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CHAPTER 1 INTRODUCTION 

1.1 Diabetes mellitus and Insulin resistance 

Diabetes mellitus, or simply diabetes, is a metabolic disorder that is 

marked by hyperglycemia, high blood glucose. In 2014, 29.1 million individuals in 

the United States, which is about 9.3% of the population, have diabetes [1]. 

Among all cases of diabetes, about 90% to 95% are Type 2 Diabetes (T2D), the 

diabetes form generally results from defects in insulin action [1]. Furthermore, 

other related complications of diabetes will afflict patients with their cardinal, 

ocular, renal, and nervous system dysfunction, mainly resulting from 

hyperglycemia [2]. 

1.1.1 History of Diabetes 

Unfortunately, though recognition of diabetes has gradually been 

increasing over 200 years and some progresses have been achieved, there is 

still no cure for diabetes [3]. One of the possible reasons is that the signaling 

events related to insulin are quite complicated in both Langerhans islet cells and 

insulin responsive cells that hundreds of signaling events directly or indirectly 

involved in the insulin pathway contribute to regulation of insulin level and 

regulated metabolic function. The relationship of these signaling events with 

insulin signaling is revealed gradually in several decades, which has been 

viewed as a remarkable milestone in the history of insulin research. Ironically, 

discovering something unknown in science is always another step into a new 
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field, which leads to arising of more mysteries. As a consequence, another 

aspect for complicity of diabetes lies in the discovering of the mechanism of T2D.  

During the early stage in the history of diabetes research, diabetes was 

considered as a disease due to deficiency of insulin produced by islet cells of 

Langerhans, which, we know nowadays, is shown in most Type 1 Diabetes (T1D) 

patients and some Type 2 Diabetes (T2D) patients. Distinction between T1D and 

T2D has first been made in 1936, based on their different pathogenesis [3].  

Type 1 Diabetes usually onsets at very early age of patients, thus it is also 

named as “juvenile diabetes”, informally. The cause of T1D is hypothesized to be 

the destruction effect of autoimmune selectively to insulin producing cells, which 

will lead to further metabolic changes linked to hyperglycemia. Genetic disorder 

and environment factors may explain most case in T1D [3, 4].  

Even though the primary cause of T2D is unclear, continuous research on 

the metabolic syndrome over several decades has improved awareness of the 

complex pathogenesis from which the development and the outcome of T2D 

results. Originally, T2D is thought to develop most often in middle-aged and older 

population, but in recent years, the upward trend in occurrence of T2D has been 

shown in young population. Also, the relation between occurrence of T2D and 

overweight has been affirmed [3, 5]. However, the complexity of T2D attributes 

most to multi-stage involved in the course of disease development, as well as the 

interaction between various organs and tissues. Despite the primary factor of the 

disease is unknown, insulin resistance is consented to be the initiator in early 

stage which is followed by pancreatic beta cell decompensation [6]. In year 2035, 



3 

3 

T2D is expected to agonize more than 530 million people worldwide [7], hence to 

gain a more thorough understanding of T2D mechanism is considered to be a 

leading step to conquer the abominable disease.  

1.1.2 Insulin resistance  

As a major player in T2D development, insulin resistance has been 

recognized for almost a century and systematically research has been conducted 

since 1970s [8]. In general, insulin resistance connotes metabolic abnormal state 

that glucose uptake tissues in an individual are unable to act normally as in 

healthy population under given quantity of insulin. Individuals with insulin 

resistance sustain compensatory hyperinsulinemia over hyperglycemia and once 

the compensation ability of beta cells is overwhelmed by insulin demand, 

diabetes follows. Also, obesity is considered as a major factor associated with 

insulin resistance [9]. Thus, researches on the relationship of obesity, insulin 

resistance and T2D, namely, the “adipo-insulin axis”, have been a hotspot 

recently [10]. 

The association of T2D with insulin resistance has been studied for 

decades, and several lines of evidence have been found [6, 11]:  

First, prospective studies illustrate that onset of T2D develops average 1 

to 2 decades after the occurrence of insulin resistance. Second, basically insulin 

resistance is an accordant feature of every T2D patient. Third, insulin resistance 

works as the best predictor for T2D in the offspring whose parents were T2D 

patients. Finally, increasing insulin sensitivity is a way to lower the incidence of 

T2D.  
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1.1.3 Signaling associated with Insulin Sensitivity  

Though insulin sensitivity fluctuates within healthy individuals, and insulin 

sensitivity occurs normally during puberty, pregnancy, and gaining age [12], the 

most outstanding factor in diabetes researches is unhealthy lifestyle, and its 

related disease, obesity. Obesity will further increase the risk for developing T2D 

and other metabolic syndromes. One of the most distinct characters in obesity 

state is alteration of releasing Non-esterified fatty acids (NEFAs), hormones and 

pro-inflammatory cytokines from adipose tissue [12]. These adipose-derived 

factors will affect other insulin signaling related tissues, including skeletal muscle, 

liver, and other tissues. The influence will be expressed in functional changes 

which associate with multiple signaling pathways, which eventually results in the 

onset of insulin resistance. Two of these pathways, PI3k-AKT and MAPK, are 

directly activated by insulin receptor-mediated tyrosine phosphorylation of insulin 

receptor substrates, and other factors involve in inflammatory process, such as 

TNF- α, IL-6, MCP-1, and IL-8 [13].  

The PI3k-AKT pathway, as the most well-known and vital player in insulin 

signaling, will be provided detailed introduction in the subsequent sections. 

MAPK pathway activation by insulin signaling functions in gene expression, cell 

growth and mitogenesis, related to the PI3K-AKT pathway [13]. It has been 

reported that in the skeletal muscle, T2D and obesity individuals with insulin 

resistance show abnormally low activity in the PI3K pathway, while relatively 

normal in the MAPK pathway, compare to healthy individuals [14]. Nevertheless, 

since MAPK can phosphorylate specific serine sites of IRS1, abnormal activity of 

MAPK will aggravate insulin resistance when IRS1 has already been impaired 
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[15]. Additionally, growing evidence has directed to a causative relationship 

between inflammation and insulin resistance. In obese patients, plasma level of 

C-reactive protein and inflammatory cytokines shows an incremental change, 

suggesting that a chronic low-grade inflammation occurs [13]. Other study 

suggests the inflammation mediators induce insulin resistance through activating 

JNK and the IκB kinase-β (IKK-β) pathways [12]. 

1.2 PP1c and Phosphorylation, and Insulin resistanc e 

Protein phosphorylation is one of the most essential post-transcriptional 

regulations and being viewed as a principle currency of signaling pathways. 

Many important cellular processes rely on protein phosphorylation, including 

insulin signaling. Dysregulation of protein phosphorylation leads to turbulence of 

cell signaling, and function disorder, such as insulin resistance and T2D. For 

instance, phosphorylation on serine/threonine sites of IRS1 is considered as a 

potential source of insulin resistance [16, 17]. As a phosphatase, Protein 

Phosphatase 1 (PP1) aims to dephosphorylate the protein substrates that have 

been phosphorylated. Research on PP1 might be a viable way to understand and 

eventually conquer T2D.  

1.2.1 PI3k-AKT-mTOR Pathway 

Phosphoinositide 3-kinase (PI3K) pathway has originally been viewed as a 

component of insulin signaling. However, highly conserved PI3k pathway has 

also been proved to involve in multiple cellular processes except for insulin 
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signaling, i.e. cancer. Through later studies, a model of PI3k-AKT-mTOR signal 

chain has been gradually polishing and finally established [18] (See Fig 2).  

As the major trigger of PI3K pathway, insulin molecules relay the signal through 

insulin receptor to insulin receptor substrates (IRS). As an adaptor protein, 

activated IRS1 will recruit p85 subunit of class 1A PI3K, which initiates the 

activation of PI3K. Activated PI3K catalyzes phosphorylation of 

phosphatidylinositol 4, 5-bisphosphate (PIP2) to produce phosphatidylinositol 3, 

4, 5-trisphosphate (PIP3). Enhanced PIP3 level allows binding and activating of 

PDK1, and the later will phosphorylate and activate PKB/Akt that is also recruit to 

plasma membrane by PIP3 [15, 18]. Activated PKB/Akt triggers formation of 

mTOR/RAPTOR complex which participates in protein synthesis. In addition, 

PKB/Akt will be a participant in glycogen synthesis through activating GSK3 and 

in glucose uptake by conducting GLUT4 vesicle translocation mediated by 

AS160 [18, 19].  

As mentioned above, PI3K pathway associates closely with insulin 

resistance. However, in skeletal muscle, a well-known factor in the PI3K pathway 

that involves in insulin resistance is serine/ threonine phosphorylation of IRS1. 

While tyrosine phosphorylation of IRS1 enables binding of downstream proteins 

in PI3K pathway [20], function of serine/ threonine phosphorylation of IRS is site-

specific: either increase or diminish insulin signaling. The dual role of serine/ 

threonine phosphorylation engenders regulation of different mechanisms, such 

as tyrosine phosphorylation state of IRS, binding to insulin receptor, subcellular 

dynamics, and degradation [21]. Though positively regulation of insulin signaling 
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has been reported, most of serine/ threonine phosphorylation of IRS negatively 

control insulin signaling [20]. However, in insulin resistance state, usually seen in 

obesity and T2D patients, serine/ threonine phosphorylation of IRS molecules is 

abnormally regulated by multiple kinases [22], leading to dysregulation of insulin 

signaling. Increased in serine/ threonine phosphorylation of IRS is seen as a 

noticeable tag of insulin resistance in both animal and human studies [15]. Hence, 

to find a way to dephosphorylate abnormally regulated serine/ threonine sites of 

IRS might be an accessible avenue to T2D treatment.  

