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INVITED ARTICLES 
Confidence Intervals for the Squared Multiple Semipartial Correlation Coefficient 

 
      
 

                                         
 
                       James Algina                    H. J. Keselman                    Randall D. Penfield 

                University of Florida    University of Manitoba       University of Miami 
 

 
The squared multiple semipartial correlation coefficient is the increase in the squared multiple correlation 
coefficient that occurs when two or more predictors are added to a multiple regression model. Coverage 
probability was investigated for two variations of each of three methods for setting confidence intervals 
for the population squared multiple semipartial correlation coefficient. Results indicated that the 
procedure that provides coverage probability in the [ ].925, .975  interval for a 95% confidence interval 

depends primarily on the number of added predictors. Guidelines for selecting a procedure are presented.  
 
Key words: Squared multiple semipartial correlation; effect size; asymptotic and bootstrap confidence 
intervals. 
 
 

Introduction 
 
A commonly used effect size (ES) in multiple 
regression analysis is the increase in 2R  when  
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one independent variable ( )jX  is added to the 

model. This ES, which is called the squared 
semipartial correlation coefficient, and is often 
symbolized by 2RΔ , measures the strength of 
relationship between jX  and the dependent 

variable ( )Y , controlling for the other 

independent variables in the model. This 
coefficient 2RΔ  can also be used when several 
variables are added to the model. In this context, 

2RΔ  is called the squared multiple semipartial 
correlation coefficient (Pedhazur, 1997) or the 
semipartial 2R (Cohen, Cohen, West, & Aiken, 
2003) and measures the strength of association 
between Y  and the added independent 
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variables, controlling for the other independent 
variables in the model.   

Hedges and Olkin (1981) presented 
methods for calculating the asymptotic sampling 
covariance matrix for commonality components 
(See also Mood, 1969, 1971). These results can 
be used to construct a confidence interval (CI) 
for 2 ,ρΔ  the population ES estimated by 2.RΔ  
Olkin and Finn (1995) presented a method 
equivalent to the Hedges and Olkin method, and 
illustrated the new method for the case in which 
there is one independent variable in the model in  
addition to jX  (i.e., for the case of two 

independent variables). Alf and Graf (1999) 
simplified the method and showed how to apply 
it in the general case of p predictors, and Graf 
and Alf (1999) developed a computer program 
that computes the CI. Algina and Moulder 
(2001) found that when the squared semipartial 
correlation coefficient is of interest, researchers 
would need very large samples sizes (n) to 
achieve adequate coverage probability for 2ρΔ . 
Algina, Keselman, and Penfield (2007) found 
that it was possible to obtain much better 
coverage probability, with smaller sample sizes, 
if percentile bootstrapping methods were used 
for setting CIs for the squared semipartial 
correlation coefficient, rather than relying on the 
asymptotic intervals. The purpose of the present 
paper was to investigate whether asymptotic or 
percentile bootstrap intervals would result in 
adequate coverage probability for 2ρΔ  when a 
squared multiple semipartial correlation 
coefficient is of interest. 
 

Method 
 

Coverage probability was estimated for the 
asymptotic and two percentile bootstrap CIs. 
Specifically, simulation was used to estimate 
coverage probability for combinations of p, k, n, 

2 ,fρ  and 2 ,rρ  where 2
fρ  is the population 

squared multiple correlation coefficient for a 
model with p predictors (the full model), and 2

rρ  
is the population squared multiple correlation 
coefficient for a model with k  predictors (the 
reduced model) that are a proper subset of the p 
predictors. In the conditions we planned to 

investigate, the number of predictors in the full 
model ranged from 3p =  to 9p =  in steps of 2. 
After reviewing the results we added conditions 
with 8p =  predictors in the full model. The 
difference in the number of predictors in the full 
and reduced models ( )i.e., p k− ranged from 2 

to 1p −  in steps of 1. The squared multiple 
correlation coefficient for the predictors in the 
reduced model ranged from .00 to .50 in steps of 
.10. The squared multiple correlation coefficient 
for the full model ranged from 2

rρ  to 2 .10rρ +  

in steps of .01 and from 2 .10rρ +  to 2 .20rρ +  in 
steps of .05. Sample size ranged from 50 to 200 
in steps of 50. The predictors and the dependent 
variable were distributed as a multivariate 
normal distribution. 

