
nonnormal and residual variances are 
heterogeneous (Conover & Iman, 1982; Conerly 
& Mansfield, 1988; Headrick & Sawilowsky, 
2000; Klockars & Moses, 2002; Dretzke, Levin 
& Serlin, 1982; Overton, 2001; Alexander & 
Deshon, 1994; Deshon & Alexander, 1996). 
When distributions exhibit heavy-tailed 
nonnormality, extreme scores occur more often 
than when distributions are normal, increasing 
the variability of the estimated slopes, reducing 
the estimated standard errors, and making the 
standard test excessively liberal. When groups’ 
residual variances and sample sizes differ, the 
standard test’s pooling of groups’ residual 

variances, 
j

2
ej

1
ˆ(N - 2)σ

jN - 2J
 
 
 

 , is 

problematic, making the standard slope test 
either liberal or conservative depending on 
whether the larger and smaller group has the 
larger or smaller residual variance. The 
inaccuracy of the standard test is disturbing 
given that nonnormality and residual variance 
heterogeneity appear to be common in actual 
data (Micceri, 1989; Aguinis, Peterson & Pierce, 
1999). What follows are detailed definitions of 
slope test strategies that may outperform the 
standard test when distributions are nonnormal 
and residual variances are heterogeneous.  
 
Slope tests for nonnormal data: Central tendency 
strategies 
 Two approaches to slope estimation 
view group j’s slope in (5), 



MOSES & KLOCKARS 
 

79 
 

ij .j ij .j
i in j

1j 2
ij .j

i in j

(x -x )(y - y )

β̂ =
(x -x )




, as a central value of 

the slopes that can be created from pairs of 
observations in the data, 

ij i'j
1,ij,i'j ij i'j

ij i'j

(y - y )
b = ,i i', x x

(x - x )
≠ ≠ , and then try 

reduce the influence of the extreme observations 
on the central value. These ‘central tendency’ 
approaches define extreme observations in terms 
of both X and Y, so that the screening of 
extreme observations caused by nonnormality 
could potentially address slope estimation 
problems such as leverage (observations that are 
extreme on X), discrepancy (observations that 
are extreme with respect to the regression line), 
and outliers on Y. One popular strategy is the 
Theil-Sen slope estimator (Theil, 1950; Sen, 
1968; Wilcox, 2004; Wilcox & Keselman, 2004; 
Ebrahem & Al-Nasser, 2005; Wang, 2005). The 
Theil-Sen estimate is the median of the slopes 
that can be computed from the Nj(Nj-1)/2 pairs 
of observations in the data. Percentile 
bootstrapping methods can be used to test for 
differences between groups’ Theil-Sen slopes 
(i.e., draw 599 random samples with 
replacement from the J = 2 datasets, compute the 
differences in Theil-Sen slopes in each of these 
datasets, and determine if the middle (1-α)% of 
the 599 slope differences contain zero, Wilcox, 
2005). 
 A less-familiar alternative to the Theil-
Sen slope estimate is the application of the 
trimming and Winsorizing strategies that are 
typically proposed in tests of mean differences 

to ij i'j

ij i'j

(y - y )

(x - x )
 (Guo, 1996; Luh & Guo, 2000). To 

obtain trimmed and Winsorized estimates of 
slopes and their variances, rank order the x’s in 
each of the J groups, x1j< x2j….< xNj. When the 
number of observations in group j is even 
(Nj=2mj) consider mj independent slope 
estimates,  

     j

j

j

i+m j ij

1,i+m j,ij
i+m j ij

(y - y )
b =

(x - x )
.     (7) 

When the number of observations in j is 
odd (Nj=2mj+1), a pooling is done so that 

observations 
j2m jy and 

j2m +1jy  are pooled, 
j2m jx  

and 
j2m +1jx  are pooled, and 

j2m jy  and 
j2m jx  are 

replaced by 
j j j2m j 2m j 2m +1jy = (y + y )/2  and 

j j j2m j 2m j 2m +1jx = (x + x )/2 .  

 The trimming and Winsorizing is done 
for each of the j slopes and standard errors. Let 
gj=γmj where γ represents the proportion of 
observations to be trimmed from each tail of the 
ordered distribution of 

j1,lj j 1,1j 1,2j 1,m jb , l = 1 to m ,b b ...b≤ ≤ . Let hj=mj-2gj 

be the effective sample size after trimming.  
The trimmed mean slope is computed as 

j j

j

m g

1,lj
l g 1

1. j

b

b
h

j

−

= +
=


.                     (8) 

Winsorized slope observations are 
obtained by, 
 

1,(g +1)j 1,lj 1,(g +1)jj j

         1,lj 1,lj 1,(g +1)j 1,lj 1,(m -g )jj j j

1,(m -g )j 1,lj 1,(m -g )jj j j j

=

b     if b             < b

bw b            if b < b              < b

b    if b             > b

 
  
 
 
  

(9). The variance of the trimmed mean slope is 
computed as a function of the Winsorized 
variance, 

   
jm 1,lj

2 2l
bwj 1,lj

l=1j j j

=

bw
1

(bw )
h (h 1) m

σ −
−


 .     (10) 

 To assess the differences in trimmed 

slopes, replace the 1jβ̂  in (6) with 1.jb , the 

2
j ej

j

1
ˆ(N - 2)σ

N - 2J
 
 
 

  with 

2
j j bwj

jj
j

1
h (h -1)σ

h - J

 
 
 
 
 


, and the 

2
ij .j

i in j

(X - X )  with h
j
. These replacements to 

(6) cause the standard test of slope differences to 
resolve into an F test for independent trimmed 
means with J-1 and 

j

h - J
j  degrees of 

freedom, 
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1.j
j

2

j j bwj
jj

j

2

j 1.j
j2

j
j

j

SlopesTrimmed

h b -

F =

1
h (h -1)σ

h - J

h b
1

J -1 h

  
   
           

 
 
 
 
 








.   (11) 

     
Slope tests for nonnormal data: MM Regression 
 In “minimum maximum likelihood 
type” (MM, Yohai, 1987) regression, extreme 
observations are addressed in the minimization 
process used to estimate the regression line. 
While the standard slope estimation process is 
based on minimizing the sum of all squared 
residuals, the robust regression paradigm views 
the least squares approach as one of several 
possible functions, ξ , of the scaled residuals 
that could be minimized,  
 

jNJ
ij

j i in j

ε

σ
ξ
 
 
 

 .            (12) 

 
Some choices of ξ  can produce β  estimates 

that outperform the standard method’s β ’s in 
terms of their “breakdown” rates (i.e., the 
smallest percentage of contaminated 

observations needed to render β̂  useless). One 

popular ξ  (SAS, 2003) is the Tukey weight 
function, 

2 4 6
s s s

3 - 3 +    if  s κ,
(s) = κ κ κ

1                                       otherwise.

