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CHAPTER 1 

GENERAL INTRODUCTION 

 

1.1  Introduction: 

During the last few decades, control technology has been applied in a wide variety of 

systems such as medical, biomedical, industrial and other fields that require monitoring and 

adjusting the input of a system to get the desired output. Also, control technology has been 

utilized to improve the performance of different types of systems. Diabetes is one of the very 

important medical problems that needs to be addressed. The insulin infusion rate to the diabetic 

person can be administrated based on the glucose (sugar) level inside the body. Over the years, 

many mathematical models have been developed to describe the glucose insulin system of the 

human being. The most commonly used model is the minimal model introduced by Bergman. 

The minimal model consists of a set of three differential equations with unknown parameters. 

Since diabetic patients differ dramatically due to the deviation of their physiology and pathology 

characteristics, the parameters of the minimal model are significantly different among patients. 

 Most of the existing techniques assume the system to be time-invariant, and the original 

minimal model was modified by deleting some important parameters. The aim of this research is 

to design a new control scheme that uses the original minimal model to enhance the performance 

of the system and meet the design specifications. The other aim is to estimate the unknown 

parameters of the differential equations that describe the dynamic of a diabetic person. An 

automatic first order pump, P, will be added to automatically inject the required quantity of the 

insulin into the diabetic patient to bring down the glucose level to the neighborhood of the basal 

level. 
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1.2  Background of Diabetes: 

 Diabetes is a problem with the body's fuel system; it is caused by lack of insulin in the 

body. The human body maintains an appropriate level of insulin. There are two major types of 

diabetes, called type „I‟ and type „II‟ diabetes. Type „I‟ diabetes is called Insulin Dependent 

Diabetes Mellitus (IDDM), or Juvenile Onset Diabetes Mellitus (JODM). Type „II‟ diabetes is 

known as Non-Insulin Dependent Diabetes Mellitus (NIDDM) or Adult-Onset Diabetes (AOD) 

[1-7]. This study focuses on type „I‟ diabetes. Type „I‟ diabetes is a disease that develops when 

the pancreas stops producing the required amount of insulin that is needed to control the glucose 

level. Consequently, insulin must be provided through injection or continuous infusion to control 

glucose levels.  

 

1.3  Problem Formulation: 

 Many mathematical models have been developed to describe the glucose-insulin system. 

The aim is to analyze and study the original nonlinear minimal model to bring the glucose level 

to the neighborhood of the basal level and to regulate the blood glucose level in type „I‟ diabetic 

patients by controlling the insulin infusion rate, that is, produce an "artificial pancreas". A fourth 

differential equation will be added to the set of the minimal model equations to represent a first 

order pump „P‟. The role of pump „P‟ is to inject the insulin into the system. The fourth 

differential equation is defined as 

   
. 1
( ) ( ) ( )w t w t u t

a
           (1.1) 

where w(t) is the infusion rate, u(t) is the input command, and a is the time constant of the pump. 
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1.4  Problem Statement: 

The first goal of this research is to obtain the estimation of the unknown parameters of 

the four differential equations that describe the dynamic relationship between the glucose and the 

insulin. The Least Square method for nonlinear system with the Levenberg-Marquadrt Algorithm 

will be used. The second goal is to design feedback controller(s) to regulate(s) the infusion rate 

of the insulin inside the diabetic patient and to bring down the glucose level to neighborhood of 

the basal level with a short period of time using the nonlinear minimal model. 

 

1.5  Dissertation Organization: 

This dissertation is organized as the following 

Chapter two:  This research presents some background and literature overviews. These  

   overviews will be about diabetes and the importance of this problem. 

Chapter three:  This chapter introduces the simplest physiologically based representation  

   of diabetic patients and explains the mathematical model. 

Chapter four:  In this chapter, a simulation diagram is introduced to study and simulate  

   the mathematical model that describes the dynamics of diabetic patients. 

Chapter five:  The Nonlinear Least Square Method with the Levenberg-Margaurdt  

   Algorithm is introduced to estimate the unknown parameters of the  

   differential equations that describe the diabetic patient. 

Chapter six:  This chapter explains the differential equation that represents the first  

   order pump and introduces the proposed mathematical model and its  

   implementation. 
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Chapter seven: This chapter presents a new technique called Low-Complexity Regime- 

   Switching control scheme that uses adaptation strategy to enhance the  

   system performance and meet the design specifications. 

Chapter eight: This chapter investigates the patient model and presents a simplified  

   control scheme using observer-based state feedback controller. Also, it  

   shows that the  new control scheme can eliminate the adaptation strategy.  

Chapter nine:  The conclusion is presented in this chapter. Also, this chapter has a  

   summary of contributions and achieved results of this research.   
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CHAPTER 2 

DIABETES LITERATURE OVERVIEW 

 

2.1 Introduction: 

 Insulin is a hormone that is necessary for converting the blood sugar, or glucose, into 

usable energy. The human body maintains an appropriate level of insulin. The lifestyles of type 

„I‟ diabetes are often severely affected by the consequences of the disease. Because the insulin 

producing B-cells of the pancreas is destroyed, patients typically regulate glucose manually. The 

patient is totally dependent on an external source of insulin to be infused at an appropriate rate to 

maintain blood glucose concentration. Mishandling this task potentially leads to a number of 

serious health problems. Deviations below the basal glucose levels (hypoglycaemic) deviations 

are considerably more dangerous in the short term than positive (hyperglycemic) deviations, 

although both types of deviations are undesirable [8, 9]. 

 Type „I‟ diabetes is a disease that develops when the pancreas stops producing the 

required amount of insulin that is needed to control the glucose level. In normal cases, the body 

maintains an appropriate level of insulin through the day. Long-term consequences of the 

glucose concentration inside a diabetic individual will lead to a severe decrease of health status 

and a dramatic increase of cost of rehabilitation. Large efforts are undertaken in pharmacology 

and biomedical engineering to control glucose concentration by proper insulin dosing [10]. 

 

2.2 Overview of Diabetes: 

After eating, food is digested in the stomach, and carbohydrates are broken down into 

glucose. The glucose is then absorbed into the bloodstream, and the blood glucose level rises. 
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Normally, blood glucose levels are tightly controlled by insulin. The rise in blood sugar level 

normally signals special cells in the pancreas, called beta cells, to release the right amount of 

insulin to normalize the glucose level in the blood and lower it to the normal level. The glucose-

insulin system inside a normal human body is shown in Figure 2.1, while Figure 2.2 shows the 

glucose-insulin system inside a diabetic patient. Typically, the normal range of the glucose level 

in a normal individual should fall between 3.9 – 7.7 millimole/liter, (mmol/l), or in metric system 

70 – 140 milligram/deciliter, (mg/dl) [11, 12]. The conversion factor between mmol/l and mg/dl 

is given by the following 1 millimole/liter = 18.18 milligram/deciliter 

 In type „I‟ diabetes, the pancreas undergoes an autoimmune attack by the body itself and 

is unable of making insulin. Type „I‟ diabetes is caused by an autoimmune destruction of beta 

cells in the pancreas, which leads to an absolute insulin deficiency [13]. Abnormal antibodies 

have been found in the majority of patients with type „I‟ diabetes. Antibodies are proteins in the 

blood that are part of the body's immune system. The patient with type „I‟ diabetes must rely on 

insulin medication or injection for survival. In patients with diabetes, the absence or insufficient 

production of insulin causes high glucose. Without the insulin, the glucose remains in the blood, 

and the body does not receive fuel for energy. The human body cannot function without insulin. 

High glucose is unsafe, and if left untreated, can cause a life–threatening complication known as 

diabetic ketoacidosis [14, 15]. Over time, high glucose level can lead to blindness, risk of heart 

attack, stroke and possible amputation, nerve damage and kidney failure. Also, diabetes can 

complicate pregnancy and put a mother at risk for having a baby with birth defects [16, 17]. 

http://www.medicinenet.com/script/main/art.asp?articlekey=3907
http://diabetes.healthcentersonline.com/glucose/diabeticketoacidosis.cfm
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Figure 2.1 Glucose-insulin system inside a normal human body 

(By Courtesy of Diabetes Treatment 365.com) 

 

 

 

Figure 2.2 Glucose-insulin system inside a diabetic patient body. 

(By Courtesy of Diabetes Treatment 365.com) 
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 The normal range of blood glucose concentration should be maintained within narrow 

limits throughout the day. The average is 70–140 mg/dl, lower in the morning and higher after 

the meals [11, 12]. 

 

Person’s 

Category 

Fasting State Postprandial 

Glucose 

minimum 

value 

(mg/dl) 

Glucose 

maximum 

value 

(mg/dl) 

2-3 hours 

after eating 

(mg/dl) 

Hypoglycemia - < 59 < 60 

Early 

Hypoglycemia 
60 79 60 - 70 

Normal 80 100 < 140 

Early diabetes 101 126 140-200 

Diabetic > 126 - > 200 

 

Table 2.1 Blood glucose levels chart 

 

  

For most normal persons, the glucose levels are between 80 mg/dl and 100 mg/dl in a fasting 

state that occurs when a person has not eaten or drunk anything for at least eight hours. Table 2.1 

shows the glucose levels for different people categories with the minimum and maximum value 

of the glucose level for each category. After eating, the glucose level rises above the normal level 

and should fall back to the original starting point within two to three hours. If the glucose level 

does not fall, the person is classified as diabetic or at the early diabetes stage. However, the 

glucose level should not fall below 60 mg/dl as this is typically the symptom of hypoglycemia. 

 There are total of 25.8 million children and adults in the United States, or 8.3% of the 

populations have diabetes. Also, there is an estimated 79 million people who are classified as 

pre-diabetes patients in the United States. Worldwide there are about 346 million people who are 

diabetics. The number is expected to rise to about 438 million by year 2030 [18]. Diabetes is the 
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seventh-leading cause of death worldwide. The condition and its complication cost an estimated 

$132 billion annually in the United State alone and about $376 billion worldwide, in terms of 

healthcare expenses and lost productivity [19]. Based on the death data, diabetes was a 

contributing cause of a total of 231,404 deaths in year 2007 in the United State only [20]. The 

following statistics show the rate of heart disease and stroke due to diabetes [18] 

 In 2004, heart disease was noted on 68% of diabetes-related death certificates among 

people aged 65 years or older. 

 In 2004, stroke was noted on 16% of diabetes-related death certificates among people 

aged 65 years or older. 

 Adults with diabetes have heart disease death rates about two to four times higher than 

adults without diabetes. 

 The risk for stroke is two to four times higher among people with diabetes. 

 

2.3 Automation in Diabetes Control: 

 Insulin injection is a process in which the level of glucose is monitored to indicate the 

adequate amount of insulin. From the technical point of view, it is highly beneficent to 

investigate the application of control engineering techniques to automate the infusion of the 

insulin. In recent years, many researchers focused on the diabetes problem, and the minimal 

model was widely used. The concept and implementation of controlling the insulin infusion for 

diabetic individuals has been investigated for a few decades via numerous attempts. Various 

types of controllers were designed based on a linear model where the output is adequate in the 

neighborhood of the equilibrium points. As an overall remark, the mathematical model that 

describes the glucose-insulin system of the human beings is a nonlinear model. It is believed that 
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with deeper investigation of modern nonlinear control techniques, algorithm and methods that 

can be applied to studies of diabetes. A closed loop system would accurately manage and 

regulate the infusion rate of the insulin to the diabetic patients. 