1.2.2 Phosphatases: Function, Category and Families  

Phosphorylation is one of the most essential and wide-spread post-

translational modifications in cells: it rapidly and efficiently alters activity, protein 

binding and structure of its substrates. Generally, there are two players compete 

in the area of phosphorylation; protein kinases phosphorylate substrates, while 

protein phosphatases dephosphorylate substrates. However, not all the amino 

acids can be phosphorylated; serine, threonine and tyrosine account for most 

cases in which phosphorylation occurs in mammalian cells.  

The classical categorization [23, 24] of phosphatases subdivided them into 

three basic families: PPP (phosphoprotein phosphatase), PPM (metallo-

dependent protein phosphatase), and PTP (protein tyrosine phosphatases) 

families. The emerging researches [25, 26] replenish more subdivided families on 

the basis of different structure domains and evolutionary origins, without 

consensus. Essentially, the PTP members dephosphorylate tyrosine residues 

only, while the PPP and PPM family comprise of serine / threonine phosphatases; 



8 

8 

the PPM family members are Mg2+-dependent phosphatases, and the PPP 

family is a traditional serine / threonine phosphatase family with several well-

known members, such as PP1, PP2A, PP2B (calcineurin), PP4, PP5, PP6 and 

PP7 [27] [28]. Other reviews [25] also include PPEF1 and PPEF2 in this family. 

These members in PPP family share highly conserved sequence and catalytic 

motif of their catalytic subunits [26].  

Intriguingly, in 518 kinases encoded by human genome, only 90 of them 

are tyrosine kinases; that is similar with the total number of tyrosine 

phosphatases [25]. The remaining 428 out of 518 kinases are serine/ threonine 

kinases [25], which is at least 4 times more than total number of serine/ threonine 

phosphatases. Over years, much of interest of science researchers focuses on a 

question raised with the huge divergence between number of serine/ threonine 

kinases and phosphatases: how do such a limited number of phosphatase 

offsets phosphorylation by kinases in an organized manner?  

1.2.3 Introduction of Protein Phosphatase 1 Catalyt ic Subunit  

As the first serine/ threonine phosphatase has been discovered, studies 

on Protein Phosphatase 1 (PP1) have never stopped over the past four decades 

[29]. Many studies have been done on isoforms, structure and functions of PP1. 

PP1 is not a monomeric enzyme itself; it contains 2 subunits, the Catalytic 

subunits (PP1c) and the Regulatory subunits (PP1r). Generally speaking, 3 

isoforms exist for PP1c: PPP1CA, PPP1CB and PPP1CC. Among each isoforms, 

highly sequence conservation is observed (Fig 3) —PPP1CA isoform shares 

86.7% and 89.8% identity with PPP1CB and PPP1CC, respectively. Alternatively 
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splicing isoforms exist under each isoforms [28]. Although the 3 isoforms of PP1c 

encode by different genes, and they show diverse tissue and subcellular 

distribution, it is safe to regard these isoforms altogether in our research since 

they share remarkably similar features when they enact their functions in cells 

[28].  

For last decades, it has always been an arduous mission to unravel 

function motifs of PP1c. In general, two categories of motifs (Fig 4b), binding 

motifs and catalytic motifs, characterize most essential functions of PP1c. PP1c 

catalytic core locates in the center of its sequence (residues 41–269 of the α 

isoform) [30]. Residues associate with catalytic reaction distribute on catalytic 

core. PP1c engenders catalytic reaction to its substrate simply relies on two 

divalent metals, usually Iron (Fe2+) and Zinc (Zn2+) in mammalian cells, and 

Manganese (Mn2+) in bacteria [31]. Metal binding residues on PP1c concentrate 

in several sites: Asp64, His66, Asp92, Asn124, His173, and His248 [32]. 

However, to achieve specificity, PP1c also needs to bind other components of 

PP1 holoenzyme, namely PP1 regulatory subunits (See below). Studies [28] on 

structure of PP1 holoenzyme unveil that multiple sites contact with regulatory 

subunits on PP1c. The essential interactions between PP1c and PP1r comprise 

of 2 groups, polar interaction and hydrophobic interaction, the sites of which 

disperse in whole sequence. In general, polar interaction occurs on site Asp242, 

Leu289, Cys291, and Glu287; while hydrophobic interaction appears in site 

Ile169, Leu243, Asp242, Leu289, Cys291 Phe257, Phe293, and Met290 [33]. On 

the other hand, researches on direct interaction partners of PP1c manifest the 
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widespread consensus amino acid sequence, R/K-X(0,1)-V/I-{P}-F/W, where 

X(0,1) represents none or any amino acid, and {P} stands for any amino acid 

except for Proline, overlaps through most binding partners [33, 34]. Other 

docking motif (F-x-x-R/K-x-R/K) has been reported elsewhere [35]. The docking 

motifs of PP1c could become a predictive clue to discover and validate PP1-

interaction partners (PIP).  

3D structure of PP1c (Fig 4a) has been illustrated by X-ray crystallography 

for almost 20 years [36]. Three “grooves”, hydrophobic groove, acidic groove, 

and C-terminal groove, can be identified from the surface of PP1c (Fig 5), on 

which PP1c binding sites locate [32, 33].  

A protein’s role is defined in its interactions with other proteins. PP1 and 

PP2A are the essential members of PPP family that account for about 90% of 

phosphatase activity in eukaryotes. Compared with PP2A (contains only 70 

holoenzymes), PP1 is reported to form more than 650 holoenzymes. 

Consequently PP1 is considered to conduct majority of phosphatase activity [31]. 

Although the number of catalytic subunit of the protein phosphatase is limited 

and highly evolutionary conserved, a spectrum of interaction partners interacts 

with each phosphatase, providing specificity (Fig 5). Thus, PP1 regulates its 

substrates not by increasing gene duplication, but through its outstanding ability 

to establish interactome. Currently, there are nearly 500 proteins have been 

predicted to be the PIPs so far. Principally, PIPs either regulate 

dephosphorylation activity of PP1c, target PP1c to its substrate, or serve as 

PP1c substrates. In particular, 6 aspects of interaction (Fig 6) can be achieved 
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through regulation of PIP. Though such a huge number of PIPs has been 

discovered, there is no relatively large scale PIPs profiling of PP1c (i.e., PP1c 

interactome) in human skeletal muscle, which is the major aim in this project.  

1.3 Hyperinsulinemic-euglycemic Clamps and Skeletal  Muscle 

1.3.1 Hyperinsulinemic-euglycemic Clamps 

As mentioned above, insulin resistance is a predictable signature of T2D 

and other metabolic diseases. Clinically, to quantify insulin sensitivity, several 

methods have been used, such as Oral Glucose Tolerance Test (OGTT), Insulin 

Tolerance Test (ITT), and Glucose Clamps [37]. However, to investigate insulin 

sensitivity of insulin responsive tissues, e.g. skeletal muscle, the “Gold Standard” 

is the Hyperinsulinemic-euglycemic Clamp [38], developed by Dr. DeFronzo et al. 

in 1979 [39].  

1.3.2 Tissues response to Insulin 

Development of T2D is a combination of actions from multiple tissues. In 

T2D, insulin resistance in insulin responsive tissues, including Hepatic IR, 

Adipose Tissue IR, and Skeletal Muscle IR, plays an important role [40]. Liver 

and adipose tissue are primary targets of insulin. They will react to insulin signal 

and hence adjust their function in metabolism, such as gluconeogenesis, de novo 

lipogenesis, and lipolysis. In T2D, several classical effects connect to insulin 

resistance of liver and adipose tissue, e.g. increased free fatty acid turnover [40] 

and lipotoxicity [41]. Moreover, liver and adipose tissue also show turbulence of 

signaling transduction, indirectly affecting other tissues, such as skeletal muscle.  
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Although brain will not change glucose uptake per se to insulin level, it will 

process and response to the signal and regulate insulin responsive tissues by 

signaling transmission [42].  In addition, at early stage of T2D, β-cells are trying 

to compensate blood glucose increase by producing more insulin. However, 

when ability to produce insulin is overwhelmed by hyperglycemia, β-cell 

dysfunction occurs [43].  

1.3.3 Studying skeletal muscle as a promising appro ach in T2D 
research 

As largest energy storage tissues and insulin secretion tissue in human 

body respectively, liver [40], adipose tissue [41] and Langerhans islet [44] have 

been well studied. However, it is disappointing to see that studies focusing on 

another equal important tissue connect with insulin-energy-regulation in human, 

skeletal muscle have been underestimated. On the contrary to this situation, 

during T2D, it has long been seen as a fact that the defect in glucose disposal 

exits mostly in skeletal muscle cells, while liver, adipose tissue, and brain 

glucose uptake level shows barely significant change between T2D patients and 

controls (Fig 7). Furthermore, skeletal muscle, as the signal terminal of insulin 

signaling and other signals associating with insulin resistance, expresses 

assorted distinct features in aberrant protein-protein interactions during insulin 

resistance and T2D [45]. However, interaction partners of PP1c in skeletal 

muscle remain unexplored. Therefore, this project aims to uncover protein 

interaction partners in skeletal muscle in human.  
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1.4 Mass Spectrometry in discovery of protein-prote in 
interactions 

Multiple methods can be used in studying in PP1c interaction partners. 

