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CHAPTER 1 INTRODUCTION 

1.1 Problem Statement 

Since 1985 when the first robot PUMA 560 was employed to place a needle 

during brain CT biopsy, the surgical robots have become ubiquitous in clinical surgeries 

[3-4]. During a robotic surgery, the robot holds and moves tools instead of human 

surgeons. Formally speaking a surgical robot is that “a powered computer controlled 

manipulator with artificial sensing that can be reprogrammed to move and position tools 

to carry out a range of surgical tasks” [5]. As a mechanical device the surgical robot 

possesses numerous advantages over human surgeons including stability, accuracy, 

precision, reliability and small incision, therefore, is suitable in remote surgeries, 

minimally invasive surgeries and unmanned surgeries.  

Despite of the existing successful clinical applications, however, the interaction, 

i.e. artificial sensing, between the robot and the patient is still very limited. With the help 

of various cameras, vision is almost the only feeling that a robot can have. The rigid 

endoscope camera (e.g. [6]) is a common one used to track the robot motion, monitor 

the operation process and provide a three dimensional view for surgeons. Although the 

vision feedback can do some help in complex tasks e.g. tying a suture, lacking of other 

feedbacks prevents the emergence of autonomous robots evolved from passive robots. 

For instance tactile and tensile feedbacks are desired by surgeons in a gastrointestinal 

surgery. Nevertheless by now surgeons can only rely on the video feedback from robots 

to estimate the tension exerted on the tissue. To avoid the patient’s injury, particular 

care must be taken with tissue handling [3, 7]. Another example is the minimally 
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invasive surgery where feeling tissue is critical to complete the operation. In references 

[5, 8] a robot called “Da Vinci” system is developed by Intuitive Surgical Incorporated 

and employed in minimally invasive ‘closed’ heart surgery whose arm only carries an 

endoscope while other two arms carry scissors and grippers. 

How to let a surgical robot possess realistic sense of feel like our skin is at the 

forefront of research. In order to imitate the human skin, various signals e.g. the 

strength of pressure, change of strength, speed and acceleration should be measured. 

All these signals are then processed with the help of artificial intelligent approaches to 

restore the tissue’s texture. Accurately measuring these physical signals is the basis of 

constructing an artificial skin so that a high precision pressure is desirable. In this work 

we will explore some design and fabrication techniques on an effective pressure sensor 

which will be installed on our surgical robotic arm in the future.  

A pressure sensor is a transducer to convert the imposed pressure quantity to 

the electrical signal. Currently there exist various types of pressure sensors e.g. 

piezoresistive sensors [9], capacitive sensors [10], electromagnetic sensors [11], 

surface acoustic wave (SAW) sensors [12], optical pressure sensors, etc. Among all 

these types SAW sensors have unique superiorities which include but not limited to 

competitively low cost, high sensitivity, intrinsically reliability, compact size and fast 

response in high dynamical environment. For example in [13] a 434 MHz quartz SAW 

device is employed as a precision pressure sensor. Another successful example is the 

wireless pressure sensor based on reflective delay line design in [14] where the 

measurement range is from 0 to 350 kPa. Despite the success of existing pressure 

sensors, these SAW sensors can’t be directly applied in the surgical robotic application 
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since the surgical robotic arm may bring the sensor into the human body where the 

sensor have to have the capability to operate in the liquid environment. The SAW mode 

existing in these sensors is normal to the sensor surface resulting in large attenuation in  

liquid environment [15]. This intrinsic drawback can be overcome by using SH-SAW 

dual mode sensor. In the dual mode sensor, a strong shear-horizontal mode is found to 

coexist with the SAW mode which has the displacement parallel to the sensor surface 

so that the most energy is reserved even in the liquid environment [2]. This property 

makes the dual mode device work in an aqueous environment without losing the high 

sensitivity as the SAW mode device. Recently, a type of dual mode devices based on 

the piezoelectric material Aluminum Nitride (AlN), have been designed, fabricated and 

successfully applied it in the application of bacterial sensing [16-17]. As a natural 

extension, in this work, we will modify and apply AlN-based dual mode sensor in the 

surgical robotic application.  

1.2 The History of SAW Device Development  

SAW devices are some tools that utilize surface acoustic wave to generate 

electrical signal in response to some input quantities e.g. chemical concentrations[18], 

mass [2, 19], relative humidity [20-21], pressure [13, 22-23], temperature [24] etc. For 

SAW devices SAW plays an important role that can couple with any media in contact 

with the surface of the device. This coupling strongly affects the amplitude and velocity 

of the SAW so that it allows the SAW device to detect the change of input quantities. 

SAW mode was firstly discovered by Lord Rayleigh[25] in 1885 (so called 

Rayleith wave). It is guided along the free surface of a material and decayed rapidly with 
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distance to surface. The wave is nondispersive and involves longitudinal and shear 

components. The longitudinal component is similar to sound wave in air in which the 

displacement is parallel to the propagation direction. The velocity depends on material, 

but typically in the range of 5000 to 10000 m/s [26]. The shear component is like the 

motion of a violin string in which the displacement is normal to the propagation direction. 

Generally its velocity is around 3000 to 6000 m/s.  

The most common way to generate or acquire SAW is utilizing the piezoelectric 

material where the mechanical and electrical fields are coupled at the atomic level. 

