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Chapter 1 

Introduction 

     The revolutionary idea of exploiting quantum confinement effects by attenuating the size of 

bulk materials to nanoscale dimensions has led to a new era of materials for applications such as 

photovoltaics, sensing, light emitting diodes (LEDs) and thermoelectrics. However, efficient 

ways of assembling nanoparticles into functional devices remains an unfulfilled need. One 

important area where the development of nanostructures has become important is in the creation 

of improved thermoelectric materials. Accordingly, the goal of this dissertation study is to create 

nanostructures of materials that in bulk form are good thermoelectric materials, with the help of 

sol-gel assembly as well as nanocomposite formation, and evaluate their thermoelectric 

properties. This Chapter will describe background information on thermoelectrics; and the 

advantages of semiconductor nanocrystals for such applications, followed by a summary of 

nanoparticle assembly methods with an emphasis on sol-gel methodology. The properties of 

thermoelectrically-relevant lead and bismuth chalcogenide nanoparticles, especially PbTe and 

Bi2Te3, along with their synthesis and applications will be covered. Finally, the thesis statement 

and an outline of the dissertation will be presented. 

1.1 Thermoelectrics 

      As the world population increases, the demand for energy increases. It is predicted that our 

regular sources of energy, fossil fuels, natural gas and coal, are going to be exhausted in the next 

few generations.
1, 2

 Moreover, these energy sources are detrimental to our environment. Thus, the 

need for renewable and greener energy sources has become a matter of urgency. One of the 

greener technologies that has received considerable attention over the past ten years is 



2 

 

thermoelectric energy conversion. Thermoelectric materials (TE) are those that can convert heat 

into electricity and vice versa.
2
  

1.1.1 Seebeck and Peltier Effects 

      The Seebeck and Peltier effects are the central concepts behind thermoelectrics. When two 

dissimilar materials are joined in a circuit and their points of contact are at different 

temperatures, a voltage difference develops across the junction. The ratio of the voltage 

difference (ΔV) to the temperature difference (ΔT) is called the Seebeck coefficient, S or the 

thermopower, as given by equation (1.1).
3, 4

 

                                                                            
  

  
                                                                

 

      This effect was observed by Thomas Johann Seebeck in the early 1800’s and hence was 

termed the Seebeck effect. The sign of S (negative or positive) reflects the majority charge 

carriers in the system. If S is negative, the majority charge carriers are electrons, characteristic of 

n-type doped materials; whereas if S is positive, the majority charge carriers are holes, 

characteristic of p-type doped materials. The value of S is an intrinsic property of a material. 

Generally, semiconductors show high Seebeck coefficients relative to metals. In semiconductors, 

both the concentration of free charge carriers and their kinetic energies are dependent on 

temperature. When a temperature gradient is applied across a semiconductor, the carrier 

concentration as well as the velocity of charge carriers at the hot end becomes higher relative to 

the cold end. This results in diffusion of charge carriers from the hot end to the cold end, leading 

to build up of potential difference across the two ends of the semiconductor. The value of S in 

semiconductors can be in hundreds of μV/degree. However for metals, the concentration and 

kinetic energy of free charge carriers remain constant over a broad range of temperature, leading 
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to minimal diffusion of charge carriers across the metals on application of a temperature 

gradient. This causes negligible build up of potential difference and hence low values of S, 

typically a few μV/degree.
3
  

      Around 1834, Jean Peltier, a watchmaker, found that when a current (I) is passed through two 

dissimilar materials at a constant temperature, heat is either generated or absorbed (depending 

upon the direction of flow of I), at the junction of the materials. This effect is called Peltier effect 

and is given by equation (1.2).
3
 

                                              Q = Π × I                                                (1.2) 

where, Q is the rate of flow of heat and Π is the Peltier coefficient. The Peltier and Seebeck 

coefficients are related to each other by equation (1.3).
3
 

                                               Π = S × T                                               (1.3)   

where, T  is the absolute temperature.  

1.1.2 Applications and Efficiency of TE Materials 

    Compared to traditional cooling and power generation systems, TE devices have several 

advantages. They are highly reliable, with a long lifetime; they are noise free, causing no noise 

pollution; they require no moving mechanical parts as they use electrons and holes as charge 

carriers for their performance; and most importantly, they are environmental friendly as they use 

no toxic gases.
2, 5

 Figure 1.1 shows a TE module consisting of both p- and n- doped 

semiconductor material connected through wires. The same module is used for both power 

generation and refrigeration.
1
 When a current is passed through the TE module, a temperature 

gradient develops and heat is absorbed onto the cold side and rejected at the heat sink; achieving 
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refrigeration mode; whereas, when temperature gradient is applied across the same TE module, a 

voltage develops, which generates current across the device and thus directly converts heat into 

electricity. TE devices are being utilized in several applications, such as radioisotope 

thermoelectric generators (RTGs) for space probes, where heat generated from radioisotope 

decay (usually plutonium-238) is converted into electricity via a TE generator. Considerable 

effort has been employed by the automotive industry to convert heat dissipated from vehicles 

into useful electrical energy via TE generators, but these studies are still in their infancy. TE 

devices have been used for heating and cooling the seats of cars.
1, 6

 Despite several advantages of 

TE devices, they have only been applied to niche applications and are not widespread. The 

problem lies in the fact that the efficiency of the TE devices is relatively low as compared to the 

commercially available refrigerators and power generators.
2
     

 

 

 

 

Figure 1.1 Diagram of p- and n- doped material joined in circuit. The same material could be 

used for both power generation and also for refrigeration, adapted from literature.
1
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      The efficiency of a thermoelectric material is given by its figure of merit ZT, a dimensionless 

unit. ZT depends on several factors (equation (1.4)) Seebeck coefficient S, electrical conductivity 

σ, thermal conductivity κ and the absolute temperature T.
4
 

                                                                        
  σ

κ
                                                                                  

      In order to have high ZT, the S
2
σ term, also called the power factor, should be high, and at 

the same time, the κ term should be low. However, the parameters S, σ and κ are highly 

correlated and it is a challenge to individually alter one parameter without impacting the others. 

The Seebeck coefficient, S, depends on the carrier concentration of the material, n, which in turn 

is associated with electrical conductivity, σ, as depicted in equations 1.5 and 1.6,
5
 where, KB = 

Boltzmann constant, e = electronic charge, h = Planck’s constant, m* = effective mass of the 

carrier, T = absolute temperature, n = carrier concentration and μ = carrier mobility. On the other 

hand, the total thermal conductivity (κ) term in equation 1.4 consists of the electronic 

contribution, κe, as well as the lattice contribution, κl, giving κ = κe + κl. The electronic thermal 

conductivity, κe, is associated with the heat conduction through electrons whereas the lattice 

thermal conductivity, κl, is associated with heat conduction through quantized lattice vibrations, 

called phonons.  
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      The efficiency, η, of a power generator operating at two different temperatures, Th and Tc 

(hot and cold side, respectively), depends on the figure of merit, ZT, as shown in equation (1.7),
1
 

where Tm is equal to (Th + Tc)/2.    
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Thus, η is proportional to (1+ZTm)
1/2

, and only if ZT has a very high value, can it approach the 

efficiency of Carnot engines, which is ΔT/Th. As mentioned before it is a challenge to 

individually alter the parameters (S, σ and κ), thus the materials of choice for TE are limited. 

Metals have high σ but also have high κ, whereas glasses have low κ but also have low σ. Up 

until now, the best TE materials have been found to be doped semiconductors with high charge 

carrier concentrations (the optimized value of n lies between 10
19

 to 10
21

 carriers/cm
3
).

5
 These 

materials show enhanced σ due to the presence of high carrier concentrations, and at the same 

time low κl due to scattering of heat carrying phonons by the dopants (discussed in detail in later 

sections), enhancing the overall ZT of the material. Additionally, κl can be further reduced by 

using high atomic weight elements like Bi, Te, Pb, which cause reduced lattice vibrations.
7
 In my 

dissertation research, PbTe and Bi2Te3 phases were specifically targeted as they show excellent 

ZT values in the bulk form and find use in a range of devices for niche products.
1
 For example, 

bulk Bi2Te3 achieves ZT ≈ 1 at 320 K (S = 225 μV/K, ρ = 1 mΩ·m and κ = 1.5 W/ (m·K)) for an 

optimized carrier concentration of n = 10
19

 cm
-3

,
8
 and bulk PbTe acheives a ZT of 0.4 at 300 K 

(S = 265 μV/K, ρ = 0.0037 mΩ·m and κ = 2.0 W/ (m·K)) for n = 10
19

 cm
-3

. However, in order to 

use TE materials as cost-effective alternative energy sources, ZT should be close to or higher 

than 3.
9
 

1.1.3 Principles Underlying Enhancement of ZT for Materials 

      There are several approaches that have been suggested for enhancing the ZT of a material. As 

discussed in the previous section, metals and glasses are not ideal choices for TE applications but 

each had aspects that are ideal.  Glen Slack,
10

 came up with a new concept for materials that can 
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be used in TE, termed as the phonon glass-electron crystal concept (PGEC), which suggests that 

the lattice thermal conductivity of a material could be reduced if the material acts like glass 

(amorphous), resulting in large phonon scattering, and at the same time, acts like a crystal, 

minimizing the electron scattering and thus leading to enhanced electrical conductivity.  

      The effect of electron and phonon scattering on ZT can be explained by taking into account 

the wavelength (λ) and mean free path length (l) associated with the transport of electrons (or 

holes) and phonons.
3, 7

 Though both electrons and phonons are scattered by all lattice distortions 

in the crystal, they scatter to different extents. This difference in the degree of scattering for 

electrons and phonons arises due to the difference in their wavelengths. Electrons have longer 

wavelengths whereas phonons consists of a spectrum of wavelengths varying from short to mid 

to long.
3
 Due to the longer wavelength of electrons relative to the  phonons, the electrons are 

scattered to a very small degree on defects due to distortions of atomic distances whereas short 

wavelength phonons are easily scattered by all such lattice distortions. The mid to long 

wavelength phonons are scattered only when λph, the phonon mean free path, is between 1≤ λph 

≤100 nm.
3
 The scattering of heat carrying phonons leads to reduction in κl, whereas the lower 

degree of scattering of electrons enables large electrical conductivities, which in turn increase the 

power factor in PGEC materials. Examples of PGEC materials includes those having crystalline 

cage-like structures or voids that can be partially or completely filled by guest atoms, also called 

“rattlers”, that act as phonon scattering centers leading to enhanced ZT.
1, 11

 These include the 

skutterudites (CoAs3-type), which have a linked octahedron cage-like structures with vacancies 

that can be completely or partially filled with atoms.
11

 Sales et al., have reported ZT of 1.0 at 800 

K for filled skutterudite materials like CeFe4-xCoxSb12 and LaFe4-xCoxSb12, and predicted that 

with proper optimization of carrier concentration, the ZT of these materials could reach a value 
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of 1.4.
12

 Subramanian and coworkers
13

 have prepared CoSb3 partially filled with indium, where 

they have observed a ZT of 1.2 at 525 K. Another class of materials that exploits the PGEC 

model are the clatharates, which are periodic solids of tetrahedrally bonded atoms (like Ge, Si or 

Sn) forming cage like structures that again allows filling with “rattlers” leading to reduction in 

κl.
1
 For example, Saramat and coworkers

14
 have observed a record high ZT value of ~ 1.35 at 

900 K for crystals of Ba8Ga16Ge30 (as compared to other clatharates in the literature),
15

 due to 

low values of  lattice thermal conductivity (0.12 W/(cm·K) at 900 K) attributed to Ba
2+

 rattlers, 

but without much alteration in electronic properties. Unfortunately, the PGEC model is unlikely 

to produce ZT’s greater than 3. 

       

 

 

 

 

 

Figure 1.2 Electronic density of states versus energy plot depicting a) 3D semiconductors, b) 2D 

quantum well, c) 1D quantum wire, and d) 0D quantum dot; adapted from the literature.
2
 

      A major breakthrough came when Dresselhaus and coworkers suggested that the ZT of a 

material could be improved by nanostructuring.
2
 There are two contributing factors that help 

improve ZT in nanostructures. First, quantum confinement effects (discussed in section 1.2) in 

nanostructured materials leads to the formation of discrete energy levels (Figure 1.2), resulting 

in increased density of states (DOS) at the Fermi level. The increased DOS near the Fermi level 

implies more energy states available for electrons to reside near the Fermi level, hence 
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facilitating the carrier transport for conduction and resulting in increased thermoelectric power 

factor, (S
2
σ), and thus ZT of the material. Secondly, the presence of interfaces in the 

nanostructures can serve as scattering centers for heat carrying phonons, decreasing the thermal 

conductivity of the system, resulting in enhanced ZT.
2, 16, 17

  

1.2 Semiconductor Nanocrystals 

      As mentioned previously, the materials used thus far that show enhanced ZT are 

semiconductors because they possess unique properties. In a bulk semiconductor, the energy 

levels form a continuum or “band” due to the overlap of orbitals from the large number of 

constituent atoms. The higher energy levels occupied by electrons are represented as the valence 

band (VB) whereas the empty, or lowest unoccupied, energy levels are denoted as the conduction 

band (CB). The energy difference between the top of the VB and the bottom of the CB is called 

the band gap energy (Eg) as shown in Figure 1.3.
18

 This Eg can be considered conceptually 

similar to the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied 

molecular orbital) gap of individual molecules. At absolute zero (0 K), the highest filled energy 

level is known as the Fermi level and the energy associated with it is called the Fermi energy, 

Ef.
19

 In metals, the VB and CB overlap, resulting in no energy gap. At temperatures above 0 K, 

the electrons occupying energy levels near Ef have sufficient thermal energy to move to the 

empty energy levels above Ef. As a result, some energy levels above Ef are occupied while some 

below Ef are vacant. This enables the electrons near Ef to move freely and hence, show high 

electrical conductivity. On the other hand, for the case of insulators, the VB is full but is 

separated from the CB by a large band gap (Eg = 4 eV to 12 eV).
19

 This huge energy barrier 

makes it difficult to thermally or optically excite electrons from the VB to the CB, and hence 

results in low electrical conductivity. The band structure of a semiconductor lies in between that 

of a metal and an insulator, giving it unique properties. The band structure is actually similar to 
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that of an insulator but the Eg is smaller (~ 0.5 to 3.8 eV).
19

 Thus, it is easier to promote electrons 

from the VB (or near Ef) to the CB, leading to activated electrical conductivity.  

     

 

 

 

 

 

 

Figure 1.3 Band diagram of metals, semiconductors and insulators, showing the position of 

conduction band (CB) and valence band (VB), separated by band gap energy (Eg).  

      When stimulated by heat or light of sufficient energy (usually greater than Eg), the electrons 

in a semiconductor can be excited from the VB to the CB, leaving behind a hole in the VB. This 

leads to the formation of an electron-hole pair, called an exciton. The average distance between 

the electron and hole is termed as the bulk exciton Bohr radius. This electron and hole are 

attracted to each other by Columbic forces but on the application of external electric field, can be 

used to generate current in a device as they move in opposite directions in the CB and the VB, 

respectively.
18

 The Bohr radius is intrinsic to a material. For example, CdS has a Bohr radius of 

5.8 nm while PbTe has a Bohr radius of 50 nm.
20, 21

 As the size of the bulk semiconductor 

decreases below that of the natural Bohr radius of the exciton, the material is said to be in a 

quantum confined state (Figure 1.4). This occurs due to the splitting of the continuum of energy 
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levels or bands (VB and CB) into discrete energy levels as the number of atoms (atomic orbitals) 

decreases from that present in the bulk material. The result is an increase in band gap with 

decreasing particle size. As a result, the energy required to promote an electron from the ground 

state to the first excited state also increases in nanocrystals as the size decreases. This change can 

be seen as a blue shift in the absorption spectra for nanocrystals with respect to the bulk 

material.
18

 Because the band gap in nanocrystals can be changed by varying their size, their 

optical properties are size tunable.  

 

 

    

 

 

 

 

Figure 1.4 Band diagram of a semiconductor and corresponding semiconductor nanocrystals 

showing discrete energy levels and increased band gap.  

1.3 Nanostructures for Enhancing ZT 

      Recently, several researchers have tried to enhance the ZT of a material via nanostructuring. 

For example, proof of principle experiments in PbTe quantum well structures,
16

 PbSe0.98Te0.02/ 

PbTe quantum dot superlattices and Si/Ge superlattices
22

 (superlattices are periodic structure of 
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materials forming layers of several nm thickness) demonstrated that a ZT > 1 is possible. In the 

first two cases, the operable mechanism is the quantum confinement effect, which increases the 

density of states near the Fermi level and enhances the ZT, whereas in the case of the Si/Ge 

superlattices, the operable mechanism is the decrease in thermal conductivity due to acoustic 

(coherent lattice vibration) mismatch between the constituent components, which again enhances 

the overall ZT of the system. Researchers have also tried to improve ZT by effectively 

incorporating nanomaterials into bulk matrices with a size and spacing range of 1≤ λph ≤100 nm. 

Here λph is the phonon mean free path. These nanoinclusions are much more effective in 

scattering the mid- to long wavelength phonons that are not scattered by atomic substitutions. 

Examples include superlattices of PbSe nanodots embedded inside a PbTe bulk matrix, leading 

to an enhanced ZT of ~ 1.7 at 300 K as compared to the ZT of 1 for bulk PbTe.
23

 

      Another approach to nanostructuring is an in situ synthesis in which nanophases are created 

by exploiting an inherent phase segregation or decomposition in the alloy or the compound 

system under investigation. For example, the AgPbmSbTem+2 (LAST-m) family of compounds 

exhibit a ZT >1.5 due to inhomogeneities on the nanoscale.
24

 Recently, Kanatzidis and 

coworkers have shown that by endotaxially placing SrTe in an Na2Te-doped PbTe matrix, the 

thermal conductivity could be reduced and the power factor could be enhanced, achieving a ZT 

of 1.7 at 800 K.
25

 All these findings marked the start of the nanostructure era of TE research.  

1.3.1 Techniques Employed for Engineering Nanostructures for Thermoelectrics 

      Low dimensional materials like nanocrystals, nanowires and superlattices achieve enhanced 

ZTs via optimization of electronic as well as phonon properties, as mentioned in the previous 

section. On the one hand, the classical quantum confinement effect enhances the power factor by 

enhancing the density of states near the Fermi level and the additional interfaces and grain 
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boundaries decrease κl and thus enhance the overall ZT of the material. Researchers have 

employed various techniques to engineer nanostructures, including molecular beam epitaxy 

(MBE), matrix encapsulation and ball milling. In MBE, the elements or compound to be 

deposited are heated to high temperatures in order to produce gaseous atoms or vapors. These are 

then targeted in the form of beams (molecular beams) under high vacuum conditions onto a 

heated substrate where they diffuse and slowly condense to form uniform films. High vacuum 

conditions are crucial to maintain high purity of the growing films, which takes place slowly as 

this ensures uniform and epitaxial growth.
26

 This technique has been extensively used by the TE 

community in order to achieve enhanced ZT nanostructures. For example, Majumdar and 

coworkers have used MBE to incorporate ErAs nanoparticle layers epitaxially inside a 

In0.53Ga0.47As bulk matrix deposited on a semi-insulating InP substrate.
27

 They have observed 

significant reduction in thermal conductivity relative to the bulk matrix, leading to enhancement 

of ZT. This method produces uniform superlattice layers but it is slow, expensive and not 

practical for large scale production.  

      Another prominent technique, the matrix encapsulation method, uses phase segregation, in 

which one material (the minor phase) is encapsulated inside another material (the major phase) 

by the process of melting and cooling. Kanatzidis and coworkers have used this method to 

include nanometer sized Sb, Bi and InSb into a bulk PbTe matrix and observed a reduction in 

lattice thermal conductivity with respect to the pure bulk matrix.
28

 This method produces 

materials on a large scale, but enables very little control on the inclusion size and is also limited 

by the solubility of the component chemical constituents.  