 

2.4 Nonlinear System Identification: 

 The knowledge of the mathematical model of the system is an essential task for closed 

loop control. The accuracy of the model is required for the system to work properly. Since the 

level of glucose inside the human being body changes significantly up or down based on the 

amount and the kind of food, it is a nonlinear model. One major key problem in nonlinear system 

identification is to estimate the unknown parameters. System identification is the experimental 

approach to process modeling. System identification includes the following 

 Experimental planning 

 Selection of model structure 

 Criteria 

 Parameter estimation 

 Model validation 

Experimental planning is normally to get some experimental data from a medical clinic. The 

model structure can be derived based on prior knowledge of the process. When formulating an 

identification problem, a criterion is postulated to indicate how well a model fits the 

experimental data. By making some statistical assumptions, it is feasible to derive criteria from 

probabilistic argument. Estimating the unknown parameters of a mathematical model requires 

the input-output data and the class of model. The parameters estimation problem can be 

formulated as an optimization problem where the best model is the model that best fits the data 
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according to the given criterion. Nonlinear model is defined as an equation that is nonlinear in 

the coefficients or a combination of linear and nonlinear in the coefficients. The nonlinear 

estimation is the process of fitting a mathematical model to experimental data to determine 

unknown parameters of that model. The parameters are chosen or guessed so that the output of 

the model is the best match with respect to the experimental data. Nonlinear models require 

iterative methods that start with an initial guess of the unknown parameters. The iteration alters 

the current guess until the algorithm converges. 
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CHAPTER 3 

DIABETES MATHEMATICAL MODEL 

 

3.1  Introduction: 

The minimal model of glucose and insulin was formulated to be the easiest model with 

which to deal. This has been shown to be the simplest physiologically based representations that 

can respectively account for the observed glucose kinetics when the plasma insulin values are 

supplied and for the observed insulin kinetics when the plasma glucose values are supplied. The 

minimal model is capable of describing the dynamics of the diabetic patient. The insulin enters 

or exits the interstitial insulin compartment at a rate that is proportional to the difference i(t) − ib 

of plasma insulin i(t) and the basal insulin level ib [21, 22]. If the level of insulin in the plasma is 

below the insulin basal level, insulin exits the interstitial insulin compartment. When the level of 

insulin in the plasma is above the insulin basal level, insulin enters the interstitial insulin 

compartment. Insulin also can flee the interstitial insulin compartment through another route at a 

rate that is proportional to the insulin amount inside the interstitial insulin compartment. On the 

other hand, glucose enters or exits the plasma compartment at a rate that is proportional to the 

difference g(t) − gb of the plasma glucose level g(t) and the basal glucose level gb. When the 

level of glucose in the plasma is below the glucose basal level, the glucose exits the plasma 

compartment. When the level of glucose in the plasma is above the glucose basal level, glucose 

enters the glucose compartment. Glucose also can flee the plasma compartment through another 

route at a rate that is proportional to the glucose amount inside the interstitial insulin 

compartment. The normal range of blood glucose concentration should be maintained within 
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narrow limits throughout the day, 70–140 mg/dl, lower in the morning and higher after the meals 

[11, 12]. 

 

3.2  Minimal Model Structures: 

 The level of glucose inside the human being body changes significantly in response to 

food intake and other physiological and environment conditions. It is necessary to derive 

mathematics models to capture such dynamics for control design [11-12, 21-26]. Over the years, 

many mathematical models have been developed to describe the dynamic behavior of the human 

glucose/insulin system. Such models are highly nonlinear and usually very complex. The most 

commonly used and simplified model is the minimal model introduced by Bergman [6, 26-32]. 

The minimal model consists of a set of three differential equations with unknown parameters. 

Since diabetic patients differ dramatically due to variations of their physiology and pathology 

characteristics, the parameters of the minimal model are significantly different among patients. 

Based on such models, a variety of control technologies have been applied to glucose/insulin 

control problems. 

 The minimal model has been developed and tested on healthy subjects whose insulin is 

released by the pancreas depending on the actual blood glucose concentration [21]. The minimal 

model consists of two parts [27-29]: the minimal model of glucose disappearance (g and v) and 

the minimal model of insulin kinetics (i). The mathematical minimal model is stated below  

        11

.

bg t P v t g t Pg            (3.1) 

       
.

2 3 bi tv t P v t P i             (3.2) 

       
.

  i t n i t g t h t            (3.3) 
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where  

 g(t) (mg/dl) is the blood glucose level in plasma. 

 i(t) (µU/ml) is the insulin concentration level in plasma. 

 v(t) (min
−1

) is the variable which is proportional to the insulin in the remote 

 compartment. 

 gb (mg/dl) is the basal blood glucose level in plasma. 

 ib (µU/ml) is the basal insulin level in plasma. 

 t (min) is the time interval from the glucose injection. 

The initial conditions of the above differential equations are: g(0) = g0, v(0) = 0, i(0) = i0. 

The model parameters carry some physiological meanings [27-29, 33] that can be summarized as 

follows 

 P1 (min
−1

) describes the “glucose effectiveness” which represents the ability of blood 

 glucose to enhance its own disposal at the basal insulin level. 

 P2 (min
−1

) describes the decreasing level of insulin action with time. 

 P3 (min
−2

(µU/ml)
−1

) describes the rate in which insulin action is increased as the level of 

 insulin deviates from the corresponding baseline. 

  ((µU/ml)(mg/dl)
−1

 min
−1

) denotes the rate at which insulin is produced as the level of 

 glucose rises above a “target glycerin” level. 

 n (min
−1

): represents fractional insulin clearance. 

 h (mg/dl) is the pancreatic “target glycemia” level. 

 g0 (mg/dl) is the theoretical glucose concentration in plasma extrapolated to the time of 

 glucose injection t = 0. 

 i0 (µU/ml) is the theoretical plasma insulin concentration at t = 0. 
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µU/ml is the conventional unit to measure the insulin level and has the following conversion 

1 micro-unit/milliliter = 6 picomole/liter (1 µU/ml = 6 pmol/l) [34 35]. 

A fourth differential equation will be added to the set of the minimal model equations to 

represent a first-order pump dynamics 

   
. 1
( ) ( ) ( )w t w t u t

a
          (3.4) 

where 

 w(t) is the infusion rate. 

 u(t) is the input command. 

 a is time constant of the first-order pump. 

 

3.3  Literature Surveys: 

Many methods and techniques have been investigated, tested, and studied for controlling 

the glucose level in type „I‟ diabetes patients. Research in this field has always been model-based 

and has moved from the development of the structure of a model of glucose and insulin 

dynamics stepping towards model parameter estimation and model personalization to each single 

patient‟s requirements. 

 Lynch and Bequette [36] tested the glucose minimal model of Bergman to design a 

Model Predictive Control (MPC) to control the glucose level in a diabetic patient. The insulin 

secretion term   g h t     of the differential equation of the minimal model was replaced by 

a constant term which makes the infusion of the insulin to be constant and independent of the 

glucose level. 
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 Fisher [37] used the glucose insulin minimal model of Bergman to design a semi-closed 

loop insulin infusion algorithm based on plasma glucose samplings taken over a three hours time 

span. The study concentrates on the glucose level and did not take into consideration some 

important factors such as free plasma insulin concentration and the rate    at which insulin is 

produced as the level of glucose rises. 

 Furler [38] modified the glucose insulin minimal model of Bergman by removing the 

insulin secretion and adding insulin antibodies to the model. The algorithm calculates the insulin 

infusion rate as a function of the measured plasma glucose concentration. The linear 

interpolation was used to find the insulin rate. The algorithm neglected some important 

variations in insulin concentration and other model variables. Also, it took more than two hours 

to bring the glucose level to the neighborhood of the glucose basal level. 

 Ibbini, Masadeh and Amer [39] tested the glucose minimal model of Bergman to design a 

semi closed-loop optimal control system to control the glucose level in diabetes patients. Also, in 

that study, the term  t  of the minimal model has been eliminated which makes the linearized 

version of the minimal model to be a time-invariant system. 

 

3.4  Experimental Data: 

 A new approach was developed by Bergman [27-29] to compute the pancreatic 

responsiveness and insulin sensitivity in the intact organism. This approach uses computer 

modeling to investigate the plasma glucose and insulin dynamics during a Frequently Sampled 

Intravenous Glucose Tolerance (FSIGT). The FSIGT test was performed after an overnight fast. 

An amount of glucose of 0.3g of glucose per 1 kg of patient body weight was injected at t = 0 

over a period of time equal to 60 seconds [27-29][40]. The blood samples were taken at regular 
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intervals of time and then analyzed for glucose and insulin content. Glucose was measured in 

triplicate by the glucose oxidize technique on an automated analyzer. The coefficient of variation 

of a single glucose determination was about ± 1.5%. Insulin was measured in duplicate by 

radioimmunoassay, with dextrin-charcoal separation using a human insulin standard. Table 1 

shows the FSIGT test data for a normal individual. 

 

Sampling time 

(minutes) 

Glucose level 

(mg/dl) 

Insulin level 

(µU/ml) 

0 92 11 

2 350 26 

4 287 130 

6 251 85 

8 240 51 

10 216 49 

12 211 45 

14 205 41 

16 196 35 

19 192 30 

22 172 30 

27 163 27 

32 142 30 

42 124 22 

52 105 15 

62 92 15 

72 84 11 

82 77 10 

92 82 8 

102 81 11 

122 82 7 

142 82 8 

162 85 8 

182 90 7 

 

Table 3.1 FSIGT test data for a normal individual. 

 

The plot of the glucose g(t) and the insulin i(t) levels versus time, t, during the FSIGT test are 

plotted in Figure 3.1 and 3.2 respectively. 
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Figure 3.1 Glucose level g(t) during the FSIGT test 

for a normal individual 

 

 

 

 

Figure 3.2 Insulin level i(t) during the FSIGT test 

for a normal individual 
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CHAPTER 4 

SIMULATION OF MINIMAL MODEL 

 

4.1  Introduction: 

The implementation of the minimal model can be achieved by using computer simulation 

software. Computer simulation is a computer program that attempts to simulate an abstract 

model of a particular system. Computer simulations have become a useful part of mathematical 

modeling of many natural systems in physics, chemistry, biology, medical, biomedical and 

engineering to gain insight into the operation of those systems. Traditionally, the formal 

modeling of systems has been via a mathematical model, which attempts to find analytical 

solutions to problems which enable the prediction of the behavior of the system from a set of 

parameters and initial conditions. 

 

4.2  Simulation of the Glucose Kinetics Model: 

 Implementation of the minimal model can be achieved by using computer simulation 

tools. The mathematical minimal model is stated in chapter 3 and repeated here for convenience 

        11

.

bg t P v t g t Pg            (4.1) 

       
.