Each of the 7176 combinations of p, k, 
n, 2 ,rρ  and 2

fρ  was replicated 5000 times in 

order to estimate coverage probability. For each 
replication, six 95% CIs were constructed: two 
CIs was constructed by using two variations of 
(a) the asymptotic method; (b) bootstrapping 

2 2 2
f rR R RΔ = − ; and (c) bootstrapping 

2 2 2
, ,c f c r cR R RΔ = − , the difference in corrected 

values of 2R , where  

( )2 2 2
, 1

1f c f f

p
R R R

n p
= − −

− −
, 

and 

( )2 2 2
, 1

1r c r r

k
R R R

n k
= − −

− −
. 

 
For each CI, the proportion of the replications 
that contained 2 2 2

f rρ ρ ρΔ = −  estimated the 

probability of coverage.  
Under multivariate normality of the 

predictors and criterion, the asymptotic variance 
of 2

fR  is  

                     
2 2 2

2 4 (1 )f f
f n

ρ ρ
ψ

−
=                   (1) 

 
(Stuart, Ord, & Arnold, 1999).  The asymptotic 
variance of 2

rR  is obtained by substituting r for f 
in the subscripting. According to Alf and Graf 



C. I. FOR SQUARED MULTIPLE SEMIPARTIAL CORRELATION 
 

4 
 

(1999), the asymptotic covariance between 2
rR  

and 2
fR  is  

 
2 2 2 2 3 3

4 [.5(2 )

(1 / ) / ]
.

f r r f f r
fr

f r r f r f

n

n

ρ ρ ρ ρ ρ ρ
ψ

ρ ρ ρ ρ ρ ρ

−
= ×

− − − +
.     (2) 

 
The asymptotic variance of 2RΔ  is  
 

2 2 2 2f r frσ ψ ψ ψ∞ = + − , 

 
and an asymptotically correct 100(1 )%α−  CI 

for 2ρΔ  is 
2

/2R zα σ∞Δ ± , 
 

where /2zα  is a z critical value (Alf & Graf, 
1999). In practice, the asymptotic variance is 
estimated by substituting 2

fR  and 2
rR  for 2

fρ  

and 2
rρ , respectively.   

 Initial results indicated that in some 
conditions in which 2 2

f rρ ρ= , the asymptotic CI 

resulted in coverage probabilities above .99. To 
address this problem, the lower limit of the 
asymptotic CI was modified. Specifically, if the 
lower limit of the traditional asymptotic CI was 
less than or equal to zero, but the F test of 

2
0 : 0H ρΔ =  was significant, the lower limit 

was set to a small value larger than zero. In our 
simulations the lower limit was set equal to .001.  

To apply the traditional percentile 
bootstrap, as described in Wilcox (2003), to 

2RΔ  the following steps were completed, with 
the first two steps completed B times. 

  
1. A sample of size n  was randomly 

selected with replacement from the 
simulated participants. 

2. 2RΔ  was calculated for the sample 
drawn in step1. 

3. Once the B values of 2RΔ  were 
obtained, they were ranked from low to 
high. The lower limit of the 

( )100 1 %α−  CI for 2ρΔ  was 

determined by finding the 

( )2 1B α + 
th estimate in the rank 

order, where ( )2B α  indicates 

rounding ( )2B α  to the nearest whole 

number; the upper limit was determined 

by finding the ( )2B B α − 
th 

estimate in the rank order.  
   