      Ball milling is another method used by researchers to enhance ZT, where the material to be 

crushed is put into a ball mill (grinder) along with grinding medium (ceramic or stainless steel 
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balls). When the ball mill rotates, the materials are ground into fine particles by a series of 

crushing events from the grinding media. For example, Morelli and coworkers have prepared 

nanogranular samples of p-doped PbTe and finely grained samples of PbTe with EuTe inclusion 

(the EuTe inclusion was obtained by adding Pb0.92Eu0.08Te with the bulk PbTe) via ball milling 

leading to enhanced thermopower for both the samples relative to the bulk PbTe materials.
29

 In 

this process, controlling the grain boundary size remains a challenge. Moreover, this high energy 

process produces strain in the crystallites, which could change the intrinsic properties of the 

materials. 

      A number of groups have turned to nanoparticle assembly methods for generating 

nanostructures as these methods are less tedious and more cost effective. For example, self 

organization of colloidal nanocrystals can form periodic long range ordered structures 

(superlattices) via a solution based approach. Various nanocrystals have been assembled via this 

method, including the thermoelectrically relevant phases PbSe and PbTe. Murray and coworkers 

have used solution based deposition of ligand-capped PbSe nanodots for forming superlattices. 

Unfortunately, the electrical conductivity of the films was poor due to the presence of ligands at 

the nanoparticle–nanoparticle interface. An enhancement in electrical conductivity was achieved 

by treatment with hydrazine, resulting in replacement of the bulky insulating capping ligands 

(oleate groups) with hydrazine, reducing the interparticle spacing and hence increasing the 

overall charge transport of the material.
30

 In 2009, Talapin and coworkers showed that replacing 

the insulating capping ligands with molecular metal chalcogenides (MCCs) and further 

decomposing the MCC’s with gentle heat treatment led to increased electrical conductivity over 

that achieved by hydrazine treatment.
31

 Recently, the same group has shown the synthesis of 

colloidal lead and bismuth chalcogenide nanoparticles capped with antimony-chalcogenide 
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molecular complexes which could potentially be used as TE materials. The nanostructured thin 

films of p-type (Bi,Sb)2Te3 and n-type (Bi,Sb)2(Te0.9Se0.1)3 exhibited very high Seebeck 

coefficients and electrical conductivities of ± 200-250 μV/K and 450 S/cm, respectively. Thus, a 

power factor of 20.4 μW/(cm.K
2
) and a ZT of 0.7 was achieved.

32
 An alternative method to 

potentially improve the electrical conductivity in solution-derived nanostructures is to assemble 

particles so that the interfaces are composed of the same chemical constituents as the interior of 

the particle. This can be achieved via sol-gel methods. 

1.4 Sol-Gel Methodology 

      The sol-gel method, as the name suggests, comprises formation of a sol followed by 

generation of a gel network. In this process, the nanoparticles (sol) are connected in a 3-

dimensional fashion leading to an interconnected network with minimal or no organic ligands at 

the interface (gel), potentially leading to enhanced electron transport and greater thermal 

stability. The sol-gel method has been extensively studied for the synthesis of metal oxide gels 

such as SiO2 and TiO2. The typical sol-gel process, as applied to metal oxides, consists of 

hydrolysis and condensation steps. In the hydrolysis step, the metal oxide precursors, such as 

M(OR)n (where M = Si, Ti and OR = alkoxy group) are hydrolyzed to form hydroxylated metal 

centers with alcohols as the byproduct (equation 1.8). The hydroxylated metal centers are then 

condensed to generate polymers with the release of water and alcohol as byproducts (in the 

condensation step) by connecting the nanoscale particles through oxygen bridging (equation 1.9). 

The sol-gel process is catalyzed by acids or bases. When an acid is used as catalyst, the 

condensation step governs the rate of reaction (rate determining step), and thus the hydrolysis 

step is favored (accelerated). This results in the formation of a large number of hydroxylated 

species that eventually form a polymeric gel network with small pores. On the other hand, when 
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a base is used as catalyst, the hydrolysis is the rate determining step and condensation is favored, 

resulting in an interconnected network of particles that leads to larger pores.   

    

 

 

      

 

      The wet gel can be dried in a number of ways. In 1932, Kistler observed that when a wet gel 

was allowed to dry under ambient conditions, the gel would shrink considerably from its original 

size. This is because of the surface tension exerted by the liquid-vapor interface of the 

evaporating liquid, which leads to pore collapse and formation of a xerogel network (Figure 

1.5). On the other hand, when the same wet gel was subjected to supercritical drying where the 

liquid entrapped in the pore walls was brought to a supercritical state with no liquid-vapor 

interface, and hence no surface tension, it leads to an aerogel network where the original pore 

structure of the wet gel is retained.
33

 

      The aerogel and the xerogel are inorganic polymers composed of nanoscale building blocks. 

Aerogels have a large number of pores (voids) occupying ~ 90 % of the volume, and hence are 

less dense and have higher surface area than the xerogels. Also, aerogels consist of a broad range 

of pore sizes including micropores (< 2 nm), mesopores (2-50 nm) and even macropores (> 50 

nm) whereas the xerogels have a narrow pore range, consisting of only the micro and 

mesopores.
33-35

 Due to the open structure in the aerogels and the xerogels, they have been 

utilized in various applications such as catalysis, sensing and thermal insulation.
33, 35

  

(1.8) 

(1.9) 
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      With respect to thermal insulation, the thermal conductivity of the aerogel is very low when 

composed of insulating oxide, relative to the corresponding xerogels. As thermal insulators, 

these materials can be used to prevent parasitic heat loss in TE devices.
36

 They are used in IR 

detectors as a shield for blocking the heat generated from the substrates. They can also be used as 

coating for solar cells owing to their low refractive indexes.
35

  

       

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Pictorial representation of a wet gel network, an aerogel network formed after 

supercritical drying showing retention of the initial pore structure, and a xerogel network formed 

after ambient temperature and pressure drying showing pore collapse. 
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    Application of the sol-gel approach to the heavier group 16 elements chalcogenides is of 

interest due to the quantum confined properties exhibited by the semi-conducting nanoparticles. 

For example, materials such as lead chalcogenides PbS, PbSe and PbTe exhibit optoelectronic 

properties in the infrared region and can be used for applications in infrared photovoltaic devices 

and thermoelectrics.
37

 Additionally, materials such as CuInS2 and CuInSe2 exhibit optoelectronic 

properties in the visible region and can be useful in devices like light emitting diodes (LEDs) and 

photovoltaics. Thus, exploiting the sol-gel chemistry of metal chalcogenides could open new 

ventures in the wide range of applications associated with chalcogenide materials.  

1.4.1 Sol-Gel Synthesis of Metal Chalcogenides  

      In order to prepare the metal chalcogenide gels and aerogels, three basic approaches have 

been used: a) thiolysis reactions,
38

 b) condensation reactions of anionic clusters with metal 

cations
39

 and c) condensation of discrete metal chalcogenide nanoparticles.
40, 41

 The thiolysis 

process is similar to the hydrolysis step in the traditional sol-gel reaction, but it uses gaseous H2S 

instead of water, giving rise to metal sulfide gels upon condensation. For example, germanium 

sulfide gels were synthesized by Brock and coworkers via a thiolysis and condensation 

reaction.
38

 The disadvantage of this process is that it is limited only to metal sulfides, and also 

the products obtained are usually amorphous. The second approach, the condensation of anionic 

clusters with metal cations, has been extensively studied by Kanatzidis and coworkers. In this 

route, the chalcogenide gels (chalcogels) are obtained via a metathesis reaction between Zintl 

anionic clusters (like the [Ge4S10]
4-

 anion) and Pt
2+

 and Ni
2+

 cations. The same group has 

synthesized aerogel materials of Co(Ni)-Mo-(W)-S networks by reaction between (MoS4)
2-

 and 

(WS4)
- 

with Co
2+

 and Ni
2+

 salts.
42

 They have also shown that these chalcogel networks have 

higher activity for hydrodesulfurization of thiophene than conventional Co-Mo/Al2O3 catalysts. 
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      Another approach for chalcogenide aerogel formation (the third approach) is a two step 

process whereby the first step would consist of synthesizing discrete metal chalcogenide 

nanoparticles followed by oxidative condensation of the nanoparticles to give a gel network. In 

1997, Gacoin and coworkers applied this route to obtain wet gels of CdS materials.
41

 In brief, 

they used an inverse micellar approach to synthesize CdS nanoparticles, capped them with 4-

fluorothiophenolate surface ligands and then oxidized the thiolate capped nanoparticles with an 

oxidizing agent, H2O2, to get the wet gels. In our group, extensive work has been done on 

extending the sol-gel strategy and synthesizing aerogels of CdS, ZnS, PbS and CdSe, among 

others.
43-46

             

      Recently, researchers have started to focus on the heavier chalcogenides (tellurides) rather 

than sulfides and selenides, as the tellurides show unique optoelectronic properties. Among the 

tellurides, there have been several reports in the literature regarding the assembly of CdTe 

nanoparticles.
47, 48

 Brock and coworkers have shown that the sol-gel assembly can be extended to 

CdTe discrete nanoparticles, and the oxidative assembly occurs irrespective of the surface 

capping group (thiolate or trioctylphosphine oxide). Gaponik and coworkers have also 

synthesized aerogels of CdTe by condensation of thioglycolic acid-capped CdTe nanocrystals. 

Here they have used photochemical as well as chemical oxidation to induce gelation.
48

  

      While there is precedent for CdTe aerogel network formation in the literature prior to the 

dissertation research, no report exists for the synthesis of PbTe and Bi2Te3 aerogel networks. 

These materials are important as they are potential candidates for thermoelectric applications, 

and it is expected that the interconnected network of nanoparticles (aerogel and xerogel) and the 

absence of intervening surface organic ligands would lead to enhanced electrical conductivity 

relative to ligand-capped nanoparticle superlattices.
49

 In addition, the pore-matter interface in the 



20 

 

gel network is expected to assist in scattering the heat carrying phonons, thereby decreasing κl 

and leading to an increase in ZT of the system. 

1.5 Methods to Synthesize Lead and Bismuth Telluride Nanoparticles 

      Various methods have been used to prepare PbTe and Bi2Te3 nanoparticles. These include 

hydro (solvo) thermal, sonochemical and arrested precipitation methods, as detailed below.  

      Hydrothermal processes (where the precursor solution is aqueous) and solvothermal 

approaches (where the precursor solution is nonaqueous) have been used to make discrete PbTe 

and Bi2Te3 nanoparticles. In these techniques, substances are prepared at high temperature and 

pressure in an autoclave to produce highly crystalline nanoparticles. For example, PbTe 

nanoboxes of thickness ~ 200 nm were prepared by Ren and coworkers following the 

solvothermal approach
50, 51

 and Li and coworkers have synthesized PbTe nanowires 

hydrothermally.
52

 In another study, Kumbhar and coworkers have prepared 100 nm sized 

discrete cubic PbTe nanoparticles and 30 nm irregular Bi2Te3 flakes (aggregated) both 

solvothermally as well as hydrothermally.
53

 In most of the above cases, elemental precursors or 

their respective salts were used along with hydrazine or sodium borohydride as reducing agents. 

More complex ternary and quaternary phases like Bi0.5Sb1.5Te3
54

 and AgPb18SbTe20
55

 have also 

been prepared using these methods. 

      The sonochemical method is another way of preparing PbTe and Bi2Te3 nanostructures and 

alloys. It uses ultrasonic vibrations to perform chemical reactions. In this technique the chemical 

reaction occurs due to acoustic cavitation, which is the formation, growth and implosive collapse 

of bubbles in a solvent, giving intense local heating and a pressure sufficient for any chemical 

reactions to occur.
56

 For example, Li and coworkers have prepared 20-40 nm flakes of Bi2Te3 

nanocrystals, which are in aggregated form, and 60-80 nm irregular shaped particles of Bi2Se2Te 
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and Bi2SeTe2 nanomaterials using this technique.
57

 Qian and coworkers have also used 

sonochemical methods for preparing irregular shaped PbTe nanoparticles.
56

  

      Although hydrothermal, solvothermal and sonochemical methods produce highly crystalline 

nanoparticles and alloys, they also possess several disadvantages. They do not enable control of 

the size of the nanoparticles obtained. The samples are usually polydisperse, and for the 

sonochemical method, the reaction products are highly sensitive to the frequency and intensity of 

ultrasound, thus bulk production is inhibited.
51

 

      In order to control the size and shape of material, and to obtain highly crystalline 

nanomaterials of PbTe and Bi2Te3, another synthetic approach known as ligand based synthesis 

or arrested precipitation is used. Highly monodisperse nanocrystals that are organically 

passivated are produced by this route. In the arrested precipitation approach, depending upon the 

choice of organic ligands, reaction temperature, time and concentration of precursors used, the 

size and shape of the nanoparticles can be controlled. For example, Murphy and coworkers have 

synthesized highly crystalline PbTe nanoparticles using oleic acid as the surfactant (binding 

ligand) and octadecene as the solvent. The size of the nanoparticles obtained by varying the 

concentration of precursors and the ligands was from 3-8 nm.
37

 Urban and coworkers have 

synthesized monodispersed PbTe nanoparticles using squalene instead of octadecene as the 

solvent and oleic acid as the surfactant, giving nanoparticles with diameter from 4-10 nm by 

varying the surfactant/solvent ratio as well as the growth time of the reaction mixture.
58

  

      Bi2Te3 nanoparticles have also been synthesized by ligand assisted arrested precipitation 

methods. Dirmyer et al., have synthesized Bi2Te3 nanoparticles (in sizes ranging from 17 nm to 

90 nm) using various alkane thiols of different chain length including 1-dodecanethiol or 

octanethiol as ligands and diphenylether as solvent.
59

 In another study, Bi2Te3 nanoparticles were 
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synthesized via low temperature micelle formation. The procedure includes formation of two 

separate microemulsions, one of orthotelluric acid in sodium bis (2-ethylhexyl) sulfosuccinate 

(AOT) and the other of bismuth salt in AOT plus thioglycolic acid (leading to bismuth ion 

ligation with thioglycolic acid). Mixing of the two microemulsions and reduction with hydrazine 

monohydrate leads to the formation of 2.5 to 10.4 nm sized nanoparticles. The size of the 

nanoparticle obtained depends upon the water/AOT ratio.
60

 Scheele and coworkers
61

 have also 

reported synthesis of Bi2Te3 nanoparticles (10 nm) where Bi nanoparticles were first formed 

using oleylamine as the reducing agent, followed by reaction with the anion Te precursor leading 

to alloy formation, which eventually lead to crystalline Bi2Te3 nanoparticles upon annealing. 

Recently, the same group has synthesized 15-20 nm sized Bi2-xSbxTe3 nanoparticles by the same 

approach; the only difference being that antimony precursors are used along with the bismuth 

precursor to achieve the targeted composition.
62

  

1.6 Thesis Statement 

      While remarkable progress has been achieved in the synthesis of discrete nanoparticles for 

TE applications, the major challenge lies in assembling these nanoparticles into functional 

devices. Though methods like molecular beam epitaxy,
63

 matrix encapsulation
28

 and self 

assembly generate nanostructures, they suffer from various drawbacks. For example, in case of 

superlattices formed by self assembly, the individual particles are covered with a sheath of 

organic ligands that acts as an insulator and hampers electrical conductivity in the system. In 

composite materials, the optimal size and spacing of inclusions, as well as the effects of their 

interfacial characteristics and native electronic properties on ZT, remains unexplored in large 

part because of the challenges faced in controlling size and shape and placement of inclusions. 

An alternate approach to generating inclusions in situ, where size and placement cannot be 
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controlled, is to generate them ex situ and then introduce them to a bulk matrix. One solution-

based approach is the sol-gel assembly method developed in our lab for assembling discrete 

nanoparticles of lighter sulfides and selenides into nanostructures,
40, 41, 45

 eliminating intervening 

organic ligands that could act as trap centers for charge carriers,
30

 thus providing better electrical 

conductivity to the system, and control of the size and shape of individual building blocks. My 

dissertation project is mainly focused on the synthesis and characterization of chalcogenide 

nanostructures, prepared by sol-gel or incipient wetness techniques, of Bi and Pb for potential 

thermoelectric applications.   

      In the first part of the dissertation research, we explore the possibility of extending the sol-gel 

assembly method to tellurides, such as PbTe, that are established TE materials in bulk form.
1
 The 

synthesis and characterization of PbTe nanoparticles and gel systems, including both aerogels 

and xerogels, will be described. In addition, the thermal stability comparison of the aerogel with 

PbTe discrete nanoparticles will also be evaluated, as elevated temperature operation is a 

requirement for efficient thermoelectric power generators.  

      In addition to PbTe, Bi2Te3 alloys are state-of-the-art thermoelectric materials for operation 

near room temperature.
1, 11

 To explore the thermoelectric properties of Bi2Te3 nanostructures, we 

focused on extending our sol-gel methodology to the synthesis of these materials. The intent of 

this part of the dissertation research was to synthesize Bi2Te3 nanoparticles and aerogels on a 

large scale, enabling assessment of the thermoelectric properties. Additionally, we will also 

evaluate the effect of Sb inclusion in Bi2Te3 (for controlling the dopant concentration) on the 

thermoelectric properties and then compare the results obtained with those for the undoped 

Bi2Te3 aerogel samples.   
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      In the final part of the dissertation research, we exploit the concept of heterostructured 

nanocomposites by inclusion of discrete PbTe nanoparticles in a bulk Bi2Te3 matrix (which is 

either n- or p- doped) via an incipient wetness impregnation method. The effect of impregnating 

different concentrations of PbTe nanoparticles in the bulk matrix as well as the native doping of 

the bulk matrix on the thermoelectric properties of the heterostructures will be presented.  

      Overall, my dissertation consists of Chapters 1 and 2 entailing an overall introduction and 

description of the experimental techniques, respectively. Chapter 3 will describe the synthesis 

and characterization of PbTe nanoparticles and aerogels via a sol-gel methodology along with 

their physical characteristics. Chapter 4 describes the extension of the sol-gel methodology to 

Bi2Te3 nanoparticles and aerogels, and measurement of their transport properties; the synthesis 

and characterization of Bi2Te3 nanoparticles doped with antimony (Sb), and resultant aerogels, 

will also be described. Chapter 5 will present the synthesis and characterization of 

heterostructured nanocomposite materials via incorporation of PbTe nanoparticles (in different 

wt %) inside a Bi2Te3 matrix (n- or p- doped) by the incipient wetness method and the 

thermoelectric properties of the composites. Finally, Chapter 6 will provide overall conclusions 

for the dissertation research and also a prospectus for future studies.  
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Chapter 2 

Experimental Methods and Characterization Techniques 

      This chapter focuses on the experimental methods and characterization techniques used for 

the synthesis and analysis of the materials in this dissertation study. The materials used or 

synthesized were sensitive to air/moisture, so handling of these materials in inert gas atmosphere, 

and glove box techniques will be discussed. Moreover, the drying techniques for wet gels to 

yield aerogel and xerogel will be covered. Characterization techniques including Powder X-ray 

diffraction (PXRD), transmission electron microscopy (TEM), energy dispersive spectroscopy 

(EDS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), porosimetry 

(surface area analysis) and infrared spectroscopy (IR), will be described. This chapter also entails 

a brief introduction of the techniques used to measure thermoelectric properties: Seebeck 

coefficient (S), electrical resistivity (ρ), thermal conductivity (κ) and carrier concentration 

measurements (n). 

2.1 Experimental Methods 

2.1.1 Inert-Atmosphere Glove Box 

      The inert atmosphere glove box provides a simple way of handling and storing air/moisture 

sensitive materials. A glove box consists of a large gas-tight box with a window, gloves and a 

gas tight door for transferring materials. The window has one or more pair of gloves, used for 

working inside the box. The glove boxes are usually kept at a higher pressure than the 

surrounding atmosphere so that in case of leaks, inert gases (like argon) can escape out instead of 

air getting inside the box. In order to work inside the glove box, the internal pressure is reduced 

and is maintained at an optimal level.
64

 To sustain the air and moisture free environment inside 

the glove box, an inert gas (argon, as used in the dissertation research) is continuously circulated 
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through a copper catalyst and molecular sieves. To keep the catalyst’s surface fresh, it is 

periodically regenerated by heating the catalyst under a mixture of H2 and N2 gases. The oxygen 

adsorbed on the catalyst’s surface reacts with H2 to give water, which is flushed out of the box 

along with water during the final evacuation step of regeneration process. The glove box used for 

this dissertation research is an HE-493 vacuum atmosphere, equipped with a large and a small 

antechamber and one refrigerator. 