2 3 bi tv t P v t P i             (4.2) 

       
.

  i t n i t g t h t            (4.3) 

The two differential equations (4.1) and (4.2) correspond to the glucose kinetics are modeled 

here by using the MATLAB/Simulink software. In this model, the insulin i(t) is considered as an 

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Simulation
http://en.wikipedia.org/wiki/Model_%28abstract%29
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Chemistry
http://en.wikipedia.org/wiki/Biology
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Analytic_solution
http://en.wikipedia.org/wiki/Analytic_solution
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input and the glucose g(t) as an output. The values of the input i(t) at a time interval are given in 

Table 3.1. The simulation diagram of the minimal model for the glucose kinetics is shown in 

Figure 4.1. The output of the system, glucose g(t), is shown in Figure 4.2 for a normal individual 

with the following parameters [27-29] 

P1 = 3.082 x 10
-2

 

P2 = 2.093 x 10
-2

 

P3 = 1.062 x 10
-5 

 

g0 = 350 

gb = 92 

ib = 11 

 

 

 

Figure 4.1 Simulation diagram of the glucose kinetics model 
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Figure 4.2 The simulated output g(t) of the glucose kinetics model 

 

4.3  Simulation of the Minimal Model: 

 The minimal model consists of two equations that represent the glucose kinetics and one 

equation that represents the insulin kinetics. The three equations are combined together as one 

set and a simulation diagram is constructed. The simulation diagrams of the glucose kinetics 

model and the insulin kinetics model are shown in Figures 4.3 and 4.4 respectively. The models 

can be combined together to form the minimal model. The schematic diagram of the minimal 

model is shown in Figure 4.5. 
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Figure 4.3 Simulation diagram of minimal model (glucose kinetics part) 

 

 

 

 

Figure 4.4 Simulation diagram of minimal model (insulin kinetics part) 
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Figure 4.5 Simulation diagram of minimal model 

The minimal model simulation diagram shown on Figure 4.5 is tested on a normal individual 

with the following parameters [29] 

P1 = 2.6x10
-2

  

P2 = 2.5x10
-2

 

P3 = 1.25x10
-5

 

gb = 92 

ib = 11 

g0 = 279 

i0 = 363.7 

n = 0.287 

h = 83.7 

  = 0.0041 
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The graph of the output of the system, the glucose level g(t), is shown in Figure 4.6. The 

glucose level reaches the glucose basal level of a normal individual within 65 minutes. That 

observation leads to conclude the minimal model simulation diagram is achieving the goal.  

 

 

Figure 4.6 Graph of glucose level of the minimal model for normal patient 
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CHAPTER 5 

PARAMETERS ESTIMATION 

 

5.1  Introduction: 

Parameter estimation is a common problem in many areas of process modeling. The goal 

is to determine values of model parameters that provide the best fit to measured data, generally 

based on some type of least squares or maximum likelihood criterion. Parameter estimation can 

be described as a method that is able to take control of a model running it as many times as it 

needs while adjusting its parameters until the discrepancies between selected model outputs and 

a set of data or laboratory measurements are reduced to a minimum in the weighted least square 

sense. 

 

5.2  Least Squares Parameter Estimation: 

The method of least squares assumes that the best-fit curve of a given set of data is the 

curve that has the minimal sum of the deviations squared (least squares error) from a given set 

of data [42-44]. Assume a set of data given as:        1 1 2 2 3 3 , ,   , ,   , ,........,  , N Nx y x y x y x y , 

where the independent variable is x  and the dependent variable is y . The curve f(x) is the fitting 

curve that has the deviation or what is called the error d. The error d is basically the horizontal 

(or vertical) distance between the points and the fitted graph. The error d can be defined as the 

following 



26 

 

 

1 1 1

2 2 2

3 3 3

 =  ( )

 =  ( )

 =  ( )

                 

 =  ( )N N N

d y f x

d y f x

d y f x

d y f x









        (5.1) 

As per the principle of the least square method, the best fitting curve has the following property  

  
2 2 2 2 2

1 2 3

1

 +  +  + ...... 
N

N i

i

d d d d d


        (5.2) 

where the symbol ( )  represents the minimum least square error. Now substituting equation 

(5.1) into equation (5.2), we obtain 

   
2

1

 ( )
N

i i

i

y f x


           (5.3) 

When the function is to the m-th degree polynomial form  

  
2 3

0 1 2 3( )  ..... m

mf x a a x a x a x a x          (5.4) 

The minimum Least Squares Error becomes 

  

 
2

1

2
2 3

0 1 2 3

1

 ( )

 (  ..... )

N

i i

i

N
m

i i i i m i

i

y f x

y a a x a x a x a x





  

       




    (5.5) 

The unknown coefficients 0 1 2 3,  ,  ,  ,.....,  ma a a a a  can be estimated to yield a minimum least 

squares error. This can be done by taking the partial derivatives with respect to unknown 

coefficients and set the derivative equation to zero as the following 
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Taking the partial derivative of equation (5.6) yields 
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Equation (5.7) can be rearranged as  
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Expanding equation (5.8) as  
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Writing equation (5.9) in the matrix format 
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The coefficients 0 1 2 3,  ,  ,  ,.....,  ma a a a a  can be found using the following equation 
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  (5.11) 

 

5.3  The Levenberg –Marquardt Algorithm: 

Nonlinear model is defined as an equation that is nonlinear in the coefficients or a 

combination of linear and nonlinear in the coefficients. The nonlinear estimation is the process of 

fitting a mathematical model to experimental data to determine unknown parameters of that 

model. The parameters can be obtained iteratively to reduce computational complexity. In 

general, the nonlinear models are more difficult to fit than linear models because the unknown 

parameters or coefficients cannot be estimated using a simple matrix technique that normally is 

used to solve linear equations. Nonlinear models require an iterative method that starts with an 

initial guess of the unknown parameters. Each iteration updates the current estimate based on 

new observation. Suppose there are m base functions 1 2,  ,.... mf f f  of n parameters 1 2,  ,.... np p p . 

The functions and the parameters can be represented as follows 

  
1 2

1 2

( , ,  ..., )

( , ,  ..., )

T

m

T

n

f f f f

p p p p




        (5.12) 

The least squares method is to find the values of the unknown parameters 1 2,  ,.... np p p  for which 

the cost function is minimum, i.e. 
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 The Levenberg-Marquardt algorithm is an iterative technique that seeks the minimum of 

a multivariate function that is expressed as the sum of squares of nonlinear real-valued functions 

[41]. It has become a standard technique for nonlinear least-squares problems. Levenberg-

Marquardt can be thought of as a combination of steepest descent and the Gauss-Newton 

method. When the current solution is far from the correct one, the algorithm behaves like a 

steepest descent method which is guaranteed to converge. When the current solution is close to 

the correct solution, it becomes a Gauss-Newton method. 

 The Levenberg-Marquardt algorithm is an iterative procedure. Let  x̂ f p  be the 

parameterized model function. The minimization starts after an initial guess for the parameters 

when vector p is provided. The algorithm is locally convergent; namely, it converges when the 

initial guess is close to the true values. In each iteration step, the parameter vector p is updated 

by a new estimate pp   where p is a small correction term that can be determined by a Taylor 

Series expansion which leads to the following approximation 

     p p
f p f p J          (5.14) 

where, J is the Jacobian of f at p 

  
 f p

J
p





         (5.15) 

Levenberg-Marquardt iterative initiates at the starting point p0 and produces a series of vectors 

p1, p2, p3, etc, that converge towards a local minimizer p
+ 

of f [45]. At each step, it is required to 

find the small correction factor which minimizes the value of  

  
   p px f p x f p J       
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That gives the following 

    ˆp px f p x x J p e J              (5.16) 

where p  is the solution to a linear least squares problem. The minimum is achieved when the 

term pJ e   is orthogonal to column space J. Based on that, the following can be concluded 

  ( ) 0T
p

J J e           (5.17) 

equation (5.17) can be rearranged as the following 

  T T
p

J J J e           (5.18) 

The Levenberg-Marquardt algorithm solves a slight variation of equation (5.18), which is known 

as the augmented normal equation 

  T
pN J e           (5.19) 

where the diagonal elements of N are computed as T
ii ii

N J J     
for 0   [45], while the 

other elements of the matrix N are identical to those of the matrix TJ J 
  .   is called the 

damping parameter. If the updated parameter vector, pp  , where p  is computed from 

equation (5.19), yields a reduction in the residual value or error e, then the update is valid and the 

process repeats with a decreased damping parameter  . Otherwise, the damping parameter is 

increased and the augmented normal equation (5.19) is solved again. Then the process iterates 

until a value of p  that reduces error is found. A flow chart that summarizes the least squares 

method is shown in Figure 5.1. The MATLAB Software has the Optimization Toolbox which 

has a command called Lsqnonlin for this algorithm. 
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Figure 5.1 Flowchart for the least squares method 

 

5.4  Minimal Model Parameters Estimation: 

 A glucose level test was conducted on two normal individuals that took three hours [27-

28, 40]. The FSIGT test was performed after an overnight fast, an amount of 298 mg/dl of 

glucose was injected in the first normal individual. Another amount of 320 mg/dl of glucose was 

injected in the second normal individual. The injection starts at t = 0 and lasts for 60 seconds. 

Then blood samples were collected from the two individuals and the glucose levels were 

measured. The result is shown in tables 5.2. The two individuals have different weight and their 

glucose basal level was 94 mg/dl. 

Start 
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Sampling time 

During test 

(minutes) 

Normal Patient #1 Normal Patient #2 

Glucose level 

(mg/dl) 

Glucose level 

(mg/dl) 

0 94 94 

2 298 320 

4 284 303 

6 272 289 

8 253 272 

10 248 258 

12 235 244 

14 217 223 

16 208 205 

19 205 194 

22 191 182 

27 172 169 

32 164 152 

42 141 139 

52 132 122 

62 120 112 

72 116 105 

82 108 100 

92 106 98 

102 104 97 

122 105 97 

142 109 95 

162 107 94 

182 110 93 

 

TABLE 5.1 FSIGT test data for a two normal individuals 

 

The mathematical minimal model is stated in chapter 3 and repeated here for convenience  

        11

.

bg t P v t g t Pg            (5.20) 

       
.

2 3 bi tv t P v t P i             (5.21) 

       
.

  i t n i t g t h t            (5.22) 
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 This algorithm is applied to the problem here. The FSIGT data sample in Table 5.1 

consists of 24 samples. The unknown parameters of the minimal model equations (5.20), (5.21) 

and (5.22) were estimated by utilizing the Levenberg-Marquadrt Algorithm. The parameters to 

be estimated were given an initial guess, and then the algorithm was used to update the 

parameters using the sequential data in Table 5.1. A MATLAB program was written to estimate 

the unknown parameters. The estimated values of those parameters are shown in Table 5.2. 