In all conditions 1000B = ; thus, the bootstrap 
lower limit was the 26th value and the upper 
limit was the 975th value in the traditional 
percentile bootstrap. 
 A problem with applying the traditional 
percentile bootstrap to 2RΔ  will occur when 

2 0ρΔ = , that is when 2 2
f rρ ρ= . Because 2

fR  

will infrequently equal 2
rR , the CI will almost 

never contain 0 and the estimated coverage 
probability will be near zero. To address this 
problem, we modified the traditional percentile 
bootstrap by incorporating the F test of 

2
0 : 0H ρΔ = . When the F test was not 

significant, the lower limit of the CI was set 
equal to zero; otherwise, the lower limit was 
determined by using the traditional percentile 
bootstrap.  
 To apply the traditional percentile 
bootstrap to 2

cRΔ , steps 1 to 3 were applied with 
2
cRΔ  replacing 2RΔ . Initial results indicated that 

in some conditions in which 2 2
f rρ ρ= , this 

procedure resulted in coverage probabilities 
above .99. To address this problem, the lower 
limit of the bootstrap CI was modified. 
Specifically, if the lower limit of the traditional 
CI was less than or equal to zero, but the F test 
of 2

0 : 0H ρΔ =  was significant, the lower limit 
was set to a small value larger than zero. In our 
simulations the lower limit was set equal to .001. 
A Visual Basic 6.0 program that computes the 
traditional and modified percentile bootstrap CIs 
for 2ρΔ  is available at 
http://plaza.ufl.edu/algina/index.programs.html 

 The multiple regression model is 

1 1 2 2 p pY X X Xα β β β ε= + + + + + . There is 

no loss in generality if 0α =  and/or if the 
variances of the dependent variable and of the 
independent variables are set equal to 1.0. 
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According to Browne (1969, 1975), given any 
set of predictors that has a squared multiple 
correlation coefficient of 2ρ  with Y, it is always 
possible to transform the predictors so that (a) 
the independent variables are mutually 
uncorrelated and (b) the regression coefficients 
are equal to any set of values such that  

2 2 2

1

p

j y
j

β σ ρ
=

= . 

Therefore, in the simulations (a) all variables 
had variance equal to one, (b) the independent 
variables were mutually uncorrelated, and (c)

1 1 0,kβ β −= = = ,k rβ ρ=  1 1 0,k pβ β+ −= = =  

and 2 2
p f rβ ρ ρ= − . 

Thus, the squared multiple correlation 
coefficient was 2

rρ  for variables 1X  to kX  and 
2
fρ  for variables 1X  to pX .  

 The data were simulated by using the 
following steps. 

1. Generate an n p×  matrix of random 
variables. Each of the p variables was 
normally distributed with mean zero and 
standard deviation one. All np  scores 
were generated to be statistically 
independent. This matrix is ,X  the 
matrix of scores on the independent 
variables. 

2. Generate an 1n ×  vector of normally 
distributed random variables with mean 
zero and standard deviation one. All n  
scores were generated to be statistically 
independent and to be independent of 
the scores in X. Multiply the generated 

vector by 21 fρ− . The resulting vector 

is ε , the vector of residuals. 
3. Construct the 1p ×  vector β  in which 

elements 1 to 1k −  are zero and the next 
element is rρ , the elements 1k +  to 

1p −  are zero, and the last element is 
2 2
f rρ ρ− . 

4. Calculate 1n ×  scores on the dependent 
variable by using = +y X εβ . 

 
 

Results 
 
The traditional bootstrap CI using 2RΔ  was 
modified by setting the lower limit to zero if the 
F test of 2

0 : 0H ρΔ =  was not significant; 
otherwise, the lower limit was determined by 
using the traditional percentile bootstrap.  
Although the modification was designed to 
improve performance when 2ρΔ  was zero, the 
modification could affect coverage probability 
of the modified CI when 2ρΔ  was zero or 
larger. Thus, it was important to determine if 
coverage probability of the bootstrap CI using 

2RΔ  was affected by the modification when 
2ρΔ  was not equal to zero. To do this, we 

focused on the conditions in which 2 0ρΔ > . 

When 2 0,ρΔ >  for each combination of p, 

,p k−  and n, there are 72 combinations of 2
rρ  

and 2 .fρ  For each combination we tabulated the 

number of times that the estimated coverage 
probability was in the interval [ ].925,  .975  for 

the traditional and modified versions of the 
bootstrap CI using 2.RΔ  Results indicated that 
the modification did not reduce the number of 
conditions in which the interval contained the 
estimated coverage probability. The asymptotic 
CI and traditional bootstrap CI using 2

cRΔ  were 
modified by changing the lower limit to .001 
when the traditional lower limit was less or 
equal to zero and the F test of 2

0 : 0H ρΔ =  was 

significant. For our values of 2
rρ  and 2 ,fρ  this 

modification could only affect the performance 
of these CIs when 2ρΔ  was zero (and in general 

could only affect the CI if )2 .001ρΔ < . 