2.1.2 Schlenk Line Technique 

      Schlenk line techniques are another way of operating in an oxygen free atmosphere. A 

Schlenk line consists of several different ports that enable several reactions to be run 

simultaneously. One manifold is connected to the vacuum while the other is connected to an inert 

gas supply (argon gas was used in the dissertation research).
64

 A two way stopcock on each port 

enables switching between vacuum and inert gas atmosphere. The glassware used for the 

reaction, Schlenk flasks, are designed with a special sidearm to which rubber tubing is 

connected, which in turn is connected to the Schlenk line. Thus the flask can be either evacuated 

or filled with an inert gas. A bubbler is also provided (which is usually connected by a needle) to 

control the excess pressure build up in the reaction flask and prevent back flow of air.  

2.1.3 Gel Drying (Supercritical and Ambient) Techniques 

      Supercritical drying of wet gels yield aerogels while benchtop drying yields xerogels.
34, 35

 In 

supercritical drying, the solvent (acetone, used in this dissertation research) trapped within the 

pores of the wet gels is exchanged with the supercritical fluid (CO2, used in the dissertation 

research), in its normal liquid state, in a closed container. The liquid is then heated to its critical 

temperature and pressure, resulting in formation of a supercritical fluid. Figure 2.1 shows the 

phase diagram of CO2. When the temperature of the sealed container is increased beyond 31 °C, 

the pressure also increases beyond 7.3 MPa. At this temperature and pressure, CO2 adopts the 
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supercritical state, which ensures minimal surface tension and capillary pressure leading to 

minimal collapse of pore walls and giving the pore structure of the starting wet gel upon slow 

release of pressure (CO2 evolution), producing an aerogel. For xerogel formation, the solvent 

trapped in the pores of the wet gels is evaporated at ambient temperature and pressure. The 

presence of a liquid-vapor meniscus leads to surface tension, collapsing pore walls and reducing 

porosity.
35

  

       

 

 

 

 

 

 

 

 

Figure 2.1 Phase diagram of CO2 showing triple and critical points, as adapted from Pierre and 

Pajonk.
35

 

      The details for the supercritical drying procedure for aerogel formation used in this 

dissertation study are as follows: the wet gels were immersed in acetone and then transferred to 

either porous capsules or glass vials. The capsules were loaded onto a boat which in turn was 

loaded in the critical point dryer (CPD), a SPI-DRY model, whereas the glass vials were loaded 

directly in the dryer. The CPD is connected to a liquid CO2 tank and an ISOTEMP 1006S model 

water heater/cooler that is used to control the temperature of the CPD. Once the capsule or the 
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vials were loaded into the dryer, it was filled with liquid CO2 and the temperature of the CPD 

chamber was set to 19 °C and the pressure rose to 900-1000 psi. After 1 h, the liquid CO2 was 

drained off and fresh liquid CO2 was refilled. This exchange was followed twice more and then 

the temperature of the chamber was increased to 39 °C and the pressure rose to 1400-1500 psi 

producing supercritical CO2. This state was maintained for 30 min, followed by venting of the 

fluid, releasing the pressure and eventually forming the aerogel. For the xerogel formation, the 

wet gels were transferred to a fresh glass vial and the solvent entrapped in the pore walls 

(acetone) was dried on the bench top at ambient temperature and pressure. 

2.2 Characterization Techniques 

2.2.1 Powder X-ray Diffraction (PXRD) 

    Powder X-ray Diffraction is one of the most powerful techniques used to identify the structure 

of materials. This technique provides additional information on crystallite size, crystallographic 

phase, lattice parameters and purity of the material. It uses high energy X-rays, which are 

electromagnetic radiation of wavelength ~ 1 Å (10
-10

 m) that are produced when highly charged 

particles, like electrons, collide with matter.
19

 The schematic diagram for X-ray production is 

shown in Figure 2.2. When a beam of electrons from a heated tungsten filament is allowed to 

strike a metal target (Cu or Mo), the electrons from the K shell (1s) of the metal are knocked out, 

creating vacancies as shown in Figure 2.3. These vacancies are immediately filled by electrons 

from a higher level i.e., L or M shell, by dropping down to the K shell. Energy is released during 

this process and it appears as X-ray radiation. Usually, a series of transitions occurs during this 

process; for example in Cu, the two transitions: 2p → 1s, called Kα and having wavelength λ = 

1.5418 Å and 3p → 1s, called Kβ and having λ = 1.3922 Å, are the most intense. For this 

dissertation study, Kα radiation (which consists of doublet Kα1, λ = 1.54051 Å and Kα2, λ = 
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1.54433 Å) from a Cu target is used. Nickel foil filters are used to filter out the Kβ and 

Bremsstrahlung radiation. 

 

 

 

 

 

 

Figure 2.2 Schematic diagram of production of X-rays from a tube with a Cu source, adapted 

from West.
19

 

       

 

 

 

 

Figure 2.3 Schematic diagram of shells depicting X-ray production, adapted from West.
19

 

      Bragg’s law is applied to the scattering of X-rays in order to relate scattering to crystal 

structure. In Bragg’s approach, the crystals are regarded as layers or planes of atoms arranged in 
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a periodic fashion. When X-rays are incident, some rays are transmitted through the planes 

whereas some are scattered. For bulk crystalline materials, which contain a large number of 

crystal planes that diffract X-rays, only those diffracted beams that interfere constructively 

account for the peaks in PXRD. 

      The derivation of Bragg’s laws is as follows: When two incident rays, M and N strike the 

crystal planes separated by a distance, d, with an angle of incidence, θ, they are reflected with the 

same angle, θ as M’ and N’, as shown in Figure 2.4. In order to have constructive interference (a 

peak), the path difference between the two rays should be an integral multiple of wavelength (λ) 

of the incoming rays. The path difference (Δx) between the two rays is given in equation 2.1, 

relations to λ and d in equations 2.2 and 2.3, and finally Bragg’s law is given by equation 2.4.
19

  

                                                                                                      

                                                      λ                                               

                                                                           θ      θ   λ                                     

                                                       θ   λ                                            

      In nanocrystals, which consist of a fewer number of crystal planes than a bulk crystalline 

solid, partial interference not satisfying Bragg’s law can be observed due to an insufficient 

number of crystalline planes for perfect cancellation. Thus, for nanocrystals, the diffracted peaks 

are much broader than for larger crystallites. The broader the peak, the smaller is the coherence 

length of the material. The crystallite thickness (D) of the material can thus be derived from the 

broadening using the Scherrer formula (equation 2.5). 

                                       D = 0.9 λ/βcosθ                                  (2.5) 

In equation 2.5, β is the full width at half maximum (FWHM, in radians) of the reflection, θ is 

the Bragg angle and λ is the wavelength of the source (which is 1.54051 Å for Cu Kα1). 

Bragg’s law 
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Figure 2.4 Pictorial representation of diffraction of rays from parallel crystal planes, adapted 

from West.
19

 

 

      In this dissertation study, a RIGAKU RU 200B diffractometer with a rotating Cu anode 

source is used. The powdered samples of the nanoparticles, nanocomposites, aerogels and 

xerogels were deposited on a quartz low background holder coated with a thin layer of grease. 

The data were collected in the 2θ range 20-70° with a step size of 1.2°, at 40 kV voltage and 150 

mA current. The PXRD data obtained were processed using the JADE 5.0 software and 

compared to powder diffraction files (PDFs) from the International Center for Diffraction Data 

database (ICDD). The crystallite sizes were determined using the Scherrer equation (in JADE 5.0 

software) after correcting the peak broadening by stripping Kα2, using the FWHM of the peak 

under consideration. Unit cell refinement was done on data collected (in the same 2θ range and 

step size as mentioned above) by mixing the samples with an internal Si standard. The 2θ values 

were then corrected against the Si peaks using JADE 5.0 software. The corrected 2θ values were 

then used for cell refinement with the program CELREF V3 using least-squares methods. 
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Figure 2.5 Schematic representation of the encounter of an incident electron beam and 

subsequent fate of the beam on interaction with the sample. TEM and EDS are discussed in this 

Chapter. 

 

2.2.2 Electron Microscopy (EM) 

      Electron Microscopy is a common tool used for the routine characterization of nanomaterials, 

providing both structural and morphological information on the materials. This technique uses a 

highly energetic beam of electrons to examine materials on an atomic scale. The basic principle 

used in this technique is the same as optical microscopy, the only difference being that the latter 

uses light for imaging while the former uses electrons. EM exploits the wave-particle dual 

characteristics of electrons; the wave-like property of electrons is used for imaging while the 

particle-like character is used for determination of chemical information for the specimen. When 

high energy electrons are incident on a material, it leads to various interactions. Some of these 
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interactions are shown in Figure 2.5. The transmitted electrons from the source are used for the 

imaging mode in transmission electron microscopy (TEM). The TEM often comes with an 

instrument that analyzes the energy of the emitted X-rays from the sample to provide information 

on its chemical components using a technique called energy dispersive spectroscopy (EDS).  

2.2.2.1 Transmission Electron Microscopy 

      The TEM instrument has a source for producing electron beams, called the electron gun. The 

most commonly used electron gun is the thermionic electron gun, in which the electrons are 

emitted from a heated filament thermionically and a divergent beam of electrons is produced 

(LaB6 source). Another type of electron gun is the field emission gun, which uses a strong 

electric field for extracting electrons from the electron gun (often a tungsten (W) filament). The 

electrons can be emitted from the W filament at a high voltage between 50 kV and 400 kV. The 

relation between the wavelength of the electrons emitted and the accelerating voltage is given by 

equation 2.6.
19

 

                                                                      
 

     
                                                        

In equation 2.6, m and e are the mass and charge of an electron, respectively; h is Planck’s 

constant, V is the operating voltage and λ is the wavelength of electrons. Modifications to this 

equation occurs if operated beyond 100 kV as relativistic effects comes into factor when electron 

velocities becomes greater than half the speed of light. 

      The electron beam is focused using several condenser and objective lenses to make them 

strike the sample. The material under investigation should be thinner than ~ 2000 Å, as electrons 

are completely absorbed by thick specimens.
19

 Likewise, the electron gun and lenses all operate 

under high vacuum to prevent scattering or absorption of electrons. The image obtained can be 

captured by film or digital camera.
65

 A schematic for a TEM is shown in Figure 2.6.  
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      The images in the TEM can be obtained via mass-thickness contrast and diffraction contrast. 

The mass-thickness contrast depends on the atomic number (Z) of the elements present in the 

sample, and also on the thickness of the sample under investigation. The dark areas obtained in 

the image are usually due to the presence of thicker sample areas with high atomic number and 

the brighter areas are due to regions which have no sample or have sample with lower contrast 

(thinner or lower atomic number). There are two basic modes of viewing samples based on 

diffraction contrast, called bright field imaging mode and dark field imaging mode. In the bright 

field mode only transmitted beams are used for imaging (Figure 2.7). The bright field mode 

provides information regarding morphology and thickness. In the dark field imaging mode, only 

the diffracted beams are selected for imaging. Here the crystalline portion appears bright whereas 

the amorphous regions, including the background, appear dark. The dark field mode provides 

information regarding the crystallinity and defects of the specimen (Figure 2.7).
65

 

      Selected area electron diffraction (SAED) is a technique associated with TEM by which 

crystallographic information can be obtained by imaging the diffraction of the sample. In this 

technique, the intermediate lens is focused on the back focal plane (containing the diffraction 

pattern) rather than image plane (containing the image of sample) of the objective lens. First, a 

point of interest on the specimen is selected in the bright field imaging mode.
65

 An intermediate 

aperture is introduced and the microscope is switched to diffraction mode which confines the 

diffraction pattern of a selected area from the sample and shows rings of dots on the screen. Each 

dot in the sample corresponds to diffraction satisfying Bragg’s law from the crystal planes of the 

sample, the only difference being here the electron beam is used instead of X-rays. The d-

spacing can be calculated from the distance between the rings formed from the dots. This d-
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spacing in turn gives information on the crystal structure and crystal orientation of the material. 

The ray diagram for SAED is depicted in Figure 2.8.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Pictorial representation of the parts in a TEM instrument, adapted from Fultz.
65

 

      In this dissertation study, a JEOL 2010 transmission electron microscope operated at a 

voltage of 200 kV and a current of 106-108 mA was used. Images obtained from TEM 

measurements were analyzed by Amtv600 software (Advanced Microscopy Techniques 

Corporation). Samples for TEM were prepared by dispersing nanoparticles and nanocomposites 

in hexane, or aerogels and xerogels in acetone, followed by sonication for 5 min, and then 
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deposition of a drop from each solution on a carbon-coated 200 mesh Cu grid (obtained from 

SPI) followed by air drying for 1 day. The imaging modes used for the dissertation are bright 

field and selected area diffraction modes. 

    

 

 

 

 

 

 

 

 

Figure 2.7 a) Bright Field imaging mode where transmitted electrons are used, b) Dark field 

imaging mode where only diffracted electrons are used, adapted from Fultz.
65

 

       

      In addition to routine imaging of specimens, the TEM can also be used for in-situ heating 

experiments using a Gatan model 652 double-tilt hot stage. The samples, as deposited on the 

carbon coated Cu grid, were loaded onto the Gatan heating stage and mounted in the TEM. The 

heating rate (10 °C/min) and temperature were controlled precisely using a Model 901 Smartset 

Hot Stage Controller made by Gatan Inc. 
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Figure 2.8 Ray diagram of selected area diffraction mode, adapted from Fultz.
65

 The dashed 

lines represent the actual direction of diffracted and transmitted rays if they were not blocked by 

the intermediate aperture. The dotted line shows artificial rays that define the final image plane 

of the diffraction patterns from the back focal plane of the objective lens. 

 

2.2.2.2 Energy Dispersive Spectroscopy (EDS) 

      An EDS detector on a TEM enables the chemical analysis of an imaged sample. The EDS 

technique utilizes the fact that, when a beam of electrons strikes a sample, X-rays characteristic 

of the constituent elements in the sample under investigation are produced, as shown in Figure 

2.5. In brief, X-rays are generated via ionization of electrons from the inner shell of atoms 
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followed by a transition of an electron from an outer shell to the hole generated in the inner shell, 

just as is used in an X-ray source for PXRD. These electronic transitions are associated with 

specific energies, depending on the atom, giving rise to X-rays of characteristic wavelength. 

Thus, the energy of the X-rays emitted gives information about the elemental composition of the 

sample under investigation and the intensities of the X-rays generated as a function of energy 

provides information about the relative amount of each element in the sample. The X-rays 

generated from the sample are collected via a solid-state semiconductor detector. Electron-hole 

pairs are generated when the X-ray photons hit the detector, which are then converted to a charge 

pulse and finally to a voltage pulse with the help of a charge-to-voltage converter.
65

 

      In this dissertation study, EDS is obtained in a JEOL 2010 transmission electron microscope 

with a coupled EDS detector (EDAX Inc). EDAX genesis software 1.0 was used as the analysis 

software in order to detect the relative atomic percentages of elements present in the sample. 

2.2.3. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) 

      Thermogravimetric analysis is a technique that records changes in weight of a sample as a 

function of temperature. This technique is useful for investigating the thermal stability 

(decomposition/desorption of species, oxidation) of a material. The process involves placing 5-

20 mg of sample in a pan made of alumina or platinum, attached to a hanger, which in turn is 

suspended from a microbalance. A furnace (inbuilt) is placed close to the pan and heats the 

sample. The furnace is usually covered by a glass cover and its temperature is regulated by 

software, which also provides the weight change versus temperature plot. A wide range of gases 

can be used during the analysis, including inert gases (Ar/N2), oxidizing gas (air or O2) or 

reducing gas (H2) depending upon the experimental requirement. 
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      Differential Scanning Calorimetry (DSC) is another thermoanalytical technique. DSC 

measures the amount of heat absorbed or released from a material as a function of temperature. 

This measurement also provides information on the physical and chemical changes that occur as 

the material is heated. In this technique, along with the desired sample, a blank crucible is run to 

provide a baseline. Both the sample and reference pan are placed in either a platinum or alumina 

crucible and then the furnace is placed close to the pan, as in TGA. The temperature is regulated 

with the help of software.  

      In my dissertation study, TGA was performed using a Perkin Elmer, Pyris 1 TGA. Samples 

were heated under nitrogen flow from 25 to 700 °C in a ceramic crucible with a temperature 

ramp rate of 10 °C/min. DSC was performed using a DSC 404 C from NETZSCH. The samples 

were heated under a nitrogen atmosphere from 20 to 1000 °C with a ramp rate of 10 °C/min in a 

ceramic boat fitted with a lid. 

2.2.4. Surface Area Analysis and Pore Size Distribution 

       It has long been known that porous solids intake large volumes of condensable gases. In 

1777, Fontana observed that freshly calcined charcoal adsorbs various gases in quantities several 

times more than its own volume; but the volume of gas adsorbed varies from one charcoal 

sample to other, depending upon the area exposed.
66

 Thus, measurements on adsorption of gases 

provide useful information regarding the surface area of a material.  

      The term “adsorption” implies condensation of gases on exposed solid surfaces whereas 

“absorption” is a process where gases penetrate into the solid. In adsorption, the force developed 

at the surface of the solid (adsorbent) attracts the adsorbate (usually gas or vapor) and these 

forces of attraction between the adsorbate and the adsorbent are either physical or chemical in 
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nature. In physical adsorption (physisorption), the force of attraction is mainly Van der Waals in 

nature, whereas in chemical adsorption (chemisorption), it is covalent.
34, 67

 

      In a surface area analysis experiment, the sample under investigation is placed in a special 

tube and heated under vacuum or under nitrogen flow for several hours to remove adsorbed 

contaminants or moisture from the surface and pores of the sample. After the heating step, the 

sample is cooled to room temperature. The next step is the analysis step, where the sample tube 

is transferred to an analysis port, and cooled down to liquid nitrogen temperature (77.2 K). An 

inert gas like N2 or He is used as an adsorbate, which is then introduced in the sample tube in 

small quantities. The adsorbate is introduced continuously until the pressure in the tube reaches 

equilibrium. Meanwhile, the change in the pressure of the gas is also recorded. The quantity of 

gas adsorbed can be calculated by employing the basic gas laws, knowing the volume of the tube 

and mass of the sample. A plot of the volume of gas adsorbed (in cm
3
/g, STP) versus the relative 

pressure, P/Po (where P = actual pressure and Po = saturation pressure) is called an adsorption 

isotherm, and is usually conducted isothermally (77.2 K). 

      An isotherm curve consists of two parts: adsorption and desorption curves. The adsorption 

curve is acquired when the adsorbate (inert gas molecules) adsorbs onto the surface of the 

adsorbent leading initially to monolayer formation of gas molecules. At somewhat higher 

pressure several layers deposit leading to multilayer formation of gas molecules and then at 

relatively high pressures capillary condensation occurs. The desorption curve occurs when the 

inert gas molecules are removed from the surface by evacuation and a hysteresis loop is observed 

when the desorption curve fails to follow the adsorption curve path. Both the isotherm curve as 

well as the hysteresis loop provides useful information; the former gives information about the 

surface area and porosity while the latter gives information about the pore structure and 
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geometry. In general, the isotherms are grouped into six classes (Figure 2.9).
66

 Type I is 

indicative of the presence of small pores, micropores (< 2 nm), Types II and IV are curves 

consistent with large pores, mesopores (2-50 nm) and macropores (> 50 nm). Types III and V 

occur when the adsorbate has greater attraction for itself over the solid surface. Finally, the Type 

VI isotherm is indicative of layer by layer adsorption on a highly uniform surface.  