These methods [46] include, but not limited to protein phosphatase assay, yeast 

two hybrid, PP1 overlay assay, GST pull-downs, co-immunoprecipitation, 

microcystin-sepharose column, florescence technique, such as FRET [47] and 

FRAP [48], are widely utilized in identifying PIPs. However, these methods either 

show low-throughput, low accuracy, or extremely high complicity. As a 

consequence, proteomic approach combining with mass spectrometry provides 

an effective solution.  

Cells can be simplified as a factory, in which a plenty of workers, such as 

proteins, DNAs, and RNAs, works on numerous assembly lines (pathways), and 

finally elicits different products (biological processes). To characterize outcomes 

of cellular signaling, understanding single component or isolated interaction is 

much less than enough. Above mentioned traditional methods display limitation 

in the absence of a “system-wide” [49] view, when they are demanded into the 

world of proteomics analysis that highly complex network and low abundance of 

proteins are ubiquitous [50]. And proving a global view is the strength of the 

mass spectrometry based proteomics approach for protein complexes.  

In our lab, we combine HPLC with tandem mass spectrometry (MS/MS). 

The mass spectrometry instrument in our lab, LTQ-Orbitrap Elite, provides 

extremely highly mass solution, accuracy along with high sensitivity. In addition, 

though stable isotope labeling approach increases reproducibility and reduces 

instrumentation time, the method in this project, label-free approach, protects 
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samples from chemical contamination originating from labeling agents [51]. 

Recently, we have developed this label-free approach and have discovered the 

largest IRS1 interactome in human skeletal muscle and novel abnormalities in 

IRS1 complexes in T2D [45].  

  



15 

15 

CHAPTER 2 RESEARCH DESIGN AND METHODS 

The data in the project primarily derive from two mutually associated 

aspects, clinical study and proteomics study (Fig 8a). In the clinical study, after 

the participants were consented, comprehensive screening tests (Visit 1) were 

performed to ensure eligibility of the participants. Eligible participants were 

scheduled for the in-patient clinical test (Visit 2) which included hyperinsulinemic-

euglycemic clamps with skeletal muscle biopsies (Fig 8b). The muscle biopsy 

samples collected by clinical study were analyzed by proteomics as follows: 

biopsy sample homogenization; PP1c co-immunoprecipitation; separating PP1c 

and its interaction partners by 1D-SDS-PAGE gels; in-gel trypsin digestion and 

peptide extraction; and HPLC-ESI-MS/MS protein analysis (Fig 8c). Appropriate 

biological comparison and normal antibody IP are used in order to minimize false 

positives. Pathway and function analysis were conducted on proteomics data by 

bioinformatics analysis along with literature search, in order to identify pathways 

enriched for PP1c interaction partners.  

2.1. Materials 

2.1.1 Antibody 

Two kinds of PP1cα mouse monoclonal antibody (sc-271762 and sc-7482) 

were purchased from Santa Cruz Biotechnology (Dallas, TX); PP1cβ rabbit 

monoclonal antibody (ab53315) was purchased from Abcam (Cambridge, MA); 

PP1cβ rabbit polyclonal antibody (07-207) was purchased from Upstate/Millipore 

(Lake Placid, NY).  
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2.1.2 Reagents  

The following suppliers were used: sequencing-grade Modified trypsin 

(Promega, Madison, WI); protein A sepharose , protein G-Agarose, and 

iodoacetamide (Sigma, St Louis, MO); C18 ZipTip (Millipore, Billerica, MA); 

Insulin ELISA Jumbo (AlPCO, Salem, NH).  

2.2. Subjects 

Nine lean, healthy volunteers were recruited and took part in the study at 

the C. S. MOTT Clinical Research Center at Wayne State University. The 

purpose, nature and potential risks of the study were explained thoroughly to all 

participants, and written consent was obtained before their participation. All 

participants received a 75 g oral glucose tolerance test on the same day when 

the consent was obtained and screening tests were conducted to assess glucose 

tolerance. None of the participants had any significant medical problems 

(including diabetes), and none engaged in any heavy exercise, and they were 

instructed to avoid any form of exercise for at least 2 days before the study. The 

protocol was approved by the Institutional Review Board of Wayne State 

University. 

2.3 Hyperinsulinemic-Euglycemic clamp with muscle b iopsies.  

A hyperinsulinemic-euglycemic clamp was used to assess insulin 

sensitivity and expose skeletal muscle to insulin in vivo, as previously described 

[45, 52]. On the day of study, the study began at approximately 08:30 hours (time 

-60 min) after a minimum 10-hour overnight fast. A catheter was placed in an 
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antecubital vein and maintained throughout the study for infusions of insulin and 

glucose. A second catheter was placed in a vein in the contra lateral arm, which 

was covered with a heating pad (60°C) for sampling of arterialized venous blood. 

Baseline arterialized venous blood samples for determination of plasma glucose 

and insulin concentrations were drawn. At 09:00 hours (time −30 min) a 

percutaneous needle biopsy of the vastus lateralis muscle was performed under 

local anesthesia [53]. Muscle biopsy specimens were immediately blotted free of 

blood, cleaned of connective tissue and fat (~30 sec), and then frozen in liquid 

nitrogen. At 09:30 hours (time 0 min) a primed, continuous infusion of human 

regular insulin (Humulin R; Eli Lilly, Indianapolis, IN) was started at a rate of 80 

mU m-2 minute-1, and continued for 120 min. Plasma glucose was collected and 

measured at 5-min intervals throughout the clamp. Euglycemia was targeted for 

90 mg/dl by variable infusion of 20% d-glucose. At 11:30 hours (time 120 

minutes), another muscle biopsy was obtained from the contralateral vastus 

lateralis muscle.  

2.4 Plasma insulin concentration determinations.  

Plasma insulin concentration was measured by the ALPCO Insulin ELISA 

Jumbo. 

2.5 Proteomics sample preparation and analysis. 

2.5.1 Muscle biopsy processing 

Approximately 60–80 mg frozen muscle biopsy samples were 

homogenized in fridge using a Next Advance Bullet Blender (Model BBY5E) in 
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detergent-containing lysis buffer A (50 mmol/l Hepes, pH 7.6, 150 mmol/l NaCl, 

20 mmol/l NaPO4, 20 mmol/l β-glycerophosphate, 10 mmol/l NaF, 2 mmol/l 

sodium vanadate, 2 mmol/l EDTA, 1% Triton, 10% glycerol, 2 mmol/l 

phenylmethylsulfonyl fluoride (PMSF), 1 mmol/l MgCl2 , 1 mmol/l CaCl2,10µg/ml 

leupeptin, 10µg/ml aprotinin) at a 100µl/10mg ratio. Biopsy specimens were 

homogenized until no visible muscle remained (∼2×5min). Muscle lysates were 

then incubated on ice for 15 min followed by centrifugation at 4°C for 20 min at 

14× 1,000 rpm. Protein concentrations in the supernatant fractions were 

determined by the Bradford protein assay (Bio-Rad, Hercules, CA) with BSA as 

the standard [54].  

2.5.2 Immunoprecipitation, 1D SDS-PAGE, in-gel dige stion and mass 
spectrometry 

The lysate proteins were precleared with NIgG. A mixture of PP1cα and 

PP1cβ antibodies coupled to both Protein A Sepharose and Protein G-Agarose 

beads were used to immunoprecipitate PP1c with its interaction partners from 

muscle lysate. The immunoprecipitates were spun down and washed three times 

in 1 ml PBS solution. The remaining PBS solution was removed, the 

immunoprecipitates were boiled in 15µl sample loading buffer, and the co-IP 

proteins were resolved by 1D SDS-PAGE. 

The whole SDS-PAGE gel lanes were excised, de-stained twice with 

300µL of 50% acetonitrile (ACN) in 40 mM NH4HCO3 and dehydrated with 100% 

ACN for 15 min. After removal of ACN by aspiration, the gel pieces were dried in 

a vacuum centrifuge for 30 min. Trypsin in 20µL of 40mM NH4HCO3 was added 
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and the samples were maintained at 4 °C for 30 min before the addition of 50µL 

of 40mM NH4HCO3. The digestion was allowed to proceed at 37 °C over-night 

and was terminated by addition of formic acid (FA). After further incubation, each 

supernatant was transferred and the extraction procedure was repeated by 

replenishing new solution with low FA concentration, and the two extracts were 

combined. The resulting peptide mixtures were purified by C18 ZipTip after 

sample loading in buffer containing peptides to serve as internal standards [55]. 

On-line HPLC on a Linear Trap Quadrupole-Orbitrap Elite (LTQ-Orbitrap Elite) 

was performed as described previously [56] with instrument specific 

modifications.  