Therefore, the following results describe 
performance of the modified CIs. 

For each combination of p, ,p k−  and 
n, we tabulated the number of times out of 78 
possible combinations of 2

rρ  and 2
fρ  in which 

the estimated coverage probability was in the 
interval [ ].925,  .975  for the modified version of 

the CIs. The results are presented in Table 1. For 
each combination, the bold value indicates the 
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method(s) that best controlled probability 
coverage. Ties between methods are indicated 
by an underlined bolded result.  For 2,p k− =  
there were combinations of p and n in which the 
bootstrap CI using 2RΔ  performed as well or 
better than the other CIs. However, for other 
values of p k− , either the asymptotic or 

bootstrap CI using 2
cRΔ  performed better than 

the bootstrap CI using 2.RΔ  The relative 
performance of the modified asymptotic 
bootstrap and the modified percentile bootstrap 
using 2

cRΔ  depended on p k− . When 3,p k− =  
the modified percentile bootstrap tended to work 
better if 7p ≤ ; otherwise, the two procedures 
worked about equally well. The modified 
percentile bootstrap tended to work better when 
p k−  was between 4 or 5. When 6,p k− =  the 

two procedures worked about equally well, 
particularly when the sample size was at least 
150.  For p k−  larger than six, a value that 
could only occur in our design with 8 or 9 
predictors in the full model, the modified 
asymptotic bootstrap had better control of 
coverage probability.  

Inspection of the results suggests that 
for 2,p k− =  the relative performance of the 
modified asymptotic CI and the modified 
bootstrap CI using 2RΔ  depends on 2.ρΔ  The 
results also suggest that larger sample sizes are 
required to achieve control of coverage 
probability when 2ρΔ  is small. To illustrate 
these effects, we tabulated (Table 2) the number 
of times out of the 18 possible combinations of 

2
rρ  and 2

fρ  for 2 .02ρΔ ≤  and the number of 

times out of the 60 possible combinations of 2
rρ  

and 2
fρ  for 2 .03ρΔ ≥  (Table 3), that the 

estimated coverage probability was in the 
interval [ ].925,  .975 .  When 2 .02ρΔ ≤  and 

2,p k− =  neither the modified bootstrap CI 

using 2RΔ  nor the modified asymptotic CI was 
consistently more effective than the other over 
all values of p. Temporarily defining effective as 
all estimated coverage probabilities within the 
interval [ ].925,  .975 ,  the modified bootstrap CI 

using 2RΔ  was effective at a smaller size than 

was the asymptotic CI (See Table 3) for 
2 .03ρΔ ≥  and 2.p k− =  In regard to sample 

size required to achieve good control of 
coverage probability, the following comments 
apply to all combinations of p and ,p k−  with 
the exception of conditions in which there were 
nine predictors in the full model and no more 
than two in the reduced model. When 

2 .02,ρΔ ≤  the sample size required for at least 
one of the methods to be effective was 200 in 
some conditions. When 2 .03,ρΔ ≥  a sample size 
of 50 to 100 was sufficient for at least one of the 
methods to be effective. 
 

Discussion 
 
We investigated coverage probability for the 
asymptotic CI and two percentile bootstrap CIs 
for 2ρΔ  in multiple linear regression analyses 
when predictors and criterion were normally 
distributed and 2ρΔ  described the strength of 
association for several predictors.  We also 
investigated modified versions of these CIs. In 
general, the modified methods worked at least as 
well as their unmodified counterparts.  