There are two SAW-related phenomena intrinsic in piezoelectric materials: direct 

piezoelectric effect and converse piezoelectric effect. The direct piezoelectric effect is 

that the material can generate electric potential in response to mechanical stress 

applied that was demonstrated in 1880 by brothers Pierre Curie and Jacques Curie. The 

converse piezoelectric effect means that a material produces the stress and strain when 

an electric field is applied, which was mathematically deducted based on the 

fundamental thermodynamic principles by Gabriel Lippmann in 1881 [27]. The first 

application of piezoelectric material is the sonar in 1917 where crystalline quartz 

(piezoelectric material) is used to generate sound beams. However, the real SAW 

electronic device was developed in 1965 contributed to the invention of Interdigital 

Transducer (IDT) by R. M. White and F. W. Voltmer. In [28] White et al. discovered that 

SAW can be excited and detected efficiently by using comb-like electrodes named IDT 

placed on the surface of a piezoelectric substrate. This invention makes the SAW 

device fabrication accomplishable. Thenceforward, a vast amount of effort was put into 

the research and development of SAW devices and the SAW devices were widely used 
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in electronic circuits as filters, oscillators and transformers [26, 29], e.g. by now all TV 

receivers have SAW filters.  

In the late 1970s, Wohltjen and Dessy [30] designed and applied the SAW delay 

line device for chemical vapor sensing. For such a sensor SAW is generated and 

acquired by IDT at each end of the device. The chemical object then can be detected 

according to the change of the output electrical signal in terms of frequency or phase. 

More recently, the SAW sensors have been improved significantly and extensively 

applied to diverse fields due to its small size, low cost, high sensitivity and wide variety 

of measurement.   

There exist variety of piezoelectric materials, natural or manmade each of which 

possess distinct properties and advantages. A comparison between various materials 

on piezoelectricity is listed in the Table 1.1. Quartz (crystalline SiO2) is one of common 

natural piezoelectric materials[1]. The main advantage of quartz is the low temperature 

coefficient compared to other common piezoelectric materials. The price is relatively low 

due to its widespread usage. The crystallographic orientations generally have ST cut for 

SAW devices and AT or BT cut for TSM resonators [1, 31]. Lithium Niobate (LiNbO3) is 

another widely used piezoelectric material. Its electromechanical coupling coefficient is 

much larger than quartz though the temperature coefficient is larger too. LiTaO3 and 

Li2B4O7 are piezoelectric materials with high speed phase velocity [32]. Gallium Arsenic 

(GaAs) is a material suitable for integrated circuit but the electromechanical coupling 

coefficient is relative small. Zinc Oxide (ZnO) and Aluminum Nitride (AlN) are two 

particular materials for SAW sensors with thin film structure. ZnO has relatively high 

electromechanical coupling coefficient and widely used in the field of ultrasonic 
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transducers [33-34]. However, the film always exhibits the electrical conductivity due to 

the presence of zinc or lattice defects [35].  

Table 1.1 The comparison between various piezoelectric material on wave velocity, 

mechanical properties and piezoelectric coefficients [1]. 

Substrate 
(Substrate Cut) v (m/s) 2K (%) 

Quartz (ST, X) 3158 0.11 
Lithium Niobate 

(-Y, Z) 3488 4.8 

Gallium Arsenide 
(Z, X+22.5 ) 2763 0.022 

ZnO 3000 0.4 
AlN 
(C) 5740 0.25 

 

Piezoelectri
c Material 

Elastic Matrix (1011 Pa) Piezoelectric Matrix Permittivity 
Matrix Density 

kg/m3 C11 C12 C13 C14 C33 C44 e31 e33 e15 e22 11 33 

Lithium 
Niobate 2.03 0.57 0.75 0.09 2.42 0.6 0.2 1.3 3.7 2.5 39 20.4 4647 

ZnO 1.57 0.89 0.83  2.08 0.38 -0.51 1.22 -0.45  7.35 7.79 5270 

AlN 4.1 1.49 0.99  3.89 1.25 -0.58 1.55 -0.48  9 11 3257 

 
AlN is a semiconductor piezoelectric material and competitive in SAW sensing 

applications for its intrinsic properties. AlN on a-Al2O3 substrate has high SAW velocity 

(5910 m/s), moderate electromechanical coupling coefficient (around 1.0%) and linear 

temperature coefficient [17, 36-37]. In undoped state, AlN performs as an insulator 

(electrical resistivity 1013 ohm cm), therefore it was employed in a metal-insulator 

semiconductor structure in some hydrogen sensing applications [38-39]. AlN is also a 

good candidate for the sensing application that requires operation in extreme conditions 

because it has the largest energy bandgap among the III-V nitrides (6.2 eV comparing 

to silicon 1.11 eV, silicon carbide 2.86 eV or gallium arsenide 1.43 eV) [40]. In solid 
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state physics, the band gap is regarding to the energy difference (in electron volts) 

between the valence band and the conduction band [41]. Generally a large band gap 

material, greater than 3 eV, can be regarded as the insulators. Some other properties of 

AlN are shown in Table 1 [42-45].  

Table 1.2 The List of AlN Basic Properties  

S
tru

ct
ur

al
 P

ro
pe

rti
es

 

Density (g/cm-3) 3.257 
Modulus of Elasticity (GPa)  331 
Elastic Constant (GPa) C11 410±10 
Elastic Constant (GPa) C12 149±10 
Elastic Constant (GPa) C13 99±4 
Elastic Constant (GPa) C33 389±10 
Elastic Constant (GPa) C44 125±5 

Poisson’s Ratio 0.22 
Common Crystal Structure Wurtzite 

Lattice constant (Å) a = 3.112 
c = 4.982 

Hardness (Kg/mm2) 1100 
Water Absorption None 

O
pt

ic
al

 
P

ro
pe

rti
es

 

Density of States Conduction Band (cm-3) 4.1×1018 

Effective hole mass  mhz = 3.53 m0 
mhx =10.42 m0 

Density of states V band(cm-3) 4.8×1020 

Optical phonon energy (meV) 113 
Refractive index (vis-ir) ~2.15 

E
le

ct
ric

al
 

P
ro

pe
rti

es
 Breakdown field (V/cm) 1.2-1.8×106 

Mobility electrons holes (cm2/VS) 135 /14 

Dielectric constant (static/high frequency) 8.5-9.14/4.6-
4.84 

Energy Band Gap (eV) 6.13-6.23 
Resistivity (Ohm cm) 1013 

Th
er

m
al

 
P

ro
pe

rti
es

 Thermal conductivity (W/mK) 175 

Thermal expansion (20-400°C) (4.2-5.3) ×10-6 

Debye temperature (K) 980 
Melting Point (°C) 2200 

P
ie

zo
el

ec
tri

c 
co

ns
ta

nt Coupling Coefficient (C/m2) e15 -0.33~-0.48 
Coupling Coefficient (C/m2) e31 -0.38~-0.82 
Coupling Coefficient (C/m2) e33 1.26-2.1 