ξ
       ≤            



(13) 

In (13), κ  is a constant selected to obtain 
desirable properties. A κ  value of 3.44 results in 
parameter estimates that are 85% as efficient as 
least squares estimates when the data are normal 
(Holland & Welsh, 1977). When data contain 
outliers that are discrepant with respect to the 
regression line, κ  defines a range around which 
the observations outside of the range have 
reduced contribution to the slope estimates.  
 The search for β 's that minimize (12) is 

similar to the standard test in that kβ 's are found 
such that the derivatives of (12) with respect to 

the kβ 's are zero, 

( )
jNJ

ijk ijk
j i in j

s x = 0, k = 1 to K
s

ξ∂
∂ . Unlike the 

least squares estimation methods used with the 
standard test, with MM regression there are no 
closed-form solutions to minimizing (12). The 
following is an outline of the three-stage MM 
algorithm for estimating the kβ 's. 

The first step of MM regression is to 
obtain robust starting values for the kβ 's and σ . 
The current SAS procedure for MM uses Least 
Trimmed Squares estimates as starting values 
(Rousseeuw, 1984; SAS Institute, 2003). The 
basic idea of LTS estimation is to draw samples 
of K observations from the N total observations 
in the data set. In each sample, obtain least 
squares estimates of the kβ ’s and find the ones 

that minimize ( )
2h

i
i

ε , where 3N + K +1
h =

4
 

and observations i through h reference the h 
smallest squared residuals. Additional features 
of the LTS algorithm involve intercept 

adjustments that reduce ( )
2h

i
i

ε  and 

computational search processes designed to find 
final kβ  estimates quickly in extremely large 
datasets (Rousseeuw & Van Driessen, 2000). 
One preliminary estimate of σ  is computed as, 

( )
2h

LTS i
i

1
s = d ε

h  ,  (14) 

where 
2N

d = 1/ 1- (1/c)
hc

φ , 
h + N

c =1/Φ( )
2N

, 

and Φ  and φ  are the cumulative and probability 
density functions of the standard normal 
distribution. 
A more efficient estimate of σ  than LTSs  can 
also be computed, 

( )
2N

i i
i

i
i

w ε
Wscale =

w - K




,   (15) 

where i LTS
i

0      if        ε /s > 3
w =

1       otherwise





.  
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With initial estimates of the kβ ’s and σ , 
the second step is to conduct iterative 
calculations to produce a converged σ  value, 

 

( ) ( )
N2 2m+1 mi

m
i

ε1
σ = ( ) σ

σ(N - K)( (s) Φ(s))
ξ

ξ ∂



, 

 (16) where (s) Φ(s)ξ ∂  denotes an expected 

value of (s)ξ  when the s  are from a normal 
distribution (about .25 for the Tukey bisquare 

(s)ξ  with κ = 2.9366 ). In (16), setting 

κ = 2.9366  results in the σ  having a breakdown 
rate of 25% (SAS, 2003). 

The third step is to conduct an iterative 
search for a final solution of the kβ 's with a 

fixed σ  value  

( )-1m+1 t tβ = X ΩX X ΩY ,     (17) 

where Ω  is an N by N matrix with diagonal 

entries 
(s) 1

s s

ξ∂
∂

 where the s  are the scaled 

residuals from the mth iteration step and 
κ = 3.44  in default SAS routines (SAS, 2003). 
The entries for Ω  are the “reweighted” part of 
MM’s iteratively reweighted least squares 
algorithm, and for the Tukey ξ (s) given in (13) 
are known as the Tukey bisquare weight 
function. 

At convergence, there are several 
estimates of the asymptotic variance-covariance 
matrix of β  (SAS, 2003). One version is,  

( )
( )

( )2
2 2 2 i

1i
2

2 22 2
ii

i

(1/(N-K)) (ε)/ ε(ε)/ εK
1+ ,

N
(1/N) (ε)/ ε(1/N) (ε)/ ε

ξσ ξ

ξξ

−

 
  ∂ ∂∂ ∂ 
     ∂ ∂ ∂ ∂        




W  

i

            (18) 

where 
( )

( )

2 2 2

2

2 2
i

(ε)/ εK
1+

N
(1/N) (ε )/ ε

σ ξ

ξ

 
 ∂ ∂ 
   ∂ ∂    


i

 is a 

correction factor, 2 2(ε)/ εξ∂ ∂  is the second 

derivative of ξ  with respect to the residuals, and 

W  is a K by K matrix with entries 

( )2 2
' i i ik ik'

i

(ε )/ ε x xξ= ∂ ∂Wkk . 

 The preceding review provides some 
insight into the kinds of nonnormality problems 
for which MM might be especially useful, which 
are probably situations with outliers that do not 
“mask” themselves by exerting heavy influence 
on the regression line. Many of the steps of the 
MM estimation process are analogues to the 
standard method’s estimation, including the use 
of least squares estimation used in the LTS 
starting values, the computation of the kβ ’s 
(equation 17 is a weighted version of equation 
4), and the computation of the MM standard 
errors ( W  in equation 18 is a weighted version 

of t(X X)  in 1

N - K

ˆ ˆ
( )−

t
te e X X ). The relatedness of 

MM computations to the standard method’s 
computations suggest that both procedures 
would do well with normal populations, while 
MM should outperform the standard method 
when there are outliers on Y (Anderson & 
Schumacker, 2003). 
  
Slope tests for heterogeneous residual variances 
 Alternative parametric significance tests 
have been developed by Welch (1938), James 
(1951) and Deshon and Alexander (1994) to test 
for slope differences when residual variances are 
unequal. All three methods avoid the standard 
test’s pooling of groups’ residual variances in 
(6). Comparative research has shown that the 
three parametric alternative tests perform 
similarly in terms of robustness and power (Luh 
& Guo, 2000; Luh & Guo, 2002; Deshon & 
Alexaner, 1996), so this study focuses solely on 
the James second-order test, which is slightly 
better than the Welch and Deshon and 
Alexander tests in terms of power and 
robustness to nonnormality.  