Specifically, results indicated that the 
traditional and modified bootstrap CI using 2RΔ  
performed poorly, except when 2.p k− =   

Algina, et al. (2007) reported that when 2ρΔ  
describes the strength of association for one 
predictor ( )1 ,p k− =  using the modified 

percentile bootstrap with 2RΔ  to set a CI for 
2ρΔ  resulted in good coverage probability in a 

wide range of conditions. Thus, the results, for 
the case in which 1p k− = , do not generalize to 

the cases in which 2ρΔ  describes the strength of 
association for more than one predictor 

( )2 .p k− >  

The traditional and modified asymptotic 
CIs worked well in a variety of conditions. 
These results are contrary to results reported by 
Algina and Moulder (2001) who investigated the 
case of 1p k− =  and reported that the 
traditional asymptotic CI tended to work poorly 
in many conditions with sample sizes of 200 or 
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Table 1. Number of Coverage Probability Estimates (out of 78) Inside the [ ].925,  .975  Interval for the 

Modified CIs 
  Modified 

Bootstrap on 2RΔ  

Modified 

Asymptotic 

Modified 

Bootstrap on 2
cRΔ  

  n n n 

p  p k−  50 100 150 200 50 100 150 200 50 100 150 200 

3 2 55 71 76 75 43 71 76 78 59 61 69 69 

5 2 66 73 76 77 26 61 74 78 47 63 67 69 

 3 20 36 48 55 66 72 74 77 78 78 77 78 

 4 9 11 13 22 70 71 72 71 78 78 78 78 

7 2 68 73 76 78 23 35 70 78 33 60 67 68 

 3 37 46 56 60 64 72 74 78 77 76 76 77 

 4 13 16 25 28 73 71 72 72 78 78 78 78 

 5 9 8 10 12 54 75 77 76 77 78 78 78 

 6 10 6 8 9 29 73 78 78 18 70 78 78 

8 2 70 75 77 78 23 24 67 74 30 59 65 69 

 3 41 51 57 60 60 72 75 77 67 74 74 76 

 4 20 21 28 34 71 73 72 72 78 78 78 78 

 5 13 10 13 15 53 78 76 76 77 78 78 78 

 6 10 6 7 11 25 72 77 78 23 73 78 78 

 7 10 6 6 7 12 42 76 78 4 26 54 64 

9 2 62 75 77 78 17 20 57 74 28 58 66 69 

 3 45 52 58 62 63 69 75 78 56 73 72 77 

 4 23 25 29 38 71 72 72 72 78 78 78 78 

 5 13 12 15 19 51 77 77 77 77 78 78 78 

 6 10 8 9 11 28 74 78 78 37 73 78 78 

 7 12 6 7 9 24 45 66 69 23 41 55 59 

 8 10 6 6 6 5 19 38 55 1 7 27 38 
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Table 2. Number of Coverage Probability Estimates (out of 18) Inside the [ ].925,  .975  Interval for 

Modified CIs and 2 .02ρΔ ≤  

  Modified 

Bootstrap on 2RΔ  

Modified 

Asymptotic 

Modified 

Bootstrap on 2
cRΔ  

  n n n 

p  p k−  50 100 150 200 50 100 150 200 50 100 150 200 

3 2 6 11 16 15 12 14 17 18 7 7 10 9 

5 2 8 13 16 17 12 16 17 18 6 7 8 9 

 3 6 6 6 6 9 12 14 17 18 18 17 18 

 4 8 6 6 6 15 11 12 11 18 18 18 18 

7 2 8 13 16 18 12 14 16 18 6 6 8 8 

 3 8 6 6 7 13 12 14 18 18 16 16 17 

 4 7 6 6 6 17 12 12 12 18 18 18 18 

 5 8 6 6 6 15 17 17 16 17 18 18 18 

 6 10 6 6 6 5 18 18 18 0 11 18 18 

8 2 11 15 17 18 12 15 17 17 6 6 7 9 

 3 7 6 6 6 13 12 15 17 17 15 14 16 

 4 9 6 6 6 17 13 12 12 18 18 18 18 

 5 10 6 6 6 13 18 16 16 17 18 18 18 

 6 10 6 6 6 4 18 18 18 0 13 18 18 

 7 10 6 6 6 0 10 18 18 0 0 1 4 

9 2 15 15 17 18 12 15 15 18 6 6 8 9 

 3 7 6 6 7 13 13 15 18 16 13 12 17 

 4 8 6 6 6 17 12 12 12 18 18 18 18 

 5 9 6 6 6 13 17 17 17 17 18 18 18 

 6 9 6 6 6 4 18 18 18 0 13 18 18 

 7 12 6 6 6 0 8 17 18 0 0 2 6 

 8 10 6 6 6 0 1 4 8 0 0 0 0 
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Table 3. Number of Coverage Probability Estimates (out of 60) Inside the [ ].925,  .975  Interval for 