 

Parameters 
Normal 

Individual #1 

Normal 

Individual #2 

P1 0.032299 0.049519 

P2 0.0092644 41.5953 

P3 5.3004e-006 1.8577e-004 

n 0.29858 0.14653 

γ 0.0068676 1.0113e-005 

h 90.3709 196.0531 

g0 295.6801 318.84 

i0 401.7177 203.2434 

 

Table 5.2 Estimated minimal model parameters for two normal individuals  

 

The values of the parameters shown in Table 5.2 were implemented in the minimal model 

simulation diagram that was shown on Figure 4.5 of section 4.3. The values of the glucose levels 

of both individuals are shown in Table 5.3. 
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Sampling time during 

the test (minutes) 

Normal individual #1 Normal individual #2 

Glucose level (mg/dl) Glucose level (mg/dl) 

0 94 94 

2 295.6801 318.84 

4 282.1308 297.2223 

6 268.2993 277.7749 

8 254.8580 260.2561 

10 242.1020 244.4545 

12 230.1353 230.1878 

14 218.9702 217.2973 

16 208.5776 205.6436 

19 198.9116 195.1034 

22 185.6659 181.1443 

27 173.7810 169.1246 

32 156.6159 152.6775 

42 142.2917 139.8434 

52 120.5167 122.0036 

62 105.8327 111.1272 

72 96.35277 104.4947 

82 90.67314 100.4500 

92 87.73594 97.98329 

102 86.65621 96.47894 

122 86.77255 95.56149 

142 89.03143 94.66075 

162 92.55181 94.32573 

182 95.65837 94.20113 

 

Table 5.3 Simulated glucose levels for two normal individuals 

 

The graphs of both experimental data (Table 5.1) and simulated data (Table 5.3) for normal 

individuals #1 and #2 are shown in Figures 5.2 and 5.3 respectively. 
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Figure 5.2 Plot of glucose level g(t) for normal individual #1 

 

 

 

 
Figure 5.3 Plot of glucose level g(t) for normal individual #2 
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Figures 5.2 and 5.3 show that the two graphs (experimental and simulated) are close to each 

other. That leads to the conclusion that the estimated values of parameters are close to the actual 

values. 

 

5.5  Square Relative Error: 

 In general, the Relative Error, (RE) indicates how good an estimate is, in relative to the 

true values. Although absolute errors are useful, they do not necessarily give an indication of the 

importance of an error. If the experimental value is denoted by g , and the estimated (or 

simulated) value is denoted by ĝ , then the relative error is defined as 

  RE 
ˆg g

g


          (5.23) 

And the Square Relative Error, (SRE) can be expressed as  

  SRE = 

2

ˆ
i i

i

g g

g

 
 
 

        (5.24) 

When the data is sampled over a certain period of time, the Mean Square Relative Error (MSRE) 

can be used. The MSRE is defined as 

  MSRE 

2

1

ˆ1 n
i i

i i

g g

n g

 
  

 
 ,  for i = 1, 2, …,n     (5.25) 

where ig is the experimental value at sample i, ˆ
ig is the estimated value at sample i, and where n 

is the number of samples of a data set. 

The SRE between the experimental data and the simulated data of the glucose level for normal 

individuals #1 and # 2 are calculated based on equation 5.24 and shown in Table 5.4. 

  



38 

 

Normal individual #1 

 

 

Normal individual #2 

Experimental 

data, g(t) 

Simulated 

data, ˆ( )g t  
SRE 

94 94 0 

320 318.84 1.314063e-005 

303 297.2223 0.0003635986 

289 277.7749 0.001508629 

272 260.2561 0.001864179 

258 244.4545 0.002756472 

244 230.1878 0.003204405 

223 217.2973 0.0006539557 

205 205.6436 9.857924e-006 

194 195.1034 3.235126e-005 

182 181.1443 2.210359e-005 

169 169.1246 5.439401e-007 

152 152.6775 1.986409e-005 

139 139.8434 3.681781e-005 

122 122.0036 8.715616e-010 

112 111.1272 6.073247e-005 

105 104.4947 2.315634e-005 

100 100.4500 2.024906e-005 

98 97.98329 2.909034e-008 

97 96.47894 2.88559e-005 

97 95.56149 0.0002199282 

95 94.66075 1.275242e-005 

94 94.32573 1.200794e-005 

93 94.20113 0.0001668063 

 

Table 5.4 SRE data for between the experimental and simulated glucose level for 

normal individuals #1 and #2 

 

 

 

 

 

 

 

 

 

 

 

Experimental 

data, g(t) 

Simulated 

data, ˆ( )g t  
SRE 

94 94 0 

298 295.6801 6.060466e-005 

284 282.1308 4.3317e-005 

272 268.2993 0.0001851148 

253 254.8580 5.393524e-005 

248 242.1020 0.0005656016 

235 230.1353 0.0004285321 

217 218.9702 8.243416e-005 

208 208.5776 7.710311e-006 

205 198.9116 0.0008820624 

191 185.6659 0.0007799362 

172 173.7810 0.0001072176 

164 156.6159 0.002027272 

141 142.2917 8.391868e-005 

132 120.5167 0.007568141 

120 105.8327 0.01393832 

116 96.35277 0.0286871 

108 90.67314 0.02573902 

106 87.73594 0.02968814 

104 86.65621 0.02781129 

105 86.77255 0.03013514 

109 89.03143 0.03356148 

107 92.55181 0.01823304 

110 95.65837 0.01699855 
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The graphs of the SRE for both individuals are show in the figures below 

 

 

Figure 5.4 Plot of SRE for normal individual #1 

 

 

Figure 5.5 Plot of SRE for normal individual #2 

0 20 40 60 80 100 120 140 160 180 200
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

time [min]

S
R

E

0 20 40 60 80 100 120 140 160 180 200
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

time [min]

S
R

E



40 

 

Normally, the Mean Square Relative Error is expressed in percentage format. As per equation 

(5.25), the percentages MSRE for both individuals are listed below 

 The percentage MSRE for individual # 1 = 1.79%. 

 The percentage MSRE for individual # 2 = 0.0149%. 
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CHAPTER 6 

PROPOSED MATHEMATICAL 

MODEL AND IMPLEMENTATION 

 

6.1  Introduction: 

As stated in the previous chapters, the proposed mathematical model consists of three 

differential equations that describe the dynamic of a diabetic patient known as minimal model, 

and a fourth differential equation that represents a first order infusion pump „P‟. The role of 

pump „P‟ is to inject the insulin into the system when the glucose level goes above the normal 

basal level. 

 

6.2  Proposed Mathematical Model Analysis: 

 The differential equation represents the first order infusion pump „P‟ is represented 

schematically in Figure 6.1 

 

 

Figure 6.1 Block diagram of the infusion pump 

 

The dynamic of the first order infusion pump is represented by the following equation  

  
1

( )
1

P s
as




         (6.1) 

where “a” is the pump constant. 

The relation between the input of the pump and its output can be written as 

   = w Pu          (6.2) 

 
First order 

pump, P 
Input u  Output w 
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Substituting equation 6.1 into equation 6.2 will yield the following 

  
1

  
1

w u
as




         (6.3) 

The above equation can be expressed as the following  

  w asw u           (6.4) 

Taking the inverse laplace transform for both sides of the above equation yields the following 

         
.

0  w t a w t w u t
 

   
 

      (6.5) 

Since w(0) = 0, the above equation can be rearranged and written in the form of differential 

equation 

       
. 1

 w t w t u t
a

            (6.6) 

The proposed mathematical model represented in the form of cascade block diagram is shown in 

the following figure 

 

 

Figure 6.2 Schematic diagram of the proposed mathematical model 

 

The proposed mathematical model that will be used consists of the following four differential 

equations 

  

     

     

       

     

1

2

1

3

.

.

.
  

. 1
 

b

b

i t

g t P v t g t Pg

v t P v t P i

i t n i t g t h t w t

w t w t u t
a



     

     

      

    

     (6.7) 

 
Input u  Infusion rate 

w 

Output g First order 

pump, P 

Patient 
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The simulation diagram of the glucose kinetics model is shown in Figure 4.3 in chapter 4. The 

simulation diagram of the insulin kinetics model with the first order infusion part is shown in 

Figure 6.3. 

 

 

Figure 6.3 Insulin kinetics simulation diagram with first order infusion pump 

 

The initial conditions of the above four differential equations are 

g(0) = g0,  v(0) = 0, i(0) = i0, u(0) = 0. 

Define the following 

       1 2 3 4( ) ,  ( ) ,  ( ) ,  ( )x t g t x t v t x t i t x t w t     

Then equation 6.7 can be rearranged as 
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       

     

       

     

1 1 1 2 1

2 2 2 3 3

3 1 3 4

4 4

1

3

.

.

.

. 1 1

b

bx t Px t x t x t Pg

x t P x t P x t Pi

x t nx t nx t x t ht

x t x t u t
a a



   

   

    

  

     (6.8) 

 

6.3  Linearization Overview: 

 Most components that are found in physical systems have nonlinear characteristics. In 

practice, some devices have moderate nonlinear characteristics, or nonlinear properties, that 

would occur if they were driven into certain operating regions. For these devices, the modeling 

by linear system give quite accurate analytical results over a relatively wide range of operating 

conditions. When a nonlinear system is linearized at an operating point, the linear model may 

contain time-variant elements [45]. If we are interested in values of the function close to some 

point, then often we can replace the given function by its first Taylor polynomial, which is a 

linear function. That is why the first Taylor polynomial is often called the local linearization. The 

use of linearization makes it possible to use tools for studying linear systems to analyze the 

behavior of a nonlinear function near a given point. The linearization of a function is the first 

order term of its Taylor expansion around the point of interest. To study the behavior of a 

nonlinear dynamical system near an equilibrium point, we can linearize the system. 

 The following is a brief discussion of the linearization of nonlinear first order equations 

by using the Taylor Series expansion and the Jacobian Matrix. Consider the following first order 

nonlinear equations 

http://en.wikipedia.org/wiki/Linear_system
http://en.wikipedia.org/wiki/Taylor_expansion
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 

 

 

1 1 2 3 1 2 3

2 1 2 3 1 2 3

3 1 2 3 1 2 3

1 2 3 1 2 3

1
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3

.
 ,  , ,  ...... ,  ,  , ,  ...... 

.
 ,  , ,  ...... ,  ,  , ,  ...... 

.
 ,  , ,  ...... ,  ,  , ,  ...... 

.
 ,  , ,  ...... ,  ,  , ,  ...

n n

n n

n n

m nn

x f x x x x u u u u

x f x x x x u u u u

x f x x x x u u u u

x f x x x x u u u







  ... nu

    (6.9) 

The above equation can be represented in the vector format as shown below 

   
.

 ,x f x u           (6.10) 

where 

  

1

1 1
2

2 2

3
3 3

.

.

..
,       

.
n n

n

x

x u
x

x u

xx x x and u u

x u

x

 
 

    
    
    
      
    
    
    
   

 
  

      (6.11) 

The Taylor Series expansion of equation (6.10) is 

       0 1 0 1 0 +  +  + h.o.tf x f a x x b u u        (6.12) 

where 

           

 

 

 

0 0

0 0

0 0

1

,  

1

, 

0 = ,

,

,

x x u u

x x u u

f f x u

df x u
a

dx

df x u
b

du

 

 




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h.o.t is the Higher Order Term. 