The steps of the James second order test 
are as follows: 

1) Define a James weight, jwj , based 

on each group slope’s standard 
error,  

              

1 j

1 j

2

j 2

j

1/
wj

1/

β

β

σ
σ

=


.       (19) 
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2) Define a variance-weighted 
common slope as, 

      
j 1j

j

wjβ β+ = .        (20) 

 3) Define the James’ test statistic as, 

       
( )

1 j

2

1j

2
j

James
β

β β
σ

+−
= .         (21) 

4) Evaluate the significance of the 
James’ test statistic by determining 
if it exceeds the following critical 
value, 

critJames =  
2

4 2 j j

j

2 2 2

4 2 j j

j

2

4 2 23 22 21 12 12 11

2 2 2

11 2 23 22 21 12 12 11 11

2

4 2 12 11 12

c (1 / 2)(3 ) [(1 wj ) / v ]

(1 / 16)(3 ) [1 (J 3) / c] [(1 wj ) / v ]

(1 / 2)(3 )[(8R 10R 4R 6R 8R R

4R ) ( 1)(2R 4R 2R 2R 4R R 2R )

(1 / 4)(3 2 1)(4R R R 2

χ χ

χ χ

χ χ

χ

χ χ

+ + −

+ + − − −

+ + − + − +

− + − − + − + −

+ − − − −





2

12 10 11

2

11 10 10 6 4 2 23 22 21 20

2

8 6 4 2 12 23 22 21

20 8 6 4 2 21 22 20 12 10

2 2

11 10 10 8 6 4 2 11 22

R R 4R

4R R R )] (5 2 )(R 3R 3R R )

(3 / 16)(35 15 9 5 )(R 4R 6R 4R

R ) (1 / 16)(9 3 5 )(4R 2R R 2R R

4R R R ) (1 / 4)(27 3 )(R R

χ χ χ

χ χ χ χ

χ χ χ χ

χ χ χ χ

−

+ − + + + − + −

+ + + + − + −

+ + − − − − − +

− + + + + + −

8 6 4 2 23 12 11

)

(1 / 4)(45 9 7 3 )(R R R )χ χ χ χ+ + + + −

 
(22), where j jv N 2= − , c  is the 1-α quantile of 

the central chi-square distribution with J-1 

degrees of freedom, 
t
j

ut u
j j

wj
R

v
=  and 

s

2s s

q 1

c

(J 2q 3)
χ

=

=
+ −∏

 (for 2χ , 4χ , 6χ , and 8χ , 

s is 1, 2, 3, and 4, respectively). 
Hybrid slope tests for nonnormal data and 
heterogeneous residual variances 
 Slope test strategies are not necessarily 
robust to problems for which they were not 
directly designed. The parametric alternative 
strategies that were designed to address residual 
variance heterogeneity have documented 
problems with nonnormal data (Deshon & 
Alexander, 1996). The slope test strategies that 
have been proposed for nonnormal data do not 
directly address residual variance heterogeneity. 

An important area of research assesses so-called 
hybrid slope test strategies that may be robust to 
several assumption violations by use of 
nonnormality-robust group slopes and standard 
errors with parametric alternative tests that avoid 
the pooling of heterogeneous residual variances. 
 Recent research on hybrid slope test 
strategies has considered using standard slope 
estimates and standard errors or trimmed slope 
estimates and Winsorized standard errors with 
skew-corrected versions of parametric 
alternative tests (Luh & Guo, 2000; 2002). The 
use of the trimmed slopes and Winsorized 
standard errors with parametric alternative tests 
like James is straightforward, with groups’ 
degrees of freedom calculated as j jv h 1= −  

rather than as jN 2− . Luh and Guo also 

transformed the test-statistics of the parametric 
alternatives to eliminate the effect of skewness 
(Johnson, 1978; Hall, 1992). For example, the 
proposed transformation for skewness for the 
James second order test statistic from (21) is, 

( ) ( )
1 j1 j

2
2

1j 1j3 3
j x, j , j 2

jj
j

3 3
x, j , j j

James _ TT

N [ /
NN

6 / (6N )]

ε
ββ

ε

β β β β
γ γ

σσ

γ γ

+ +

=

  − −  −  
  
 + 


, 

           (23) 
where 3

x, jγ  and 3
, jεγ  are the sample skews of X 

and ε in group j. Luh and Guo’s studies showed 
that their hybrid strategies were robust to both 
nonnormality and residual variance 
heterogeneity. 
 
This study 

This study extends prior research on the 
relative performance of slope testing strategies 
under nonnormality and residual variance 
heterogeneity. This study directly compares the 
standard, MM, and Theil-Sen tests, extending 
the previous comparisons based on estimating 
one slope that have given recommendations for 
MM regression over the standard method 
(Anderson & Schumaker, 2003) and for Theil-
Sen over MM regression and the standard 
method (Wilcox & Keselman, 2004). The 
comparison of the trimmed and Winsorized 
slope test with the Theil-Sen and MM methods 
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has not been considered in previous studies, and 
it allows for an evaluation of some trimming 
(trimmed and Winsorized) with the most 
extreme trimming possible (Theil-Sen).  

This study also extends Luh and Guo’s 
(2000, 2002) work, first by separately evaluating 
the trimmed and Winsorized slope test and the 
skewness transformation of the James test 
statistic. Because the accuracy of slope 
estimation has more to do with the heaviness of 
the distribution’s tails rather than its skew 
(Klockars & Moses, 2002), the test statistic 
transformation ought to have a smaller impact in 
correcting for nonnormality than the trimmed 
and Winsorized, Theil-Sen and MM methods. 
Finally, Luh and Guo’s efforts to form hybrid 
slope test strategies that are robust to both 
nonnormality and residual variance 
heterogeneity are extended to consider hybrid 
slope tests based not only on integrating the 
trimmed and Winsorized methods and the 
skewness transformation with James second 
order method, but also the MM and Theil-Sen 
methods. 