Modified CIs and 2 .03ρΔ ≥  

  Modified 

Bootstrap on 2RΔ  

Modified 

Asymptotic 

Modified 

Bootstrap on 2
cRΔ  

  n n n 

p  p k−  50 100 150 200 50 100 150 200 50 100 150 200 

3 2 49 60 60 60 31 57 59 60 52 54 59 60 

5 2 58 60 60 60 14 45 57 60 41 56 59 60 

 3 14 30 42 49 57 60 60 60 60 60 60 60 

 4 1 5 7 16 55 60 60 60 60 60 60 60 

7 2 60 60 60 60 11 21 54 60 27 54 59 60 

 3 29 40 50 53 51 60 60 60 59 60 60 60 

 4 6 10 19 22 56 59 60 60 60 60 60 60 

 5 1 2 4 6 39 58 60 60 60 60 60 60 

 6 0 0 2 3 24 55 60 60 18 59 60 60 

8 2 59 60 60 60 11 9 50 57 24 53 58 60 

 3 34 45 51 54 47 60 60 60 50 59 60 60 

 4 11 15 22 28 54 60 60 60 60 60 60 60 

 5 3 4 7 9 40 60 60 60 60 60 60 60 

 6 0 0 1 5 21 54 59 60 23 60 60 60 

 7 0 0 0 1 12 32 58 60 4 26 53 60 

9 2 47 60 60   60 5 5 42 56 22 52 58 60 

 3 38 46 52 55 50 56 60 60 40 60 60 60 

 4 15 19 23 32 54 60 60 60 60 60 60 60 

 5 4 6 9 13 38 60 60 60 60 60 60 60 

 6 1 2 3 5 24 56 60 60 37 60 60 60 

 7 0 0 1 3 24 37 49 51 23 41 53 53 

 8 0 0 0 0 5 18 34 47 1 7 27 38 
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less.  Algina and Moulder did not report results 
on the modified asymptotic CI, but the 
modification used in this paper is designed to 
improve performance when 2ρΔ  is zero, so that 
it is unlikely that using the modification with 

1p k− =  would overcome the problems that 
Algina and Moulder reported. 

Unfortunately, although the modified 
asymptotic CI and the modified bootstrap CI on 

2
cRΔ  worked better than the competitors 

investigated in this study, neither of these CIs 
worked well in all of the conditions we 
investigated. Particularly problematic was the 
condition in which the number of predictors in 
the full  model was  nine and the   number  of  
predictors in the reduced model was no larger 
than two. Defining adequate control of coverage 
probability by at least 77 of the 78 combinations 
of 2

rρ  and 2
fρ  for each combination of p and 

predictors in the reduced model was no larger 
than two. Defining adequate control of coverage 
probability by at least 77 of the 78 combinations 
of 2

rρ  and 2
fρ  for each combination of p and 

,p k−  we offer the following recommendations 
for a CI method and sample size in order to 
achieve adequate control of coverage 
probability,: 

(a) If 2p k− =  and 7,p ≤  the modified 
asymptotic CI should be used with a sample size 
of at least 200.  For 8,p ≥  a sample size of 150 

and the modified bootstrap CI using 2RΔ  should 
be used; 

(b) If 3p k− =  and 7,p ≤  the modified 

bootstrap CI using 2
cRΔ  should be used with a 

sample size of at least 50. If 8p ≥  the modified 
asymptotic CI should be used with a sample size 
of at least 200; 

(c) If 4p k− = or 5 and 9,p ≤  the 

modified bootstrap CI using 2
cRΔ  should be used 

with a sample size of at least 50; 
(d) If 6p k− =  (and therefore )7 ,p ≥  

the modified bootstrap CI using 2
cRΔ  should be 

used with a sample size of at least 150; 
 (e) If 7p k− ≥ (and therefore )8 ,p ≥  

the modified asymptotic CI should be used and 

the sample size should 200 if 8p =  and should 

be larger than 200 if 9.p =  
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