2.5.3 Sample data analysis 

Using the MaxQuant software, peptides/protein identification and 

quantification were performed, and peak areas for each protein were obtained by 

LFQ analysis. Only proteins identified with minimum 2 unique peptides and with 

false discovery rate (FDR) at 0.01 were considered. To be considered as a bona 

fide PP1c interaction partner, a protein has to further satisfy following criteria 

[45]: a). With an enrichment ratio >10 (Fig. 9); b). Identified with LFQ peak area 

(PA) in more than half of the PP1c IP (i.e. >9 out of 18 biopsies used). The 

enrichment ratio was calculated as follows:  

1st, PA for a protein identified in a gel lane was normalized against the sum of the 

peak areas for all proteins identified in the same gel lane to obtain normalized 

ratio for each protein, Norm:i, 
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Norm: � �
PA�

∑ PA��


  

Then, the average of normalized ratio for each protein in the PP1c co-

immunoprecipitates, Average_Norm:i_PP1c, as well as the average of 

normalized ratio for the same protein in the NIgG co-immunoprecipitates, 

Average_Norm:i_NIgG, were obtained. Finally, Average_Norm:i_PP1c was 

divided by Average_Norm:i_NIgG, to obtain the enrichment ratio for each protein.  

Enrichment_Ratio: � �
Average_Norm: �_PP1c

Average_Norm: �_NIgG
  

Since we used NIgG as a control, the first level of identification will be to search 

for proteins exclusively detected in the PP1c immunoprecipitates. However, this 

will result in false negatives. Due to the high sensitivity of our approach, even if a 

trace amount of a protein was non-specifically absorbed on the NIgG beads, it 

may be identified with minimum 2 unique peptides with FDR at 0.01. 

Nonetheless, if this protein is a true component of the PP1c complex, higher 

peak area will be assigned to this protein in the PP1c sample than in the NIgG 

sample. 

To determine the relative quantities of PP1c interaction partners in lean, 

healthy subjects, the PA for each protein identified in a specific biopsy was 

normalized against the PA for PP1c identified in the same biopsy, which results 

in Norm:j.  

Norm: � �
PA�

PA_PP1c
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The normalization strategy is widely used in proteomics studies involving protein-

protein interactions [57], and uses the same concept used in Western blotting. 

The normalized peak area for each PP1c interaction partner, Norm:j, was 

compared within the group to assess effects of insulin. 

2.5.4 Statistical analysis 

Although thousands of proteins were assigned in at least one of 18 

biopsies that were detected, a series of filters were used to narrow the number of 

proteins that were used to assess effects of insulin in lean healthy controls as 

described above. Statistical significance was assessed using Z-test. Differences 

were considered statistically significant at p<0.05*. 

2.5.5 Bioinformatics analysis 

Pathway analysis on PP1c interaction partners were performed using 

Ingenuity Pathway Analysis (Ingenuity Systems, Inc., Redwood City, CA), which 

considers a pathway to be a set of genes. IPA software package is widely used 

and contain biological and chemical interactions and functional annotations 

created by manual collection of the scientific literature [58]. A pathway was 

considered as significantly enriched if both the false discovery rate (FDR) for the 

pathway was less than 0.01 and the pathway included at least 4 of the identified 

PP1c partners.  
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CHAPTER 3 RESULTS 

Clinical information of participants in the project is shown in Table 1. 

Criteria indicating the state of diabetes are shown in the table, namely 2h OGTT 

Glucose level, HBA1c percentage, and Fasting plasma glucose level, manifesting 

the values within healthy, non-diabetes range.  

PP1cα and PP1cβ were detected in PP1c immunoprecipitates from all 18 

biopsies used for the study, but were not detected at all in the NIgG 

immunoprecipitates. In total, 46 proteins met the criteria for classification as 

PP1c interaction partners (Table 2). Note that PP1c interaction partners listed in 

Table 2 may involve both direct interaction partners, and indirect partners 

through other proteins that interact with PP1C directly. Among these 46 PP1c 

interaction partners, 31 partners were previously unreported in any species. 

Among the 15 proteins were previously reported as PP1c interaction partners, 

only 3 were reported in human skeletal muscle (Table 2). IPA pathway analysis 

on the 46 PP1c interaction partners manifested that multiple pathways are 

significantly enriched, such as pathways related to mitochondrial function, insulin 

signaling, protein synthesis and degradation, and cytoskeleton dynamics (Fig 

10A and Table 3). These results imply that PP1c participates in these biological 

processes or that PP1c is a downstream target regulated by these pathways. A 

significantly enriched interaction network of PP1c (EIF2 Signaling) is shown in 

Fig 10B. These novel PP1c interaction partners in humans may be a reference of 

the various roles that PP1c plays in physiological normal conditions in skeletal 
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muscle and other tissues/organs. It also provides a control for PP1c interaction 

partner researches in insulin resistance and T2D.  

Among 46 interaction partners, 8 showed significant change in their 

interaction to PP1c between basal (without insulin-infusion in vivo in humans) 

and insulin (after 2 hour insulin-infusion in vivo in humans) biopsies; 6 of them 

significantly increased, and other 2 decreased. In addition, 23 interaction 

partners show 1.3 fold, non-significant change after insulin stimulation (among 

them, only one had decreased association with PP1c). Please see Table 2 for 

details.  
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CHAPTER 4 DISCUSSION 

During the past decade, genomics and transcriptomics studies have 

revealed valuable information regarding mechanisms underlying insulin 

resistance and T2D. However, the abundance of proteins and protein-protein 

interactions may not be assessed directly using genomics and transcriptomics 

[59]. HPLC-ESI-MS/MS based proteomics has emerged as a prevailing means 

for investigating protein-protein interaction networks in insulin resistance. PP1c 

interaction partners are large in number and widespread in various tissues and 

cell types. However, most studies on PP1c protein-protein interactions have been 

performed in cell culture or animal models. No PP1c interactome in human 

skeletal muscle tissue has been reported yet. The present project determined 

interacting partners of PP1c in muscle biopsies of lean healthy participants using 

the proteomics approach recently developed in our group [45]. The proteomics 

approach includes NIgG immunoprecipitation as a negative control to determine 

non-specific binding, multiple biological comparisons to improve confidence, and 

bioinformatics analysis to identify significantly enriched pathways. The strategy 

detects endogenous protein complexes, without using labeling or protein 

overexpression/ tags [45], may be applicable to other protein complexes in cells, 

animal models, and in human tissue samples [45]. Using this approach, we have 

identified 46 PP1c interaction partners in multiple functional pathways in small 

skeletal muscle biopsies from human participants. These interaction partners are 

discussed below.  
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4.1 PP1c Interaction Partners as PP1 regulatory pro teins 

PPP1R2/PPP1R2P3 protein group 

Protein phosphatase inhibitor 2 (PPP1R2), used to be called as I-2, was 

one of the first PP1c inhibitors discovered. In contrast to the other PP1c 

inhibitors, PPP1R2 inhibits PP1c by competitive inhibition. Unlike PPP1R1 and 

DARPP-32, classical PP1c RVXF binding motif is not seen in sequence of 

PPP1R2, which suggests that PPP1R2 interacts with PP1c in a different way with 

PPP1R1 and DARPP-32 [60]. Despite extensive studies, the physiological role 

and mechanism of PPP1R2 remain elusive. Interestingly, PPP1R2 has been 

report to induce centrosome separation [61], and fluctuation of PPP1R2 protein 

and mRNA levels during the cell cycle is observed [62]. PPP1R2 was first 

discovered in 1976 in rabbit skeletal muscle [63]. Though it is ubiquitous 

expressed, no research has shown its function and interaction partners in human 

skeletal muscle.  

Protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene 3 

(PPP1R2P3) was previously thought to be a pseudogene. However, it has been 

recently identified at the protein level [64]. It has similar function with PPP1R2 

and shares 95% sequence identity with PPP1R2 [64]. The peptides identified by 

HPLC-ESI-MS/MS were shared between PPP1R2/PPP1R2P3. 

Protein phosphatase 1 regulatory subunit 3A and 3B  (PPP1R3A, PPP1R3B) 

PPP1R3A and PPP1R3B are glycogen-associated regulatory subunits of 

PP1c, PP1-GTSs, which direct PP1c to the glycogen particles. Several other 

members exist in PP1-GTS family. However, members in this family are not 
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characterized by their low sequence identity, but by glycogen-binding domain 

[65]. Both PPP1R3A [66] and PPP1R3B [67] have been reported to interact with 

PP1c in human skeletal muscle. PPP1R3A specific expressed in myocytes, while 

PPP1R3B can express both in muscle and in liver [65].  

Protein phosphatase 1 regulatory subunit 7 (PPP1R7) . 

PPP1R7 is homolog of Schizosaccharomyces pombe gene sds22 in 

humans. It is expressed in a variety of tissues in humans, including skeletal 

muscle [68]. In S. pombe studies, it is clear that sds22 regulates chromosome 

segregation during mitosis [69]. PPP1R7 also involves in regulation of cell shape 

and myosin phosphorylation state [70]. 