Relativity Permittivity Coefficient 11 9 
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Relativity Permittivity Coefficient 22 9 
Relativity Permittivity Coefficient 33 11 

 

1.3 The Scope and Contributions of This Work   

By considering aforementioned materials and techniques, naturally, an AlN-

based SAW device becomes our main interest in the robotic pressure sensor 

application. The success of the bacteria sensing application using AlN-based SAW 

devices [2] also indicates its possibility and prospects. Therefore, in this work, a 

prototype AlN based pressure sensor will be designed and fabricated.  

 

Fig. 1.1 The flow chart of development process for a prototype AlN-based pressure 

sensor  
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This work adopts the development process shown in Fig. 1.1. Firstly, the fabrication 

technique for previous AlN dual mode sensor will be reviewed, modified and applied in 

the novel pressure sensor design. Since the sensor works in the aqueous environment, 

the electrical isolation will be the main concern in the design process. In addition the 

theoretical derivation and analysis are performed to qualitatively verify the whole design. 

In order to achieve the quantitative analysis, the finite element method (FEM) will be 

studied and implemented with the software Comsol Multiphysics®. Two-dimensional 

(2D) and three-dimensional (3D) FEM simulation will be conducted. Based on these 

verification results the practical AlN-based SAW device will be fabricated in our SSIM 

clean room. In order to test and calibrate the AlN based pressure sensor, a prototype 

measurement system will be set up in this work. Different detection methods will be 

investigated and compared in terms of system sensitivity, measurement range and 

thermal stability. Some signal processing algorithms will be developed or revised to 

realize the system implementation. The relative peripheral circuits will be designed and 

employed in this work too. 
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CHAPTER 2 THE DESIGN AND THEORETICAL ANALYSIS OF THE AIN-BASED 

PRESSURE SENSOR 

 

The proposed pressure sensor consists of three parts: rubber probe, AlN based 

SAW device and circuit board which are shown in Fig. 2.1. Here the cylinder-like rubber 

probe is attached to the plastic support which is fixed on the circuit board. It can prevent 

the hard surface of the device from scratching the body tissue. The gap between the 

probe and the device surface provides the pressure sensor an adjustable offset which 

will omit the tiny disturbance and increase the stability of the measurement. The 

constant contacting area makes the pressure reading only depend on the exerted force 

therefore more consistent. The AlN-based SAW device can convert the change of 

pressure exerted on the surface into the change of electrical signal’s signature (e.g. 

frequency, phase, amplitude, etc.). When the device is in contact to the patient’s body 

tissues, the electrical signal out of the device will be changed accordingly. By controlling 

the motion of robotic arm, the information combining force and speed can be collected 

and analyzed by the signal processing and machine learning model in the robot or 

remote controller. The textile or hardness can be thereby extracted. The electrical circuit 

board is the base of the device as well as provides the functions for excitation signals, 

conditioning signals and transmitting signals.  
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Fig. 2.1 The schematics of a prototype AlN-based pressure sensor 

As a core component the AlN SAW device plays an indispensable role in the whole 

pressure sensor. In this chapter we will provide the detailed information on the SAW 

device from design to analysis. 

2.1 The Structure of the AlN-Based SAW Device  

The structure of the proposed AlN-Based SAW device is shown in the Fig. 2.2. 

This sandwich-like device includes substrate, piezoelectric material, metal IDT and 

insulator. The root of such design philosophy can be traced back to the 1960’s [46] and 

it has been proved that with proper design and elaborative fabrication the device can 

successfully excite and retrieve SAW using other piezoelectric materials (e.g. ZnO [46]).  

The End of the 
Robotic Arm 

Circuit Board 
AlN SAW Device 

Rubber Probe 
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Piezoelectric Material: AlN 

IDT Transmitter: Al IDT Receiver: Al 

d 

 

 

x 

Amplitude 

Acoustic Wave 
1 
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v  

x 

Amplitude 

Acoustic Wave 
2 

Insulator: AlN 

Substrate: a-Al2O3 

Insulator: AlN 

 

Fig. 2.2 The structure of an AlN-based SAW device and the process of exciting acoustic 

wave by IDT. 

One important reason for selecting such a structure is that AlN has to be 

crystallized on some substrates in the form of hexagonal Wurtzite [47] (though 

sometimes occasionally in the form of cubic Zincblende [35]). Here, the crystal or 

crystalline solid refers to a solid material whose constituent atoms, molecules or ions 

are arranged in an orderly repeating pattern along all three spatial dimensions. The 

process of forming a crystalline structure is called crystallization. To be better to 

illustrate the structure of AlN and its substrate, the Miller indices, notation system in 

crystallography that will be employed in the rest of this work is briefly described here.  
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In crystallography, the Miller indices [48] is extensively used to specify planes 

and directions which includes three integers l, m and n written as (l m n). By convention, 

negative integers are written with a bar, e.g. 1  for -1. All three integers are usually 

written in the lowest term, i.e. their greatest common divisor should be 1. A plane (l m n) 

means that it intercepts three axes at l, m, n, or some multiple thereof, respectively. The 

value 0 means the plane do not intersect that axis. For hexagonal structures, a four-

index scheme called Bravais-Miller index (h k i l) is used to label planes. Here h, k and l 

are identical to the Miller index, i is a redundant index which is equal to –h-k. For 

example, the A plane in Fig. 2.3 intercepts x and y axis at 1 and parallel with z axis. 