 

            

                

 

 

 

 

 

Figure 2.9: Six basic types of adsorption isotherm, adapted from Webb and Orr.
66

 

 

      The surface area and pore size distribution are obtained using theoretical models, such as the 

Langmuir, and the Brunauer, Emmett and Teller (BET) models. The Langmuir model usually 

applies to chemisorption phenomenon, assuming one monolayer of adsorbate on an adsorbent, 

whereas BET theory assumes multilayer adsorption of adsorbate.
66, 67

 The BET method presumes 

that the adsorption on the solid surface occurs via physisorption and that there is no interaction 

among the adsorbed layers. The linear expression of the BET theory is shown in equation 2.7
66, 67

                                           

 

Type I Type II Type III 

Type IV Type V Type VI 



42 

 

                                                               
 

        
 

 

   
 

   

   
 
 

  
                             

 

In equation 2.7, P/Po = relative pressure, Va = volume of adsorbed gas at a given relative 

pressure, Vm = volume of gas required for monolayer coverage and C = constant. 

      Barett, Joyner and Halenda developed a method (BJH) to determine the pore structure, pore 

size and pore volume of a sample. It is a modified Kelvin equation where, as the pressure is 

decreased, the condensed adsorptive is desorbed in a stepwise manner. This removal signifies a 

volume of pores being emptied. It also assumes that all the pores are cylindrical in nature. For 

computing the BJH pore size distribution in a sample, equation 2.8 is used.
66, 67

  

                                                                         
  

  
 

       

    
                                           

In equation 2.8, P* = critical pressure condensation, Po = saturation pressure, γ = liquid surface 

tension, ν = molar volume of condensed gas, θ = contact angle between condensed adsorptive 

and solid surface, R = gas constant, T = absolute temperature and rm = mean radius of curvature 

of the liquid meniscus.  

      In this dissertation study, for the measurement of surface area and pore structure of aerogels 

and xerogels, an ASAP 2010 porosimeter and TRISTAR II 3020 from Micromeritics was used 

with nitrogen as the probe gas. The samples were degassed at 150 °C for 24 h before analysis 

under 500 mm Hg vacuum for ASAP 2010 and for TRISTAR, the samples were purged with 

nitrogen gas for 24 h at 150 °C. The surface area was evaluated using the BET method, whereas 

the pore size was calculated by the BJH adsorption method. 

2.2.5. Infrared Spectroscopy (IR) 

      IR spectroscopy is a widely used technique for probing the presence of organic functional 

groups. This technique involves passing infrared radiation of increasing wavelength through a 
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sample so that the radiation characteristic of functional group(s) in the sample is absorbed while 

the non-characteristic radiation is transmitted. The absorbed radiation corresponds to the 

fundamental vibration frequency of the atoms in the molecule. But only those absorptions that 

cause a change in the dipole moment of the molecule show peaks in the IR spectrum. Most 

organic functional group absorbs IR radiation in the region 4000-600 cm
-1

.  

      In my dissertation study, a Varian FTS 3000 MX FTIR spectrometer was used to probe 

surface organic groups on sample surfaces. Powdered samples were ground with KBr and 

pressed into a transparent pellet in a 13 mm die with 2000 psi pressure from a Carver Hydraulic 

pellet press. 

2.2.6 Thermoelectric Property Measurements 

      All measurements consisting of the Seebeck coefficient (S), the electrical resistivity (ρ), the 

thermal conductivity (κ) and Hall coefficient were performed at Michigan State University. A 

brief description is included here for completeness. 

2.2.6.1 Seebeck Coefficient  

      The Seebeck coefficient (S), as mentioned in Chapter 1, is the ratio of the voltage difference 

(ΔV) that develops as a function of a temperature difference (ΔT) across a sample (equation 2.9).   

 

                      

      The technique used for the measurement of S is called the Steady State technique.
68

 For this 

dissertation study, S is measured in the low temperature region from 80 K to room temperature, 

in a continuous flow cryostat under vacuum. Liquid N2 is used as a refrigerant. The set up used 

for measuring S is shown in Figure 2.10. The samples were first, hot pressed between 350 °C 

and 380 °C under a pressure of 60MPa for 15min to form a dense pellet. After hot pressing, a 

(2.9)                            

) 
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rectangular parallelepiped of the sample with dimensions approximately 2.4 mm × 2.4 mm × 8 

mm is cut out of the pellet. The sample is then attached to a copper base using conducting silver 

epoxy. A resistor of 800 Ω wrapped in a copper foil, which acts as a mini-heater, was attached to 

the top of the sample. This generates the temperature gradient for measurement of S. To the 

middle of the sample, two copper-constantan thermocouples were attached in order to measure 

the temperature difference. The copper leads of the thermocouples simultaneously measure the 

difference in voltage (V
+ 

(S) and V
- 
(S)). 

 

 

 

 

 

 

Figure 2.10 Pictorial representation of the set-up used for Seebeck coefficient, electrical 

resistivity and thermal conductivity measurements (done at MSU) adapted from reference 5.
68

 

The measurements were done over a temperature range of 80-380 K under vacuum using a 

steady state technique in a continuous flow cryostat with liquid nitrogen as a refrigerant. 

 

2.2.6.2 Electrical Resistivity Measurements 

      The standard four-point method is used to measure the electrical resistivity (ρ) of the 

sample.
68

 The measurement can be carried out in parallel along with the S measurement with the 

(ρ) 

(ρ) 
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use of the same set up in the cryostat. Briefly, after switching off the mini-heater, current is 

applied from one set of leads (I
+
 and I

-
) and voltage is measured from another set of leads (V

+
 (ρ) 

and V
- 
(ρ)). Finally, Ohm’s law is applied to calculate the electrical resistivity as shown in 

equation 2.10 and 2.11. 

                                                                                       
 

 
                                           

                                                                                       
  

 
                                        

      In equations 2.10 and 2.11, A is the cross sectional area of the sample and l is the length of 

the sample. There are several factors that must be kept in mind while doing the measurement of 

ρ. Usually, large S values are observed for TE materials, therefore the total voltage measured 

across the sample is the sum of Seebeck voltage, ΔV = SΔT, and resistive voltage, VIR, as shown 

in equation 2.12. 

                                                                     Vtotal = VIR + SΔT                   (2.12) 

Due to the large contribution from the Seebeck voltage, often ΔV becomes similar to VIR (ΔV ~ 

VIR). In order to reduce the effect of Seebeck induced voltage, measurements should be 

completed in a very short time (less than five seconds). Also, it is usually better to use current 

acquired in both negative and positive directions (AC resistance bridge or DC current) in order to 

subtract the Seebeck voltage contribution, as shown in equation 2.13: 

                                                    
                     

 
                       

2.2.6.3 Thermal Conductivity Measurements 

      The same setup in Figure 2.10 was used for measuring thermal conductivity. The mini-

heater was used to generate heat, which passes through the sample. A constant power is 
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maintained from the heater. The temperature was recorded with the help of the thermocouples 

separated by a distance (l). The thermal conductivity can be calculated by using equation 2.14.
68

  

                                                                           κ  
      

     
                                         

VI is the heater power, l is the probe separation between the two thermocouples, ΔT is the 

temperature difference between the thermocouple and A is the cross-sectional area. 

2.2.6.4 Hall Coefficient Measurement 

      The electrical conductivity, σ, is the inverse of the resistivity, ρ and depends on the carrier 

concentration, n of a material as shown in equation 2.15, where e is the electronic charge (1.602 

× 10
-19

 C) and μ is the carrier mobility. Optimized carrier concentrations are essential for 

maximizing σ and also impact S as shown in equation 2.16, where KB = Boltzmann constant, h = 

Planck’s constant, m* = effective mass of the carrier and T = absolute temperature.
68

  

                                                                             σ    μ                                                     

                                                   
     

 

    
     

 

  
 
 
                                  

      The set up for the measurement of Hall coefficient (RH) is shown in Figure 2.11. In this 

experiment, a thin slab of sample, approximately 1 mm in thickness, cut from the hot pressed 

sample, was used. A series of voltage and current leads are used to measure the Hall resistance 

(Rxy), shown in Figure 2.11. 

      When a magnetic field is applied perpendicular (z axis) to the direction of current (x axis), 

moving charge carriers experience a force called the Lorenz force, given by F=QVB, where Q is 

the charge on moving particles, V is the velocity of moving particles and B is the applied 

magnetic field. This leads charge carriers to accumulate across opposite faces of the 
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parallelepiped sample. This charge separation generates the electric field and hence the voltage 

difference across the opposite faces of the sample (y axis). The carrier concentration in the 

sample is thus measured by using equation (2.17). 

                                                           
  

     
 

    

     
 

     

  
  

 

  
                  

 

 

 

 

 

 

 

 

 

Figure 2.11 Pictorial representation of the set up and wiring for the Hall coefficient 

measurements. 

       

    In equation 2.17, Bz is the magnetic field along the z axis; jx is current density along the x axis 

which is equal to Ix/A (where Ix is the current along the x axis and A is the area of the slab, given 

by A= l × t, where l is length and t is thickness of the slab); Ey is the induced electric field along 

the y axis where Ey = Vy/l (where Vy is the voltage along the y axis and l is the length of the 

slab); and e is the electronic charge (1.602 × 10
-19

 C). For this dissertation study, the Hall 

coefficient was measured in the same temperature range (60 K to 400 K) using AC current in a 
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varying magnetic field from -3 T to 3T in the Quantum Design Versalab system. In order to 

eliminate complications from anisotropy, all transport properties were measured in the direction 

perpendicular to the pressing axis.  
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Chapter 3 

Toward nanostructured thermoelectrics: Synthesis and characterization of 

lead telluride gels and aerogels 

3.1 Introduction 

      As mentioned in Chapter 1, nanoscale lead chalcogenides (PbS, PbSe and PbTe) have gained 

considerable attention from the scientific community due to their high degree of quantum 

confinement and specifically for their application in thermal energy conversion devices.
69

 This 

Chapter is focused on the extension of the sol–gel method developed in our lab for lighter 

sulfides and selenides to tellurides;
45, 47

 specifically, synthesis of PbTe aerogels (by supercritical 

fluid drying) and xerogels (by bench top drying) with nanostructured features of potential benefit 

for enhanced thermoelectrics. The effect of particle size and shape as well as the chemical 

oxidant on the gelation process, and the consequent morphology and surface area characteristics, 

will be discussed. Because these materials are potential candidates for thermoelectrics, the 

thermal stability of the gels relative to the precursor nanoparticles, as probed by in situ TEM and 

DSC, and the desorption temperature of the surface organic ligands as determined by TGA, will 

also be presented. This work has been published as a full paper in the Journal of Materials 

Chemistry, 2011.
70

 

3.2 Experimental 

3.2.1 Materials 

      Lead acetate trihydrate (Pb(OAc)2·3H2O) was obtained from Baker Chemicals; tellurium 

powder (Te, 200 mesh, 99.8 %), 4-fluorothiophenol (4-FPhSH, 98 %), 1-octadecene (ODE, 

technical grade 90 %) and tetranitromethane (TNM) were obtained from Aldrich; 

trioctylphosphine (TOP, technical grade 97 %) was obtained from Strem chemicals; 
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triethylamine (TEA, reagent grade), oleic acid (OA, technical grade, 90 %), and 3 % aqueous 

H2O2 were obtained from Fisher. 

3.2.2 Synthesis of PbTe Oleate-Capped Nanoparticles  

    PbTe nanoparticles were prepared by combining Pb(OAc)2·3H2O (1.317 g, 3 mmol) with OA 

(3 mL, 6 mmol) and ODE (6 mL, 18 mmol) and heating this mixture under inert atmosphere on a 

Schlenk line at 170 °C for 30 min to obtain a colorless solution. The temperature of the solution 

was then reduced to 150 °C followed by rapid injection of 3 mmol of 1 M TOPTe. The resultant 

solution was left at 150 °C for 3 or 5 min of growth time and then the reaction was quenched by 

plunging the flask into a cold-water bath. In order to obtain larger size nanoparticles, the growth 

time was increased to 10-15 min. The resultant nanoparticles were precipitated by adding hexane 

as the solvent and acetone as the antisolvent and isolated by centrifugation.  

3.2.3 Synthesis of PbTe Thiolate-Capped Nanoparticles and Gelation  

      For generation of thiolate-capped nanoparticles, 4-FPhSH (1.2 mL, 15 mmol) and TEA (2.4 

mL, 15 mmol) were quickly injected to the oleate-capped lead telluride nanoparticles generated 

at 150 °C just prior to quenching. The 4-FPhS
-
 capped lead telluride nanoparticles were 

precipitated by addition of toluene, followed by centrifugation. The obtained black product was 

further washed with additional toluene. The thoroughly-washed thiolate-capped nanoparticles 

were then dispersed in 15 mL of methanol for gelation.  

      Gelation was induced by addition of 0.1 mL of 3 % TNM in methanol (v/v), or 3% aqueous 

H2O2, into 5 mL aliquots ([Pb
2+

] = 0.2 M) of thiolate-capped PbTe sol. The concentration was 

calculated based on the moles of precursor lead acetate. The solution was shaken and gelation 

was observed within 1 h. The wet gels were aged for 4-5 days under ambient conditions and then 

were exchanged with acetone twice a day for another 2 days. A portion of the wet gel was 
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transferred to porous capsules and supercritically dried, as described in Chapter 2, to produce an 

aerogel; a second portion of the wet gel was bench-top dried at ambient temperature and pressure 

to give a xerogel. 

3.3 Characterization Techniques 

      PXRD, TEM, IR, BET surface area and BJH and pore size distribution, TGA and DSC were 

used to characterize the materials. For more details on the measurement techniques, refer to 

Chapter 2. 

3.4 Results and Discussion 

3.4.1 Synthesis of PbTe Nanoparticles, Aerogels and Xerogels 

      The synthesis of the PbTe nanoparticles employed in the sol–gel assembly was adapted from 

Murphy and coworkers
37

 with minor variations in the ratios of precursors used and also in the 

temperature of reaction. The method involves the injection of TOPTe, which is the anion 

monomer, into a mixture of lead acetate trihydrate, OA and ODE maintained at high 

temperature. A growth time of 3 min and 5 min was employed, followed by quenching of the 

reaction and isolation using hexane as the solvent and acetone as the precipitating antisolvent and 

subsequent centrifugation. Thiolate capping was achieved by adding 4-FPhSH and TEA to the 

150 °C PbTe reaction mixture immediately after the 3 or 5 min reaction times, followed by 

quenching of the reaction with a water bath. The nanoparticles obtained were further washed 

with toluene twice. The resultant nanoparticles obtained were black in color. 

      Gelation was achieved by dispersing the thiolate-capped nanoparticles in methanol followed 

by addition of oxidizing agent, 0.1 mL of 3 % TNM to oxidize, and hence remove, the surface 

bound thiolate groups, yielding wet gels within 1 h. The wet gels were aged for 4-5 days under 

ambient conditions and then exchanged with acetone to remove the byproducts of gelation. Gels 
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were transferred carefully to porous capsules and supercritically dried using CO2 to give an 

aerogel (as mentioned in Chapter 2), or left in vials and bench top dried under ambient 

temperature and pressure to give a xerogel. The resultant gels were black in color, like the 

nanoparticles from which they originated, and were obtained as powders. 

3.4.2 Characterization: Oleate-Capped PbTe Nanoparticles 

      Representative PXRD patterns of PbTe oleate-capped nanoparticles obtained after a growth 

time of 3 and 5 min are shown in Figure 3.1. In both cases, the patterns match with the Altaite 

phase (thermodynamically stable cubic phase) of PbTe, with the shorter growth time resulting in 

broader peaks. Application of the Scherrer equation yields values of 8.4 nm and 15 nm, based on 

the breadth of the (200) reflection, for 3 and 5 min growth time, respectively. TEM was 

employed to verify size and determine the morphology and polydispersity of PbTe nanoparticles. 

As shown in Figure 3.2a, the nanoparticles obtained after a growth time of 3 min were found to 

be spherical in shape with an average particle size of 9.01 ± 0.36 nm, whereas nanoparticles 

obtained after a growth time of 5 min (Figure 3.3a) were found to be cubic in shape with an 

average size of 15.8 ± 2.4 nm, measured from the face diagonal. From the results obtained 

above, it can be concluded that this synthetic route in general can be used to synthesize various 

nanoparticles with different sizes and shapes. The sizes of the nanoparticles obtained by imaging 

in the TEM were similar to the crystallite sizes obtained from the Scherrer equation. This 

observation, along with the observation of lattice fringes in HRTEM images, (Figure 3.2b and 

Figure 3.3b), is indicative of the formation of highly crystalline PbTe nanoparticles. Also the 

transition from spherical to cubic morphology is thermodynamically driven as the size increases, 

favoring the growth of the (100) facets (lowest total surface energy) leading to the cubic 

morphology.
37
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Figure 3.1 PXRD of PbTe nanoparticles obtained after a growth time of (a) 3 min and (b) 5 min. 

The vertical lines correspond to the ICDD-PDF # 38-1435 of cubic PbTe (Altaite). 
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Figure 3.2 TEM images of PbTe nanoparticles prepared after a growth time of 3 min showing 

(a) oleate-capped nanoparticles, (b) HRTEM showing lattice fringes on oleate-capped 

nanoparticles (c) thiolate-capped nanoparticles, (d) aerogel and (e) xerogel materials. 

(a) (b) 

(c) (d) 

(e) 
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Figure 3.3 TEM images of PbTe nanoparticles prepared after a growth time of 5 min showing 

(a) oleate-capped nanoparticles, (b) HRTEM showing lattice fringes on oleate-capped 

nanoparticles, (c) thiolate-capped nanoparticles, (d) aerogel and (e) xerogel materials. 

(e) 

(b) 

(e) (c) (d) 

(a) 
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      Semiquantitative Energy Dispersive Spectroscopy (EDS) conducted in the TEM suggests the 

Pb:Te ratio for spherical- and cube-shaped particles, is close to the ideal value of the expected 

composition (Pb:Te = 1:1) (Table 3.1).  

 

Table 3.1 Elemental composition of spherical and cubic shaped PbTe nanoparticles and resultant 

gels: oleate-capped, thiolate-capped, aerogel and xerogel samples. 

 

3.4.3 Characterization: Thiolate-Capped PbTe Nanoparticles 

      The PXRD pattern obtained for the thiolate-capped nanoparticles was similar to that of 

oleate-capped nanoparticles (Figure 3.4), inferring no change in the phase or crystallite size of 

the PbTe thiolate-capped nanoparticles. However, TEM revealed the thiolate-capped 

nanoparticles to be significantly aggregated, in contrast to the oleate-capped particles (Figure 

3.2c and Figure 3.3c). This is a reflection of the pre-disposition of thiolate-capped PbTe toward 

Sample Elemental Composition Atomic Ratio 

Pb:Te 

Pb (%) Te (%) 

PbTe nanoparticles oleate-

capped (spheres) 

49.9 50.1 1:1 

PbTe nanoparticles 

thiolate-capped (spheres) 

47.9 52.1 0.9:1 

PbTe aerogels (spheres) 47.1 52.9 0.89:1 

PbTe xerogels (spheres) 48.8 51.2 0.95:1 

PbTe nanoparticles oleate-

capped (cubes) 

48.0 52.0 0.92:1 

PbTe nanoparticles 

thiolate-capped (cubes) 

47.9 52.1 0.92:1 

PbTe aerogels (cubes) 49.8 50.2 0.99:1 

PbTe xerogels (cubes) 49.9 50.1 1:1 
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gelation, as spontaneous assembly seems to occur even when no oxidant is intentionally added 

(adventitious oxygen). 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 PXRD of thiolate-capped PbTe nanoparticles obtained from ligand exchange of 

nanoparticles prepared using a growth time of (a) 3 min and (b) 5 min. The vertical lines 

correspond to the ICDD-PDF # 38-1435 of cubic PbTe. 
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3.4.4 Characterization: PbTe Aerogels and Xerogels 

      Figure 3.5 shows the PXRD patterns of the aerogel and xerogel samples produced from 

spherical- and cube-shaped PbTe nanoparticles. These are essentially identical to the patterns 

obtained from the precursor nanoparticles demonstrating that the crystallite size (Table 3.2) and 

structure are maintained in the gelation process. From TEM (Figure 3.2d and Figure 3.3d), the 

aerogels are found to exhibit a colloidal morphology consisting of an interconnected network of 

nanoparticles and pores. In contrast, the xerogels consisted of dense regions with significant 

fragmentation (Figure 3.2e and Figure 3.3e). This is attributed to the collapse of the network 

from the surface tension that arises in the ambient temperature drying. EDS data is consistent 

with the expected 1:1 formulation for Pb: Te in PbTe (Table 3.1). 