Nuclear inhibitor of protein phosphatase 1 (PPP1R8)  

  PPP1R8, also commonly known as NIPP1, is one of the evolutionarily 

oldest PP1 regulators. PP1c interaction complexes with PPP1R8 possess more 

than one-third of the nuclear pool of PP1 holoenzyme [71]. PPP1R8 was 

originally identified as a PP1 inhibitor because binding of NIPP1 inhibits the 

dephosphorylation of canonical PP1 substrates, including glycogen 

phosphorylase a [72]. Although mechanism of functions of PP1-PPP1R8 

complex remains uncertain, it is reported that the complex binds RNA to exert 

endoribonuclease activity [73]. Other functions that associate to the complex 

include transcription, pre-mRNA splicing, cell-cycle progression, and/or 

chromatin remodeling [72]. PP1-PPP1R8 complex targets a number of 

substrates, including the pre-mRNA-splicing factor SF3B1, a component of the 
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U2 snRNP that recruits the complex to the spliceosome [74]. Intriguingly, SF3B1 

has also been found as an interaction partner in this research (Table 2). 

Protein phosphatase 1 regulatory subunit 11 (PPP1R1 1),  

PPP1R11, also known as Inhibitor-3 of PP1c, is a small protein that is 

conserved evolutionarily. PPP1R11 is localized to the nucleoli and centrosomes 

by regulation of different PP1c isoforms. A significant portion of the cellular pools 

of PP1α and PP1γ1 that are associated with PPP1R11 is reported, suggesting 

that PPP1R11 may modulate cellular pool distribution and subcellular localization 

of these isoforms [75]. Though still being unclear, cellular functions of PPP1R11 

are likely to be associated with nuclear regulation of PP1 and with the regulation 

of cell division [76]. PPP1R11 may also have a role in apoptosis [77]. In 

mammalian cells, PPP1R11 is hetero-terpolymerized with PP1c and PPP1R7, a 

PP1 regulatory subunit that is involved in mitosis and chromosome segregation 

processes [78]. Interestingly, PPP1R7 has also been found as an interaction 

partner in this research (Table 2).  

Protein phosphatase 1 regulatory subunit 12B (PPP1R 12B) 

PPP1R12B, also known as MYPT2, forms complex with PP1cβ. 

PPP1R12B is expressed preferentially in heart, brain and skeletal muscle, while 

another member in MYPT family, MYPT1 (PPP1R12A) expresses mainly in other 

cell types such as smooth muscles [79]. PPP1R12B is involved in muscle 

contraction, cardiac torsion, and organization of sarcomere [80]. Interestingly, 

PPP1R12B, as well as PPP1R12A, has been found to associate with insulin 

signaling. Pham et al. [81] reported previously that PPP1R12B phosphorylation is 
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responsive to insulin stimulation, indicating PPP1R12B may be involved in insulin 

signaling. Geetha et al. [82] reported that in L6 cells, PPP1R12A/PP1cβ may 

involve in insulin signaling depending on Akt and mTOR/raptor activation.  

Phosphatase and actin regulator 4 (PHACTR4)  

PHACTR4 is a PP1 regulatory protein, mediating both PP1 and actin 

binding. Protein members in PHACTR family have been implicated in many 

distinct biological processes depending on actin cytoskeleton, including 

angiogenesis, cell spreading, migration and axon elongation. PHACTR4 is 

reported to interact with PP1c by yeast two hybrid [83]. The PHACTR4 mutation 

cannot interact with PP1, resulting in cell cycle regulation abnormality. Actin 

binding to PHACTR4 competes with PP1 binding and consequently the PP1c 

phosphatase activity is determined by the ratio of monomeric and polymeric actin 

in cells [84]. 

4.2 PP1c Interaction Partners involved in cytoskele ton dynamics 

ACTB/ACTG1 protein group 

Actin β and γ1 are actins. Actin is one of the well- studied proteins in cells. 

There are 6 actin isoforms: 4 muscle actins, 2 cytoplasmic actins. Beta- and 

Gamma actin are cytoplasmic actins. Beta- and Gamma actin are nearly identical 

(differ by only 4 amino acids), and the peptides identified by HPLC-ESI-Ms/MS 

were shared by these two proteins. Generally, actin plays an important role in 

cytoskeletal structure, cell mobility and cell morphology [85] [86]. However, 

distinct co-localization patterns and function occurs among isoforms. To be 

specific, beta-actin localizes near the leading edges in several cell types, and it 
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may elicit essential function in neuronal development. Gamma actin can be 

detected in filament structure encircling mitochondria. Unlike beta isoform, 

gamma actin distributes evenly in fibroblasts. ACTB knockout is lethal mutation, 

while ACTG1 knockout is not [85] [86]. Actin beta and gamma1 is reported to 

interact with PP1c in cell model [87] and in rat tissues [88]. ACTB mRNA is 

regulated by insulin in human skeletal muscle [89]. 

Prothrombin (F2)  

F2 is one of the coagulation factors that functionally relates to vascular 

endothelial growth factors [90]. It has also been reported that F2 stimulates actin 

contraction in LM8 cell lines [91]. 

LIM and cysteine-rich domains protein 1(LIMCH1)  

LIMCH1 contains both LIM and Calponin homology domains, so that it 

may function as cytoskeletal organization [92] and/or actin binding [93].  

Prolactin-inducible protein (PIP)  

PIP is small in size and plays multiple important functions. It has ability to 

bind potentially with CD4-T cell receptor, immunoglobulin G (IgG), actin, zinc α2-

glycoprotein (ZAG), fibronectin and enamel pellicle, revealing its importance in 

biological functions [94]. 

Erythrocyte band 7 integral membrane protein (STOM) ,  

STOM, also known as stomatin, shows co-localization with actin 

microfilaments in epithelial cells [95]. STOM is located in protruding structures in 

plasma membrane and it forms homo-oligomers in the human epithelial cell, 

suggesting that this protein participates in the cortical morphogenesis of the cells 
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[96]. However, other roles of STOM in cells are still in opaque, e.g. 

overexpression of STOM negatively affects activity of GLUT-1 glucose 

transporter [97]. 

TRIO and F-actin-binding protein (TRIOBP)  

TRIOBP has three isoforms, but only TRIOBP-1 is ubiquitously expressed. 

Cellular structure functions by directly binding F-actin as well as associating with 

the trio rho guanine nucleotide exchange factor to regulate actin filament 

organization [98] and adherens junctions [99] in cells. 

4.3 PP1c Interaction Partners in mitochondrial func tion 

Isobutyryl-CoA dehydrogenase, mitochondrial (ACAD8)  

  ACAD8 is one of the flavoproteins. The encoded protein is a mitochondrial 

enzyme that functions in catabolism of the branched-chain amino acid valine 

[100]; Defects in this gene are the cause of isobutyryl-CoA dehydrogenase 

deficiency [101]. ACAD8 is reported to interact with PP1c by yeast two hybrid 

[83]. 

Estradiol 17-beta-dehydrogenase 8 (HSD17B8)   

HSD17B8 namely, 17 beta-HSD8, was previously classified as a steroid-

metabolizing enzyme [102], but recent data suggest that HSD17B8 is primarily 

involved in mitochondrial fatty acid synthesis [103].  

Metaxin 2  (MTX2)  

MTX2 is bound to the mitochondrial outer membrane at the cytosolic face 

by its interaction with membrane-bound metaxin 1. This complex may play a role 

in protein importation into mammalian mitochondria [104].  
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Pentatricopeptide repeat-containing protein 1 (PTCD 1)  

PTCD1 is a mitochondrial matrix protein that associates with leucine 

tRNAs and precursor RNAs that contain leucine tRNAs [105].  

Mitochondrial import inner membrane translocase sub unit TIM50 (TIMM50)  

TIMM50 encodes Tim50 protein that is a Subunit belonging to TIM23 

Complex. The TIM23 complex links protein translocation across the Outer and 

Inner membranes of mitochondria [106]. The existence of a CTD-like 

phosphatase domain in human Tim50 suggests that Tim50 might exert a 

serine/threonine phosphatase activity in vitro [107]. Intriguingly, this phosphatase 

activity is not conserved evolutionarily. The phosphatase activity shows in TIM50 

homolog in Trypanosoma brucei, a parasitic protozoan; while it is not in Fungal 

Tim50 [108].  

Uveal autoantigen with coiled-coil domains and anky rin repeats (UACA) 

UACA is an Autoantigen that is regulated by insulin in human skeletal 

muscle [89]. Autoantigen may be attacked by autoimmunity which leads to Vogt-

Koyanagi-Harada disease [109] or Graves’ disease [110]. The mouse ortholog of 

UACA may play some roles in cardiac muscle development, cytoplasm, 

especially around the nuclear membrane and mediates apoptosis [111].  

4.4 Interaction Partners act in metabolism pathways  

Very long-chain specific acyl-CoA dehydrogenase, mi tochondrial 

(ACADVL)  

ACADVL acts on its substrate on 14-24 carbon chain length with optimum 

activity for palmitoyl-CoA (C16-CoA) in β-oxidation in skeletal muscle [112].  
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Caveolin-1 (CAV1)  

CAV1 is an integral membrane protein with multiple functions. The 

preferred location for caveolin-1 is the caveola at the cell surface. It involves in a 

number of cellular functions. The most common function for caveolin-1 is to be a 

lipid transporter. Cholesterol is required for lipid transportation of caveolin-1, and 

caveolin-1 also binds to long chain unsaturated fatty acids to facilitate its 

transportation [113]. Caveolin-1 not only transports lipids, but also conducts 

membrane traffic of other components [114]. Moreover, though most researchers 

believe caveolin-1 to be a scaffold protein, some reports show activation of EGF 

pathway leads to down-regulation of caveolin-1, which may aggravate tumor 

invasion ability [115]. Finally, caveolin-1 acts as an activator of insulin signaling 

[116], and caveolin-1 deficient mice have been shown to be insulin resistance 

[117]. Caveolin-1 has been shown to interact with PP1 in prostate cancer cell 

models [118].  

