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Bayesian Analysis of Location-Scale Family of Distributions 
Using S-PLUS and R Software 

 
Sheikh Parvaiz Ahmad Aquil Ahmed Athar Ali Khan 

University of Kashmir, 
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The Normal and Laplace’s methods of approximation for posterior density based on the location-scale 
family of distributions in terms of the numerical and graphical simulation are examined using S-PLUS 
and R Software. 
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Introduction 
A parametric location-scale model for a random 
variable y on (-∞ ,∞) is distributed with pdf of 
the form 
 

1 yp( y; , ) f , y− μ μ σ = − ∞ < < ∞ σ σ   
(1.1) 

 
where )( ∞<<−∞ μμ  is a location parameter 

and 0>σ  is a scale parameter (not necessarily 
mean and standard deviation). This family can 
also be written as 
 

zy σμ +=                      (1.2) 
 

where 
σ

μ−= yz is the standardized variate 

with density f(z), David (1981). A few important 
models, namely, normal, logistic and extreme 
value are some important members of the 
location-scale family. 
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Bogdanoff and Pierce (1973) analyzed 

an extreme value model treating non informative 
priors for location and scale parameters. 
Stavrakakis and Drakopoulos (1995) and 
Galanis, et al. (2002) deal with an extreme value 
model with Bayesian statistics. Sinha (1986) and 
Khan (1997) also cite several references for non-
normal f(z). 
 
Bayesian Analysis when Both Parameters μ and 
σ  Are Unknown 

Suppose that n observations 

),,,( 21 n
T yyyy =  can be regarded as a 

random sample from a location-scale family of 
models in (1.2), but both σμ and  are 
unknown; in terms of general notation 

),( σμθ =T , the likelihood function is given by 
 

∏
=

=
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i
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),|(),|( σμσμ  

 
The log-likelihood is defined as 
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or equivalently 


=

=
n

i
ill

1

),( σμ                  (2.1) 

 

where σlog)(log −= ii zfl  and 
σ

μ−
= i

i
y

z . 

Following the standard approach of Box 
and Tiao (1973), assume that a priori μ and σ  
are approximately independent, so that 
 

)()(),( σμσμ ppp ≅               (2.2) 
 
where p(μ) and p(σ) are priors for μ and σ, 
respectively. Using Bayes theorem, the posterior 
density of )|,( yp σμ  is given by 
 

∏
=

n

i
i ppypyp

1

)()(),|()|,( σμσμασμ  

or 

)()()()|,(
1

1 σμσασμ ppzfyp
n

i
i 






∏
=

−  

(2.3) 
 
The joint posterior density of μ and σ  is 
assumed to contain all information required in 
the statistical analysis (e.g., Box & Tiao, 1973), 
therefore, the main job remains to study the 
different features of ).|,( yp σμ The posterior 
mode can be obtained by maximizing (2.3) with 
respect to μ and σ . To formalize this, define 
 

)|,(log),( ypl σμσμ =∗  
thus, 
 

l ( , ) l( , ) log p( ) log p( ).∗ μ σ = μ σ + μ + σ  
(2.4) 

 
The maximization of )|,( yp σμ  is equivalent 

to maximizing ),( σμ∗l  with respect to ),( σμ . 
To apply the Newton-Raphson technique, partial 

derivatives of ),( σμ∗l  are needed and some 
notations must be defined for simplification 
purposes. For example 
 
 

2 2

2 2

2 2
 

l l l ll , l , l , l ,

l ll , and l .
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where )()( xDfxf =′  and 

[ ] ),()( 2 xfDxf =′′ D  stands for differential 
operator. Consequently, the score vector of log-
posterior 
 

TllU ),(),( ∗∗= σμσμ  

 
and Hessian matrix of log-posterior, that is, 
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σσσμ

μσμμσμ
ll

ll
H ),(  

 

thus, the posterior mode ),(
∧∧
σμ  can be obtained 

from iteration scheme 
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Consequently, the modal variance Σ can be 
obtained as 

),(),( 11
∧∧

−
∧∧

− −= σμσμ HI . 
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For drawing an inference about μ and σ  
simultaneously, the joint posterior p( , | y )μ σ is 
used. It is preferable to use approximations to 
this posterior as given below: 
 
Normal Approximations 

A bivariate normal approximation of 
)|,( yp σμ , is 

 







≅

∧∧
−

∧∧
),(,),()|,( 1

2 σμσμσμ INyp T  

(2.6) 
 
Similarly, the Bayesian analog of likelihood 
ratio criterion is 
 

2
2)],(),([2 χσμσμ ≈−−

∧∧
∗∗ ll         (2.7) 

 
where the symbol ≈  means approximately 
distributed as. Defining =),( σμW

)],(),([2
∧∧

∗∗ −− σμσμ ll  using ),( σμW  as a 
test criterion in hypothesis testing and 
construction of the credible region (confidence 
interval in non-Bayesian terminology).  
 