The point (x0, u0) is the equilibrium point which can be found by setting up the function f(x, u) 

equals to zero, then f(x0, u0) = 0. The Jacobian Matrix is the matrix of all first-order partial 

derivatives of a vector-valued function. If a function is differentiable at a point, its derivative is 

given in coordinates by the Jacobian, but a function does not need to be differentiable for the 

Jacobian to be defined, since only the partial derivatives are required to exist. Its importance lies 

in the fact that it represents the best linear approximation to a differentiable function near a given 

point. In this sense, the Jacobian is the derivative of a multivariate function. For a function of n 

variables, n > 1, the derivative of a numerical function must be matrix-valued, or a partial 

derivative. The partial derivatives of all the functions f1(x, u), f2(x, u), f3(x, u), ……, fm(x, u) (if 

they exist) can be organized in an m-by-n matrix, the Jacobian Matrices (Jx and Ju), of the 

function f  with respect to x and u, as follows 

 

 
 

0 0

1 1 1 1

1 2 3

2 2 2 2

1 2 3

3 3 3 3

1 2 3,  

                  

                  

,
 J                   

                                      

n

n

x

nx x u u

f f f f

x x x x

f f f f

x x x x

df x u f f f f

dx x x x x

f

 

   

   

   

   

   
 

   



0 0

1 2 3
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                  m m m m

n

x x u u

f f f

x x x x

 

 
 
 
 
 
 
 
 
 
 
 

   
    
 
 

 (6.13) 

http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://en.wikipedia.org/wiki/Partial_derivative
http://en.wikipedia.org/wiki/Partial_derivative
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Partial_derivative
http://en.wikipedia.org/wiki/Linear_map
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 
 

 (6.14) 

The linearized form of the nonlinear system can be written in the state space form as the 

following 

  
.

   x ux J x J u          (6.15) 

 

6.4  Proposed Mathematical Model Linearization: 

 The proposed mathematical model is a nonlinear model due to the presence of the term 

x1(t)x2(t) which is a nonlinear term. The Jacobian Matrices (Jx and Ju) are calculated by 

differentiating equation (6.8) with respect to the state variables x1, x2, x3, x4 and the input u, and 

substitute in the equations (6.13) and (6.12) we get the following 

  

0 0

1 2 1

2 3

, 

             0        0
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 J                     0            1
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     0                0        0    
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x x u u

P x x
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t n

a



 

   
 


 

  
 
 
  
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0 0, 

0

0

 J 0

1

u

x x u ua  

 
 
 

  
 
 
  

  (6.16) 

where the point (x0, u0) is the equilibrium point. The equilibrium point can be calculated by 

setting the state equation to zero and solve as shown below 

  1 10 10 20 1 0bPx x x Pg           (6.17) 
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  2 20 3 30 3 0bP x P x Pi           (6.18) 

  10 30 40 0tx nx ht x            (6.19) 

  
40 0

1 1
0x u

a a
           (6.20) 

where, x10, x20, x30, x40 and u0 are the values of the state variables and the input at the operating 

point (i.e. the equilibrium point). 

At the equilibrium point, u0 = 0, then equation (6.20) becomes as 
40

1
0x

a
  , that gives 

  x40 = 0          (6.21) 

Substituting the value of x40 in equation (6.19) results 10 30 0tx nx ht     and 

  
 10

30

x h t
x

n


         (6.22) 

The value of X30 can be substituted in equation (6.18) as 
 10

2 20 3 3 0b

x h t
P x P Pi

n


    to 

obtain 

  3 10 3 3
20

2 2 2

bP tx P th Pi
x

P n P n P

 
          (6.23) 

Now, by substituting the value of x20 in equation (6.17), we have 

   
23 3 3

10 1 10 1

2 2 2

0b
b

P t P th Pi
x P x Pg

P n P n P

  
       

 
    (6.24) 

The above equation is a 2
nd

 order equation of the form ax
2
 + bx + c = 0 and can be solved by 

using the quadratic formula 

  

2

10

4

2

b b ac
x

a

  
         (6.25) 
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where 3 3 3
1 1

2 2 2

,  ,  .b
b

P t P th Pi
a b P c Pg

P n P n P

 
        

There are two possible values (solutions) of x10. Since x20 and x30 are expressed in term of x10, 

there will be two values for each. Based on that, the controllability test will be studied to check 

which value of x10 is accepted.  

 

6.5  Proposed Mathematical Model Experimental Study: 

 The following are the parameters values of the mathematical minimal model that 

represent the dynamic of a diabetic patient [27-29] 

P1 = 0 

P2 = 0.81/100 

P3 = 4.01/1000000 

i0 = 192 

g0 = 337 

 = 2.4/1000 

h = 93 

n = 0.23 

gb = 99 

ib = 8 

a = 2 

These values of the parameters are substituted in the patient dynamic system and the simulation 

is run using the minimal model simulation diagram that is shown in Figure 4.5. The result of the 

simulation is shown in Figure 6.4. 
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 By examining Figure 6.4, it can be clearly seen that the glucose level does not come 

down to the basal level after injecting an amount of 337 mg/dl of glucose inside a diabetic 

patient. The graph shows that the level of glucose inside a diabetic patient decreases for almost 

the first 100 minutes and starts increasing afterward and reaches the value of almost 310 mg/dl 

after 3 hours from the time the glucose was injected [46]. The goal is to lower the value of 

glucose inside a diabetic patient to the normal level or at least to the neighborhood of the basal 

level. 

 
 

Figure 6.4 Simulated glucose level g(t) for diabetic patient 

 

6.6  State Space Representations: 

 The state space method is based on the description of the system equation in terms of n 

first order difference equations or differential equations, which may be combined into a first 

order vector matrix difference equations or differential equations [47]. Let us define some terms 

of the state space system. 
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 State Variables: The variables making up the smallest set of variables that 

determine the state of the dynamic system. 

 State Vector: If n state variables are needed to completely describe the behaviour 

of a given system, then the n state variable can be considered the n component if 

the vector. 

 State Space Equation: There are three types of variable that are involved in the 

modeling of dynamic systems 

i. Input Vector. 

ii. Output Vector. 

iii. State Variable. 

The general form of the state space is defined as 

  
    

    

x Ax Bu

y Cx Du

 

 
        (6.26) 

where 

  x is the state vector. 

  y is the output vector. 

  u is the control vector. 

  A is the state matrix. 

  B is the control matrix. 

  C is the output matrix. 

  D is the direct transmission matrix. 

The proposed mathematical model at the equilibrium point (x0, u0) can be written in the state 

space form as shown below 
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1 20 10

2 3

            0       0 0

       0                       0 0

   0                    0           1

11
       0              0        0   

1      0

P x x

P P

x x ut n

aa

y



     
   


   

    
   
   

     

          0       0 x

      (6.27) 

 

where u is the input and y is the output of the system. The data of a diabetic person shown in 

section 6.5 was used, and the equilibrium point (x0, u0) was calculated as time varied from t = 1 

min to t = 182 min. The two values for x10 were calculated using equation (6.25), and it was 

found that only one of these values, (the one obtained from the 
2 4

2

b b ac

a

  
), makes the 

system controllable; hence, only this value is used in the subsequent development. 

 

6.7  Transfer Function and State Space Representations: 

A dynamic system can be expressed either in the state space representation or in the 

transfer function representation. The transfer function of a continuous time-invariant state space 

model can be derived by taking the laplace transform of the sate space equation (see equation 

6.26). 

The laplace transform of 

  
    

    

x Ax Bu

y Cx Du

 

 
 

yields 

 
( ) ( ) ( )

( ) ( ) ( )

sX s AX s BU s

Y s CX s DU s

 

 
        (6.28) 

Solve the above equation for X(s) as 

http://en.wikipedia.org/wiki/Transfer_function
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  
1

( ) ( )X s sI A BU s


         (6.29) 

Substitute X(s) in the oputput of the system as 

   1
( ) ( ) ( )Y s C sI A BU s DU s


         (6.30) 

Rearrange equation (6.30) yields 

   1
( ) ( )Y s C sI A B D U s


         (6.31) 

Since the transfer function of a dynamic system is defined as the ratio of the output to the input 

of a system, then 

  
1( )

( )
( )

Y s
G s C sI A B D

U s


          (6.32) 

http://en.wikipedia.org/wiki/Transfer_function
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CHAPTER 7 

LOW-COMPLEXITY REGIME-SWITCHING 

INSULIN CONTROL OF TYPE ‘I’ DIABETIC PATIENTS 

 

7.1  Overview: 

 This chapter studies the benefits of using simplified adaptation control strategies in 

improving performance of insulin control for type „I‟ diabetic patients. Typical dynamic models 

of glucose levels in diabetic patients are nonlinear. Using a linear time-invariant controller based 

on an operating condition is a common method to simplify control design. On the other hand, 

adaptive control can potentially improve system performance, but it increases control complexity 

and may create further stability issues. This research investigates patient model identification and 

presents a simplified switching control scheme using PID controllers [46]. By comparing 

different switching schemes, it shows that switched PID controllers can improve performance, 

but frequent switching is unnecessary. These findings lead to a control strategy that utilizes only 

a small number of PID controllers in this scheduled adaptation strategy. 

 

7.2  Introduction to PID Controller: 

In the control of any dynamic system, no controller has better reliability than that of the 

PID controller. Out of all the control design techniques, the PID controller becomes the most 

widely known and used one. There are many different types and design methods for the PID 

controller. Since many control systems using PID controller have proven satisfactory, it still has 

a wide range of applications in industrial control [48]. According to a survey for process control 
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systems conducted in 1989, more than 90% of the control loops were of the PID type [49]. PID 

controller popularity comes from its simplicity and its ability to be used in a wide variety of 

processes. PID controller has been an active research topic for many years. 

The term PID stands for Proportional, Integral and Derivative. Each one of these letters (P, I, D) 

is term in a control algorithm, and each has a special purpose. It is possible to a PI controller, PD 

controller or P controller. It has been found from the experimental point of view that the 

structure of the PID controller has sufficient flexibility to yield excellent results in many 

dynamic applications [50]. 

 

7.3  PID Controller Configuration: 

A typical structure of a PID control system is shown in figure 7.1. The basic term is the 

proportional term, P, which causes a corrective control actuation proportional to the error. The 

integral term, I, gives a correction proportional to the integral of the error. This has the positive 

feature of ultimately ensuring that sufficient control effort is applied to reduce the tracking error 

to zero. However, integral action tends to have a destabilizing effect due to the increased phase 

shift. The derivative term, D, gives a predictive capability yielding a control action proportional 

to the rate of change of the error. This tends to have a stabilizing effect but often leads to large 

control movements due to the amplification of noise by the derivative action. Various empirical 

tuning methods can be used to determine the PID parameters for a given application. They 

should be considered as a first guess in a search procedure. Attention should also be paid to the 

PID structure [50]. 
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Figure 7.1 PID controller structure 

 

From the above figure, it can be clearly seen that in a PID controller, the error signal e(t) 

is used to generate the proportional, integral, and derivative actions, with the resulting signals 

weighted and summed to form the control signal u(t) applied to the plant model. A mathematical 

description of the continuous time linear PID controller is 

       
 

0

t

p i d

de t
u t K e t K e d K

dt
         (7.1) 

where, Kp, Ki, Kd, e, and u are proportion gain, integral gain, derivative gain, error, and output of 

the PID controller respectively [51]. 