      Despite apparent differences in the TEM, the surface area/porosimetry characteristics are 

fairly similar for aerogels and xerogels. The nitrogen adsorption/desorption isotherms (Figure 

3.6 and Figure 3.7) illustrate that the aerogels and xerogels display type IV isotherm curves that 

are characteristic of a mesoporous material (2-50 nm pore diameter) with a sharp upturn in the 

high relative pressure region indicating condensation of liquid associated with the presence of 

macropores >50 nm.
71

 The hysteresis loops of the adsorption/desorption isotherms of both the 

aerogels and xerogels display H1 character corresponding to cylindrical pore geometry in the 

material.
67

 The BJH pore size distribution (Figure 3.6 and Figure 3.7 insets) is broad, extending 

to the macropore region (> 100 nm), suggesting similar pore characteristics for the aerogels and 

xerogels.  However, clear differences are observed when comparing gel materials prepared from 

spheres vs. cubes (Table 3.2); Specifically, the smaller spherical nanoparticles give rise to gels 

with higher surface areas than the cubes (by a factor of 2-3).     
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Figure 3.5 Powder X-ray diffraction patterns of PbTe aerogels and xerogels prepared from (a) 

spherically-shaped, and (b) cube-shaped nanoparticles. The vertical lines correspond to the cubic 

PbTe phase (ICDD- PDF # 38-1435). 
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Figure 3.6 N2 adsorption (○)/desorption (■) isotherms of PbTe aerogels and xerogels assembled 

from spherical-shaped PbTe nanoparticles; the insets show the corresponding BJH pore size 

distributions. 
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Figure 3.7 N2 adsorption (○)/desorption (■) isotherms of PbTe aerogels and xerogels assembled 

from cube-shaped PbTe nanoparticles; the insets show the corresponding BJH pore size 

distributions. 
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Table 3.2 PXRD crystallite sizes, BET surface area, theoretical surface area, average pore 

diameter and cumulative pore volume of aerogels and xerogels obtained from spherical and 

cube-shaped nanoparticles. 

 

a
Based on the expected surface area of discrete nanoparticles (spheres and cubes).

67
 

 

       

      One possible reason for the difference between cube and spherically shaped gel materials is 

the fact that the cubes themselves have a lower theoretical surface area due to their increased size 

and geometric shape, and are also likely to pack together with fewer void spaces. Supercritical 

vs. ambient drying appears to have a more profound effect on the surface area of the spheres 

relative to the cubes, with the aerogels from spheres exhibiting a surface area roughly 90 % of 

theoretical and nearly twice that of the corresponding xerogels, whereas the cubes result in gels 

that attain only 50 % of their theoretical surface area, with xerogels being virtually identical to 

aerogels. 

 

 

Samples 

 

PXRD 

Size (nm) 

 

BET surface 

area (m
2
/g) 

 

Theoretical 

surface area
a
 

(m
2
/ g) 

 

 

Average pore 

Diameter 

(nm) 

 

Cumulative 

pore 

Volume 

(cm
3
/g) 

PbTe spherical 

aerogel 

8.4 74 81 19 0.34 

PbTe spherical 

xerogel 

8.4 43 81 20 0.24 

PbTe cubic 

aerogel 

15 24 57 18 0.07 

PbTe cubic 

xerogel 

15 28 57 28 0.14 
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3.4.5 Probing the Thermal Stability of PbTe Nanostructures 

      The presence of nanoscale interfaces as well as pores in the nanostructures can be beneficial 

for phonon scattering, yielding improved thermoelectric performance. However, for 

thermoelectric power generators, materials that operate at elevated temperature are required;
72

 

thus, thermal stability is a key factor in probing utility. Bulk PbTe has a melting point of 917 °C 

and a sublimation temperature range of 450-600 °C in vacuum,
72

 but since nanoparticles have 

large surface-to-volume ratios, the physical characteristics of PbTe nanoparticles and aerogels 

may be quite different. In order to probe the thermal stability of the nanoparticles and aerogels, 

in situ heating experiments on dispersed samples in the TEM, as well as DSC measurements in 

closed pans, were conducted. 

      Figure 3.8 shows a series of TEM images obtained during in situ heating of the PbTe oleate-

capped nanoparticles (size = 12 nm). No change in the image was observed up to 400 °C, but at 

405 °C, some of the nanoparticles disappeared (shown by circles), suggesting that the 

nanoparticles started subliming from the TEM grid. The TEM image obtained at 406 °C showed 

that most of the nanoparticles have sublimed. Loss of nanoparticles continued to be evident from 

data at 408 °C and 411 °C, and finally, the TEM image obtained at 413 °C showed all the 

nanoparticles have disappeared. Based on this data, it can be concluded that the sublimation of 

the PbTe nanoparticles occurs over a very narrow range, and at a very low temperature, 405-413 

°C. 

      A similar in situ heating experiment was conducted on PbTe aerogels prepared from 12 nm 

particles. In this case, no change was observed in the aerogels up to 425 °C (Figure 3.9). The 

inset of the TEM image at 425 °C shows a clear diffraction pattern, detected by selected area 

electron diffraction (SAED), suggesting the presence of crystalline nanoparticles. The first 
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changes were noted between 425 °C and 430 °C as nanoparticles started disappearing gradually 

(see area in the circle). Finally, by 500 °C nearly all the nanoparticles disappeared, consistent 

with sublimation; SAED reveals an absence of crystalline PbTe (i.e., it is featureless). 

      From the above in situ heating data, it appears that the sublimation temperature onset for 

nanoparticles and aerogels is lower than that reported by Dughaish for bulk material in 

vacuum.
72

 The consequence of assembly is to retard and broaden the sublimation process such 

that sublimation started at a higher temperature and occurred over a wider temperature range for 

aerogels. This can be attributed to the inherent heterogeneity of the aerogels, as well as the fact 

that the nanoparticles are now embraced in a bonding network, reducing the surface area. Indeed, 

the sublimation of a heterogeneous mixture of larger size (and therefore reduced surface area) 

PbTe nanoparticles (ca. 20 nm, prepared using a growth time of 10 min) was not initiated until 

after 500 °C and was not complete until 700 °C, Figure 3.10.  

      In order to discern the melting temperature of PbTe nanoparticles and aerogels, as well as to 

evaluate processing conditions for ligand removal, DSC and TGA were acquired (Figure 3.11). 

The DSC of the nanoparticles shows a sharp exotherm at 322 °C and a smaller feature at 397 °C 

that correlate with weight losses in the TGA between 255-360 °C and 360-455 °C, respectively. 

These thermal/weight loss events are consistent with loss and/or decomposition of surface 

organic groups. A subsequent endotherm at 455 °C does not seem to correlate to a weight change 

event, and we attribute this feature to melting of excess tellurium (Te, mp = 452 °C) present in 

the sample
73

 as confirmed by EDS analysis (Figure 3.12). Finally, a sharp endotherm at 918 °C 

was assigned to the melting of the nanoparticles. This is nearly identical to the bulk melting point 

of PbTe, suggesting that there is no size effect on melting for these particles, or, more likely, that 

they sinter together, forming a bulk phase that subsequently melts. Data for the aerogel have 
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similar features, including a broad exotherm centered at 310 °C that correlates to a weight loss in 

TGA between 275 °C and 380 °C, associated with the loss of surface bound groups. This overall 

weight loss is much smaller in the aerogels relative to the nanoparticles (8 vs. 16 %) due to 

removal of surface ligands during the gel formation step. The aerogel also exhibits endotherms at 

420 °C and 920 °C due to the melting of Te impurities and PbTe, respectively. 

3.4.6 Effect of Oxidant on Gel Formation 
 

      A common problem encountered with the gels is excessive fragility. Indeed, attempts to 

make monolithic aerogels of PbTe from TNM oxidation were unsuccessful, even when very long 

gel aging times (10 days) were employed. In order to obtain stronger gels than those routinely 

prepared from TNM, H2O2 was evaluated as an oxidizing agent for gel generation. It was 

observed that when 3% aqueous H2O2 was added to the wet gel in a molar ratio of [H2O2] : 

[Pb
2+

]
 
= 1 : 6, gelation was achieved (Figure 3.13); but after 1 day of aging, bleaching of the wet 

gel was evident (the color of the gel changed from black to light brown). In contrast, when 3% 

aqueous H2O2 was incorporated to produce a molar ratio of [H2O2] : [Pb
2+

] = 1 : 11, gelation was 

achieved and yielded a black product (Figure 3.13). Based on these data, we hypothesize that 

H2O2, when present in excess, can oxidize tellurium and lead. This was confirmed by PXRD 

(Figure 3.14), which reveals the presence of crystalline Te2O5 and Pb2O3 in gels prepared from 

sols with an overall higher concentration of H2O2, whereas a pure PbTe phase is obtained with 

less H2O2 (Figure 3.14). Unfortunately, H2O2 gels showed a similar propensity to fracture. 

While monolithic gels remain elusive, this experiment demonstrates that oxidizing agents other 

than TNM, and in particular oxygen-atom transferring oxidants like H2O2, can be used for 

gelation of PbTe nanoparticles without significant oxygen atom incorporation (i.e., Te2O5 and 

Pb2O3 formation) provided the oxidant concentration is sufficiently low. 
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Figure 3.8 TEM images obtained upon heating 12 nm diameter PbTe nanoparticles. The ghost 

images apparent after sublimation are attributed to the carbonaceous residue from surface 

organic functionalities on the particles and/or damage to the underlying carbon film. 

 

 

406 °C 408 °C 

411 °C 413 °C 

400 °C 405 °C 



67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 TEM images obtained upon heating a PbTe aerogel prepared from 12 nm particles. 

The insets in the images collected at 425 °C and 500 °C show the selected area electron 

diffraction (SAED) patterns.  
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Figure 3.10 TEM images obtained upon in situ heating of a sample of PbTe nanoparticles of 

diameter 20 nm. 
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Figure 3.11 DSC and TGA of (a) 12 nm PbTe oleate-capped nanoparticles and (b) PbTe aerogel 

prepared from 12 nm particles. 
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Element   Weight %  Atomic % 

TeL             40.8           52.8         

PbL             59.2           47.2 

Total          100.0        100.0 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 3.12 EDS of a) PbTe nanoparticles of size 12 nm and b) PbTe aerogels prepared from 12 

nm particles. 
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Element    Weight %  Atomic % 

 TeL            39.1           51.1         

 PbL            60.9           48.9 

Total          100.0        100.0      
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Figure 3.13 TEM micrographs of aerogel networks obtained after addition of 3% H2O2 to 

achieve a ratio of concentration of a) [H2O2]:[Pb
2+

] = 1: 6 and b) [H2O2]: [Pb
2+

] = 1: 11.   
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Figure 3.14 PXRD pattern of PbTe aerogel obtained after addition of 3 % H2O2 to achieve a 

ratio of concentration of a) [H2O2]: [Pb
2+

] = 1: 6 and b) [H2O2]:[Pb
2+

] = 1:11. The symbols “*” 

and “#” in (a) denote impurity peaks from Te2O5 and Pb2O3, respectively. The line diagrams 

correspond to the ICDD-PDF # 38-1435 of cubic PbTe. 
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3.5 Conclusion 

      The sol-gel method of nanoparticle assembly has been applied to the PbTe system. The 

resulting aerogels and xerogels have identical crystallite size to the precursors, but the particles 

are linked together into a matter-pore architecture with average pore diameter in the meso (2-50 

nm) regime and surface areas ranging from 25-75 m
2
/g. Temperature processing over the 250-

450 °C range at atmospheric pressure results in desorption/decomposition of surface ligands, and 

melting is observed at 920 °C, which corresponds to the reported melting point of PbTe. 

However, under vacuum, sublimation is initiated just beyond 400 °C; linking the particles 

together has resulted in an increase in the onset, and a broadening of the temperature range, 

relative to the precursor particles, as probed by in situ heating in the TEM. Thus, aerogels show 

augmented thermal stability over the nanoparticle precursors. The presence of pores and 

interfaces on the nanoscale is expected to result in phonon scattering, thereby decreasing thermal 

transport and potentially leading to enhanced thermoelectric properties.   

500 °C 

700 °C 
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Chapter 4 

Extension of sol-gel methodology to Bi2Te3 and BixSb2-xTe3 nanoparticles and 

corresponding aerogel materials 

4.1 Introduction 

     After successfully applying the sol-gel method to PbTe nanostructures, we wanted to 

examine the generality of this procedure for other heavier telluride materials, specifically Bi2Te3 

and alloys of Bi2Te3-Sb2Te3. Bi2Te3 and Bi2Te3-Sb2Te3 alloys are state-of-the-art thermoelectric 

materials for devices operating in the temperature region from -20 °C to 100 °C.
8
 Thus, they 

have been used as elements for cooling purposes. Nanostructures of these materials have been 

the focus of considerable attention in the hope of further enhancing the ZT of the material (which 

attains a value of 1 at 300 K for bulk Bi2Te3 materials). This Chapter deals with the synthesis and 

characterization of nanoparticles and aerogels of Bi2Te3 and Bi2Te3-Sb2Te3 alloy (BixSb2-xTe3) 

materials along with thermoelectric property measurements, enabling the effect of sol-gel 

assembly on the thermoelectric figure of merit to be assessed. 

      This is a collaborative project that includes the groups of Dr. Donald Morelli and Dr. Jeff 

Sakamoto from Michigan State University. I did the synthesis and characterization of the 

nanoparticles and aerogels whereas the hot pressing and the thermoelectric property 

measurements of the samples were done at Michigan State University (MSU) by Dr. Chen 

(Kevin) Zhou, then a joint student of Dr. Morelli and Dr. Sakamoto. 

4.2 Experimental 

4.2.1 Materials 

      Bismuth neodecanoate (technical grade), bismuth acetate (≥ 99.99 % metal basis), antimony 

acetate (≥ 99.99 % metal basis), tellurium powder (Te, 200 mesh, 99.8 %), 1-dodecanethiol 

(DDT, 98 %), diphenylether (DPE, technical grade 90 %) and tetranitromethane (TNM) were 



75 

 

obtained from Sigma-Aldrich; trioctylphosphine (TOP, technical grade 97 %) and triethyl amine 

(TEA, reagent) were obtained from Strem chemicals and oleic acid (OA, technical grade, 90 %) 

was obtained from Fisher. 

4.2.2 Synthesis of Thiolate-Capped Bi2Te3 and BixSb2-xTe3 Nanoparticles  

      The synthesis of the Bi2Te3 nanoparticles employed in the sol-gel assembly was adapted with 

minor variations from Dirmyer and coworkers.
59

 The method includes heating a mixture of 

bismuth neodecanoate (0.63 mL, 0.9 mmol), diphenyl ether (50 ml, 290 mmol) and thiol capping 

agent, 1-dodecanethiol (1-DDT) (10 ml, 40 mmol), at 120 °C followed by injection of anion 

monomer trioctylphosphine telluride (TOPTe) (1.5 mL, 1 M). The temperature was maintained 

for 1 h (growth time), followed by quenching of the reaction in a cold water bath and isolation by 

centrifugation. The black product was washed twice with toluene and dried under vacuum. 

      The synthesis of the BixSb2-xTe3 nanoparticles (where, x = 0.5) employed in the sol–gel 

assembly was adapted from Burda and coworkers.
74

 Briefly,  a mixture of bismuth acetate (0.193 

g, 0.4 mmol), antimony acetate (0.342 g, 1 mmol), diphenyl ether (50 ml, 290 mmol) and thiol 

capping agent, 1-DDT (10 mL, 40 mmol), was heated to 120 °C followed by injection of anion 

monomer trioctylphosphine telluride (TOPTe) (2 mL, 1 M). The temperature was maintained for 

30 min (growth time), followed by quenching of the reaction in a cold water bath. The product 

was isolated as described for Bi2Te3. 

4.2.3 Generation of Bi2Te3 and BixSb2-xTe3 Aerogels 

      Once the dried thiolate capped nanoparticles of Bi2Te3 and BixSb2-xTe3 were obtained, 500 

mg and 200 mg, respectively, of the samples were dispersed in 20 mL of acetone targeting a final 

concentration of Bi
3+

 = 0.06 M (Bi2Te3) and combined concentration of Bi
3+

 and Sb
3+

 of 0.03 M 

for BixSb2-xTe3, assuming Bi0.5Sb1.5Te3 composition. The concentrations were calculated based 
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on the bulk molecular weight of each species. The solutions were then each divided in four 

different vials (5 mL each) and gelation was induced by adding 0.1 mL of 3 % TNM in acetone 

(v/v). The solution was shaken and gelation was observed within 1 h. The wet gels were aged for 

4-5 days under ambient conditions and then were exchanged with acetone twice a day for 

another 2 days. A portion of the wet gel was transferred to fresh vials and supercritically dried, 

as described in Chapter 2, to produce an aerogel.  

4.3 Characterization Techniques 

      PXRD, TEM, IR, surface area/porosimetry and thermoelectric property measurements 

(Seebeck coefficient, electrical resistivity, thermal conductivity and Hall coefficient) were used 

to characterize the materials. For more details on the measurement techniques, refer to Chapter 2. 

4.4 Results and Discussion 

4.4.1 Synthesis and Characterization of Bi2Te3 and BixSb2-xTe3 Nanoparticles and Aerogels 

a) Synthesis 

      Bi2Te3 and BixSb2-xTe3 materials were chosen because they are well established 

thermoelectric materials in the bulk form, and nanostructuring of these materials is expected to 

enhance ZT by reducing the lattice thermal conductivity via scattering of heat carrying phonons 

from the nanoscale interfaces, as has been observed in related systems.
61, 75

 Moreover, the 

presence of pore-matter interfaces in aerogels may lead to enhanced phonon scattering. The 

synthetic procedure for Bi2Te3 nanoparticles was adapted from Dirmyer et. al.
59

 The synthesis 

involved injecting bismuth neodecanoate, the cation monomer, to a heated solution of DPE at 

high temperatures. Immediately after injecting the bismuth precursor, the thiolate capping agent, 

1-DDT was added, changing the colorless solution to yellow. Upon addition of the anion 

monomer, TOPTe, the color of the solution changed from yellow to black. After a growth time 
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of 1 h, the particles were centrifuged and isolated. The black solids were further washed with 

toluene and dried under vacuum. 

      The synthetic procedure followed for the BixSb2-xTe3 nanoparticles was adapted from Burda 

et. al.
74

 The bismuth (bismuth acetate) and the antimony precursor (antimony acetate) were 

heated at high temperatures along with 1-DDT (capping agent) and DPE solvent. TOPTe was 

injected at high temperature. After a desired growth time of 30 min, the black solution was 

centrifuged followed by washing with toluene. The final black product obtained was dried under 

vacuum. 

      

Figure 4.1 Images of (a) Bi2Te3 aerogel, wet gel and sol, (b) BixSb2-xTe3 aerogel obtained after 

supercritical drying of the wet gel. 