Laplace’s Approximation 

Laplace’s approximation of )|,( yp σμ  
can also be written as 
 

1
1 22

p( , | y )

( ) | I( , )| exp[ l ( , ) l ( , )]
∧ ∧ ∧ ∧

− ∗ ∗

μ σ ≅

π μ σ μ σ − μ σ
 

(2.8) 
 
The Marginal Inference 

The marginal Bayesian inference about 
μ and σ  is based on marginal posterior densities 
of these parameters. The marginal posterior for 
μ can be obtained after integrating out 

)|,( yp σμ  with respect to σ, that is, 
 


∞

=
0

)|,()|( σσμμ dypyp  

 
Similarly, marginal posterior of σ  can be 
obtained as 

p( | y ) p( , | y )d .
∞

−∞
σ = μ σ μ  

 
For normal likelihood )|,( yp σμ  and 

non-informative prior ,
1

),(
σ

ασμp  it can be 

shown that )|( yp σ  is the inverted χ-
distribution (Box & Tiao, 1973; Zellener, 1971). 
But if either assumption of normality is extended 
to other members of location scale family or the 
prior is changed then closed form expressions 
cannot be obtained and approximations must be 
relied upon (Khan, 1997). In practice, the Gauss-
Hermite quadrature (Naylor & Smith, 1982) can 
be used to find accurate approximations of 

)|( yp μ  and )|( yp σ , however, following 
simple approximations is recommended. 
 
Normal Approximation 

The normal approximation of marginal 
posterior )|( yp μ  is: 

),()|( 1
111
−

∧
= INyp μμ             (3.1) 

 
In addition, the Bayesian analog of likelihood 
ratio criterion can also be defined as a test 
criterion based on (3.1) as 
 

2
111 )()( χμμμμ ≈−−

∧∧
IT          (3.2) 

 
Laplace’s Approximation 

The marginal posterior density 
)|( yp μ  can alternatively be approximated by 

 

1

2

2

p( | y )

| I( , )| exp[ l ( , ( )) l ( , )]
| I( , ( ))|

∧ ∧
∧ ∧ ∧

∗ ∗
∧

μ ≅

 μ σ  μ σ μ − μ σ
 π μ σ μ 

(3.3) 
 
Similarly, )|( yp σ  can be approximated and 
results corresponding to normal and Laplace’s 
approximation can be written as 
 

),()|( 1
221
−

∧
= INyp σσ              (3.4) 
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or equivalently, 
 

2
122 )()( χσσσσ ≈−−

∧∧
IT         (3.5) 

 

1

2

2

p( | y )

| I( , )| exp[ l ( ( ), ) l ( , )]
| I( ( ), )|

∧ ∧
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∗ ∗
∧

σ ≅

 μ σ  μ σ σ − μ σ
 π μ σ σ 

(3.6) 
 
Bayesian Analysis of Logistic Distribution 

The pdf of the logistic distribution is 
given by 
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The likelihood function is given by 
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=
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i
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And the log-likelihood is defined as 
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where 
σ

μ−
= i

i
yz . 

 
Taking partial derivatives with respect to μ and 
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Following the standard approach of Box and 
Tiao (1973), Gelman, et al. (1995), it is assumed 
that the prior μ and σ  are approximately 
independent so that 
 

)()(),( σμσμ ppp ≅             (4.2) 
 
where )()( σμ pp  and )(σp  are priors for μ  

and σ . Using Bayes theorem, the posterior 
density )|,( yp σμ  is 
 

∏
=

n

i
i ppypyp

1

)()(),|()|,( σμσμασμ  

(4.3) 
 



BAYESIAN ANALYSIS OF LOCATION-SCALE DISTRIBUTIONS USING S-PLUS AND R 

572 
 

and the log-posterior is given by 
 

1

n

i
i

log p( , | y )

log p( y | , ) log p( ) log p( )
=

μ σ =

μ σ + μ + σ∏  

(4.4a) 
or 
 

)(log)(log),(),( σμσμσμ ppll ++=∗  
(4.4b) 

 

For a prior 1)()(),( =≅ σμσμ ppp , μμ ll =∗ , 

σσ ll =∗ , μσμσ ll =∗ , σμσμ ll =∗ , μμμμ ll =∗  and 

σσσσ ll =∗ . The posterior mode is obtained by 

maximizing (4.4) with respect to μ and σ. The 
score vector of the log posterior is given by 
 

TllU ),(),( ∗∗= σμσμ  

 
and the Hessian matrix of the log posterior is 
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consequently, the modal variance Σ can be 
obtained as 

),(),( 11
∧∧

−

∧
∧

− −= σμσμ HI . 
 