 

7.4  The Characteristics of PID Controller: 

 A proportional controller (Kp) will have the effect of reducing the rise time and will 

reduce but never eliminate the steady-state error. An integral control (Ki) will have the effect of 

eliminating the steady state-error, but it may make the transient response worse. A derivative 

control (Kd) will have the effect of increasing the stability of the system, reducing the overshoot, 

and improving the transient response. Effects of each of controllers Kp, Ki and Kd on a closed-

loop system are summarized in Table 7.1 [ 51-53]. 
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Performance Specifications 
Closed-Loop 

Response 
Rise Time Overshoot Settling Time 

Steady-State 

Error 

Kp Decrease Increase Small Change Decrease 

Ki Decrease Increase Increase Eliminate 

Kd Small Change Decrease Decrease Small Change 

 
Table 7.1 PID performance measurement tuning table 

 

Note that these correlations may not be exactly accurate, because Kp, Ki, and Kd are dependent of 

each other. In fact, changing one of these variables can change the effect of the other two. For 

this reason, the table should only be used as a reference when you are determining the values for 

Kp, Ki and Kd. 

The transfer function, Gc(s), of the PID controller can be calculated by taking the laplace 

transform of equation (7.1) which is expressed in the time domain. The following table shows 

the laplace transform of the PID controller terms 

 

 f t   F s  

 u t   U s  

 e t   E s  

 
0

t

e d    
1

E s
s

 

 de t

dt
  .s E s  

 

Table 7.2 Laplace transform of PID controller terms 
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Equation (7.1) can be written in the s-domain as 

        
1

p i dU s K E s K E s K sE s
s

        (7.2) 

Rearranging equation (7.2) yield  

      
1

p i dU s K K s K s E s
s

 
   
 

      (7.3) 

The transfer function of the PID controller is 

  
( )

( )

i
p d

KU s
Gc s K K s

E s s
          (7.4) 

The gain Kp is the control action that is proportional to the actuating error signal, which is the 

difference between the reference input and the feedback signal or the output. The gain Ki is the 

control action which is proportional to the integral of the actuating error signal. Finally, the gain 

Kd is the control action which is proportional to the derivative of the actuating error signal. With 

the integration of all the three actions, the continuous PID can be designed [51]. 

Equation (7.4) can be rearranged as 

  
2

p d iK s K s K
Gc s

s

 
        (7.5) 

Based in equation (7.5), the PID controller adds one pole at S=0 and two zeros wherever needed. 

Normally, the location of the two zeros is where the two slowest poles can be canceled to be able 

to get the best result. 

 

7.5  Design of Individual PID Controllers for Diabetic Patient: 

 When designing a controller, the designer must define the specifications that need to be 

achieved by the controller. Normally, the maximum overshoot (Mp) of the system step response 

should be small. Commonly, a range between 10% and 20% is acceptable. Also the settling time 
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(ts), is an important factor. The objective here is to design a PID controller so that the closed-loop 

system has the following specifications  

 Small steady state error for a step input. 

 Less than 10% maximum overshoot, (Mp). 

 Settling time, (ts), less than 60 minutes. 

The damping ratio   and the natural frequency n  are related to the maximum overshoot and 

the settling time by the following relations 

 

  

 

 

2

2

ln

ln
1

p

p

M

M






 
 
 
 
 
 
 
 

        (7.6) 

  

4
n

ts



          (7.7) 

The patient dynamic system with the parameters shown in section 6.5 was expressed in the state 

space representation in equation (7.8). For an  overshoot less than 10%, a damping ratio must be 

greater than 0.59,  and a settling time less than 60 minutes implies that  n  must be greater 

than 0.067. 

  

1 20 10

2 3

            0       0 0

       0                       0 0

   0                    0           1

11
       0              0        0   

1      0

P x x

P P

x x ut n

aa

y



     
   


   

    
   
   

     

          0       0 x

    (7.8) 
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Analyzing equation (7.8), it is obvious that matrix A is time variant while B and C do not change 

with time, and they are fixed in all cases as 

  

 

0

0
    and    1      0        0       0  

0

0.5

B C

 
 
  
 
 
 

 

The PID controllers can be designed based on the following operating points t = 1, 20, 40, 60, 

90, 120, 150 and 182 minutes. 

 

7.5.1 Design of PID controller at operating point t = 1 minute: 

 The control design is done by applying the root locus method and then evaluates it by 

using the step response. After substituting the numerical values at operating point t = 1 minute, 

the matrix A of equation (7.8) becomes 

  

1

0             859.6667         0                         0

0             0.0081             0.00000401         0
  

0.0024           0              0.23                     1

0                    0 

A








                 0                   0.5

 
 
 
 
 

 

 

The root locus plot can be generated by the following Matlab program (7.1). 

 

MATLAB Program 7.1 

Plotting the open loop system Root locus using MATLAB 

[num, den] = ss2tf(A,B,C,D]; 

rlocus(num, den) 

axis([–0.6  0.1  –0.5  0.5]) 

sgrid(0.59,0) 

sigrid(0.067) 
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Figure 7.2 Root Locus plot at operating point t = 1 minute 

The open loop poles are shown in Figure 7.2. These poles are located at the following location 

Pole 1 = – 0.0040 + 0.0045j 

Pole 2 = – 0.0040 – 0.0045j 

Pole 3 = – 0.2302 

Pole 4 = – 0.5 

The four poles are stable, but the first two poles are very close to the imaginary axis and hence 

represent the slowest dynamics. The controller takes the form 

   
  1 2K s z s z

Gc s
s

 
        (7.9) 
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where K is the value of the gain where the root locus intersects with the line of the damping ratio. 

The z1 and z2 represent the value of the zeros to be added and may be selected to cancel the 

slowest poles of the dynamic system. Hence, select 

 z1 = –0.004 + 0.0045j 

 z2 = –0.004 – 0.0045j 

Substituting the values of z1 and z2 in equation (7.9) yields 

  
      0.0040  0.0045  0.0040  0.0045K s j s j

Gc s
s

     
  

The above equation can be written in the following form: 

   
 2

1
0.008 0.00003625

c

K s s
G s

s

 
  

where  1

cG s  represents the transfer function at operating point t=1 minute. 

The design specifications of the system require the maximum overshoot to be less than 10% and 

the settling time to be less than 60 minutes. After inserting the PID controller in series with the 

patient system and connecting them in a unity feedback, it is noted that may be there are more 

than one value of the gain K that make the system meet the design specifications. These values 

are analyzed to pick up the best values. Table 7.3 shows the values of the gain K. 

Gain K sorted by Maximum Overshoot 

Gain K 
Maximum 

Overshoot % 

Settling 

Time (min) 

5.59 5.7625 47 

6.59 9.4362 43 

 
Table 7.3 PID gain K at operating point t = 1 minute 

 

The value of gain K = 5.59 gives maximum overshoot 5.71% and the settling time 47.5 minutes 

(see Figure 7.3). The PID parameters are 
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4= 0.0444,   = 2.0094 10 ,   5.59.p i dK K K 
 

 

 
Figure 7.3 Unit step response using model at operating point t = 1 minute with K=5.59 

 

 

7.5.2 Design of PID controller at operating point t = 20 minutes: 

 After substituting the numerical values at operating point t = 20 minutes, matrix A of 

equation (7.8) becomes 

  20

0             131.33             0                              0

0             0.0081             0.00000401              0
 

0.048             0              0.23                          1

0    

A








                0                  0                        0.5

 
 
 
 
 

 

 

The open loop poles of the system are found by the root locus plot to be 

Pole 1 = – 0.0038 + 0.0098j 

Pole 2 = – 0.0038 – 0.0098j 

Step Response

Time(min)

 (sec)

A
m

p
lit

u
d
e

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 System: G 
 Settling Time (min): 47.5 

 System: G 
 Peak amplitude: 1.06 
 Overshoot (%): 5.71 

 At time (min): 33.6 



64 

 

Pole 3 = – 0.2305 

Pole 4 = – 0.5 

The z1 and z2 represent the value of the zeros to be added and may be selected to cancel the 

slowest poles of the dynamic system. Hence, select 

 z1 = –0.0038 + 0.0098j 

 z2 = –0.0038 – 0.0098j 

Substituting the values of z1 and z2 in equation (7.9) yields 

    
 2

20
0.0076 0.0001

c

K s s
G s

s

 
  

The same procedure of operating point t = 1 minutes is repeated for operating point t = 20 

minutes. Table 7.4 shows the values of the gain K. 

 

Gain K sorted by Maximum Overshoot 

Gain K 
Maximum 

Overshoot % 

Settling 

Time (min) 

28.4 1.5633 33 

29.4 1.9903 32 

30.4 2.4456 48 

31.4 2.9223 48 

32.4 3.4279 49 

33.4 3.9415 48 

34.4 4.4716 48 

35.4 5.0160 48 

36.4 5.5662 47 

37.4 6.1187 47 

38.4 6.8840 46 

39.4 7.2625 45 

40.4 7.8303 45 

41.4 8.3902 44 

42.4 8.9785 44 

43.4 9.5369 43 

 

Table 7.4 PID gain K at operating point t = 20 minutes 
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The value of gain K = 28.4 gives maximum overshoot 1.5633% and the settling time 33 minutes. 

The PID parameters are 

= 0.02160,   = 0.0031,   28.4.p i dK K K 

 

 

7.5.3 Design of PID controller at operating point t = 40 minutes: 

 At operating point t = 40 minutes, matrix A becomes 

  40

0             112.17             0                              0

0             0.0081             0.00000401              0
 

0.096             0              0.23                          1

0    

A








                0                 0                        0.5

 
 
 
 
 

 

 

The open loop poles of the system are found by the root locus plot to be 

Pole 1 = – 0.0036 + 0.00132j 

Pole 2 = – 0.0036 – 0.00132j 

Pole 3 = – 0.2308 

Pole 4 = – 0.5 

The z1 and z2 represent the value of the zeros to be added and may be selected to cancel the 

slowest poles of the dynamic system. Hence, select 

 z1 = –0.0036 + 0.00132j 

 z2 = –0.0036 – 0.00132j 

Substituting the values of z1 and z2 in equation (7.9) yields 

    
 2

40
0.0072 0.0002

c

K s s
G s

s

 
  

The value of gain K = 32.7 gives maximum overshoot 1.2489% and the settling time 34 minutes. 

The PID parameters are 
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= 0.02374,   = 0.0061,   32.7.p i dK K K 
 

 

7.5.4 Design of PID controller at operating point t = 60 minutes: 

At operating point t = 60 minutes, matrix A becomes 

  60

0             105.78             0                              0

0             0.0081             0.00000401              0
 

0.144             0              0.23                          1

0    

A








                0                 0                        0.5

 
 
 
 
 

 

 

The open loop poles are  

Pole 1 = – 0.0035 + 0.00159j 

Pole 2 = – 0.0035 – 0.00159j 

Pole 3 = – 0.2312 

Pole 4 = – 0.5 

The PID controller is 

    
 2

60
0.007 0.0003

c

K s s
G s

s

 
  

The value of gain K = 34.9 gives maximum overshoot 1.3898% and the settling time 34 minutes. 

The PID parameters are 

= 0.02483,   = 0.0095,   35.9.p i dK K K   

 

7.5.5 Design of PID controller at operating point t = 90 minutes: 

At operating point t = 90 minutes, matrix A becomes 
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  90

0             101.52             0                              0

0             0.0081             0.00000401              0
 

0.216             0              0.23                          1

0    

A








                0                 0                        0.5

 
 
 
 
 

 

 

The open loop poles are 

Pole 1 = – 0.0032 + 0.00192j 

Pole 2 = – 0.0032 – 0.00192j 

Pole 3 = – 0.2317 

Pole 4 = – 0.5 

The PID controller is 

    
 2

90
0.0064 0.0004

c

K s s
G s

s

 
  

The value of gain K = 36.9 gives maximum overshoot 1.3601% and the settling time 34 minutes. 