      

      Gelation of the Bi2Te3 and BixSb2-xTe3 nanoparticles was achieved by dispersing the thiolate 

capped nanoparticles in acetone to form a sol, followed by addition of 0.1 mL of 3 % TNM as 

oxidizing agent removing the surface bound thiolate groups and also condensing the 

nanoparticles together, forming the wet gels (Figure 4.1). These wet gels were further aged for 4 

days under ambient conditions then exchanged with fresh acetone twice daily for two days to 

(a) 

Aerogel 

(b) 

Sol Wet Gel Aerogel 
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remove byproducts of gelation. At this point strong monolithic wet gels were obtained, which 

were transferred carefully into new vials and then supercritically dried to form aerogels. The 

resultant aerogels for both the samples were monolithic in nature and black in color as shown in 

Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Powder X-ray diffraction patterns of Bi2Te3 nanoparticles and BixSb2-xTe3 

nanoparticles. The vertical lines correspond to the ICDD-PDF #15-0863 for Bi2Te3 and ICDD-

PDF #49-1713 for Bi0.5Sb1.5Te3, both adopting the rhombohedral phase. The * on the PXRD 

corresponds to Si peaks matching the ICDD-PDF # 27-1402 of Si. 
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b) Characterization  

      The phase and crystallite size of the products obtained above were determined by powder X-

ray diffraction experiments. The PXRD patterns of the Bi2Te3 and BixSb2-xTe3 nanoparticles, 

matched the rhombohedral phase of Bi2Te3 and Bi0.5Sb1.5Te3, respectively (Figure 4.2). The 

PXRD data for BixSb2-xTe3 was collected along with an internal silicon standard to observe any 

shifts in the lattice parameter due to formation of more Sb-rich or less Sb-rich phases than the 

targeted Bi0.5Sb1.5Te3. The pattern was a perfect match to ICDD-PDF # 49-1713 of Bi0.5Sb1.5Te3. 

Application of the Scherrer equation rendered a value of 35 nm for Bi2Te3 and 50 nm for 

Bi0.5Sb1.5Te3 nanoparticles, based on the (015) plane in both cases.  

      TEM was employed to verify the size and determine the morphology of the Bi2Te3 and 

BixSb2-xTe3 nanoparticles. Both the Bi2Te3 and BixSb2-xTe3 nanoparticles manifested as 

aggregates of plate like morphology with an overall aggregate size of ~ 40 nm (Figure 4.3). The 

plate like morphology is inherent to Bi2Te3 materials, as the crystal structure of Bi2Te3 consists 

of Bi and Te layers with rhombohedral hexagonal symmetry.
8, 76

 Strong covalent interactions 

exist between the Bi and Te layers whereas the adjacent Te layers are held together by weak Van 

der Waals interactions.   

     The PXRD patterns for the Bi2Te3 and BixSb2-xTe3 aerogels obtained from the nanoparticles 

were similar to those of the starting precursor nanoparticles suggesting both the crystallite size 

and phase are retained in the gelation and drying process (Figure 4.4). The BixSb2-xTe3 and 

Bi2Te3 aerogels displayed a colloidal morphology consisting of an interconnected network of 

nanoparticles with pores clearly evident in the TEM images (Figure 4.5). This shows that the 

sol-gel method was successful in connecting the discrete nanoparticles together forming a gel 

network. 
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Figure 4.3 TEM images of (a) Bi2Te3 nanoparticles and (b) BixSb2-xTe3 nanoparticles. The inset 

show high resolution TEM images (HRTEM). 

       

      A semiquantitative EDS study of the Bi2Te3 and BixSb2-xTe3 nanoparticles and aerogels was 

performed to determine the elemental compositions in the samples. The Bi2Te3 nanoparticles 

have a Bi:Te:S ratio of 1.8:3:0.9 for the nanoparticles, corresponding to a Te-rich Bi2Te3 phase. 

The sulfur content is attributed to surface thiolate groups. The aerogels have a Bi:Te:S ratio of 

2.2:3:0.4, suggesting some Te loss in the gel and aerogel formation process, yielding a Bi-rich 

phase (Figure 4.6). The decrease in sulfur content is indicative of loss of surface thiolates, 

consistent with the oxidative gelation mechanism.
77

 

      In the case of BixSb2-xTe3 nanoparticles and aerogels, the Bi:Sb:Te:S ratio was found to be 

0.6:1.6:3:0.1 for nanoparticles and 0.5:1.5:3:0.1 for aerogels, respectively. The values obtained 

are close to the desired composition of Bi0.5Sb1.5Te3. The data also show that there was less 

residual sulfur from the dodecanethiol in the case of Bi0.5Sb1.5Te3 nanoparticles and aerogels 

relative to the Bi2Te3 case (Figure 4.7). The presence of a lower amount of organic groups is a 

(a) (b) 
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good sign for thermoelectric measurements as the organic groups are expected to act as an 

insulating layer that reduces the electrical conductivity of the system.
78

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Powder X-ray diffraction patterns of Bi2Te3 and BixSb2-xTe3 aerogels derived from 

discrete nanoparticles. The vertical lines correspond to the ICDD-PDF #15-0863 for Bi2Te3 and 

ICDD-PDF #49-1713 for Bi0.5Sb1.5Te3, both adopting the rhombohedral phase. The ICDD-PDF # 

27-1402 of Si is also shown.  
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Figure 4.5 TEM images of (a) Bi2Te3 and (b) BixSb2-xTe3 aerogels obtained from the 

corresponding nanoparticles.  

       

      To analyze the surface area and porosity characteristics of the Bi2Te3 and BixSb2-xTe3 

nanoparticles and aerogels, samples were heated at 150 °C under Ar, for 24 h to remove any 

moisture or volatile impurities from the surface of the aerogels, followed by acquisition of 

nitrogen adsorption/desorption isotherms (Figure 4.8). 

      The surface area analysis of Bi2Te3 materials, modeled by the Brunauer, Emmet and Teller 

(BET) method, yielded a value of ca 40 m
2
/g for aerogels and 16 m

2
/g for nanoparticles (Table 

4.1). The surface area of the nanoparticles was lower than that of the aerogels suggesting that 

supercritical drying enables better access to the particle surface. The nitrogen 

adsorption/desorption isotherms illustrated that the aerogels and xerogels display type IV 

isotherm curves that are characteristic of a mesoporous material (2-50 nm pore diameter), and 

the pore size distribution (Figure 4.8, inset), calculated using the Barret, Joyner and Halenda 

(BJH) model, is consistent with a broad range of pores extending into the macropore region (>50 

nm). Intriguingly, BJH plots for nanoparticles reveal very similar features. As there is no pore 

(a) (b) 
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structure evident in TEM images, we attribute these to filling of interstices in the solid 

nanoparticle samples.
79

 Similar pore characteristic/pore sizes were observed for the BixSb2-xTe3 

aerogels and nanoparticles (Figure 4.9), where the nanoparticles again showed lower surface 

area (15 m
2
/g) relative to the aerogels (36 m

2
/g) (Table 4.1). 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 EDS of Bi2Te3 nanoparticles and resultant aerogel. The peak due to copper is 

attributed to the TEM grid.  
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Figure 4.7 EDS of BixSb2-xTe3 nanoparticles and resultant aerogel. The peak due to copper is 

attributed to the TEM grid.  
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Table 4.1 BET surface area, average pore diameter and cumulative pore volume of the 

nanoparticles and aerogels of Bi2Te3 and BixSb2-xTe3 samples. 

 

 

 

 

 

 

      

      To prepare for measurement of thermoelectric properties, the nanoparticles and aerogels of 

Bi2Te3 and BixSb2-xTe3 were annealed at 200 °C for 2 h under Ar atmosphere in a flow furnace to 

remove residual organic ligands. This is done because the organic ligands are expected to act as 

trap centers for the electrons and hamper the electrical transport in the system. IR was employed 

to probe the removal of the surface organic groups. Figure 4.10 shows the IR before and after 

heating the aerogels of Bi2Te3 samples. The peaks at 2924 cm
-1

 and 2846 cm
-1

 correspond to the 

aliphatic–CH stretches from the capping agent (1-DDT) which are present before heating. The 

disappearance of organic peaks, as evident in the IR spectra after annealing the samples, suggests 

that heating removes the organic surface capping groups. The same observation was noted for 

the BixSb2-xTe3 nanoparticles and aerogels. 

 

 

 

Samples BET surface 

area in m
2
/g 

Average pore 

diameter (nm) 

Cumulative pore 

volume (cm
3
/g) 

Bi2Te3 

nanoparticles 

16 24 0.10 

Bi2Te3 aerogel 45 9.3 0.10 

BixSb2-xTe3 

nanoparticles 

15 13 0.06 

BixSb2-xTe3 aerogel 36 9 0.10 
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Figure 4.8 N2 adsorption (■)/desorption (○) isotherms of Bi2Te3 nanoparticles and aerogel 

samples. The inset shows the corresponding BJH pore size distributions. 
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Figure 4.9 N2 adsorption (■)/desorption (○) isotherms of BixSb2-xTe3 nanoparticles and aerogel 

samples. The inset shows the corresponding BJH pore size distributions. 
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Figure 4.10 IR of Bi2Te3 aerogel (a) before and (b) after heating under Ar in a flow furnace at 

200 °C.   

 

4.4.2 Thermoelectric Property Measurements (Acquired by our Collaborators from 

Michigan State University) 

      Bi2Te3 and BixSb2-xTe3 nanoparticles and aerogels were hot pressed at 450 °C to form pellets 

from which rectangular parallelopipeds were cut to perform TE transport property 

measurements. To probe the effect of hot-pressing on crystallite size and composition, 

TEM/EDS data were acquired on the hot pressed pellets of the nanoparticles and aerogels. TEM 

images of the nanoparticles show nanoscopic features which are < 100 nm in diameter (Figure 

4.11). Similar results were seen in aerogels, suggesting that hot pressing keeps the size of the 

resultant materials in the nano-regime. The elemental analysis of the hot pressed Bi2Te3 aerogels 

reveals the Bi:Te ratio to be 2.5:3 and the Bi:Sb:Te ratio in BixSb2-xTe3 aerogels to be 0.3:1.2:3 

(Figure 4.12), whereas for the hot pressed nanoparticles, the ratios are Bi:Te = 2:3 and Bi:Sb:Te 
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= 0.5:1.2:3, respectively. This suggests, relative to the nanoparticles, a Bi rich phase for the hot 

pressed Bi2Te3 aerogels and a Te rich phase for the hot pressed BixSb2-xTe3 aerogel.  

Figure 4.13 shows the Seebeck coefficient (S) as a function of temperature for the Bi2Te3 

and BixSb2-xTe3 nanoparticles. As discussed in Chapter 1, the sign of S (negative or positive) 

reflects the majority charge carriers (electrons or holes) in the system. The Seebeck coefficient 

increases monotonously with increasing temperature for both the samples and acquires a positive 

value, suggesting p-type behavior for these materials. For Bi2Te3 nanoparticles, the S value 

obtained at 300 K is lower than the bulk material
80

 whereas for BixSb2-xTe3 nanoparticles, the S 

value is comparable to the bulk material (Table 4.2).
81

 The electrical resistivity for both Bi2Te3 

and BixSb2-xTe3 nanoparticles exhibits a similar trend, the value increases with the increase in 

temperature as shown in Figure 4.13. However, despite this temperature dependent increase, due 

to the strong influence of S in the power factor term, S
2
σ (S

2
/ρ) increases with the increase in 

temperature (Figure 4.13). While the room temperature value of S (Table 4.2) is higher for the 

BixSb2-xTe3 nanoparticles relative to Bi2Te3 nanoparticles, the greater electrical resistivity values 

in the former results in a lower power factor for BixSb2-xTe3 nanoparticles. The power factor 

value obtained at 300 K for Bi2Te3 nanoparticles (5.0 μW/(cm·K
2
)) is either higher or 

comparable to other chemically synthesized Bi2Te3 nanoparticles (for example, 2.4 

μW/(cm·K
2
)
75

 and 5.0 μW/(cm·K
2
)
61

 at 300 K). However, for BixSb2-xTe3 nanoparticles, the 

power factor value obtained at 300 K (3.3 μW/(cm·K
2
)) is lower than that reported in the 

literature (for example, 7.8 μW/(cm·K
2
)
75

 and 7.0 μW/(cm·K
2
)
62

 at 300 K).  Power factors for 

bulk BixSb2-xTe3 materials are a factor of 5-10 times greater than those obtained for 

nanoparticles. 
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       One of the main benefits of using nanoparticles for thermoelectric applications is to achieve 

reduction in thermal conductivity.
75

 The total thermal conductivities of the Bi2Te3 and BixSb2-

xTe3 nanoparticles are shown in Figure 4.13. The lattice thermal conductivity is estimated by 

subtracting the electronic thermal conductivity from the total thermal conductivity. The 

electronic thermal conductivity is calculated by the Wiedemann Franz law κe = LσT where σ is 

the electrical conductivity, T is the absolute temperature and L is the Lorenz number, which 

assumes a value of L = 2.44 × 10
-8

 V
2
/K

2
. The total, as well as the lattice thermal conductivity, 

decreases with the increase in temperature for Bi2Te3 nanoparticles, whereas for BixSb2-xTe3 

nanoparticles, both remain constant over the entire temperature range measured. The lattice 

thermal conductivity value obtained for the Bi2Te3 nanoparticle sample at 300 K is lower than the 

reported value for bulk material (Table 4.2).
82

 This result justifies the benefit of utilizing the 

reduced dimension (less than 100 nm) of Bi2Te3 nanoparticles to effectively cap the phonon 

mean free path. For the case of BixSb2-xTe3, addition of nanostructuring has little effect on the 

lattice thermal conductivity, which is already pretty low due to point scattering effects from the 

disordered cation lattice.  Overall, the lattice thermal conductivity value obtained for Bi2Te3 and 

BixSb2-xTe3 nanoparticles is similar to that found in prior reports (0.011 W/(cm·K) and 0.012 

W/(cm·K) at 300 K for Bi2Te3 and BixSb2-xTe3 nanoparticles, respectively).
75

 Finally, the overall 

ZT obtained after combining all the parameters increases with that of temperature and at 300 K 

the ZT obtained was 0.18 for Bi2Te3 and 0.1 for BixSb2-xTe3 nanoparticles. The value of ZT 

obtained for Bi2Te3 nanoparticles was either higher or comparable to other chemically 

synthesized nanoparticles (ZT = 0.03-0.2)
59,61

 whereas for BixSb2-xTe3 nanoparticles, the ZT is 

lower than the other chemically synthesized BixSb2-xTe3 nanoparticles (previously reported as 

0.5).
62, 75
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      For Bi2Te3 and BixSb2-xTe3 aerogels, surprising changes in electronic properties are observed. 

In Bi2Te3 aerogels, the value of S changed from negative at low temperature to positive at high 

temperatures during the measurement, suggesting the presence of two types of carriers in the 

system. This result is distinct from that observed for the nanoparticles of Bi2Te3, where the type 

of conduction was p-type over the entire measured temperature range (Figure 4.14). This 

suggests the advent of intrinsic conduction in the case of Bi2Te3 aerogels leading to two carriers 

co-existing in our material (Figure 4.14).  

      For BixSb2-xTe3 aerogels, S shows a negative value, increasing in magnitude with the increase 

in temperature, suggesting n-type behavior, which again differs from that obtained for the 

BixSb2-xTe3 nanoparticles. The cause of this conversion is uncertain but it might be due to the 

presence of excess tellurium present in the sample after hot pressing, as suggested by semi-

quantitative elemental analysis (Figure 4.12). Excess Te is reported to act as n-type dopant by 

occupying Bi lattice sites in Bi2Te3 films.
83

 

 

     

 

 

 

 

 

 

Figure 4.11 TEM images of (a) Bi2Te3 and (b) BixSb2-xTe3 nanoparticles after hot pressing. 

       

(a) (b) 
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      The electrical resistivity for the Bi2Te3 aerogels shows an activated behavior, decreasing with 

increasing temperature; for BixSb2-xTe3 aerogels, the electrical resistivity increases marginally 

with the increase in temperature. Thus, the power factor obtained at 300 K for Bi2Te3 and BixSb2-

xTe3 aerogels is 0.06 μW/(cm·K
2
)
 
and 0.17 μW/(cm·K

2
), respectively; both significantly lower 

than values obtained for the corresponding nanoparticles (Table 4.2). 

      Moreover, the power factor value for the Bi2Te3 aerogel is lower than that obtained 

previously (6 × 10
6
 μW/(cm·K

2
)), which was prepared in our lab and processed similarly, yet 

demonstrated dramatically different electrical properties.
84

 This underscores the sensitivity of the 

system to adventitious doping. 

 

 

 

 

 

 

 

 

 

Figure 4.12 EDS analysis of aerogels of (a) Bi2Te3 and (b) BixSb2-xTe3 after hot pressing. The 

peak due to copper is attributed to the TEM grid.  
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Figure 4.13 Thermoelectric properties of Bi2Te3 and BixSb2-xTe3 nanoparticles. 
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Figure 4.14 Thermoelectric properties of Bi2Te3 and BixSb2-xTe3 aerogels obtained from discrete 

nanoparticles. 
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Table 4.2 Some room temperature (300 K) physical properties of Bi2Te3 and BixSb2-xTe3 

nanoparticles and aerogels along with their respective bulk counterparts for comparison 

 

Thermoelectric 

properties 

Bulk 

Bi2Te3
82

 

Bi2Te3 

nanoparticles 

Bi2Te3 

aerogels 

Bulk 

Bi0.5Sb1.5Te3
68

 

BixSb2-xTe3 

nanoparticles 

BixSb2-xTe3 

aerogels 

Seebeck 

coefficient 

(μV/K) 

227 150 43 186 183 -36 

Electrical 

resistivity (10
-3

 

Ω·cm) 

1.9 4.5 33 1.1 10 7.5 

Power factor 

(10
-6

 

W/(cm·K
2
) 

26.4 5.0 0.06 31.5 3.3 0.17 

Lattice thermal 

conductivity 

(10
-2 

W/cm·K) 

17 0.6 0.5 1.0 0.9 1.0 

ZT 0.7 0.18 0.003 0.6 0.1 0.005 

 

       

      The thermal conductivity data for the Bi2Te3 and BixSb2-xTe3 aerogels were plotted as a 

function of temperature (Figure 4.14). The lattice thermal conductivity measurements were 

calculated similarly to those of the nanoparticles assuming an L value of 2.44 × 10
-8

 V
2
/K

2
.  The 

lattice thermal conductivity indeed reduces with the increase in temperature in the aerogel 

system, attributed to a strong phonon scattering effect from the pore-matter interfaces. The lattice 

thermal conductivity for Bi2Te3 aerogels is lower than that of the corresponding nanoparticles at 

300 K, whereas the lattice thermal conductivity for the BixSb2-xTe3 aerogels has a similar value to 

the starting nanoparticles (Table 4.2), again suggesting that nanostructuring does not add to 

phonon scattering beyond the doping effect. Unfortunately, the change in sign for S in both the 

aerogel samples indicates the electronic properties are severely degraded; hence, the overall ZT 
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values for the aerogel systems are significantly lower than for the corresponding nanoparticles at 

300 K (Figure 4.14, Table 4.2). Previous studies on Bi2Te3 aerogel materials,
84

 where high 

power factors are maintained, did not include thermal conductivity measurements, so no 

comparison of ZT can be made. 

4.5 Conclusion 

     

      The sol-gel method has successfully been extended to Bi2Te3 and BixSb2-xTe3 systems. The 

resultant aerogels preserve the phase and size of the precursor nanoparticles, and show a well 

connected network of nanoparticles with many pore-matter interfaces. The average pore diameter 

lies in the mesopore regime, and surface areas are ~36-40 m
2
/g for the aerogels showing that the 

supercritical drying increases the accessible surface area as compared to the nanoparticles (15-16 

m
2
/g). Evaluation of the thermoelectric properties of the Bi2Te3 and BixSb2-xTe3 aerogels 

suggested degraded electronic properties, as compared to the respective nanoparticles, owing to 

poor power factor (S
2
σ). This could be attributed to the presence of excess Te in BixSb2-xTe3 

aerogels, and the presence of two types of carriers in Bi2Te3 as a result of adventitious doping in 

intrinsic materials, compensating the majority charge carriers in these systems. The power factor 

obtained for the Bi2Te3 aerogel is drastically lower than the Bi2Te3 aerogel previously published 

in literature, reiterating the fact that adventitious doping in these materials can lead to vastly 

different electronic properties.  
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Chapter 5 

Synthesis and Evaluation of Lead Telluride/Bismuth Antimony Telluride 

Nanocomposites for Thermoelectric Applications 

5.1 Introduction 

      Recently, considerable focus has been given to synthesizing nanostructures and 

nanocomposite materials
85

 for improved figure of merit (ZT) in thermoelectric devices. 