Hence, h = k =1, i = -h-k =-2 and l = 0. 

The wurtzite structure of AlN has high symmetry compatible with the existence of 

spontaneous polarization [47]. It generally occurs when the hexagonal layers are 

stacked in a periodic sequence (..ABAB..). (0001) C plane of AlN is a common direction 

in most growths for different substrate which have been proved by from the past works 

in our group [2, 42, 49]. The atoms in C plane AlN are arranged in bilayers consisting of 

two closely spaced layers where one is with cations and another with anions. Therefore, 

the surface of AlN may be all nitrogen or aluminum depending on the contacted surface. 

Note that in an anisotropic solid like AlN the surface-wave velocity depends on the 

direction of propagation [46]. 
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Fig. 2.3 The typical plane orientation in the unit cell of sapphire. 

Several substrates can be used for AlN growth, e.g. Si, SiC, GaN, ZnO, MgO, 

etc. SiC is considered as the best substrate for AlN heteroepitaxy growth since the 

lattice mismatch with AlN is only 3.5% [50]. Its drawback is the extreme high price 

($USD1090 for one 3-inch wafer in 2008). Today sapphire is the most popular 

substrates for synthesizing heteroepitaxial AlN growth due to the adequate thermal and 

chemical stability at high growth temperatures, excellent structural and surface 

morphology and availability in large quantities [47]. Three major orientations of sapphire 

have been used which are C plane (0001), A plane (1120)  and R plane (1 102)  shown in 

Fig. 2.3. The crystal orientations of sapphire and AlN are parallel but the lattice 

C plane (0001)  R plane (1 102)  A plane (1120)  

y 

x 

z 
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mismatch with AlN is about 12%. Note that sapphire is also an anisotropic material [51], 

therefore, different cut of substrate make the device different. It was found in [16] that 

the AlN-based device growing on A plane sapphire has the capability to work in 

aqueous environment due to the existence of SH-SAW mode [17, 49]. Overall our AlN-

based SAW device will be grown on A plane sapphire. 

As we pointed out in chapter 1, the IDT is the pivotal technique to convert the 

electrical signal to acoustic wave and convert the acoustic wave back to the electrical 

signal[1] [28]. The comb-like IDT shown in Fig. 1.2 is generally made from a 

lithographically patterned metal thin film, e.g. aluminum or gold [1]. The typical thickness 

is 1000 Å which makes the IDT offer low enough electrical resistance and light 

mechanical load to the surface. Considering the balance between the electrical 

resistance and cost, in this work, the aluminum IDT is preferred.  

There are two ends for IDT, transmitter end and receiver end. Generally, they are 

geometrically symmetric. When a radio-frequency (RF) voltage v~  is connected to the 

IDT transmitter end, each pair of transducer finger may be considered to be a discrete 

power source. All fingers on the top side or bottom side have the same electrical 

potential since they are connected with the same electrode. The piezoelectric substrate 

underneath the fingers with the same electrical potential will have the same strain. 

Therefore, an acoustic wave will be generated in the substrate (e.g. acoustic wave 1 

shown in Fig. 2.4). The wavelength  of the acoustic wave is equal to the distance 

between two adjacent IDT pairs d since the wavelength is defined as the distance 

between consecutive corresponding points of the same phase [52], that is  
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d             (2.1) 

The frequency f0 of the acoustic wave is [52],   

 
0

1 vf
T            (2.2) 

Take (2.2) into (2.1), we have 

 
0

vf
d            (2.3) 

where v is phase velocity of the acoustic wave about 5740 m/s for AlN which is 

determined by substrate materials (some materials are listed in Table 1.2 [1] [49] ). 

Since AlN is an anisotropic material, the velocity can be varied along different 

propagation direction [53]. It is also worth noting that the electromagnetic wave is five 

orders of magnitude faster than the acoustic wave, the dimension of the device only 

relying on electromagnetic wave has to be five orders smaller than the acoustic wave 

device. That is impossible to fabricate using existing photolithography technique. 

 From the acoustic wave 2 in Fig. 2.2, we can observe that the acoustic wave has 

not only the frequency 0f  but also has other frequencies (e.g., 3 0f ). However, since 

we assume the polarity of the two adjacent IDT fingers is opposite, the other 

frequencies can only be odd times of 0f , that is, 

 0 , ,(2 1) , 0,1f n f n         (2.4) 

Since the metal IDT is conductive, it is necessary to coat an insulator layer over 

the IDT to make the device working in aqueous environment. Several types of layers 



17 
 

 

including photo resist LOR 1A, LOR 3B and SiO2 have been employed and compared in 

[2] where the coating layer is covering the whole area of the device top surface. It was 

concluded that the insulator layer brings additional attenuation resulting in performance 

deterioration. In our work, two improvements are made. First the insulator layer does 

not cover the whole area of the top surface, instead only the IDT and electrodes areas 

are covered. Second, inspired by the design in [46] where the IDT are placed between 

the substrate and piezoelectric material in a ZnO-based SAW device, another layer of 

AlN is coated though such a design brings some technical difficulties due to different 

melt temperature in AlN and Al IDT which will be shown in the chapter 4.  