The PID parameters are 

= 0.02331,   = 0.0138,   36.4.P i dK K K   

 

7.5.6 Design of PID controller at operating point t = 120 minutes: 

At operating point t = 120 minutes, matrix A becomes 

  120

0             99.39             0                               0

0             0.0081            0.00000401              0
 

0.288             0              0.23                          1

0    

A








                0                 0                        0.5

 
 
 
 
 

 

 

The open loop poles are 

Pole 1 = – 0.0029 + 0.022j 

Pole 2 = – 0.0029 – 0.022j 
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Pole 3 = – 0.2322 

Pole 4 = – 0.5 

The PID controller is 

    
 2

120
0.0058 0.0005

c

K s
G s

s

 
  

The value of gain K = 37.9 gives maximum overshoot 1.5325% and the settling time 33 minutes. 

The PID parameters are 

= 0.02234,   = 0.0187,   37.9.P i dK K K   

 

7.5.7 Design of PID controller at operating point t = 150 minutes: 

At operating point t = 150 minutes, matrix A becomes 

  150

0             98.11             0                               0

0             0.0081            0.00000401              0
 

0.36              0              0.23                          1

0    

A








               0                  0                        0.5

 
 
 
 
 

 

 

The open loop poles are 

Pole 1 = – 0.0027 + 0.0245j 

Pole 2 = – 0.0027 – 0.0245j 

Pole 3 = – 0.2327 

Pole 4 = – 0.5 

The PID controller is 

    
 2

150
0.0054 0.0006

c

K s
G s

s

 

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The value of gain K = 37.7 gives maximum overshoot 1.2922% and the settling time 34 minutes. 

The PID parameters are 

= 0.02032,   = 0.0229,   37.7.P i dK K K   

 

7.5.8 Design of PID controller at operating point t = 182 minutes: 

At operating point t = 182 minutes, matrix A becomes 

  182

0             97.21             0                               0

0             0.0081           0.00000401              0
 

0.4368          0              0.23                          1

0       

A








            0                  0                        0.5

 
 
 
 
 

 

 

The open loop poles are 

Pole 1 = – 0.0024 + 0.0269j 

Pole 2 = – 0.0024 – 0.0269j 

Pole 3 = – 0.2332 

Pole 4 = – 0.5 

The PID controller is 

    
 2

182
0.0048 0.0007

c

K s
G s

s

 
  

The value of gain K = 38.5 gives maximum overshoot 1.3766% and the settling time 34 minutes. 

The PID parameters are 

= 0.0187,   = 0.0281,   38.5.P i dK K K   

 Non-adaptive PID controllers use a fixed PID controller for the entire control period and 

rely on its robustness to maintain control performance [51, 52]. For each individual PID 

controller with its transfer function found in the previous subsection at operator points t = 1, 20, 







87 

 

  
       1 2 3 4

4 3 2

1 2 3 4 0 

sI A BK s s s s

s s s s

   

   



 

     

        
(8.3) 

Let A A BK  and substituting it in equation (8.3) 

  
4 3 2

1 2 3 4 0sI A s s s s               (8.4) 

The Cayley-Hamilton theorem states that A  satisfies its characteristic equation as 

    4 3 2

1 2 3 4 0A A A A A I                (8.5) 

The following matrix identities are used to derive Ackermann‟s Formula 

  

 

 

 

22 2

33 3 2 2

44 4 3 2 2 3

 

  

 

 

 = 

A BK

I I

A A BK

A A ABK BKA

A A BK A A BK ABKA BKA

A A BK A A BK A BK ABKA BKA BKA





 

   

     

      

  (8.6) 

Now substituting equation (8.6) in equation (8.5) 

 

 

 

   

4 3 2 2 3

3 2 2

1

2

2 3 4

4 3 2 2 3

3 2 2

1 1 1 1

2

2 2 2 3 3 4

4 3 2

1 2

 

 

         = 

 

   

A A A BK A BK ABKA BKA BKA

A A BK ABKA BKA

A ABK BKA A BK I

A A BK A BK ABKA BKA BKA

A A BK ABKA BKA

A ABK BKA A BK I

A A A





  

   

     

 

      

   

    

     

  

    

    3 4

3 2 2

3 2 2

1 1 1

2 2 3 

A I

A BK A BK ABKA BKA

BKA A BK ABKA BKA

ABK BKA BK

 

  

  



   

   

  

    (8.7) 
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The minimal polynomial of the matrix A is defined in the equation below 

    4 3 2

1 2 3 4  A A A A A I              (8.8) 

After substituting equation (8.8) in equation (8.7) and rearranging its terms as 

  

    3 2 2

3 2 2

1 1 1

2 2 3

  

           

           

A A A BK A BK ABKA BKA

BKA A BK ABKA BKA

ABK BKA BK

 

  

  

    

   

  

     (8.9) 

Since   0A  , equation (8.9) can be written as 

  

   

     

3 2 2

1 2 3

2 3

1 2 1            

A B KA KA KA KA K

AB KA K KA A B K K A B K

   

  

     

    

 

   (8.10) 

Equation (8.10) can be rearranged as 

  

 

3 2 2

1 2 3

2 3 1 2

1

      

KA KA KA KA K

KA K KA
A B AB A B A B

K K

K

  

 




    
 

       
 
  

   (8.11) 

Multiplying both sides of equation (8.11) by
1

2 3      B AB A B A B


    
yields 

  

 

3 2 2

1 2 3

1
2 3 1 2

1

      

KA KA KA KA K

KA K KA
B AB A B A B A

K K

K

  

 






    
 

       
 
  

  (8.12) 

After multiply both sides of equation (8.12) by 0  0  0  1   , we obtain 
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     

3 2 2

1 2 3

1
2 3 1 2

1

0  0  0 1       0  0  0 1

KA KA KA KA K

KA K KA
B AB A B A B A

K K

K

  

 






    
 

       
 
  

 (8.13) 

Equation (8.13) can be written as 

     
1

2 30  0  0 1       K B AB A B A B A


         (8.14) 

where the matrix  1 2 3 4   .K K K K K  

Equation (8.14) is Ackermann‟s Formula used to find the value of the gain K. The desired poles 

of the controller can be determined based on the damping ratio  and natural frequency n . The 

damping ratio and the natural frequency are related to the maximum overshoot, Mp, and the 

settling time, ts, with the following relations [51] 

  

21
M ep







   and 

4
ts

n
       (8.15) 

Equation (8.15) can be rearranged to obtain the values of the damping ratio  and the natural 

frequency n  

  

 

 

2

2

ln

ln
1

p

p

M

M






 
 
 
 
 
 
 
 

 , and 
4

s

n
t




      (8.16) 

The dominant poles are calculated by 

  
2

1,2  1n nP j              (8.17) 

and the remaining two poles are chosen as 

  
3,4 1,22P P          (8.18) 
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observer estimates the state variables based on the measurements of the output and control 

variables. The concept of observability is an important factor in the design of the state observer. 

The observability condition must be satisfied before a state observer can be designed [51]. The 

notation   (t) is used to denote the observed state vector [59, 60]. The mathematical model of the 

observer is basically the same as the plant, except that we include the estimation error to 

compensate for inaccuracies in the initial state errors. The mathematical model of the observer is 

defined as 

   
.

  +  –  Cex Ax Bu K y x         (8.19) 

and the control signal to be  

   –u Kx          (8.20) 

where    is the estimated state, C   is the estimated output and Ke is the observer gain matrix [51].  

Substituting equation (8.20) into equation (8.19) gives 

   
.

  –   –   + e ex A K C BK x K y       (8.21) 

The observed state variable   (t) can be used to compute the feedback to the system. Figure 8.2 

shows the block diagram of the observer-based state feedback control system. 
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Figure 8.2 Observer-based state feedback control wiring diagram 

 

 The design process will be done in two phases. The first phase is to calculate the value of 

the feedback gain matrix K, and the second phase is to determine the observer gain matrix Ke. 

The value of the matrix Ke is calculated by Ackermann‟s Formula for observers as 

 

   

1

2

3

0

0

0

1

e

C

CA
K A

CA

CA





   
   
   
   
   
    

       (8.22) 

where the matrix  
 

1 2 3 4   .
T

e e e e eK K K K K
 

Now we need to choose the observer gain Ke. Since we want the dynamics of the observer to be 

much faster than the system itself, we need to place the poles at least five times farther to the left 

than the dominant poles of the system. The values of the desired poles of the observer are 

selected as 
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1

2

3

4

0.3333 0.4548

0.3333 0.4548

0.6667 0.9096

0.6667 0.9096

o

o

o

o

P j

P j

P j

P j

  

  

  

  

 

 

The values of matrices K and Ke at certain operating points are calculated by Ackermann‟s 

Formula. The values of matrix K were found in the previous section, and the values of matrix Ke 

are shown below 

t = 1 minute:              t = 20 minutes: 

1

1.2620

0.0017

22.4977

58.8582

eK

 
 

 
 
 
        

20

1.2620

0.0109

147.2340

385.2770

eK

 
 

 
 
 
 

 

t = 40 minutes:              t = 60 minutes: 

40

1.2620

0.0128

172.3436

451.0869

eK

 
 

 
 
 
   

      60

1.2620

0.0135

182.7124

478.3364

eK

 
 

 
 
 
   

t = 90 minutes:              t = 120 minutes: 

90

1.2620

0.0141

190.3134

498.4084

eK

 
 

 
 
 
        

120

1.2620

0.0144

194.3246

509.0897

eK

 
 

 
 
 
 
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t = 150 minutes:               t = 182 minutes: 

150

1.2620

0.0146

196.7916

515.7316

eK

 
 

 
 
 
        

182

1.2620

0.0147

198.5401

520.5064

eK

 
 

 
 
 
   

 

8.5  Individual Observer-Based State Feedback Controllers: 

 Non-adaptive observer-based state feedback controllers use a fixed controller for the 

entire control period and rely on its robustness to maintain control performance. For each 

individual observer-based state feedback controller with its gain matrices K and Ke found in the 

previous sections at operating points t = 1, 20, 40, 60, 90, 120, 150 and 182 minutes, the 

simulation was performed, and the glucose level for each patient was plotted. Based on the 

simulation results, it can be seen that under the individual observer-based state feedback 

controllers, the glucose level g(t) reaches the basal level within 60 minutes and stays at that level. 

By carefully analyzing the plots of the output, it is clear that the optimal graph is when the 

observer-based state feedback controller at operating point t = 20 minutes is used. It was noted 

that the graphs are very close to each other, and for that reason, only four graphs (randomly 

selected) are shown in Figure 8.3. 
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Figure 8.3 Observer-based state feedback controller output, glucose level g(t) 

at operating points t = 1, 20, 90 and 182 minutes 

 

8.6  Observer-Based State Feedback Controller for Nonlinear System: 

 The design for the linear system that was calculated in sections 8.4 and 8.5 is applied to 

the nonlinear system at operating point t = 20 minutes. The simulation diagram of the nonlinear 

system that defines the dynamics of the diabetic patient with the observer-based state feedback is 
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shown in Figure 8.4. The box labeled “subsystem (patient) 1” contains the nonlinear system of 

the diabetic patient. The simulation is performed, and the glucose level g(t) is plotted and shown 

in Figure 8.5. It is clear that the glucose level for the nonlinear system has the same high 

performance as that of the linear system. 