Specifically, it has been shown that inclusion of nanoscale features dramatically reduces the 

thermal conductivity and improves the thermopower (S) of the system, as mentioned in Chapter 

1.
2
 The focus of this Chapter is the synthesis and characterization of heterostructured 

nanocomposites by incipient wetness impregnation of discrete PbTe nanoparticles in a bulk 

Bi2Te3 matrix, (both n-type and p-type). The efficacy of organic ligand removal from the surface 

of PbTe nanoparticles, both chemically and thermally, will be presented as these organic ligands, 

can potentially act as insulators and hamper the easy flow of electrons (as discussed in Chapter 

1). Finally, the effect of impregnating different concentrations of PbTe nanoparticles in the bulk 

Bi2Te3 matrix on the thermoelectric properties of the composite will be discussed.  

      This work on PbTe nanoparticle inclusion in a p-type Bi2Te3 matrix has been published in 

Journal of Solid State Chemistry, 2011.
81

 This is a collaborative project that includes the groups 

of Donald Morelli and Jeff Sakamoto from Michigan State University and the group of Ctirad 

Uher from the University of Michigan. I did the synthesis and characterization of the 

nanoparticles and nanocomposites and the preparation of the n-type and p-type Bi2Te3 matrices. 

The thermoelectric property measurements of the composites were done at Michigan State 

University (MSU) by Dr. Chen (Kevin) Zhou, then a joint student of Dr. Morelli and Dr. 

Sakamoto. 
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5.2 Experimental 

5.2.1 Materials 

      Most of the materials used are mentioned in Chapter 3 except for high purity starting 

materials of bismuth (granule 99.997%), antimony (shot 99.999%), selenium (shot 99.999%) and 

tellurium (shot 99.9999%) which were obtained from Alfa Aesar.  

5.2.2 Synthesis 

5.2.2.1. General Synthesis of PbTe Nanoparticles and Ligand Removal 

      The PbTe nanoparticles were synthesized using the protocol mentioned in Chapter 3. The 

dried nanoparticles were either treated with (1) anhydrous hydrazine, where the PbTe 

nanoparticles were dispersed in hexane and added to a 1:1 volume ratio of anhydrous hydrazine 

in the glove box and stirred until the hexane phase becomes colorless. The upper colorless 

organic phase was discarded and acetonitrile in 2:1 volume ratio was added to the PbTe 

hydrazine phase which caused flocculation of the PbTe nanoparticles. Alternatively, (2) the 

nanoparticles were thermally annealed at 410 °C under inert atmosphere for 2 h in order to 

remove surface ligands.  

5.2.2.2 General Synthesis of n-type and p-type Bismuth Telluride (Performed by 

Collaborators at MSU) 

      Bismuth antimony telluride with nominal composition Bi0.4Sb1.6Te3 was employed as the p-

type matrix material for making nanocomposites; for n-type, we chose to alloy bismuth telluride 

with bismuth selenide for a nominal composition (Bi2Te3)0.95(Bi2Se3)0.05, yielding the formula 

Bi2Te2.85Se0.15. High purity elements were weighed according to the targeted ratio and sealed in a 

fused silica ampoule under a vacuum < 10
-5

 Torr. The ampoule was heated at 750 °C for 12 h 

followed by rapid water quenching. The quenched ingot was annealed for another three days in 
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order to homogenize the properties. The annealing temperatures were carefully selected to 

optimize the overall thermoelectric transport properties. For n-type, the annealing temperature is 

set at 450 °C and for p-type, it is 540 °C. The annealed ingot was then ball milled into fine 

powders in a Spex 8000 Mixer/Mill and stored inside an Ar purged glovebox before making 

nanocomposites. 

5.2.2.3. General Synthetic Procedure for Incorporation of PbTe Nanoparticles into Bulk 

Bismuth Telluride (n- or p- doped) Matrix 

      The synthesis of nanocomposites involved dispersion of an appropriate mass of oleate-

capped PbTe nanoparticles into a minimum amount of solvent, hexane. The resulting solution 

was sonicated for 10 min to make a colloidal suspension. The PbTe nanoparticle sol was then 

added dropwise to an appropriate mass of bulk bismuth telluride (n- or p-doped) matrix with 

constant stirring, followed by solvent evaporation under ambient temperature and pressure, in a 

glove box.  

      The mixed composite powder was loaded into a graphite crucible and heated at 410 °C for 2 

h in an Ar purged glove box in order to eliminate residual organics at the surface of the PbTe 

nanoparticles. The heat treated powder was then hot pressed between 350 °C and 380 °C under a 

pressure of 60 MPa for 15 min to form a dense pellet. For n-type nanocomposite a total of five 

samples (2 g each) were prepared with PbTe weight percentages 10, 5, 1, 0.1 and 0 wt%; and for 

p-type nanocomposite, a total of four samples (2 g each) with PbTe weight percentage of 0%, 

0.1%, 0.5% and 1% were prepared. 
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5.3 Characterizations 

      PXRD, TEM, IR, TGA and thermoelectric property measurements (Seebeck coefficient, 

electrical resistivity, thermal conductivity and Hall coefficient) were used to characterize the 

materials. For more details on the measurement technique, refer to Chapter 2. 

5.4 Results and Discussion 

5.4.1 Synthesis of PbTe Nanoparticles and Bulk n- and p-doped Bismuth Telluride Matrix 

      We expected that the presence of uniform PbTe nanoparticles within a bismuth telluride bulk 

material doped with either Se (n-type) or Sb (p-type), would result in heterogeneous interfaces 

that would scatter phonons and thus reduce the thermal conductivity (κ) within the matrix 

(particularly the lattice part of the thermal conductivity, l), while having minimal impact on the 

electrical properties. To obtain a nanocomposite, we first prepared PbTe nanoparticles, bulk Bi2-

xSbxTe3 and Bi2Te3-xSex independently, and then incorporated PbTe into the bulk bismuth 

telluride matrix via incipient wetness impregnation.  

      The p-type Bi2-xSbxTe3 and n-type Bi2Te3-xSex were prepared following literature 

procedures
86, 87

 targeting the composition Bi0.4Sb1.6Te3 and Bi2Te2.85Se0.15, respectively. The 

compositions were chosen where the electrical and thermal characteristics balance to generate 

the maximum ZT within the homogeneous p-doped or n-doped alloy. These materials were 

prepared by our collaborators at MSU. The ball milled powders were characterized by powder 

X-ray diffraction (PXRD) patterns and were found to match the expected rhombohedral phase of 

Bi2Te3. 

      Oleate-capped PbTe nanoparticles were synthesized by modification of a literature procedure 

as previously reported in Chapter 3. The PXRD pattern of the nanoparticles matches the cubic 

PbTe (Altaite) phase and the crystalline size is 13-14 nm, determined using the Scherrer 
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equation. TEM images reveal that the particles exhibit a cubic morphology with an average 

particle size of 13 ± 1.2 nm, consistent with the Scherrer equation. Similar sizes were obtained 

for the nanoparticles employed with the n-type composites. The elemental analysis (EDS) of the 

as-prepared nanoparticles gives a composition Pb:Te of 1:0.94, close to the ideal value of Pb:Te 

of 1:1. 

5.4.2 Removal of Organic Surface Ligands from PbTe Nanocrystals     

      The oleate groups bonded to the surface of PbTe nanoparticles can be expected to act as 

insulating barriers, decreasing the overall electrical conductivity of the system.
30, 78

 Hence, we 

sought to remove the oleate ligands, using both chemical and thermal treatments. For the 

chemical treatments, PbTe nanoparticles dispersed in hexane were treated with anhydrous 

hydrazine with stirring, followed by precipitation with acetonitrile, following the literature 

procedure.
78

 Hydrazine treatment led to some ripening, manifest as a slight increase in the 

crystallite size from 14 nm to 15 nm (Scherrer analysis of PXRD pattern) with significant 

aggregation. A comparison of infrared spectra (IR) obtained before and after hydrazine 

treatment, is shown in Figure 5.1. The peaks at 1512 cm
-1

 and 1394 cm
-1 

are attributed to the 

presence of symmetric and asymmetric vibrations of oleate COO
-
, respectively, whereas those at 

2918 cm
-1

 and 2840 cm
-1

 correspond to aliphatic –CH stretches. While significant reduction in 

peak intensity is observed upon hydrazine treatment, the IR data suggest that complete removal 

is not achieved. 

      Thermal treatment was found to be more effective for oleate group removal. The optimum 

temperature was determined by thermogravimetric analysis (TGA). As shown in Figure 5.2, the 

TGA of the oleate-capped PbTe nanoparticles revealed a 16 % weight loss overall between 255-

455 °C, which we attribute to desorption/decomposition of surface oleate functionalities as well 
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as possible loss of Te due to sublimation at the high temperature end of the measurement.  

However, the loss of Te is expected to be less than 1 wt % under these conditions.
88

 Based on the 

TGA data, heat treatment of the nanoparticles was carried out in a flow furnace at 410 °C for 2 h 

under nitrogen. As shown in Figure 5.1, both –COO
-
 and –CH stretching vibrations are absent 

after thermal treatment, suggesting successful removal of the organic groups. 

 

 

 

 

 

 

Figure 5.1 IR of PbTe oleate-capped nanoparticles, hydrazine-treated PbTe nanoparticles and 

thermally-treated PbTe nanoparticles under Ar in a flow furnace at 410 °C. 

5.4.3 Nanocomposite Preparation and Characterization 

      In order to avoid aggregation and particle growth during the thermal ligand removal step, and 

to enable the most efficient and intimate mixing between the nanoparticles and the matrix, the 

incorporation of nanoparticles into bulk bismuth telluride (n- and p- doped) was achieved by 

addition of a dispersion of oleate-capped PbTe nanoparticles in hexane to solid Bi2Te3-xSex and 

BixSb2-xTe3 dropwise, with constant stirring of the slurry to facilitate incorporation of the PbTe 

nanoparticles throughout the matrix, then left to dry under inert atmosphere. The resultant 

composite was then placed inside a carbon crucible and heated at 410 °C for two hours to 
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pyrolyze organic ligands encapsulating the PbTe nanoparticles. The heat treated powder was 

then hot pressed inside a 10 mm graphite die under a pressure of 60 MPa at an approximate 

temperature of 350 °C to 390 °C for 15 min. A total of four nanocomposites with 10 wt %, 5 wt 

%, 1 wt % and 0.1 wt % for the n-type matrix, and three nanocomposites with 0.1 wt%, 0.5 wt% 

and 1 wt% PbTe nanoparticles for the p-type matrix, were prepared. A pure bismuth antimony 

telluride and bismuth selenium telluride matrix material was hot pressed under identical 

conditions to serve as a control sample. 

 

 

 

 

 

 

Figure 5.2 TGA of PbTe oleate-capped nanoparticles under N2 atmosphere. 

      Figure 5.3 demonstrates the PXRD pattern of n-type and p-type composites showcasing the 

10 and 1 wt % patterns for the former and 1 wt % for the latter. PbTe nanoparticles within the 

Bi2Te3-xSex and Bi2-xSbxTe3 nanocomposites could not be detected by PXRD at the low 

concentrations (Figure 5.3) due to limitations in the sensitivity of the PXRD instrument, but the 

10 wt % nanocomposite shows the presence of the most intense (220) reflection of Altaite, 

suggesting PbTe remains a discrete phase within the Bi2Te3-xSex matrix under these processing 

conditions. For the case of p-type composites, the effect of incorporating PbTe nanoparticles into 
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the Bi2-xSbxTe3 matrix on the lattice parameters of the matrix was evaluated. Incorporation of 

nanoparticles had no definitive effect on the lattice parameters, which were found to be the same 

within 2 (Table 5.1) for comparison of the matrix to the highest p-type doped material (1 wt 

%).  However, this does not rule out solid-solution formation, since the doping levels are small 

and minimal changes in lattice parameter are expected.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 (a) PXRD of 10 and 1 wt % of PbTe in Bi2Te3-xSex matrix after compaction and (b) 

PXRD of 1 wt % of PbTe in Bi2-xSbxTe3 matrix after compaction. The patterns are referenced to 

the ICDD-PDF # 38-1435 of cubic PbTe and ICDD-PDF # 15-0863 of rhombohedral Bi2Te3 and 

rhombohedral BixSb2-xTe3. The (*) shows the (220) reflection of the Altaite phase of PbTe. 

0

1000

2000

0

50

100

20 30 40 50 60 70

0

50

100

 

  

 

1 % composite(b)

In
te

n
s

it
y

 (
a

rb
. 

u
n

it
s

)

 

  

 

Bi
x

Sb
2-x

Te3

  

 

2(degrees)

PbTe

0
30
60
90

20 30 40 50 60 70

0
30
60
90

0
300
600
900

0

3000

6000

  

 

 

Bi2Te3

 

 

 

2 (degrees)

PbTe

 

  

 

10 wt % PbTe

*
(a)

 

 

 

In
te

n
s

it
y

 (
a

rb
. 

U
n

it
s

)

1 wt % PbTe



105 

 

      The incorporation of PbTe nanoparticles in doped bismuth telluride matrix was further 

confirmed by TEM images. Figure 5.4 shows the images of the precursor nanoparticles as well 

as composites of 10, 5, 1 and 0.1 wt % of PbTe in Bi2Te3-xSex matrix and Figure 5.5 shows the 

TEM images of PbTe nanoparticles, 1 wt %, 0.5 wt % and 0.1 wt % of PbTe nanoparticles in the 

Bi2-xSbxTe3 matrix. The presence of higher contrast 12-13 nm sized cubes similar to those seen in 

the discrete PbTe nanoparticle samples is evident in all images, with fewer detected at lower 

concentrations inside the lighter contrast bulk matrices. The presence of PbTe nanoparticles was 

evident throughout the matrix in all cases and showed no agglomeration, suggesting good 

dispersion. 

5.5 Transport Properties (Acquired by Collaborator Dr. Chen (Kevin) Zhou, in Morelli’s 

Laboratory at Michigan State University) 

      For the sake of simplicity, we use the weight percentage, x, of PbTe nanoparticles to identify 

our samples. Figure 5.6 displays the temperature dependence of electronic properties for our 

nanocomposite samples employing the n-type matrix as well as the control sample, x=0 for 

Bi2Te3-xSex. As mentioned in Chapter 1, the Seebeck Coefficient (S) measures the voltage 

change for a temperature gradient. The sign of the S reflects the majority carriers in the system. 

Introduction of PbTe nanoparticles in the n-doped matrix results in a decrease of Seebeck 

coefficient, shown in Figure 5.6, with a cross-over to positive values at higher wt % of PbTe. 

The electrical resistivity of the composites increases by an order of magnitude upon PbTe 

incorporation. Combining both the parameters, it was found that the thermoelectric power factor 

(S
2
σ) of nanocomposites is significantly lower than the control sample (Figure 5.6). 
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Figure 5.4 TEM images of discrete PbTe nanoparticles, 10 wt%, 5 wt%, 1 wt % and 0.1 wt% 

PbTe nanoparticles in BiTeSe nanocomposites. 
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Figure 5.5 TEM images of discrete PbTe nanoparticles, 1 wt%, 0.5 wt% and 0.1 wt% PbTe 

nanoparticles in BiSbTe nanocomposites. 

     

      The suppression of S and the cross-over to a positive value at higher wt % as well as the 

decrease in electrical transport suggests that PbTe is compensating the majority carriers by 

producing holes and thus leading to a two-charge carrier system rather than a one-charge carrier 

system. Thus, for the case of n-type composites, the presence of extra holes, increasing with the 

increase in wt % of PbTe in the matrix, compensated the majority charge carriers, electrons, 

leading to crossover from n to p type at higher loading levels and an overall reduction in ZT.  

.   Figure 5.7 shows the total thermal conductivity and lattice thermal conductivity data as a 

function of temperature. The lattice thermal conductivity, κl, shown in Figure 5.7 was calculated 

Nanoparticles 1 wt % 

0.5 wt % 0.1 wt % 
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by subtracting the electronic thermal conductivity, κe, from the total thermal conductivity. The 

electronic thermal conductivity is estimated by using the Wiedemann-Franz law, κe=LσT; where 

L is the Lorenz number, σ the electrical conductivity and T the absolute temperature.  The value 

of Lorenz number used here is for a degenerate semiconductor, 2.45 × 10
-8

 WΩ/K
2
. This value is 

generally used for metals and heavily doped semiconductors.
4
 However, in our case this value of 

Lorenz number is only a poor approximation as our materials are partially degenerate 

semiconductors. This results in a significant error in the calculated lattice thermal conductivity 

values. Overall, the thermal conductivities of the composites are similar to the control sample 

and there is no expected decrease in κl that could be attributed to phonon scattering from PbTe 

nanoparticles. 

      Figure 5.8 shows the dimensionless thermoelectric figure of merit, ZT, as a function of 

temperature. ZT’s of nanocomposites are considerably reduced compared to matrix Bi2Te3-xSex, 

as all the parameters, S, σ and κ, are reduced with the addition of PbTe nanoparticles. A 

significant ZT reduction starts at PbTe wt % as little as 0.1. Since the composites prepared by 

incorporation of PbTe nanoparticles in n-Bi2Te3 matrix are electronically compensated, resulting 

in poor ZT, matrices that are already hole doped, such as p-Bi2Te3 matrix were explored, thereby 

avoiding compensation. 

      For p-type Bi2Te3, four different composites were prepared 0, 0.1, 0.5 and 1 PbTe wt %: 

These low values for incorporation were chosen based on data acquired with n-type, where 

properties changed minimally after 1 wt % loading. Table 5.1 lists some of the room temperature 

physical properties for the series of hot pressed nanocomposites. Figure 5.9 displays the 

temperature dependence of electronic properties for our p-type nanocomposite samples as well as 

the control sample, x = 0. The Seebeck coefficients of nanocomposites decrease monotonously 
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with increasing concentration of PbTe nanoparticles. The electrical resistivity exhibits the same 

trend, except that x = 0.1 and x = 0.5 have nearly identical resistivity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Electronic properties of nanocomposites formed from PbTe nanoparticles and n-type 

Bi2Te3-xSex as a function of temperature. 
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Figure 5.7 (a) Total thermal conductivity and (b) lattice thermal conductivity of nanocomposites 

formed from PbTe nanoparticles and n-type Bi2Te3-xSex as a function of temperature. 
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Figure 5.8 Figure of merit ZT, formed from PbTe nanoparticles and n-type Bi2Te3-xSex as a 

function of temperature. 

Table 5.1 Some room temperature (300 K) physical properties of PbTe/Bi2-xSbxTe3 

nanocomposites.      

.         