Methodology 
A simulation study was conducted to investigate 
the relative robustness and power of the slope 
test strategies for comparing two groups’ slopes. 
Empirical rejection rates of the null hypothesis 
were computed based on 10,000 replications for 
each condition. Two treatment groups were used 
throughout the study. The following conditions 
were considered. 
 
Slope Test Strategies  

Five stand-alone slope test strategies and 
four hybrids of the five strategies were 
evaluated. 

1) The standard F test of slope 
differences in (6) (Standard). 

2) The James parametric 
alternative test in (21) (James). 

3) Significance testing of the 3β  in 
model (2) based on MM estimation with the 
default settings in SAS PROC ROBUSTREG 
(SAS Institute Inc., 2003) (MM).  

4) The trimmed and Winsorized 
slope test in (11) using 10% trimming (TW). 

5) The Theil-Sen estimator with 
percentile bootstrapping for the significance 
testing (TS). 

The following four hybrid strategies 
were also considered: 

6) The James procedure with the 
Johnson’s one-sample t-statistic transformation 
for skewness in (23) (James-TT). 

7) The James procedure using MM 
slope estimates and standard errors (James-
MM). 

8) The James procedure using 10% 
trimmed slope estimates and Winsorized 
standard errors from Luh and Guo (2000) 
(James-TW). 

9) The James procedure using the 
Theil-Sen slope estimates and the standard 
deviations of 599 bootstrapped Theil-Sen 
estimates from strategy 5 for the group slopes’ 
standard errors (James-TS). 
 
Defining groups’ observations and degrees of 
freedom 

For the James-MM and James-TS 
strategies, some consideration was given for 
defining the groups’ degrees of freedom. Initial 
efforts were based on Luh and Guo’s (2000) 
attempt to account for the number of 
observations used in the slope estimate in James-
TW ( j jv h 1= − ). Directly applying this to 

James-TS would mean setting jv 2 1= − . From 

initial results it was clear that using jv 1=  

resulted in extremely conservative tests for 
James-TS, so in an effort to obtain more 
reasonable results, the jv  was set as 

j jN (N 1) / 2−  - 1. For James-MM, degrees of 

freedom were set to account for the weighting of 
the observations used in the MM slope estimate, 

i

j
i in j i i

ε
( ) 1σv 2
ε ε

σ σ

ξ∂
= −

   ∂   
   

 . This jv  produced 

James-MM results that were very similar to 
setting j jv N 2= − . 

 



STANDARD, ALTERNATIVE, AND ROBUST SLOPE TEST STRATEGIES 

84 
 

Y’s Distribution 
Eight shapes were used for Y, including 

a normal shape (skew=0, kurtosis=0), and seven 
other shapes with various degrees of skews and 
kurtosis (Table 1).  
Variance heterogeneity  

The two considered residual variance 
ratios for the groups were 1/1 and 3/1. For 
conditions of unequal sample size, the residual 
variances were directly and inversely paired 
with the treatment group sample sizes.  
 
Sample sizes  

Twenty and forty subjects per treatment 
group were used. The conditions of unequal 
sample size used twenty subjects in one group 
and forty in the other.  
Data generation method: Robustness 
 The following data generation method 
was used to create X and Y variables of desired 
distributions and variances with equal slopes in 
the two groups.  

1) N values of one standard normal 
variate, Z, were generated, where N 
is the total sample size in two 
groups. 

2) Y was created as a transformation of 
Z using Fleishman’s (1978) method 
for generating nonnormal variables: 

   2 3Y = a + bZ + cZ + dZ       (24) 
 The constants (a, b, c, and d) and 
resulting distributions are listed in Table 1. 

3) An error variable for X ( ε ) was 
generated as a standard normal 
variate. X’s degree of nonnormality 
was a compromise between Y’s 
nonnormality and ε ’s normality. 

4) Desired numbers of Ys and ε s were 
randomly assigned to treatment 
groups 1 and 2.  

5) X was created as a function of Y and 
ε :  

   

 2
ij j ij j ijX = ρ Y + (1-ρ )ε ,  

   (25) 
where ρj is the desired XY 
correlation for treatment group j.  

5) Yij was multiplied by a number, Yjσ , 

that resulted in a desired standard 

deviation for Y in the jth treatment 
group and, in conjunction with ρj, a 
desired residual variance. The 
values of Yjσ  and ρj for the two 

groups achieved a particular residual 
variance ratio (Table 2), while 
keeping the slopes equal in the two 
groups. 
 

Data generation method: Power 
 The data generation process used to 
assess strategies’ power was similar to the data 
generation process used to assess robustness. All 
variables’ distributions were normal. One 
group’s XY correlation and Y standard deviation 
were 0.5 and 1.0, respectively, while the second 
group’s XY correlation and Y standard deviation 
were 0.0 and 0.866, respectively. The XY 
correlations and Y standard deviations across the 
groups resulted in a population slope difference 
of 0.5 while meeting the normality and equal 
residual variances assumptions of the standard 
test. 
 
Analysis strategy 
 The assessment of strategies’ robustness 
involved comparing their average rejection rates 
to the nominal 0.05 rate for conditions where no 
slope differences existed in the population. 
Deviations from the nominal 0.05 rate were 
determined to be excessively conservative or 
liberal when they were outside of two standard 
errors band reflective of the number of 
replications used in this study 

(
(.05)(.95)

0.05 / 2 0.046 to 0.054
10,000

+ − = ). The 

standard error band roughly corresponded to 
Bradley’s (1978) conservative range for robust 
Type I error rates, 0.045 to 0.055. 
 The assessment of strategies’ power 
involved comparing strategies’ average rejection 
rates to each other for conditions where actual 
slope differences existed in the population. 
 Follow-up analyses were also conducted 
to gain further insight into how the slope 
estimation strategies were working in the 
conditions of this study. These follow-up 
analyses included assessments of averages and 
standard deviations of the strategies’ slope 
estimates to indicate their bias and efficiency, 
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and assessments of strategies’ average standard 
errors to provide understanding of the accuracy 
of strategies’ significance tests.  
 