2.2. The Detailed Geometrical Dimensions and Other Relevant Selections  

After determining the structure and material of the device, the detailed geometry 

should be defined before fabrication. The wavelength  in this work is selected as 24 µm 

so that the device operating frequency is around 250MHz. According to Equations 2.1-

2.4 and other considerations which will be stated below the dimensions of IDT are 

chosen as shown in Table 2.1. An intuitive description of the whole device is shown in 

Fig. 2.2. Note that for better virtualization the size of the plot in Fig. 2.2 is not directly 

proportional to the real size. In Fig. 2.2 one can observe that the thickness of the 

substrate is 330 um which is determined by what wafer is in use. The substrate is 

generally cut as parallelogram which contains the rectangular area of IDT and electrode 

parts with the width of 3200 um and the length of 11637 um. In order to reduce the edge 

reflection the substrate shape is cut as not rectangle.   
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The IDT finger width and distance are determined by the wavelength  according 

to equation (2.1). The IDT finger length and the distance between electrodes are 

selected from the performance consideration. These two parameters determine the IDT 

aperture. If the aperture is too small, the diffraction loss will be large. On the other hand, 

the ohmic loss, i.e. the input/output impedance, will be large [54]. A typical value of 

aperture is 50-80  [1-2]. The IDT center distance affects the propagation loss. Large 

distance brings large loss but too small distance may result in electromagnetic feed 

through. The number of IDT fingers has impaction on passband width, the more, the 

narrow, that will be shown in Section 2.3 later.  

Table 2.1 All the design parameters for AlN-based SAW device 

IDT finger width 6 µm 
IDT finger length 1680 µm 

Distance between two adjacent IDT fingers 6 µm 
Distance between transmitter and receiver 

IDT 3606µm 

Electrode width 720µm 
Distance between electrodes 1760 µm 

Electrode Length (upper/ lower side) 4014/3654 µm 
Nµmber of IDT pairs 50 + 50 = 100 

Insulator width 3400 µm 
Insulator length 4240 µm 

Insulator center distance 2650 µm 
Insulator thickness 1 µm 
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(a)

 

(b) 

Fig. 2.4  The device schematic plots: (a) on x-z plane, and (b) on x-y plane. 

In order to enhance the device performance, one modification is made on the 

original design. Each IDT finger is split into two fingers to reduce the passband ripples 

[46]. The width of each modified finger becomes half of the original width. The passband 

ripple is caused by multiple reflections within and between the IDT fingers.  

From the previous work on bacterial detection [49], the sensitivity of the AlN-

based device is 44 Hz·cm2/ng for SAW mode and 32 Hz ·cm2/ng for SH-SAW mode. 
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The sensing area of the proposed device is 0.4007 cm2. Therefore the pressure sensor 

sensitivity is 11.22 kHz/nN and 8.16 kHz/nN for SAW and SH-SAW mode, respectively.  

2.3. Delta Function Model Analysis of the Device 

The Delta function model is an impulse response analysis. It has been widely 

applied on different types of SAW devices to achieve qualitative results [55]. Generally, 

a linear time invariant (LTI) system is able to be characterized completely by its impulse 

response )(th  since the response to other arbitrary signal for a LTI system can be 

represented by )(th . Therefore, we derive the impulse response )(th  for a SAW device 

here, and then obtain its frequency response )( fH . In this way, we can investigate the 

frequency characteristics for a SAW device. 

 Suppose that an impulse input (+V, -V) is connected to the IDT transmitter end, 

each IDT finger will generate an impulse signal with the amplitude A and –A 

alternatively (shown in Fig. 2.5). The amplitude A is a constant and determined by 

piezoelectric material and substrate’s properties. Note that the impulse inputs can not 

be (+V, 0) since it’s contradictive to our assumption that the polarity of two adjacent IDT 

fingers is opposite. As a result, the output of the IDT transmitter is a series of impulse 

signal (i.e. SAW) with the period T/2 and amplitude A and -A (Shown in Fig. 2.5). If the 

number of pairs is equal to N, then the last impulse locates at (2N-1)T. Here the 

attenuation of amplitude A caused by the substrate is omitted.  

Since the impulse response function )(th  is discrete in time, we use )(nh to 

represent )(th and the corresponding discrete-time frequency response )( fHT  can be 

calculated according to the inverse discrete-time Fourier transform equation [56], 
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According to the finite geometric series summation equations, we have, 
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Fig. 2.5 The impulse response of IDT. 
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Subtract (2.5) from (2.6), we have, 

2 22 1 2 2

2
1,3 0,2

1 1( 1)
1 1

N NN N
n n

n n

x xx x x
x x        (2.7) 

Then we can simplify )( fHT using (2.7), that is,  

21( )
1

j fNT

T j fT

eH f A
e  

/ 2 / 2 / 2

( )( )
( )

j NfT j NfT j NfT

T j fT j fT j fT

e e eH f A
e e e  

Using Euler’s formula,  

/ 2 sin( )( )
cos( / 2)

j NfT j fT
T

NfTH f Aje
fT       (2.8) 

 Equation (2.8) describes the frequency response for transmission end. For the 

receiver end we can obtain the similar result since when an impulse input exists, a 

series of impulse signal from the output electrode will be detected. Therefore, we have 

the frequency response for receiver end, 

/ 2 sin( )( )
cos( / 2)

j NfT j fT
T

NfTH f Bje
fT            (2.9) 

where the pattern of the IDT receiver is assumed the same as the transmitter end, and 

B is a constant depending on the substrate property.  
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 For the central area, we can treat it as a time-delay system (the delay is equal to 

L/v) when attenuation is omitted so that is, 

 
2

( )
Lj fT
v

TH f e            (2.10) 

Considering (2.26), (2.27) and (2.28), the frequency response of the whole IDT is equal 

to the multiplication of these three parts, that is 

 

2
2 2 / sin( )( )

cos( / 2)
j NfT j fT j fTL v

T
NfTH f ABe
fT           (2.11) 

From equation (2.11), we can obtain some important results,  

(1) The IDT exhibits a frequency response with sinc function dependence.  

As we know the exponential function only affects the phase not magnitude. 

Therefore, we only need to investigate 
2

)2/cos(
)sin(

ftT
NfT   . From the theory of discrete-

time Fourier transform, 
2

)2/cos(
)sin(

ftT
NfT is a periodical form of sinc function. The period is 

022 f
T

 and the peak of magnitude locates at 0)12( fnf peak . This result coincides 

with the previous analysis (2.4). 