 

Sample name x = 0 (control) x = 0.1 x = 0.5 x = 1 

PbTe nanoparticles weight percentage 0% 0.1% 0.5% 1% 

Lattice parameters (Å) and standard 

deviations 

a = 4.2884 (13) 

c = 30.459 (8) 

ND ND a = 4.2856 (19) 

c = 30.443 (15) 

Relative density 95.74% 97.09% 96.32% 94.15% 

Seebeck coefficient (10
-6 

V/K) 186 136 110 84 

Electrical resistivity (mΩ cm) 1.14 0.672 0.688 0.500 

Power factor (10
-6

  Wcm
-1

K
-2

 ) 30.15 26.48 18.11 15.37 

Thermal conductivity (10
-2

 W/cm-K) 1.48 1.65 1.71 1.81 

Lorenz number (10
-8

 WΩ K
-2

) 1.65 1.78 1.82 2.00 

Carrier density (10
-19

 cm
-3

) 3.68 5.41 7.90 10.8 

50 100 150 200 250 300 350 400

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
PbTe 0

PbTe 0.1

PbTe 1

PbTe 5

PbTe 10

 

 

Z
T

Temperature (K)



112 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. Electronic properties of nanocomposites formed from PbTe nanoparticles and p-type 

Bi2-xSbxTe3 as a function of temperature. 
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      Despite the decrease in resistivity, the thermoelectric power factors (S
2
σ) of nanocomposites 

are lower than the control sample due to the much stronger contribution of the Seebeck 

coefficient. Figure 5.10 shows the corresponding thermal conductivity data as a function of 

temperature. As mentioned earlier, the choice of a reasonable Lorenz number in the Wiedemann-

Franz law, κe=LσT, is a delicate issue as we cannot assume our samples to be degenerate 

semiconductors. We also note that there is approximately a factor of three difference between the 

most resistive and least resistive samples, so one Lorenz number may not fit all the data equally 

well. To tackle this problem, Lorenz numbers for each nanocomposite were calculated (based on 

equations given in the literature) to determine the lattice thermal conductivity.
4
 Based on this 

data (see Table 5.1), we found that, despite an overall increase in total thermal conductivity, the 

nanocomposite samples exhibit a reduced lattice thermal conductivity compared to the control 

sample, as expected if the nanoscale interfaces are acting to scatter phonons. The lattice thermal 

conductivity of sample x = 1 is reduced by close to 50 % compared to the control sample. Thus, 

it appears that the overall increase in thermal conductivity can be attributed to the increase in 

electrical conductivity causing an increase in κe. It is likely that the same process is occurring in 

n-type materials (phonon scattering) but is obscured unless a rigorous treatment of the 

contribution of the lattice to the total thermal conductivity is computed as has been done for p-

type. 

      Figure 5.11 shows the dimensionless thermoelectric Figure of Merit, ZT, as a function of 

temperature. ZT’s of nanocomposites are reduced compared to matrix Bi2-xSbxTe3, with the 

strongest contributing factor the decreased Seebeck coefficient. A significant ZT reduction starts 

at PbTe wt% as little as 0.5. 
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Figure 5.10 Total thermal conductivity and lattice thermal conductivity of nanocomposites 

formed from PbTe nanoparticles and p-type Bi2-xSbxTe3 as a function of temperature. 

      In order to discern the origin of the strong electronic effects noted upon PbTe nanoparticle 

incorporation, carrier concentration was measured as a function of temperature (Figure 5.12).    

The hole concentration increases with increasing PbTe concentration, suggesting the 

incorporation of PbTe nanoparticles is also introducing a p-type dopant. This is consistent with 

our work in the n-type system, as well as work by Kusano and coworkers, who have attempted to 
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mechanically alloy bulk Bi2-xSbxTe3 and PbTe and consolidated the powder by spark plasma 

sintering. 

 

 

 

 

 

Figure 5.11 Dimensionless thermoelectric Figure of Merit, ZT, for nanocomposites formed from 

PbTe nanoparticles and p-type Bi2-xSbxTe3 as a function of temperature. 

 

 

 

 

 

 

Figure 5.12 Temperature dependence of carrier concentration formed from PbTe nanoparticles 

and p-type Bi2-xSbxTe3 as a function of temperature. 
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      The TE transport properties of the resultant composites exhibited a similar trend as in our 

study and they concluded the increase in carrier concentration is due to doping associated with 

PbTe.
89

 This doping was attributed to either the effect of PbTe as an inclusion, since PbTe is 

generally a p-type semiconductor, or from Pb
2+

 leaching from the incorporated nanoparticles and 

occupying Bi
3+

 sites within the matrix, generating a hole, and thus increasing the overall hole 

concentration.
89

 Pb has also been used as a p-type dopant for both Bi2Te3 and Sb2Te3, as reported 

by Placháček et al. where they concluded that the increase of hole concentration arises from the 

interaction between Pb atoms and native point defects (antisite defects or Te vacancies) in Bi2Te3 

and Sb2Te3.
90, 91

  

      To further elucidate the effect of PbTe nanoparticle incorporation on the properties of the Bi2-

xSbxTe3 matrix, we plot the Pisarenko relation of p-type Bi2-xSbxTe3 and PbTe/Bi2-xSbxTe3 

nanocomposites (Figure 5.13). The fit line is created from a number of Bi0.4Sb1.6Te3 samples 

(also prepared at Michigan State University), each displaying a different carrier concentration. 

From the approximate equation 5.1 (based on a simplified one carrier model),
3
 for a series of 

samples that share the same exponent of scattering, λ, and approximately the same effective 

mass, m*, the Seebeck coefficient is proportional to the logarithmic inverse of the carrier 

concentration (np) and should thus fall close to the fitted line in a Pisarenko relation plot.  

                                 α 
κ

 
  λ             

             

    
 

 

                               (5.1) 

       As shown in Figure 5.13, the points representing nanocomposites fall in the vicinity of the 

fitted line, suggesting that the charge carrier scattering mechanism for nanocomposites is the 

same as for matrix materials (if we assume m* is not affected by the low percentage of PbTe 

incorporation). Thus, the enhanced carrier concentration appears to be due to incorporation of 
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Pb
2+

 in the Bi2-xSbxTe3 matrix, resulting in a decreased Seebeck coefficient, decreased resistivity, 

and increased e. The presence of Pb
2+

 ions within the Bi2-xSbxTe3 matrix may also contribute to 

reduced lattice conductivity; decreased l in antimony telluride doped with lead telluride has 

been attributed to such an ion-doping effect.
92

  

 

 

 

 

 

 

 

Figure 5-13. Pisarenko relation of nanocomposites formed from PbTe nanoparticles and p-type 

Bi2-xSbxTe3. The fitted line is constructed as an aid to guide the eye. All matrix bismuth 

antimony telluride with various carrier concentrations were synthesized at Michigan State 

University and are compared with nanocomposites formed from PbTe nanoparticles and p-type 

Bi2-xSbxTe3 (points A, B and C). 

5.6 Conclusion 

       As a means to reduce lattice thermal conductivity in n and p-type bismuth telluride matrices, 

and thus improve thermoelectric performance, the incorporation of discrete, monodisperse 13-14 

nm PbTe nanoparticle “scattering centers” was achieved using an incipient wetness approach.  
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Thermal-treatment of the resultant composite is effective at removing residual surface ligands 

from the nanoparticle preparation, and the presence of PbTe cubes within the matrix is evident 

after both the ligand removal (410 ºC) and hot-pressing (350-380 ºC) steps. Evaluation of the 

thermoelectric properties of PbTe/Bi2Te3-xSex composites for PbTe nanoparticle loadings 

between 0.1 and 10 wt % showed a decrease in the magnitude of S and the electrical conductivity 

with a slight decrease in thermal conductivity with increase in wt % of PbTe incorporated, 

overall leading to decrease of ZT. This was attributed to carrier compensation from the 

introduction of p-type dopants from the PbTe nanoparticle in the n-type matrix. A back of the 

envelope calculation of the electronic contribution to the thermal conductivity suggests the slight 

decrease may not be due to a decrease in κe due to phonon scattering.  

      Composites of PbTe/Bi2-xSbxTe3, revealed a decrease in Seebeck coefficient and in electrical 

resistivity, also attributed to an increase in hole carrier concentration. Based on the behavior of 

the Bi2-xSbxTe3 matrix for different carrier concentrations (Pisarenko relation), relative to the 

nanocomposites, it can be concluded that the carrier scattering mechanism is the same in each, 

i.e., the electrical properties arise from incorporation of Pb
2+

 from the PbTe nanoparticles into 

the Bi2-xSbxTe3 matrix. Using a more rigorous calculation method, the lattice thermal 

conductivity is found to decrease with the addition of PbTe nanoparticles, but this effect is small 

and countermanded by the changes in Seebeck, and e. Moreover, in the present system we 

cannot differentiate between phonon scattering at nanoparticle interfaces or at defects due to Pb 

incorporation within the Bi2-xSbxTe3 matrix.   
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Chapter 6 

Conclusions and Prospectus 

      Thermoelectric devices are those that transform heat energy into electrical energy, or vice-

versa. A good thermoelectric material possesses the property of a good electrical conductor (high 

electrical conductivity, σ) as well as the property of a poor thermal conductor (low thermal 

conductivity value, κ), but also should have a high Seebeck coefficient value (S), leading to high 

figure of merit, ZT, where ZT = (S
2
 σ) T / κ.

2, 8
 To be competitive with commercially operating 

generators or refrigerators, a thermoelectric material should have ZT > 3; unfortunately the ZT’s 

of present known bulk materials have rarely exceeded unity.
2, 5

 Strategies to improve ZT have 

been focused on either reducing the thermal conductivity κ, or increasing Seebeck coefficient S 

or electrical conductivity σ; however, as these parameters are highly correlated, this has proved 

to be a challenge. Recently, it has been suggested that the enhancement in ZT can potentially be 

achieved by the creation of nanostructures.
2
 This can be ascribed to a number of factors, among 

them are (1) quantum confinement effects in nanostructured materials resulting in increased 

density of states at the Fermi level, which increases the thermopower S; and (2) reduction in 

thermal conductivity (κ) by the introduction of interfaces and pores in the material.  

      This dissertation research seeked to test the hypothesis that nanostructuring can lead to 

enhanced figure of merit in thermoelectric materials. To test this hypothesis, PbTe and Bi2Te3 

systems were chosen as these are well known materials (in bulk) used for thermoelectric 

applications, and  also are relatively easy to work with as they exist in single phase form. PbTe 

shows a high ZT of 0.8 at 773 K; and Bi2Te3, a ZT of 1.0 at 300 K in the bulk form.
8
 Two 

approaches have been used in this dissertation for nanostructuring of these materials to enhance 

the ZT. The first approach was to employ the sol-gel nanoparticle assembly method, developed 
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in the Brock Group for lighter sulfides and selenides,
43, 45, 46

 to desired PbTe and Bi2Te3 systems.  

The second approach was to synthesize heterostructured nanocomposites in which the PbTe 

nanoparticles were incorporated inside n- or p-doped bulk Bi2Te3 matrix.  

(1) Nanostructuring via Aerogel Formation: 

      Despite the readily oxidizable nature of tellurides with respect to sulfides or selenides, the 

oxidative sol-gel assembly was successfully employed with tellurides, and specifically to state-

of-the-art TE materials like PbTe and Bi2Te3 (and Bi2Te3-Sb2Te3 alloys) without degrading the 

crystallite size, structure and crystallanity of the resulting aerogel network as compared to the 

precursor nanoparticles. In general, these aerogels exhibited higher BET surface areas as 

compared to the precursor nanoparticles and more dense xerogels, and showed broad BJH pore 

size distributions, extending from the micro to the macropore region. The high surface area of 

aerogels and xerogels as compared to the precursor nanoparticles, indicated that the supercritical 

drying method, employed to generate aerogels, enables better access to the particle surface. 

Although aerogels can be obtained from both Bi2Te3 and PbTe, these systems differ in their 

propensity to generate free-standing monoliths, with the aerogels obtained from Bi2Te3 

nanoparticles generating robust monoliths whereas the PbTe system only generated powders.    

      With respect to physical properties, PbTe aerogels were studied with respect to their thermal 

stability, whereas Bi2Te3 and a Bi2Te3-Sb2Te3 alloy were evaluated with respect to their 

thermoelectric properties.  PbTe aerogels showed augmented thermal stability as compared to the 

nanoparticles, as suggested by the increased onset of sublimation temperature and broadening of 

the sublimation temperature range for aerogels relative to nanoparticles,. Both nanoparticles and 

aerogels melt at the bulk melting temperature of PbTe, which is 920 °C,
72

 suggesting these 

materials could potentially be used for high temperature thermoelectric power generators. 
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Unfortunately, the synthesis did not yield sufficient material for thermoelectric property 

measurements. 

      The measurement of thermoelectric properties of the Bi2Te3 and BixSb2-xTe3 aerogels 

suggested degraded electronic properties, as compared to their respective nanoparticles, owing to 

poor power factor values (S
2
σ). Lattice thermal conductivities of the Bi2Te3 aerogels were 

comparable to those of the precursor nanoparticles, yet they were lower than for their respective 

bulk materials. The reduced lattice thermal conductivity in Bi2Te3 aerogels is attributed to the 

effect of nanostructuring, which effectively scatters heat carrying phonons, leading to lower 

lattice thermal conductivity values than for bulk counterparts. In the case of BixSb2-xTe3, no such 

lattice thermal conductivity improvements were observed; presumably, the disordered Bi-Sb 

lattice is responsible for the inherently low lattice thermal conductivity in the alloy. The 

degraded electronic properties in both materials were attributed to doping effects, which in turn 

reduced the overall ZT of the system.  

(2) Nanocomposite Formation 

      Recently, considerable focus has been given to the synthesis of hetero-nanocomposite 

materials
85

 for improved figure of merit (ZT) in thermoelectric devices, as inclusion of nanoscale 

features in the bulk matrices dramatically reduces the thermal conductivity and hence improves 

the thermopower (S) of the system.
2, 25

 In this dissertation research, in an effort to further 

enhance the ZT of an already established thermoelectric material, studies were done to 

synthesize heterostructured nanocomposites of PbTe nanoparticles incorporated inside bulk n-

type and p-type Bi2Te3 matrices via a solution based approach called the incipient wetness 

method. The main motivation was the potential reduction in the lattice thermal conductivity by 

incorporating PbTe nanoparticles to act as phonon scattering centers. The solution based 
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approach gave us full control on the size of the nanoparticle incorporated inside the bulk matrix. 

Evaluation of the thermoelectric properties of samples where different weight percents of PbTe 

nanoparticles were incorporated in n- and p-type Bi2Te3 matrices showed that the power factor of 

these nanocomposites degraded with the incorporation of PbTe nanoparticles. This was attributed 

to the doping effect, which led to carrier compensation from the introduction of p-type dopants 

from the PbTe nanoparticles in the n-type matrix, or an increase in the overall hole concentration 

in the p-type nanocomposites. On the other hand, an improved thermal conductivity was seen as 

compared to the p-type bulk matrix when PbTe nanoparticles were incorporated, indicating that 

the incorporation of PbTe nanoparticles in the bulk matrix does help in scattering heat carrying 

phonons thereby reducing the lattice thermal conductivity of the system.  

      The results from both approaches (aerogel vs. heteronanocomposite) demonstrates that 

nanostructuring can reduce lattice thermal conductivity values relative to bulk materials, but also 

underscores the sensitivity of electronic properties to doping. Future studies need to address 

doping effects, maximize interfacial electronic conductivity, and preserve nanostructuring in 

order to obtain augmented ZT values.  Several directions for future study are recommended. 

      To improve interfacial electronic conductivity, the surface capping (organic) ligands could be 

replaced by all-inorganic capping ligands like molecular metal chalcogenides (MCCs),
32

 which 

could then be linked with metal cations like Pt
2+

 or Ni
2+

 via a metathesis reaction
39, 93

 to lead to 

all-inorganic gel networks. This would also help in keeping the crystallite size of the precursor 

nanoparticles unaltered as annealing (used to remove surface organic ligands) does result in 

some degree of sintering. While processing the materials for thermoelectric property 

measurements, spark plasma sintering (where the heat is generated internally) could be more 

beneficial rather than hot pressing (where the heat is provided by external sources) as hot 
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pressing further increases the crystallite size, destroys the aerogel network, and volatilizes some 

components (resulting in different doping characteristics). Ideally, to avoid any destruction of the 

aerogel network, a solution based approach for preparing thin films of aerogel materials is 

desirable. This would retain the pore-matter interface as well as the nanoparticle connectivity in 

the aerogel network. This can be achieved using thin-film gelation technique currently being 

developed in the laboratory. Finally, with respect to hetero-nanocomposite formation,  we would 

like to incorporate materials that can act as phonon scattering centers without altering the 

electronic properties of heterostructured nanocomposites. Initial efforts toward the preparation of 

heterostructured nanocomposites like PbS nanoparticles within a PbTe bulk matrix are 

underway.  
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APPENDIX  

Nanoparticles Change The Ordering Pattern of n-carboxylic Acids into 

Nanorods on HOPG 

      In addition to my dissertation research, I also participated in a collaborative effort with the 

group of Dr. Guangzhou Mao from the Department of Chemical Engineering and Materials 

Science at Wayne State University. My role in this project was to prepare MUA-capped and 

MPA-capped CdSe nanoparticles (where MUA is 11-mercaptoundecanoic acid and MPA is 3-

mercatopropropanoic acid) of different sizes, which were further used as seeds for nucleation of 

long chain carboxylic acids. This work has been published in ACS Nano, 

DOI:10.1021/nn102184y,
94

 and has been appended to this dissertation, upon request of my 

committee members, in its original published form.  

http://pubs.acs.org/doi/abs/10.1021/nn102184y?prevSearch=shreyashi&searchHistoryKey=
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      The synthesis and characterization of metal chalcogenide nanostructured materials with the 

potential to exhibit enhanced thermoelectric (TE) properties is reported. The tellurides, 

specifically PbTe and Bi2Te3 (Bi2Te3-Sb2Te3 alloys) were selected as these are well established 

TE materials in bulk form. The approaches used for nanostructuring are (1) sol-gel assembly of 

discrete nanoparticles of PbTe, Bi2Te3, and Bi2Te3-Sb2Te3 alloys, and (2) formation of 

heterostructured nanocomposites of PbTe nanoparticles in bulk Bi2Te3 (p- or n-doped) matrices. 

      Aerogels and xerogels of PbTe nanoparticles were synthesized by sol-gel assembly of 

discrete nanoparticles, leading to interconnected networks of nanoparticles and pores. The PbTe 

aerogel exhibited a high surface area and was more thermally stable to sublimation than the 

precursor nanoparticles, as indicated by in-situ heating experiments in transmission electron 

microscopy (conducted under vacuum). In contrast, both the nanoparticles and aerogels of PbTe 

melted at the same temperature as the bulk material, as indicated by differential scanning 

calorimetry experiments. 
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      The oxidative sol-gel assembly, when employed to thiolate capped Bi2Te3 and Bi2Te3-Sb2Te3 

alloy nanoparticles, led to aerogels with similar microscale morphological features to the PbTe 

aerogel network, but Bi2Te3 aerogels were more robust than the PbTe aerogels, yielding self-

supporting monoliths. TE property measurement on hot-pressed pellets of Bi2Te3 and BixSb2-xTe3 

aerogels showed degraded electronic properties (Seebeck coefficient (S), electrical conductivity 

(σ) and power factor (S
2
σ)) as compared to the nanoparticles, suggesting a doping effect in these 

materials. The nanoparticles themselves showed degraded electronic properties when compared 

to the bulk counterparts. In contrast, the lattice thermal conductivities (κl) of the nanoparticles 

and aerogels of Bi2Te3 had improved as compared to the bulk counterparts showing that 

nanostructuring was effective in scattering heat carrying phonons, thereby reducing the κl. In 

contrast, in BixSb2-xTe3, there is little change in kl, presumably because it is already so low due to 

the disorder on the cationic lattice.  Overall, the degraded electronic properties made the 

efficiency of these materials (ZT) lower than the bulk counterparts. 

      Heterostructured nanocomposites of PbTe nanoparticles (different weight %) inside n- or p-

doped bulk Bi2Te3 matrices were prepared using an incipient wetness impregnation approach. 

However, the thermoelectric properties of these nanocomposites again indicated a significant 

doping effect associated with incorporation of PbTe nanoparticles inside the bulk Bi2Te3 

matrices. This doping effect causes an increase in hole concentration in p-type nanocomposites, 

leading to a decrease in power factor (S
2
σ) as compared to the bulk p-type matrix, whereas the 

same doping effect in n-type nanocomposites resulted in compensation of the majority charge 

carriers (electrons), again resulting in a decrease in power factor (S
2
σ). However, at least for p-

type nanocomposites, the lattice thermal conductivities were found to be reduced relative to bulk 

counterparts, suggesting that incorporation of PbTe nanoparticles does scatter the heat carrying 
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phonons effectively, reducing the κl of the system. The overall lower ZT in these 

nanocomposites as compared to the bulk counterparts highlights the need for proper optimization 

of carrier concentration in nanostructured thermoelectrics. 
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