3-methyl-2-oxobutanoate dehydrogenase kinase, mitoc hondrial (BCKDK)  

The mammalian mitochondrial branched-chain α-keto acid dehydrogenase 

(BCKD)1 complex conducts catalysis of the oxidative decarboxylation structure of 

branched-chain α-keto acids to bring about branched-chain acyl-CoAs formation. 

The reaction products indirectly associate with the Krebs cycle or linked to lipid 

biosynthesis. BCKDK is the kinase that regulate this process [119]. 
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Cystatin-B (CSTB)  

CSTB has been suggested to counteract inappropriate proteolysis of the 

cell due to cathepsins that leak out of the lysosomes, but CSTB may also interact 

with other cellular proteins [120]. 

PDZ domain-containing protein GIPC1 (GIPC1)  

GIPC1 is a G-couple protein. In L6 myoblast cells, GLUT1/GIPC1 

interaction increases with enhanced GLUT1 activity, which may participate in 

glucose uptake regulation [121].  

4.5 Interaction Partners relate to Protein Synthesi s and 
Degradation, 

Splicing factor 3B subunit 1 (SF3B1)   

SF3B1 also known as Sap155, belongs to U2 spliceosomal RNA (snRNP) 

that is a component of spliceosome. Spliceosome processes precursor mRNAs 

into mature mRNA by splicing intron. Posttranslational protein modification, 

especially phosphorylation state, is critical for splicing dynamics, e.g. SF3B1 is 

hyperphosphorylated before and dephophosphorylated after step 1 of splicing 

[122]. It has also been reported that in HTO cells, dephophosphorylation activity 

of SF3B1 is conducted by Protein Phosphatase 1, regulated by Nuclear Inhibitor 

of Protein Phosphatase-1 (NIPP1, also known as PPP1R8) [123]. This is 

considered as an evidence that PP1 involves in regulation of transcription and 

protein synthesis.  
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Heterogeneous nuclear ribonucleoprotein Q (SYNCRIP)   

As mentioned above, pre-mRNA converts into mature mRNA by 

spliceosomes. However, another group of proteins, Heterogeneous nuclear 

ribonucleoproteins (hnRNPs), involves before and after pre-mRNA processing. 

hnRNPs prevent pre-mRNA forming a short secondary structure, leading to 

better accessibility for interactions. In addition, hnRNPs function as mRNA 

transporter that assists mature mRNA to transport out to cytoplasm [124]. 

Research has shown that the cytoplasmic RNA-binding protein, SYNCRIP, was 

highly homologous to heterogeneous nuclear ribonucleoprotein R (hnRNP R). 

SYNCRIP binds to RNAs with preference to poly-(A) RNA. Nevertheless, 

distribution of SYNCRIP is predominantly in the cytoplasm, while the nuclear 

localization is shown in hnRNP R [125]. Like hnRNPs, SYNCRIP function as a 

stabilizer of mRNA [126]. SYNCRIP has been shown to interact with PP1 in cell 

models [87].  

Transformer-2 protein homolog beta (TRA2B)  

The serine- and arginine-rich protein (SR protein) of RNA binding proteins 

plays an important role in both constitutive and alternative pre-mRNA splicing. It 

is known to be a molecule that involves in both protein–protein and protein–RNA 

interactions. These interactions are important for RNA metabolism. As a member 

of SR protein family, TRA2B structurally associates with the classical SR proteins 

and functionally involves in regulating alternative splicing pathways. Mammalian 

TRA2B has been shown to influence tissue specific functions by appropriate 
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alternative splicing [127]. An in vitro study has shown the interaction between 

TRA2B and PP1 [128]. 

39S ribosomal protein L49 (MRPL49)  

MRPL49 is a component in human mitochondrial ribosomes [129]. 

DNA-directed RNA polymerase II subunit RPB3 (POLR2C )  

POLR2C is a subunit of RNA polymerase II. In eukaryotic cells, 

transcription of protein coding genes is accomplished by RNA polymerase II, 

associating with a number of cofactors. These cofactors control the selectivity 

and efficiency of transcription initiation, elongation and finally termination [130].  

DNA-directed RNA polymerase II subunit RPB1 (POLR2A )  

POLR2A is another component of RNA polymerases that functions to 

remove the phosphates from the RNA polymerase II carboxyl-terminal domain. 

RNA polymerases are recruited to target gene, forms a transcription complex, 

and initiates transcription process. In eukaryotes, three types of RNA polymerase 

exist, each of which targets different RNAs. RNA polymerase II participates in 

transcriptions of all protein-coding genes, producing mRNA [124]. Insulin 

stimulation on skeletal muscle increases in the muscle transcript levels [131], 

which putatively increases RNA polymerases II activity. Furthermore, RNA 

polymerases II binds to PPARγ, a transcriptional activator in adipocytes, when it 

transcribes genes involved in lipid synthesis, lipids storage, cell growth, insulin 

signaling, and adipokine production [132]. This protein has been found in vitro to 

interact with PP1c [133].  
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Protein quaking (QKI)  

QKI is an RNA binding protein that regulates embryogenesis, blood vessel 

development, glial cell fate determination, and apoptosis [134]. 

RNA-binding protein Raly (RALY)  

RALY is a member of the heterogeneous nuclear ribonucleoproteins, a 

family of RNA-binding proteins generally involved in many processes of mRNA 

metabolism [135]. 

Ribosomal proteins: RPL14, RPL18A, RPL3L, RPS11, RP S25, and RPS9 

The ribosome is a large and complex molecular machine that serves as 

the primary site of biological protein synthesis [136]. Ribosomes are large 

ribonucleoprotein complexes that provide an accurate structure for mRNA 

translation and protein synthesis [137]. The eukaryotic ribosome includes four 

ribosomal RNA (rRNA), and large numbers of ribosomal proteins (RP) [138]. This 

complex exhibits a very huge molecular mass and a sedimentation coefficient of 

80S. The ribosome is composed of two major subunits; a small subunit involved 

in decoding of the mRNA and a large subunit that embraces the peptidyl 

transferase center which is buried in the rRNA. In eukaryotes, the 40S small 

subunit is composed of only one 18S rRNA, whereas the 60S large subunit 

contains three rRNA (5S, 5.8S and 28S) [137]. Among the list of ribosomal 

proteins in this study, RPS11, RPS25, and RPS9 belongs to 40s subunit while 

RPL14, RPL18A, and RPL3L belongs to 60s subunit [137, 139].  
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Double-stranded RNA-binding protein Staufen homolog  2 (STAU2)  

STAU2 is regulated by insulin in human skeletal muscle [89]. Function of 

STAU2 includes binding of double-stranded RNA, transport of RNAs in neuron, 

degradation of specific mRNAs contains STAU-binding site 1 [140].  

Transcription elongation factor B polypeptide 2 (TC EB2)  

TCEB2 is a component of E3 ubiquitin ligase, conduct ubiquitination [141]. 

It serves a chaperone-like function, facilitating assembly and boosting stability of 

the Elongin (SIII), a complex activates translational elongation process by 

mammalian RNA polymerase II. The elongation process is initiated by minimizing 

transient pausing of the polymerase within transcription units [142].  

Probable tRNA pseudouridine synthase 2 (TRUB2) ,  

TRUB2 also known as TruB, is an RNA pseudouridine synthase which 

catalyzes pseudouridine formation in tRNA. This posttranscriptional modification 

is evolutionary conserved [143]. Another member in TRUB family, TRUB1, is 

widely expressed in various human tissues (especially heart, skeletal muscle and 

liver). TRUB2 gene was also found in human genome, however, much of the 

study on TRUB2 function based on bacterial TruB/psi55, a homolog of TRUB2 

[144]. 

4.6 Other PP1c Interaction Partners 

Asporin (PIGR)  

Asporin inhibits chondrogenesis and blocks TGF-β1-induced expression of 

matrix genes and the resulting chondrocyte phenotypes [145]. 
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Polymeric immunoglobulin receptor (PIGR)  

This polymeric immunoglobulin receptor is normally transferred from the 

Golgi to the basolateral surface in epithelial cells and shows function in immune 

system by transporting polymeric IgA and IgM to the apical surface. 

LIM and cysteine-rich domains protein 1 (LMCD1)  

LMCD1 is regulated by insulin in human skeletal muscle [89]. It interacts 

with TGFβ1 [146]. In cardiomyocytes, LMCD1 combines with Dyxin to form a 

complex, which will activate PP3 [147] or GATA6 [148] to regulate transcription 

factors. Since it interacts with PP3, another member of PPP family, it is not 

surprise to see it interacts with PP1. LMCD1 contains LIM domain, indicating that 

multiple functions may associate with LMCD1: actin regulation, Integrin 

regulation, and Cell-fate decision [149]. 

Lactotransferrin (LTF)  

LTF is involved in muscle hypertrophy and myogenesis [150]. Originally, it 

was consider as a secretory iron-binding protein that can inhibit bacteria growth 

[151].  