Results 
Tables 3-9 present the considered strategies’ 
empirical Type I error rates across the 56 
combinations of nonnormality, residual variance 
heterogeneity and sample size. Nonnormality 
affected the Standard, James and MM tests 
similarly, creating liberal Type I error rates 
when the Y distributions were leptokurtic and 
conservative Type I error rates when the 
distributions were platykurtic. The TW test had 
Type I error rates that were close to the nominal 
rate across the conditions of nonnormality. The 
TS test had Type I error rates that were 
consistently conservative across the considered 
levels of nonnormality. In terms of the hybrid 
strategies, James-TT had Type I error rates that 
were almost indistinguishable from James, while 
the James-MM, James-TW and James-TS 
strategies had Type I error rates reflective of the 
nonnormality strategy used, being excessively 
liberal for James-MM, being near 0.05 for 
James-TW, and being excessively conservative 
for James-TS. 
 The effect of residual variance 
heterogeneity on Type I error differed for the 
equal and unequal sample size conditions. When 
sample sizes were equal (Tables 4 & 9), MM 
was the only strategy affected by residual 
variance heterogeneity, becoming excessively 
liberal. When sample sizes were unequal (Tables 
6 & 7), the groups’ sample size-residual 
variance pairing affected the Standard, MM and 
TW tests similarly, making them liberal with an 
inverse pairing and conservative with a direct 
pairing. The James hybrid strategies were 
largely unaffected by the combination of 
unequal sample sizes and residual variances. 
James-TS produced conservative Type I error 
rates for most of the considered residual 
variance conditions. 
 The effect of combining nonnormality 
and residual variance heterogeneity (Tables 4, 6, 
7, & 9) produced somewhat unique Type I error 
patterns for the nine tests. For the Standard test, 
residual variance heterogeneity usually made the 
effect of nonnormality less extreme except for 
when sample sizes were inversely-paired with 

residual variances, in which case Type I error 
was made more extreme. For James and James-
TT, residual variance heterogeneity made the 
effects of nonnormality less extreme, though 
James did not react as much to the combination 
of unequal sample sizes and residual variances 
as the Standard test. The MM test often had the 
most problematic Type I error rates for 
combinations of nonnormality and residual 
variance heterogeneity. The TW and TS tests 
were not particularly affected by the 
combination of nonnormality and residual 
variance heterogeneity, where the TW strategy 
was mainly impacted by the combination of 
unequal sample sizes and residual variances 
while the TS strategy was largely uninfluenced 
by anything. The Type I errors of hybrid 
strategies were reflective of the nonnormality 
strategy on which they were based, being liberal 
for James-MM, conservative for James-TS, and 
close to the 0.05 level for James-TW. 
 
Power 

Table 10 compares the power of the nine 
strategies across three considered sample size 
conditions with normal distributions, equal 
residual variances and a population slope 
difference of 0.5. The most powerful strategies 
were the Standard, James and James-TT 
strategies, of which there was no overwhelming 
winner. The MM test had lower power rates than 
the Standard, James and James-TT tests. The 
James-MM hybrid strategy had less power than 
the MM strategy. The TW and James-TW tests 
had the lowest power rates of the considered 
strategies. The James-TS and TS strategies had 
higher power rates than the TW and James-TW 
strategies and (mostly) lower power rates than 
the MM and James-MM strategies. The use of 
TS as a hybrid with James (James-TS) increased 
its power relative to the TS strategy. 

 
Slope Estimation 

To gain further insight into the four 
slope estimation methods (Standard, MM, TW 
and TS), Table 11 summarizes each methods’ 
10,000 estimates of one slope with population 
value 0.5 in samples of size 20. When 
distributions were normal, all four methods gave 
average slope values close to 0.5. The methods’ 
standard deviations show that the Standard 
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method’s estimates were least variable, followed 
by the MM estimates, the TS estimates and 
finally the TW estimates (corresponding to 
TW’s relatively low power). The methods’ 
average estimated standard errors correspond to 
the overall liberalness/conservativeness of the 
methods’ significance tests, and for normal 
distributions show that on average all methods 
except for TS have standard errors that closely-
approximate slope variability. TS’s bootstrapped 
standard errors over-estimated TS slope 
variability, corresponding to the 
conservativeness of its Type I error rates. 
 The slope estimation results in Table 11 
for a leptokurtic Y (kurtosis = 12) differ from 
those for a normal Y (kurtosis = 0). For a 
leptokurtic Y, all estimation methods 
underestimate the population slope value of 0.5, 
where the least biased estimator is the Standard 
method while the most biased is the MM 
estimate. The Standard method’s slope estimates 
are the most variable while the TS estimates are 
the least variable. The average standard errors of 
the Standard test and MM underestimate slope 
variability, corresponding to the liberalness of 
the Standard’s and MM’s Type I error rates. The 
TW estimates have standard errors that slightly 
underestimate slope variability. The TS estimate 
has standard errors that overestimate slope 
variability, corresponding to the 
conservativeness of TS. The results in Table 11 
support previous findings that the TS estimator 
is more stable than the MM and Standard 
estimates when distributions are nonnormal 
(Wilcox & Keselman, 2004). These results 
extend previous work by showing that with 
nonnormality, the Standard test and MM 
regression underestimate slope variability 
(making the Type I error rates of the Standard 
and MM slope tests liberal), the Winsorized 
standard errors provide relatively accurate 
estimates of the variability of the trimmed 
slopes, while the TS bootstrap method 
overestimates slope variability (making the Type 
I error rates of the TS slope test conservative). 
 

Conclusion 
The purpose of this study was to compare some 
recently-researched strategies for testing 
independent groups’ regression slopes. The 
standard test of slope differences was shown to 

have its usual robustness problems with respect 
to nonnormality and the pairing of unequal 
sample sizes and residual variances. Alternative 
strategies proposed for addressing nonnormality 
and used in hybrid strategies for addressing both 
nonnormality and residual variance 
heterogeneity were also assessed. The most 
promising of the alternative strategies in terms 
of robustness and power were the Theil-Sen 
strategy and a hybrid of Theil-Sen and the James 
second-order parametric alternative test. These 
Theil-Sen strategies had somewhat conservative 
Type I error rates that were largely unaffected 
by nonnormality and residual variance 
heterogeneity, and slope estimates that were 
efficient even for nonnormal data. The hybrid 
strategy of trimming and Winsorizing slope 
estimates and using them with the James test had 
Type I error rates that were closest of all the 
considered strategies to the nominal 0.05 level, 
but trimming and Winsorizing also produced 
slope tests with the lowest power rates of the 
considered strategies. Of the other strategies 
considered, James, James with a test statistic 
transformation for skewness, MM regression 
and the use of MM estimates with James are not 
recommended due to their robustness problems 
with nonnormal data. 
 In evaluating the results of this and other 
studies, it is important to acknowledge that the 
effects of nonnormality have been considered in 
very different ways, all of which have 
implications for studies’ results. When the 
nonnormality of ε is directly manipulated, the 
standard and James tests have appeared to be 
robust to all but the most extreme shapes (e.g., 
skew=6.2, kurtosis=114 in Luh & Guo, 2000, 
2002).  