(2) The bandwidth is inversely proportional to the number of IDT finger pairs. 
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The bandwidth Bf  is generally defined as the width of the nonzero frequency. 

Therefore just let 0)sin( NfT , we can have Nff /0 . Therefore the bandwidth can be 

calculated as, 

NffB /2 0           (2.12) 

This means if we increase the number of IDT finger pairs the bandwidth will become 

narrower. 

(3) The phase delay depends on N, T, L and v. From the exponential item in equation 

(2.11) we know that if we increase N, T or L or decrease v, the phase delay will be 

increased. 

2.4. Structural Mechanics Analysis of the Device 

As we discussed above, the SAW sensor is a class of acoustic wave devices. 

The input electrical signal excites the acoustic wave by piezoelectric materials, and 

passes though the device. The acoustic wave is sensitive to the force exhibited on the 

device and converted to the electrical signal by piezoelectric material. Therefore, to 

derive the mathematical model of the whole device, the surface acoustic wave 

propagation should be derived at first.  

As an elastic material, either for Al2O3 or AlN, the wave equations are determined 

by the internal stress and strain. The stress inside the body is caused by an applied 

load on the body exterior. One can imagine that two adjacent blocks inside the body 

exert the internal force on each other across an imaginary plane of separation. When 

the force is parallel to this plane it is called shear stress ( ). When the force is normal 



25 
 

 

to it, it is normal stress ( ). The stresses derive from the cohesive nature of the body’s 

material. With the normal stress, the size of an element in a body will be changed which 

is called simply strain ( ). With the shear stress, the edge angle of an element in a 

body will be changed which is known as shear strain . According to the Hooke’s law, 

the materials which are considered as elastic are governed by the two following 

equations,  

  E              (2.13) 

 G           (2.14) 

Where E is Young’s modulus and G is modulus of rigidity. They are the intrinsic elastic 

properties for a material [57]. These two equations completely characterize the elastic 

behavior of a solid in the small deformation limit (strain is less than 10-5).   

 In the three-dimensional space the normal stress (strain) and shear stress 

(strain) for any one point in the body will have multiple components as shown in Fig. 

2.2. For better presentation, Cauchy stress tensor T is used to define all stress 

components and strain tensor S for all strain components which were introduced by 

Cauchy around 1822 [58], that is,  

zzzyzx

yzyyyx

xzxyxx

TTT
TTT
TTT

T , 

zzzyzx

yzyyyx

xzxyxx

SSS
SSS
SSS

S       (2.15) 

Each component of T is denoted by two subscripts, the first denoting the direction of the 

force and the second denoting the direction of the area. The component of strain S also 
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has two subscripts. If the two subscripts are the same, the stress and strain are the 

normal stress and strain i.e. the change is perpendicular to the surface. Otherwise, it is 

a shear stress (or strain) in two different direction indicated by the two subscripts i.e. the 

change is parallel to the surface. 

 From Fig. 2.6, it’s obvious that xxT , yyT  and zzT  are normal stress, other 

components of T are shear stress. Since the stress is a measure of the force on each 

point inside the body, it is defined as the force exerted per unit area [46], that is,  

zyxji
A
FT

j

i
ij ,,,, ,          (2.16) 

 

Fig. 2.6 Components of stress in 3D space. 

where A is the area and F is the force. Hence the unit of the stress is Pascal (Pa), which 

is equivalent to N/m2. 
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It’s worth noting that the stress only on three surfaces needs to be calculated. 

That’s because the stress on other 3 surfaces (the opposite one) can be directly 

obtained from the stress on these 3 surfaces in the neighbor cubic (element) according 

to the Newton’s third law. Furthermore, the stress tensor is symmetrical in most cases 

according to the angular momentum conservation law [59]. From Fig. 2.3, we have four 

shear stresses making the element rotating about the center in x-y plane.  

 

Fig. 2.7 The shear stress in x-y plane. 

Based on Newton’s second law,  

M I             

where M is the total torque, I is the inertia moment and  is the angular acceleration. If 

the element side length is equal to h, that is, 

x y z h  

y 

x 

xyT  

yxT  

x yT  

y xT  
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we have  

 

4

1
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While the inertia moment is related to the element mass (density) by [59], 

 
6

5hI  

we have  

2

( )
3xy yx x y y x
hT T T T

 

Since the acceleration can not be infinitely large, when the element side length tends to 

0, we can conclude that  yxxy TT .   xyyx TT  can be achieved from the neighbor 

element as we discussed above. Analogously, we have [59-62], 

, ,xy yx xz zx yz zyT T T T T T .         (2.17) 

Note that the equation (2.17) holds for our application but it does not hold true for 

all the cases, e.g., the presence of couple-stresses or the continuum is a non-

Newtonian fluid which will cause the rotationally non-invariant fluids.   

Similarly, the strain describes how much deformation differs from the initial state. 

Therefore, it is related to the displacement by [63-64], 
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where u is the displacement. From the equations above, the differential value provides 

the deformation change at any point. When the deformation change is uniform in the 

whole body it becomes a division i.e. xx / . For shear strains, the strain value is equal 

to the average of two deformation change in two directions parallel to the surface. For 

example, the shear strain on surface z is equal to the average of deformation change 

from the y axis in the x direction (because it may be different in x direction) and the 

deformation change from the x axis in the y direction. Note the strain is a ratio therefore 

it does not have a unit.  

 We can rewrite the strain-displacement relation (2.18) into matrix form, 

 
1 ( ( ) )
2

TS u u
 

where the gradient of a vector  
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and the second term Tu)(   is the transpose of u . 