 

 

 Figure 8.4 Observer-based state feedback control wiring diagram 

for nonlinear system 

 

 

 

 

 



100 

 

 
 

Figure 8.5 Observer-based state feedback control output, glucose level g(t), 

for nonlinear system at operating point t =20 minutes 

 

8.7  Test and Verification: 

 For verification, the same control strategy that was stated in the previous sections is 

evaluated on two diabetic patients. The parameters values are shown in Table 8.1[27-29].  

 

Parameters Diabetic Patient #2 Diabetic Patient #3 

P1 0 0
 

P2 0.0038 0.0042 

P3 3.61x10
-6

 2.56x10
-6

 

i0 73 209 

g0 329 297 

 1.69x10
-3

 3.72x10
-3

 

h 119 154 

n 0.13 0.22 

gb 93 100 

ib 11 8 

 

Table 8.1 Diabetic patients #2 and #3 parameters values 

 

0 20 40 60 80 100 120 140 160 180 200

0

50

100

150

200

250

300

350

400

time [min]

g
(t

) 
[m

g
/d

l]

g(t)

Basal Level



101 

 

The simulation results of the two diabetic patients without the control system are shown in 

Figures 8.6 and 8.7 respectively. 

 

 
Figure 8.6 Output of the simulated system for diabetic patient #2 

 

 

 

 
Figure 8.7 Output of the simulated system for diabetic patient #3 
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 After injecting an amount of glucose in the two patient, the graphs of the figures 8.6 and 

8.7 show that the glucose levels of diabetic patients #2 and #3 go down for a short period of time 

and then start going up. The glucose levels suppose to come down to the basal level within two 

to three hours, but that did not happen. Thus the two persons are classified as diabetic patients. 

The control designs that were developed in the previous sections are applied here. The values of 

matrices K and Ke for diabetic patients #2 and #3 at certain operating points are calculated by 

Ackermann‟s Formula. The values are shown in Tables 8.2, and 8.3. 

 

Gain, K Diabetic Patient #2 Diabetic Patient #3 

K1 [–0.37    5450   0.12   – 0.46] [–0.81    7655   0.11   – 0.64] 

K20 [–2.22    5442   0.12   – 0.46] [–2.84    7633   0.11   – 0.64] 

K40 [–2.55    5443   0.12   – 0.46] [–3.02    7611   0.11   – 0.64] 

K60 [–2.66    5426   0.12   – 0.46] [–3.07    7588   0.11   – 0.64] 

K90 [–2.73    5414   0.12   – 0.46] [–3.08    7554   0.11   – 0.64] 

K120 [–2.75    5402   0.12   – 0.46] [–3.07    7519   0.11   – 0.64] 

K150 [–2.75    5390   0.12   – 0.46] [–3.04    7484   0.11   – 0.64] 

K182 [–2.75    5377   0.12   – 0.46] [–3.01    7448   0.11   – 0.64] 

 

Table 8.2 Controller gain matrix K at different operating points 
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Gain, Ke Patient #2 Patient #3 

Ke1 

 1.3663

  0.0016

  59.4194

  58.2341

 
 


 
 
 
 

 

 1.2759

  0.0023

  55.8586

  126.3840

 
 


 
 
 
 

 

Ke20 

 1.3663

0.0096

355.5025

348.4343

 
 


 
 
 
 

 

 1.2759

  0.0081

  197.1173

  446.1300

 
 


 
 
 
 

 

Ke40 

1.3663

0.0111

409.1316

401.0253

 
 


 
 
 
 

 

 1.2759

  0.0087

  211.1101

  477.9540

 
 


 
 
 
 

 

Ke60 

1.3663

0.0117

430.7749

422.2694

 
 


 
 
 
 

 

 1.2759

  0.0089

  216.1793

  489.5925

 
 


 
 
 
 

 

Ke90 

1.3663

0.0121

446.4994

437.7294

 
 


 
 
 
 

 

 1.2759

  0.0090

  219.6407

  497.6747

 
 


 
 
 
 

 

Ke120 

1.3663

0.0123

454.7757

445.8901

 
 


 
 
 
 

 

 1.2759

  0.0091

  221.3588

  501.8151

 
 


 
 
 
 

 

Ke150 

1.3663

0.0124

459.9226

450.9343

 
 


 
 
 
 

 

 1.2759

  0.0092

  222.3589

  504.3313

 
 


 
 
 
 

 

Ke182 

1.3663

0.0125

463.5094

454.5520

 
 


 
 
 
 

 

 1.2759

  0.0092

  223.0300

  506.1187

 
 


 
 
 
 

 

 

Table 8.3 Observer gain matrix Ke at different operating points 

 

 

As in the previous sections, for each individual observer-based state feedback controller with its 

gain matrices K and Ke at t = 1, 20, 40, 60, 90, 120, 150 and 182 min, the simulation was 
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performed on the nonlinear systems that describe the dynamics of both diabetic patients #2 and 

#3. The graphs of the glucose levels are shown in Figures 8.8 and 8.9 respectively. 

 

 
Figure 8.8 Observer-based state feedback control for nonlinear system patient #2 

 

 

 
Figure 8.9 Observer-based state feedback control for nonlinear system patient #3 
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8.8  Control Design Investigation and Analysis: 

  The control design that was applied to the nonlinear system at maximum overshoot rate 

of 10% is repeated here but at various rates. The following maximum overshoot rates of 1%, 2%, 

3%, 5%, and 8% are analyzed and investigated. The poles of the controllers and observers at 

operating points t = 1, 20, 40, 60, 90, 120, 150 and 182 minutes were calculated for each 

maximum overshoot, and the glucose levels were plotted. The graphs show that the best result is 

when using the observer-based state feedback controller at operating point t = 20 minutes, which 

was the same result that was concluded in section 8.5. The graphs of the glucose levels, g(t), and 

the steady state zone at operating point t = 20 minutes at various maximum overshoot values are 

shown in Figure 8.10. The steady state zone is defined to be within 5% of the basal level, (94 

mg/dl to 104 mg/dl). The graphs were compared to each other to determine the time it takes the 

glucose level g(t) to enter the steady state zone, and the results are listed in Table 8.4. 

 

Percentage 

Maximum 

Overshoot 

Time to enter 

steady state zone 

(min) 

Time to reach 

steady state 

(min) 

1 95 110 

2 82 100 

3 75 80 

5 61 72 

8 49 55 

10 44 47 

 

Table 8.4 Steady state zone settling times 
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Figure 8.10 Observer-based state feedback control output, glucose level g(t), for nonlinear 

system at operating point t =20 minutes for various maximum overshoots 
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 By comparing the result of Table 8.4 and the graphs of Figure 8.10, it is obvious to 

conclude when the maximum overshoot is small, the settling time (the time it takes the glucose 

level to enter the steady state zone and stay inside that zone) is long. But when the maximum 

overshoot is large, the settling time is short.  
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CHAPTER 9 

CONCLUSION 

 

A detailed research has been conducted on type “I” diabetic patient to control the glucose 

levels and bring it down to the patient basal level. Specific solutions and design have been 

developed to improve performance on insulin control for type “I” diabetic patient. The following 

gives an executive summary of the contributions and results of this research 

 

 In this research, one differential equation that represents a first order infusion pump was 

added to the set of the differential equations of the minimal model. The role of the pump 

is to inject the required amount of insulin to help the glucose level to come down to basal 

level within 2-3 hours after meal.  

 The Nonlinear Least Squares Method with Levenberg-Marquardt Algorithm was used to 

estimate the unknown parameters of the differential equations that describe the dynamic 

of diabetic patient. 

 The simulation diagram of the proposed mathematical model with the estimated 

parameters was constructed. The output (glucose) of the simulation diagram was 

monitored and recorded. The error between the simulated data and the experimental data 

was calculated to be very small. 

 Typical PID controllers were not sufficient to meet the design specification of the glucose 

level control problems. This is mainly due to the nonlinear nature of patient dynamic 

models and limited robustness of the PID controllers. An adaptive control that switches 

controllers based on operating conditions was developed to potentially enhance the 
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control performance. The regime-switching control scheme was carefully designed to 

ensure that the control specifications were met and the number of PID controller was 

reduced to four controllers without jeopardizing the enhanced performance of the system. 

 A simplified control scheme using one observer-based state feedback controller was 

presented. The control scheme was able to enhance the performance of the system and 

meet the design specifications. 

 A comparison between the regime-switching control scheme using PID controllers and 

the individual observer-based state feedback controller scheme was investigated. 

However, the observer-based state feedback control scheme eliminated the switching 

strategy that was required in the PID design, and the adaptive control components such as 

the “switching case”, the “if action case system”, the “8-intput-1-output merge” block, 

and the eight manual cut-off switches were no longer needed. The observer-based state 

feedback control scheme reduced the complexity of the control circuit and reduced the 

cost to build up the circuit. 

 The control design was investigated by comparing the results of the control scheme at 

various maximum overshoot rates. It was noted that when maximum overshoot was 

small, the settling time was longer. But when the maximum overshoot was large, the 

settling time was short.   
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ABSTRACT 

IDENTIFICATION, STATE ESTIMATION, AND ADAPTIVE CONTROL OF TYPE ‘I’ 

DIABETIC PATIENTS 

 

by 
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Advisor: Dr. Le Yi Wang 

Major:    Electrical Engineering 

Degree:   Doctor of Philosophy 

 During the past few decades, biomedical modeling techniques have been applied to 

improve performance of a wide variety of medical systems that require monitoring and control. 

Diabetes is one of the most important medical problems. Most of the existing techniques assume 

the system to be time-invariant, and the original minimal model was modified by deleting some 

important parameters. In this research, the original minimal model that consists of three 

differential equations is used. A new differential equation represents a first order infusion pump 

is added to the set of the differential equations of the minimal model. The Nonlinear Least 

Squares Method with Levenberg-Marquardt Algorithm is used to estimate the unknown 

parameters of the differential equations. A new regime-switching control scheme using 

Proportional-Integral-Derivative (PID) controllers is designed to ensure that the control 

specifications are met. By comparing different switching schemes, we show that switched PID 

controllers can improve performance, but frequent switching of controllers is unnecessary. These 

findings lead to a control strategy that utilizes only a small number of PID controllers in this 

scheduled adaptation strategy. The regime-switching scheme proves that adaptive control can 
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potentially improve system performance. But it increases control complexity and may create 

further stability issues. This research investigates patient models and presents a simplified 

control scheme using observer-based state feedback controller that is able to enhance the 

performance of the system and meet the design specifications. By comparing different control 

schemes, it shows that a properly designed observer-based state feedback controller can 

eliminate the adaptation strategy that PID regime-switching control scheme needs to improve the 

control performance. Also, the observer-based state feedback control scheme reduces the 

complexity of the control circuit by eliminating the adaptive control switching components and 

reduces the cost to build up the circuits.  
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