4.7 Influence of Muscle Fiber-type Composition 

It is reported that type I, type IIa, and type IIx muscle fibers exist in human 

skeletal muscle [152], and significant variability has been shown between 

different ages [153], sexes [154], and individuals [153] [154]. Type IIx and IIa 

fibers are fast twitch fibers and type 1 fibers are slow twitch fibers. Proportion of 

fast and slow twitch fibers correlate with glucose metabolism and muscle insulin 

sensitivity [155], and it is possible that differences in muscle fiber type may lead 
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to unexplained variability in the protein interaction partners in the muscle biopsy 

samples.  

Therefore, we plan to measure muscle fiber composition as described in 

the manuscript [156] for future studies. By assessing skeletal muscle fiber-type 

composition, we will be able to determine whether any observed differences in 

our major outcomes (e.g., differences in PP1c interaction partners) are related to 

differences in muscle fiber composition. 

4.8 Summary 

In this study, 46 proteins have been identified as PP1c interaction partners 

in human skeletal muscle in lean, healthy participants. And 8 of them express 

significant change after insulin stimulation (including ASPN, PIGR, POLR2A, 

PPP1R3A, PPP1R3B, PPP1R8, PPP1R12B, and RPS9). This study provides a 

list of PP1c interaction partners as reference for future studies in phosphatase 

biology, in interactome analysis, and in diabetes research. The successive step 

of this study will be validating of these interaction partners, and studying those 

partners showed significant changes upon insulin stimulation to determine 

whether insulin responsiveness of these PP1c partners would be diminished in 

type 2 diabetic patients.  
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Figure 1. The causal relationship and tissue involv ement of Type 2 Diabetes 
development.  

Mutual interaction between genes and environmental factors (food intake and exercise 
habits) is a decisive factor of body shape and insulin sensitivity. Insulin resistance in 
insulin responsive tissues affects glucose uptake rate, resulting in the blood glucose 
increase. Hyperglycemia, as well as insulin resistance will progressively damage β cells, 
eventually leading to Type 2 Diabetes.  
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Figure 2. Overview of signal molecules involved in insulin signaling pathway. 

Binding of insulin with insulin receptor initiates PI3k pathway, mediated by IRS
skeletal muscle. PI3k pathway activates AKT (PKB), a molecule participates in multiple 
functions, including glucose uptake. 
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Figure 2. Overview of signal molecules involved in insulin signaling pathway. 

Binding of insulin with insulin receptor initiates PI3k pathway, mediated by IRS
skeletal muscle. PI3k pathway activates AKT (PKB), a molecule participates in multiple 
functions, including glucose uptake.   
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Figure 2. Overview of signal molecules involved in insulin signaling pathway.  

Binding of insulin with insulin receptor initiates PI3k pathway, mediated by IRS-1 in 
skeletal muscle. PI3k pathway activates AKT (PKB), a molecule participates in multiple 
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Figure 3. The sequence of three major isoforms of P P1c: PPP1CA isoform 1, 
PPP1CB, PPP1CC isoform 1.  

Asterisks mark identical positions shared by three isoforms. Colons and dots indicate 
residues share similarity. Identical residues have been highlighted in yellow. Isoform 
alpha and beta, alpha and gamma, beta and gamma share 89.7%, 89.8%, and 85.7% 
identity, respectively. Sequence data come from NCBI. Analyzed by the ClustalX 2.1 
Align tools.  
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Figure 4. Structure information of PP1c 

A.3D structure of human Protein Phosphatase 1 catalytic subunit, isoform α. Structure 
showed in ribbons indicates hydrophobicity - hydrophilic amino acids (yellow) and 
hydrophobic amino acids (orange).Catalytic core has been shown in atoms: Carbon 
(grey), Oxigen (red), Nitrogen (white), and Manganese (purple). Note that two Mn ions 
are critical for catalytic activity of PP1c. Structure information came from [157]. The 
figure creates by Jmol: an open-source Java viewer for chemical structures in 3D 
(http://www.jmol.org/);  

A 
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Figure 4. Structures of PP1c 

B. Motif analysis of PP1c. Catalytic core is illustrated in purple; Metal binding sites are 
illustrated in red; and Interaction binding sites are illustrated in blue. Number of amino 
acid in sequence marked in the figure [30, 32, 33].  

  

B 
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Figure 5. Interactions between PP1c and its interac tion partner, MYPT1 to form a 
PP1 holoenzyme. 

PP1c δ (up left) and PP1 regulatory subunit (up right) forms a complex (down) to 
achieve substrate specificity. The confluence of three binding groove (yellow lines) is 
catalytic core of PP1c. Reproduced with permission from [158]. 
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Figure 6. Regulation patterns of interaction partne rs on PP1c 

Mechanisms by which interaction partners interact with PP1c include: (i) control PIP 
proteolysis; (ii) phosphorylation state affects association; (iii) Recruitment of inhibitors; 
(iv) Allosteric regulation; (v) Binding with 14-3-3 protein masked substrates; (vi) 
Competition for the same binding sites. Reproduced with permission from [31]. 

   



47 

47 

 

Figure 7. Summary of glucose metabolism change in T ype 2 diabetes among 
different tissues during euglycemic insulin clamp s tudies.  

Net glucose uptake is similar (Liver and Adipose tissue) or unaffected by 
hyperinsulinemia between healthy and T2D individuals. Muscle glucose uptake in 
healthy individuals accounts for approximately 75%–80% of total glucose uptake. In T2D 
patients, the most remarkable reduction in insulin-mediated glucose uptake is observed 
in muscle glucose disposal. Reproduced with permission from [159].  
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Figure 8A. General flow chart of clinical and proteomics data acquisition and 
analysis;  
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General flow chart of clinical and proteomics data acquisition and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

General flow chart of clinical and proteomics data acquisition and 
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Figure 8B. Detailed illustration of clinical visit2   

Figure 8B 
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Figure 9. Detailed Proteomic Analysis workflow  

Proteins other than PP1c identified with minimum 2 unique peptides 
with FDR at 0.01 in at least one PP1c IP?    

(1260 proteins) 
 

Enrichment ratio for each protein determined. Enrichment ratio for a 
protein > 10 (PP1c vs NIgG IP)? 

(421 proteins)  
 

Identified with LFQ peak area (PA) in more than half (e.g., > 9 out of 
18) PP1c IP samples? 

(46 proteins) 
 

With a fold change over basal greater than 1.3 (i.e., 1.30 fold increase) 
or less than 0.77 (i.e., 1.30 fold decrease)? 

(31 proteins) 
 

P<0.05 by independent Z-tests? 

(8 proteins) 



 

Figure 10. Network analysis of 
skeletal muscle revealed by proteomics and Ingenuit y Pathway Analysis

All parameters were set as default, with the exception of the number of molecules per 
network was maximized to 35.
Carbohydrate Metabolism, was shown, which contained 21 molecules derived from the 
list of 46 interaction partners identified in this study. PP1c is highlighted in purple, 
partners with 1.3 fold inc
highlighted in green (significant increase
P≥0.05), partners significant
change in this study are hig
lines indicate the presence of direct and indirect interact
respectively.  
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Network analysis of enriched PP1c interaction partners in human 
skeletal muscle revealed by proteomics and Ingenuit y Pathway Analysis

All parameters were set as default, with the exception of the number of molecules per 
network was maximized to 35. The top scored network (score at 51), which is related to 
Carbohydrate Metabolism, was shown, which contained 21 molecules derived from the 
list of 46 interaction partners identified in this study. PP1c is highlighted in purple, 

1.3 fold increased interaction with PP1c upon insulin-
highlighted in green (significant increase, P<0.05) or blue (insignificant increase, 

, partners significantly decreased are highlighted in red, and partners shows no 
in this study are highlighted in grey, respectively. Solid and dashed connecting 

lines indicate the presence of direct and indirect interactions in the Ingenuity database, 
 

enriched PP1c interaction partners in human 
skeletal muscle revealed by proteomics and Ingenuit y Pathway Analysis .  

All parameters were set as default, with the exception of the number of molecules per 
top scored network (score at 51), which is related to 

Carbohydrate Metabolism, was shown, which contained 21 molecules derived from the 
list of 46 interaction partners identified in this study. PP1c is highlighted in purple, PP1c 

-infusion are 
(insignificant increase, 

are highlighted in red, and partners shows no 
. Solid and dashed connecting 
ions in the Ingenuity database, 
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Figure 11. Significantly enriched pathways for the PP1c interaction partners 
identified in this study revealed by Ingenuity Path ways Analysis.  A). Significantly 
enriched pathways. The total number of identified PP1c interaction partners for a given 
pathway in this study is denoted beside each bar. B) PP1c interaction partners in EIF2 
Signaling. 
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Figure 11B. PP1c interaction partners in 

Figure 11B 
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PP1c interaction partners in EIF2 Signaling 
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Table 1. Clinical characteristics participants in t he PP1c interaction partner study. 

Results were shown as mean ± SEM. Normal values are in Bold after BMI, 2h OGTT 
glucose, HBA1c, and Fasting plasma glucose values.   