When the nonnormality of Y and/or X is 
manipulated, the standard and James tests 
become problematic for relatively small degrees 
of nonnormality (e.g., skew=1.95, kurtosis=7.69 
in Deshon & Alexander, 1996). When 
nonnormality has been studied in terms of 
outliers in multivariate distributions, the 
standard test is problematic and MM regression 
performs well (Anderson & Schumacker, 2003). 
The second type of nonnormality, in Y and X, 
creates great problems for methods that use least 
squares estimation methods due to the higher 
likelihood of leverage points. 
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Table 1. Shapes and Fleishman constants used to generate the variables 
 

Skew Kurtosis  a b c (=-a) d 
0 -1.15  0 1.34 0 -0.132 
0 0  0 1 0 0 

1.2 1.11  -0.340774 1.095718 0.340774 -0.080735 

Table 2. Correlations and standard deviations used to create levels of residual variance heterogeneity. 
Residual 
Variance Ratio 

ρ1 σY1 ρ2 σY2 

1/1 0.5 1.0 0.5 1.0 
1/3 0.5 1.0 0.3162 1.5811 

Table 3. Empirical Type I error rates for group sample sizes of 20, 20 and a residual variance ratio of 1/1. 
        Hybrid Strategies 

Skew Kurtosis Standard James MM TW TS  James-
TT 

James-
MM 

James-
TW 

James-
TS 

0 -1.15 0.0256* 0.0257* 0.0260* 0.0479 0.0207*  0.0258* 0.0214* 0.0456 0.0204*
0 0 0.0486 0.0481 0.0610* 0.0497 0.0282*  0.0483 0.0486 0.0479 0.0262*
1.2 1.11 0.0668* 0.0676* 0.1099* 0.0508 0.0304*  0.0667* 0.0985* 0.0490 0.0358*
1.6 2.86 0.0941* 0.0961* 0.1383* 0.046* 0.0302*  0.0949* 0.1341* 0.0455* 0.0345*
0 3 0.0912* 0.0936* 0.0999* 0.0532 0.0307*  0.0935* 0.0874* 0.0508 0.0317*
0 6 0.1178* 0.1200* 0.1226* 0.0500 0.0341*  0.1198* 0.1091* 0.0482 0.0328*
0 9 0.1359* 0.1403* 0.1257* 0.0458 0.0308*  0.1395* 0.1193* 0.0429* 0.0288*
0 12 0.1645* 0.1727* 0.1347* 0.0542 0.0303*  0.1714* 0.1343* 0.0510 0.0281*
* Type I error rates outside +/- 2 standard errors of the nominal 0.0500 rate (0.0456 to 0.0544). 

Table 4. Empirical Type I error rates for group sample sizes of 20, 20 and a residual variance ratio of 3/1. 
        Hybrid Strategies 

Skew Kurtosis Standard James MM TW TS  James-
TT 

James-
MM 

James-
TW 

James-
TS 

0 -1.15 0.0428* 0.0398* 0.0820* 0.0566* 0.0291*  0.0393* 0.0346* 0.0531 0.0281* 
0 0 0.0514 0.0481 0.1020* 0.0511 0.0323*  0.0482 0.0438* 0.0486 0.0305* 
1.2 1.11 0.0630* 0.0598* 0.1339* 0.0550* 0.0304*  0.0591* 0.0809* 0.0509 0.0292* 
1.6 2.86 0.0792* 0.0774* 0.1525* 0.0517 0.0317*  0.0757* 0.1063* 0.0477 0.0278* 
0 3 0.0689* 0.0682* 0.1141* 0.0523 0.0303*  0.0674* 0.0653* 0.0480 0.0302* 
0 6 0.0931* 0.0946* 0.1286* 0.0517 0.0304*  0.0938* 0.0824* 0.0470 0.0251* 
0 9 0.1106* 0.1096* 0.1368* 0.0481 0.0326*  0.1091* 0.0886* 0.0440* 0.0263* 
0 12 0.1176* 0.1206* 0.1367* 0.0479 0.0323*  0.1202* 0.0904* 0.0437* 0.0235* 
* Type I error rates outside +/- 2 standard errors of the nominal 0.0500 rate (0.0456 to 0.0544). 
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Table 5. Empirical Type I error rates for group sample sizes of 20, 40 and a residual variance ratio of 1/1. 
        Hybrid Strategies 

Skew Kurtosis Standard James MM TW TS  James-
TT 

James-
MM 

James-
TW 

James-
TS 

0 -1.15 0.0300* 0.0306* 0.0247* 0.0546* 0.0263*  0.0304* 0.0252* 0.0532 0.0259* 
0 0 0.0496 0.0486 0.0581 0.0507 0.0314*  0.0482 0.0506 0.0468 0.0320* 
1.2 1.11 0.0701* 0.0720* 0.1174* 0.0571* 0.0327*  0.0713* 0.1090* 0.0504 0.0407* 
1.6 2.86 0.1040* 0.1054* 0.1451* 0.0556* 0.0321*  0.1049* 0.1530* 0.0526 0.0412* 
0 3 0.0931* 0.0929* 0.0981* 0.0531 0.0327*  0.0927* 0.0870* 0.0482 0.0349* 
0 6 0.1235* 0.1286* 0.1143* 0.0525 0.0325*  0.1269* 0.1080* 0.0482 0.0341* 
0 9 0.1524* 0.1599* 0.1226* 0.0522 0.0371*  0.1593* 0.1225* 0.0485 0.0356* 
0 12 0.1677* 0.1804* 0.1253* 0.0528 0.0349*  0.1799* 0.1293* 0.0508 0.0338* 
* Type I error rates outside +/- 2 standard errors of the nominal 0.0500 rate (0.0456 to 0.0544). 
 

Table 6. Empirical Type I error rates for group sample sizes of 20, 40 and a residual variance ratio of 1/3 
(Direct Pairing). 