For drawing inferences about μ and σ  
simultaneously, the joint posterior (7.3) is used. 

Using normal approximation, a bivariate 
normal approximation of (7.3) can be written as 
 







≅

∧∧
−

∧∧
),(,),()|,( 1

2 σμσμσμ INyp T  

 
Similarly, a Bayesian analog of likelihood ratio 
criterion is 
 

2
2),(),(2 χσμσμ ≈



 −−

∧∧
∗∗ ll  

 
Using Laplace’s approximation, )|,( yp σμ  
can be written as 
 

1
1 22

p( , | y )

( ) | I( , )| exp[ l ( , ) l ( , )]
∧ ∧ ∧ ∧

− ∗ ∗

μ σ ≅

π μ σ μ σ − μ σ
 

 
The marginal Bayesian inferences about 

μ and σ  are based on the marginal posterior 
densities of these parameters, and the marginal 
posterior for μ can be obtained after integrating 
out )|,( yp σμ  with respect to σ, that is 
 


∞

=
0

)|,()|( σσμμ dypyp  

 
Similarly, the marginal posterior of σ  can be 
obtained as 
 


∞

∞−
= μσμσ dypyp )|,()|( , 

 
thus, normal approximation of the marginal 
posterior )|( yp μ  is 
 

),()|( 1
111
−

∧
= INyp μμ . 

 
The Bayesian analog of likelihood ratio criterion 
can also be defined as a test criterion as 
 

2
111 )()( χμμμμ ≈−−

∧∧
IT  

 
and Laplace’s approximation of marginal 
posterior density )|( yp μ  can be given by 
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1

2

2

p( | y )

| I( , )| exp[ l ( , ( )) l ( , )]
| I( , ( ))|

∧ ∧
∧ ∧ ∧

∗ ∗
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 μ σ  μ σ μ − μ σ
 π μ σ μ 
 
Similarly, )|( yp σ  can be approximated with 
results corresponding to normal and Laplace’s 
approximation can be written as 
 

),()|( 1
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∧
= INyp σσ  

 
or equivalently, 
 

2
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Numerical and Graphical Illustrations 

Numerical and graphical illustrations are 
implemented using both S-PLUS and R software 
for Logistic distribution. These illustrations are 
intended for the purpose of showing the strength 
of Bayesian methods in practical situations. The 
posterior mode and standard errors of 
parameters μ  and σ  of logistic distribution are 
presented in Table 4. A graphical display for 
comparing the posterior of μ  using the Normal 
and Laplace approximations are shown in 
Figures 1 to 3 and a comparison for the posterior 
of σ  is displayed in Figures 4 to 6. The graph 
shows that the two approximations are in close 
agreement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: A Summary of Derivatives of Log Likelihoods 
Distributions 
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Table 2: A Summary of Prior Densities for Location Parameter μ 

Name of 
Density 
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Table 3: A Summary of Prior Densities forσ 

Name of 
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Table 4: Posterior Mode and Posterior Standard Error of Parameters of Logistic Distribution 
with Different Priors 

Prior 
Posterior 

Mode 
μ 

Posterior 
Standard Error 

μ 

Posterior 
Mode 
σ 

Posterior 
Standard Error 

σ 

1 168.63355 2.679672 58.65997 1.320980 

1/sigma 168.62814 2.678635 58.63024 1.319912 

1/(mu*sigma) 168.58558 2.678692 58.62837 1.319845 

1/(mu*sigma)^2 168.53766 2.677714 58.59681 1.318714 

 
 
 
 

Figures 1-3: Comparing Normal and Laplace's Approximation for μ of Logistic 
Distribution for Various Priors in S-PLUS and R 
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Figure 2: Comparison between Normal and Laplace Approximations 

 
 
 
 

Figure 3: Comparison between Normal and Laplace Approximations 
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Figures 4-6: Comparing Normal and Laplace’s Approximation for σ of Logistic Distribution for 
Various Priors in S-PLUS and R 

 
Figure 4: Comparison between Normal and Laplace Approximations 

 
 
 

Figure 5: Comparison between Normal and Laplace Approximation 
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