 From the symmetry property of both tensors T and S discussed above, one can 

observe that only 6 components are independent out of original nine. This is the 

reduced subscript notation (engineering notation): 

xxxx SSTT 11 ,          (2.20) 

2 2,yy yyT T S S  

3 3,zz zzT T S S  

4 4, 2 2yz zy yz zyT T T S S S  

5 5, 2 2xz zx xz zxT T T S S S  

6 6, 2 2xy yx xy yxT T T S S S  

Then the Cauchy stress/strain tensor can be represented by Voigt notation: 

1 2 3 4 5 6
TT T T T T T T  

1 2 3 4 5 6
TS S S S S S S  
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Hence, the strain-displacement relationship can be rewritten in terms of strain-

displacement matrix B since the strain is a vector instead of a tensor.  

 uBS T            (2.21) 

where B is,  

 

0 0 0

0 0 0

0 0 0

x z y

B
y z x

z y x  

With the Voigt notations of T and S, we can rewrite the Hook’s law (2.1) and (2.2) in 

matrix form which is also called elastic constitutive relation [1], 

 CST           (2.22) 

 Here the stiffness matrix C has 6×6 = 36 components ijc  relating the six 

components of stress to six strain components. From the principle of conservation of 

energy, one can obtain [59] that  

 ij jic c  

 That means the stiffness matrix have 21 distinct components. The number of 

independent components can be reduced by taking the crystallographic symmetry of 

solids into account [65]. If the material is isotropic that means all physical parameters do 

not depend on the direction, there will be only two independent elastic constants: 11c and 
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44c [66]. If the material is the anisotropic medium (directionally dependant), e.g. 

sapphire, 7 to 13 independent parameters are required.  

 In elastic material, e.g. AlN or Sapphire, the wave motion can be described in 

terms of stress and strain. From the Newton’s second law, the net force on a particle is 

equal to the mass times acceleration, while the acceleration is equal to the second 

order derivative of displacement u. Therefore, for any direction, e.g. x direction, we 

have, 

 

2

2x
uF V

t           (2.23) 

where the volume zyxV  and is the density. Considering the relation between 

force and stress, we have, 

 

2

2xx xy xz
uT y z T x z T x y x y z

t  

 

2

2
xyxx xzTT T u

x y z t  

When the volume tends to 0, we have the equation of motion in x direction, 

 

2

2
xyxx xzTT T u

x y z t  

In the same manner, we have the equation of motion for other two directions. In matrix 

form, it is 

 T u           (2.24) 
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where  is the divergence operation of second rank tensor.  

xyxx xz

yx yy yz

zyzx zz

TT T
x y z

T T T
T

x y z
TT T

x y z  

In engineering notion it becomes, 

 u BT  

Considering the above three equations, we have the elastrodynamic equation, 

 
Tu BCB u  

If we consider the damping in propagation of the wave, we have to change the elastic 

constitute relation, 

 SCST           (2.25) 

 The elastrodynamic equation should changed accordingly, 

 
T Tu BCB u B B u .        (2.26) 

 This is the mathematical model of elastic material (e.g. sapphire). When the 

geometry is complex, it’s difficult to derive the above partial differential equations. The 

solution can be solved based on some numerical computation methods e.g. finite 

element method (FEM).   
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 For the piezoelectric material AlN, the mathematical model should contain two 

more field variables, electric flux density D and electric field intensity E. According to the 

electromagnetic theory, the quantities D and E are related by material electrical 

permittivity , that is, 

 D E .           

However, for piezoelectric material where the structure of crystal lacks a center of 

inversion symmetry [1], the strain changes result in the change of the charge distribution 

that produces the electrical polarization. This is called direct piezoelectric effect and can 

be described by, 

EeSD           (2.27) 

where e is the piezoelectric stress constant matrix having the unit of charge/(length)2. 

Similarly, the reversed process, converse piezoelectric effect, is able to be described 

by,  

 
TT CS e E           (2.28) 

where Te  is the transposition of the piezoelectric stress constant matrix indicating the 

effect on stress by electric field .  

(2.27) and (2.28) are called piezoelectric constitute equations. If we consider the 

quasi-electrostatic approximation,  

0E  

The electric field E can be expressed as the function of electric potential , that is[65],  
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E           (2.29) 

According to the Guass’s law, the flux density can be expressed as, 

vD           (2.30) 

where v  is the charge density and is usually negligible in piezoelectric materials. 

Take (2.9) and (2.27) to (2.30) into the equation of motion (2.24), we can erase 

the variables E, T, S and D and obtain the linear differential equations only with respect 

to u and . To solve these differential equations, two boundary conditions are applied. 

(1) discontinuity of the electric flux density coincides with the charge distribution on the 

boundary; (2) continuity of the electric potential [65].  
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CHAPTER 3 FINITE ELEMENT METHOD-BASED SIMULATIONS AND DESIGN 

VERIFICATION 

3.1 The Basic Theory of Finite Element Method 

Finite Element Method (FEM) is a numerical method to solve complicated 

physical problems with geometry boundary conditions which was introduced in the 

1950’s [67-69]. Generally, the problem of interest has the complex geometrical domain 

where the governing equation is difficult to be solved analytically. One example is our 

application. With FEM, the whole domain will be divided into some simple sub-domains, 

e.g. polynomials called finite elements. The algebraic equations are developed using 

the governing equations of the problem over each finite element. Then all elements are 

assembled with certain inter-element relationships together [70]. A detailed procedure to 

solve FEM problems is as follows [70]. 

 The first step is to divide the irregular whole domain into smaller and regular finite 

elements. There is no unique solution for dividing but different dividing schemes result 

in different approximation accuracy and different amounts of computational time. 

Generally the shape, size, location and other configurations for each finite element 

should be chosen carefully to approximate the domain as close as possible without 

increasing the computational cost [71]. Mostly the choice of the type of the element 

coincides with the geometry of the body and the dimensional number. As an example, in 

the case of stress analysis of the short beam, the three-dimensional solid cube element 

can be used in this step. The size of the elements influences the accuracy of the 

solution and computational time. Hence, different sizes of elements are generally used 
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for the whole domain. For a large system, it’s difficult, if not impossible, for an efficient 

and accurate discretization. Almost all of commercial finite element software can 

complete this step by build-in automatic mesh programs. The Tessellation and Octree 

methods [72-74] are the most common method in these software. When the users 

provide the information on the surface or volume of the material, the automatic mesh 

generator generates the nodes and elements in the body.  