        Hybrid Strategies 
Skew Kurtosis Standard James MM TW TS  James-

TT 
James-
MM 

James-
TW 

James-
TS 

0 -1.15 0.0134* 0.0353* 0.0251* 0.0273* 0.0312*  0.0352* 0.0299* 0.0492 0.0295* 
0 0 0.0218* 0.0534 0.0406* 0.0258* 0.0313*  0.0535 0.0508 0.0505 0.0335* 
1.2 1.11 0.0324* 0.0660* 0.0851* 0.0274* 0.0279*  0.0656* 0.0913* 0.0499 0.0358* 
1.6 2.86 0.0443* 0.0905* 0.1171* 0.0269* 0.0345*  0.0893* 0.1203* 0.0488 0.0383* 
0 3 0.0379* 0.0789* 0.0654* 0.0244* 0.0349*  0.0792* 0.0746* 0.0488 0.0352* 
0 6 0.0612* 0.1087* 0.0883* 0.0283* 0.0348*  0.1088* 0.0953* 0.0493 0.0363* 
0 9 0.0765* 0.1327* 0.0997* 0.0290* 0.0347*  0.1319* 0.1011* 0.0466 0.0344* 
0 12 0.0900* 0.1516* 0.1172* 0.0294* 0.0342*  0.1503* 0.1151* 0.0486 0.0286* 
* Type I error rates outside +/- 2 standard errors of the nominal 0.0500 rate (0.0456 to 0.0544). 

Table 7. Empirical Type I error rates for group sample sizes of 40, 20 and a residual variance ratio of 1/3 
(Inverse Pairing). 

        Hybrid Strategies 
Skew Kurtosis Standard James MM TW TS  James-

TT 
James-

MM 
James-

TW 
James-

TS 
0 -1.15 0.0827* 0.0360* 0.1722* 0.1028* 0.0305*  0.0356* 0.0342* 0.0497 0.0337* 
0 0 0.0986* 0.0504 0.1860* 0.0989* 0.0341*  0.0504 0.0497 0.0477 0.0320* 
1.2 1.11 0.1165* 0.0624* 0.2039* 0.0981* 0.0347*  0.0615* 0.0860* 0.0509 0.0342* 
1.6 2.86 0.1392* 0.0798* 0.2017* 0.0954* 0.0386*  0.0769* 0.0998* 0.0503 0.0312* 
0 3 0.1359* 0.0760* 0.1880* 0.1007* 0.0370*  0.0760* 0.0682* 0.0510 0.0343* 
0 6 0.1620* 0.0997* 0.1902* 0.1032* 0.0354*  0.0995* 0.0797* 0.0531 0.0311* 
0 9 0.1812* 0.1164* 0.1879* 0.0936* 0.0390*  0.1148* 0.0863* 0.0467 0.0301* 
0 12 0.1862* 0.1263* 0.1810* 0.0887* 0.0391*  0.1260* 0.0903* 0.0471 0.0291* 
* Type I error rates outside +/- 2 standard errors of the nominal 0.0500 rate (0.0456 to 0.0544). 
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Table 8. Empirical Type I error rates for group sample sizes of 40, 40 and a residual variance ratio of 1/1. 
        Hybrid Strategies 

Skew Kurtosis Standard James MM TW TS  James-
TT 

James-
MM 

James-
TW 

James-
TS 

0 -1.15 0.0280* 0.0284* 0.0206* 0.0526 0.0289*  0.0283* 0.0200* 0.0526 0.0300* 
0 0 0.0479 0.0477 0.0559* 0.0504 0.0321*  0.0479 0.0498 0.0501 0.0353* 
1.2 1.11 0.0672* 0.0677* 0.1115* 0.0484 0.0388*  0.0678* 0.1101* 0.0478 0.0521 
1.6 2.86 0.1028* 0.1042* 0.1435* 0.0495 0.0371*  0.1032* 0.1635* 0.0494 0.0483 
0 3 0.1006* 0.1028* 0.0900* 0.0518 0.0391*  0.1030* 0.0878* 0.0518 0.0428* 
0 6 0.1396* 0.1436* 0.1044* 0.0489 0.0352*  0.1432* 0.1057* 0.0483 0.0381* 
0 9 0.1709* 0.1752* 0.1151* 0.0467 0.0389*  0.1743* 0.1235* 0.0458 0.0398* 
0 12 0.1952* 0.2004* 0.1200* 0.0483 0.0396*  0.1990* 0.1347* 0.0476 0.0387* 
* Type I error rates outside +/- 2 standard errors of the nominal 0.0500 rate (0.0456 to 0.0544). 

Table 9. Empirical Type I error rates for group sample sizes of 40, 40 and a residual variance ratio of 3/1. 
        Hybrid Strategies 

Skew Kurtosis Standard James MM TW TS  James-
TT 

James-
MM 

James-
TW 

James-
TS 

0 -1.15 0.0360* 0.0354* 0.0809* 0.0506 0.0352*  0.0353* 0.0310* 0.0494 0.0388* 
0 0 0.0494 0.0479 0.0884* 0.0506 0.0386*  0.0482 0.0470 0.0490 0.0423* 
1.2 1.11 0.0662* 0.0636* 0.1511* 0.0499 0.0432*  0.0639* 0.0958* 0.0484 0.0503 
1.6 2.86 0.0851* 0.0849* 0.1828* 0.0515 0.0390*  0.0841* 0.1236* 0.0506 0.0434* 
0 3 0.0844* 0.0821* 0.1191* 0.0548 0.0386*  0.0820* 0.0733* 0.0520 0.0400* 
0 6 0.1025* 0.1011* 0.1279* 0.0528 0.0386*  0.1008* 0.0820* 0.0513 0.0378* 
0 9 0.1272* 0.1290* 0.1427* 0.0512 0.0408*  0.1278* 0.0945* 0.0482 0.0386* 
0 12 0.1426* 0.1460* 0.1431* 0.0486 0.0367*  0.1439* 0.0998* 0.0474 0.0322* 
* Type I error rates outside +/- 2 standard errors of the nominal 0.0500 rate (0.0456 to 0.0544). 

Table 10. Empirical Power rates for population slope differences of .5 and normality and residual variance 
assumptions met. 