  9 participants in lean group 

Gender (M/F) (5/4) 

Age (years) 35.9 ± 3.3 

BMI (kg/m
2
) 23.8 ± 0.7 (< 25) 

2h OGTT Glucose (mmol/l) 5.5 ± 0.3 

2h OGTT Glucose (mg/dl) 98.7 ± 6.1 (<140) 

HBA1c (%) 5.2 ± 0.1  (<5.7) 

Fasting plasma glucose (mmol/l) 4.5 ± 0.1 

Fasting plasma glucose (mg/dl) 81.2 ± 1.7 (<100) 

Fasting plasma insulin (pmol/l) 29.8 ± 2.9 

M-value (mg/kg/min) 8.8 ± 1.0 
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Table 2 The 46 proteins/ protein groups met the 2 r igorous criteria (See Methods 
for details) for classification as PP1c interaction  partners in human skeletal 
muscle.  

Protein Gene names 

m
e

a
n

 f
o

ld
 c

h
a

n
g

e
 

o
v

e
r 

b
a

sa
l 

 

Asporin ASPN 3.27±1.10* 

Polymeric immunoglobulin 

receptor 
PIGR 5.59±1.79* 

Protein phosphatase 1 regulatory 

subunit 3A 
PPP1R3A 1.36±0.15* 

Protein phosphatase 1 regulatory 

subunit 3B 
PPP1R3B 1.43±0.20* 

Protein phosphatase 1 regulatory 

subunit 12B 
PPP1R12B 1.52±0.26* 

40S ribosomal protein S9 RPS9 1.89±0.41* 

Isobutyryl-CoA dehydrogenase, 

mitochondrial 
ACAD8 3.89±1.78 

Very long-chain specific acyl-CoA 

dehydrogenase, mitochondrial 
ACADVL 2.35±1.32 

Actin, cytoplasmic  ACTB;ACTG1 6.03±4.54 

3-methyl-2-oxobutanoate 

dehydrogenase kinase, 

mitochondrial 

BCKDK 1.88±0.69 

Caveolin-1 CAV1 2.66±1.40 

Cystatin-B CSTB 1.32±0.57 

Prothrombin F2 1.67±0.40 

PDZ domain-containing protein 

GIPC1 
GIPC1 1.96±0.77 
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Protein Gene names 

m
e

a
n

 f
o

ld
 c

h
a

n
g

e
 

o
v

e
r 

b
a

sa
l 

 

LIM and calponin homology 

domains-containing protein 1 
LIMCH1 1.96±0.92 

Lactotransferrin;Kaliocin-1 LTF 1.70±0.96 

39S ribosomal protein L49 MRPL49 1.39±0.49 

DNA-directed RNA polymerase II 

subunit RPB3 
POLR2C 2.95±1.56 

Protein phosphatase 1 regulatory 

subunit 7 
PPP1R7 1.50±0.53 

Pentatricopeptide repeat-

containing protein 1 
PTCD1 1.39±0.51 

Protein quaking QKI 1.34±0.32 

RNA-binding protein Raly RALY 1.30±0.51 

60S ribosomal protein L18a RPL18A 8.05±6.87 

60S ribosomal protein L3-like RPL3L 3.21±1.68 

Semenogelin-1;Semenogelin-2 SEMG1;SEMG2 1.37±0.59 

Transcription elongation factor B 

polypeptide 2 
TCEB2 1.43±0.39 

Mitochondrial import inner 

membrane translocase subunit 

TIM50 

TIMM50 1.68±1.12 

TRIO and F-actin-binding protein TRIOBP 1.64±0.34 

Uveal autoantigen with coiled-coil 

domains and ankyrin repeats 
UACA 1.52±0.41 
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Protein Gene names 

m
e

a
n

 f
o

ld
 c

h
a

n
g

e
 

o
v

e
r 

b
a

sa
l 

 

DNA-directed RNA polymerase II 

subunit RPB1 
POLR2A 0.72±0.13* 

Nuclear inhibitor of protein 

phosphatase 1 
PPP1R8 0.54±0.13* 

LIM and cysteine-rich domains 

protein 1 
LMCD1 0.59±0.26 

Estradiol 17-beta-dehydrogenase 

8 
HSD17B8 1.01±0.38 

Metaxin-2 MTX2 0.95±0.24 

Phosphatase and actin regulator 4 PHACTR4 1.04±0.27 

Prolactin-inducible protein PIP 0.99±0.39 

Protein phosphatase 1 regulatory 

subunit 11 
PPP1R11 1.22±0.17 

Protein phosphatase inhibitor 2 PPP1R2;PPP1R2P3 1.04±0.21 

60S ribosomal protein L14 RPL14 1.00±0.48 

40S ribosomal protein S11 RPS11 1.01±0.25 

40S ribosomal protein S25 RPS25 0.79±0.20 

Splicing factor 3B subunit 1 SF3B1 1.25±0.54 

Double-stranded RNA-binding 

protein Staufen homolog 2 
STAU2 0.91±0.26 

Erythrocyte band 7 integral 

membrane protein 
STOM 1.28±0.45 

Heterogeneous nuclear 

ribonucleoprotein Q 
SYNCRIP 1.18±0.44 
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Protein Gene names 

m
e

a
n

 f
o

ld
 c

h
a

n
g

e
 

o
v

e
r 

b
a

sa
l 

 

Transformer-2 protein homolog 

beta 
TRA2B 1.29±0.56 

Probable tRNA pseudouridine 

synthase 2 
TRUB2 1.08±0.24 

 

Results were shown as mean fold change over basal ± SEM. A 2-fold change indicates 
a 2-fold increase, while a 0.5 fold-change indicates a 2-fold decrease. *, P<0.05 vs. 
basal. Proteins highlighted in green are PP1c interaction partners showed a significant 
increase upon insulin-infusion in humans (>1.3 fold vs. basal, P<0.05). Proteins 
highlighted in green are PP1c interaction partners showed an insignificant increase upon 
insulin-infusion (>1.3 fold vs. basal, P≥0.05). Proteins highlighted in red are PP1c 
interaction partners showed a significant decrease upon insulin-infusion (>1.3 fold 
decrease vs. basal or <0.77 fold change over basal, P<0.05). Proteins highlighted in 
orange are PP1c interaction partners showed an insignificant decrease upon insulin-
infusion (>1.3 fold decrease vs. basal or <0.77 fold change over basal, P≥0.05). Proteins 
highlighted in yellow are PP1c interaction partners showed less than 1.3 fold change 
upon insulin-infusion.  
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Table 3 Significantly enriched pathways for the PP1 c interaction partners 
identified in the study revealed by Ingenuity Pathw ays Analysis. 

In
ge

nu
ity

 C
an

on
ic

al
 P

at
hw

ay
s 

 -
lo

g(
p-

va
lu

e)
 

G
en

e 
N

am
es

 

N
um

be
r 

of
 id

en
tif

ie
d 

P
P

1c
  

in
te

ra
ct

io
n 

pa
rt

ne
rs

 in
 th

e 
st

ud
y 

EIF2 Signaling 7.68 
RPL14,RPL18A,RPS9,PPP1CB,RPL3L,RPS25,PPP1

CA,RPS11 
8 

Protein Kinase A 
Signaling 

3.38 
PPP1R7,TIMM50,PPP1CB,PPP1R11,PPP1R3A,PPP1

CA 
6 

Insulin Receptor 
Signaling 

4.64 PPP1R7,PPP1CB,PPP1R11,PPP1R3A,PPP1CA 5 

ERK/MAPK Signaling 3.95 PPP1R7,PPP1CB,PPP1R11,PPP1R3A,PPP1CA 5 

Integrin Signaling 3.79 PPP1R12B,ACTB,CAV1,PPP1CB,ACTG1 5 

Actin Cytoskeleton 
Signaling 

3.65 PPP1R12B,ACTB,PPP1CB,ACTG1,F2 5 

RhoA Signaling 3.58 PPP1R12B,ACTB,PPP1CB,ACTG1 4 
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ABSTRACT 
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 Protein Phosphatase 1 (PP1), a member of Serine/ Threonine 

Phosphatase family, targets its dephosphorylation activity on serine and 

threonine residues. As the catalytic subunit of PP1, PP1c can achieve its 

substrate specificity only by binding with PP1 regulatory subunits. Previous 

researches have shown that PP1c can involve in multiple functional regulation by 

associating with various interaction partners. Since serine/ threonine 

phosphorylation on the Insulin receptor substrate-1 (IRS1) may direct inactivation 

and degradation of IRS1, this phosphorylation activity is believed to be a source 

of Insulin Resistance. PP1 is hypothesized to dephosphorylate serine/ threonine 

site on IRS1, which may rescue the Insulin resistance.  

However, the PP1c interaction partners involve in this process is unclear, 

especially in vivo in humans.  In the current work, we explored PP1c complexes 

in skeletal muscle biopsies from lean healthy participants obtained before insulin 
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infusion and after 2 hour insulin infusion, using the proteomic approach 

developed in our laboratory. We identified 46 previously unreported endogenous 

PP1c interaction partners, which is the largest PP1c interactome in human 

skeletal muscle. These novel PP1c interaction partners may serve as new 

targets to investigate PP1c complexes in different diseases. Furthermore, we 

identified 8 proteins show significantly changes after insulin treatment. These 

novel PP1c interactions provide new insights into the molecular mechanism of 

insulin action and identify new targets for further PP1c researches in Type 2 

Diabetes. 
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