Sample Sizes      Hybrid Strategies 
Group 
1 

Group 
2 

Standard James MM TW TS  James-
TT 

James-
MM 

James-
TW 

James-
TS 

20 20 0.3910 0.3901 0.3735 0.2270 0.2655  0.3906 0.3372 0.2215 0.2891 
20 40 0.5096 0.4989 0.4730 0.3082 0.3931  0.4994 0.4403 0.2930 0.4202 
40 40 0.6909 0.6912 0.6359 0.4369 0.6179  0.6912 0.6180 0.4353 0.6483 
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Table 11. Descriptive analyses for the slope estimation strategies (population slope = 0.5).  
Skew Kurtosis Sample 

Size 
 Standard MM TW TS 

0 0 20 Mean of Slope Estimates 0.5043 0.5043 0.5079 0.4998
   Standard Deviation of Slope Estimates 0.2080 0.2214 0.2819 0.2275
   Mean of Slope Standard Error 

Estimates 
0.2046 0.2205 0.2721 0.2752

        
0 12 20 Mean of Slope Estimates 0.4598 0.2987 0.3538 0.3280
   Standard Deviation of Slope Estimates 0.2866 0.2361 0.2528 0.2159
   Mean of Slope Standard Error 

Estimates 
0.1907 0.1701 0.2383 0.2575

 

 

Least Squares Regression with Nonnormal Y
All 20 Observations Used to Estimate the Regression Line
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Figure 1 

Trimmed Means Regression with Nonnormal Y
Untrimmed Slopes Used to Estimate the Regression Line
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Figure 2 

 

Theil-Sen Regression with Nonnormal Y
Medians Used to Estimate the Regression Line
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Figure 3 

MM Regression with Nonnormal Y
Weighted Observations Used to Estimate the Regression Line
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Figure 4 
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 This type of nonnormality was of most 
interest in this study. It caused serious problems 
for the standard test that warranted the use of 
alternative and robust strategies, and it created 
data situations that differentiated all of the 
studied strategies. 
 To gain some final insight into the for 
considered slope estimation methods, a 
representative sample of twenty observations 
was generated from this study’s kurtosis=12 
condition. Figure 1 shows these XY data and 
plots the Standard, least squares regression line. 
There is one very extreme X observation (almost 
3 standard deviations from X’s population mean 
of zero) that is also very low on Y (i.e., a bad 
leverage point). This observation causes the 
standard slope estimation method to 
underestimate the population slope of 0.5 in its 
slope estimate of 0.421. Figures 2 and 3 plot the 
observations in the data that are not excluded in 
computing the trimmed slope (Figure 2) and the 
Theil-Sen slope (Figure 3). The trimmed and 
Theil-Sen methods underestimate the population 
slope more than the Standard method, producing 
slope estimates of 0.393 and 0.231, respectively. 
 Figure 4 is especially useful for 
understanding the very complicated MM 
regression procedure. All twenty of the original 
observations are used in MM regression, but 
contribute in weighted form to the final MM 
slope estimate. The observations’ weights in 
Figure 4 show that the high-leverage observation 
is weighed very heavily by the MM method, 
causing the MM slope estimate to be relatively 
small (0.148). The observations that are far from 
the MM regression line are assigned small 
weights. Figure 4 shows that with MM high-
leverage points can be weighted such that they 
influence the final slope estimate much more 
than the Standard least squares estimate. The 
large weights that are assigned to high leverage 
points in MM result in MM standard errors that 
underestimate slope variability (the W  in 
equation 18 is large) and inflate the Type I error 
of the MM strategy. Figure 4 makes it clear that 
the problems of the MM strategy with respect to 
high leverage points are not likely to be fixed by 
altering the weighting function, ξ , or the κ  that 
determines how each of the scaled residuals are 
weighted. It may be possible to address MM’s 

problems with high leverage data points through 
a wise choice of starting values that define the 
MM regression line and the residuals with 
respect to this line.  
 
Implications 
 This article considered some of the 
recently-researched slope test strategies. Some 
of the strategies not considered in this paper 
were excluded because they have had noted 
problems and criticisms, including 
nonparametric alternative tests (Marascuilo, 
1966; Dretzke, Levin & Serlin, 1982; Deshon & 
Alexander, 1996), residuals-based bootstrapping 
(Luh & Guo, 2000), ranked data (Headrick & 
Sawilowsky, 2000; Klockars & Moses, 2002), 
data transformations (Wilcox & Keselman, 
2004; Aguinis & Pierce, 1998; Keselman. 
Carriere & Lix, 1995; Glass, Peckham & 
Saunders, 1972), several robust regression 
strategies (Anderson & Schumaker, 2003) and 
judgment-based elimination of outliers (Wilcox, 
1996; He & Portnoy, 1992). 

There are other strategies that are 
variations on the ones considered in this study, 
such as the use of Theil-Sen after trimming 
outliers (Wilcox & Keselman, 2004), the use of 
Theil-Sen based on less than the N(N-1)/2 slopes 
that could be created out of all pairs of 
observations (Ebrahem & Al-Nasser, 2005), 
other parametric alternative tests for residual 
variance heterogeneity (Alexander & Deshon, 
1994; Welch, 1938), and trimmed and 
Winsorized estimates with varied amounts of 
trimming. 
 The results of this study suggest that an 
especially promising slope test strategy would 
combine the best features of the trimming and 
Winsorizing methods with Theil-Sen. By using 
the trimming and Winsorizing strategy on the 
N(N-1)/2 slopes that could be created out of all 
pairs of observations rather than only N/2 pairs, 
the final trimmed slope estimates should have 
stability levels that are similar to those of Theil-
Sen, ultimately improving the power of the 
trimmed and Winsorized slope test. This 
proposed test would avoid the excessively time 
consuming and excessively-conservative 
bootstrapping that accompanies the Theil-Sen 
method, reduce the bias of the Theil-Sen 
estimates for nonnormal data, provide a 
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reasonable answer to the awkward definition of 
the number of observations used by the median-
based Theil-Sen, and provide the analyst some 
flexibility in terms of the extent of trimming 
used in the final slope estimates. A study that 
considers how the number of slopes (Ebrahem & 
Al-Nasser, 2005) and the extent of trimming 
contribute to Type I error and power across 
conditions of nonnormality would be especially 
useful for creating the best version of this 
proposed test of slope differences. 
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