 The second step is to choose a simple function for each element to approximate 

solution. Such a function is called the interpolation function, the approximating function 

or the interpolation model. Polynomial-type functions have been most widely used in the 

literature because polynomial function is easier to be differentiated or integrated and it is 

able to converge to the exact solution. The parameters of interpolation function can be 

derived from the system equations (e.g. force equilibrium equations) in terms of the 

nodal values of the elements. Here, nodal points are connecting points between several 

elements. To converge to the extract solution, the interpolation polynomial needs to 

satisfy three requirements [75-76] (1) all field variables have to be continuous for each 

element (e.g. Polynomial functions). (2) All field variables and their partial derivation 

have to be employed in the interpolation function in the limitation circumstance i.e. the 

size of all elements is zero. (3) All field variables and their partial derivatives whose 

order is one less than the highest order have to be continuous at element boundaries.  

 The third step is to derive the stiffness matrices and load vectors. From the 

equilibrium conditions or other variation principle, the stiffness matrix and load vector of 

each element can be derived with three methods. The first one is direct approach which 

is generally applied in some simple types of elements. The second approach is variation 
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approach. The whole system has to be represented in variation form. The third one is 

the weighted residual approach. In this method the element matrices and vectors are 

derived directly from the governing differential equations with Galerkin method or least 

squares method.  

 The forth step is to assemble element equations to obtain the overall equilibrium 

equations. Once the element matrices and vectors are found in global coordinate 

system, all matrices and vectors can be assembled based on the connection 

requirement for each element node. This procedure is always the same regardless of 

the type of problem and the number and type of elements.  

 The fifth step is to obtain the unknown nodal displacement from the overall 

equations. Here the governing finite element equations may have three possible 

scenarios, equilibrium problem, eigenvalue problems or propagation problems. The AlN 

device model is an application of propagation problems. The propagation problems 

involves a set of simultaneous linear differential equations which can be solved by any 

of numerical integration method e.g., Runge-Kutta, Adams-Moulton and hamming 

methods.  

 Finally from the known nodal displacements the other variables e.g. element 

strains, stresses, electrical flux density etc can be computed using the necessary 

physical equations. In our case, the equations (2.27)-(2.30) may be used to solve these 

variables.   
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3.2 The Current Status of FEM Simulations on SAW Devices 

In SAW technology, the approximation or simulation the device performance can 

be done by several methods, e.g. transmission line model [46], equivalent circuit model 

[77] [78], p matrix method [79], coupling of modes (COM) method[65, 80], finite 

difference method [81], finite volume method [82], collocation method[83], boundary 

element method (BEM) [84] and FEM method [85]. FEM has been proved to be a 

suitable numerical method to derive the influence of geometrical variations of the 

electrode’s shape among these methods. 

The first attempt to model SAW propagation using FEM technique can be traced 

back to 1991[86-87]. A numerical FEM/BEM model is used to carry out the Green’s 

function for the electrical and mechanical response. Sometimes an analytical 

development of harmonic Green function which is the Fourier transform substitute 

multiplications by polynomials can be actually calculated. However for a general 

piezoelectric problem, a double integration of the convolution of the Green’s function 

with various excitations along the surface is required. It is very difficult because of very 

rapid local variations [88-89].  

The similar FEM/BEM mixed simulation can also be found in other references. 

The leaky SAW devices were simulated and analyzed using 2D FEM in [90]. The FEM 

is applied to the electrode region to take account of the effect of electrode thickness 

[91]. BEM was used for the substrate [90]. In 2002, Lin et al. proposed a generalization 

of FEM/BEM model for multi-electrode-type grating periodic arrays [92]. The electrode is 

assumed infinitely thin. A mixed FEM/BEM numerical model for the simulation of a 
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periodic array of metallic electrodes was investigated in[93]. The FEM/BEM impedance 

and power was simulated and analyzed [94] for SH-SAW devices. The IDT thickness 

from 100 Å to 2000 Å was simulated and agreed with the measured device responses. 

In [95], the boundary condition of FEM was discussed. The absorbing boundary 

conditions (ABCs) were used instead of standard boundary condition like Neumann- or 

Dirichlet conditions.  

The FEM simulation not only has shown good agreement with the measurement 

data, but also precisely predicts the SAW devices’ parameters and performance. In [96], 

the wave propagation parameters and input admittances was accurately predicted by 

FEM simulation. The phase, attenuation constants, stop-band edges, group and phase 

velocity can also be simulated. In [97] a 2D FEM simulation was conducted for an 

AlN/diamond structure. The simulation showed the frequency response and the effect of 

metallization ratio on the third harmonic response. 3d FEM simulations of vibrations 

have been successfully applied on a blood vessel [98]. 7198 nodes and 39172 

tetrahedral elements are used in the simulations. The diffraction effect was investigated 

based on the two dimensional angular spectrum of wave method in [99]. The diffraction 

is the main second order effects which deteriorates stop-band rejection and pass-band 

ripple.   

FEM simulations have been successfully applied in different SAW sensors with 

various FEM software [100]. The H2 SAW gas sensor with the structure of LiNbO3 

substrate and palladium thin film was simulated by ANSYS® using 3D FEM [101]. 

Atashbar etc. performed the 3D finite element simulation for a two-port surface acoustic 

wave delay line sensor on XY LiNbO3 substrate with a palladium thin film [101]. The 
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palladium file is used to absorb H2 like a sponge. ANSYS® V6.1 was used as the 

simulation platform. Due to the limitations on the number of nodes that the software can 

generate, each IDT had 3 finger pairs and the dimensions of the piezoelectric substrate 

are 104.64 µm in depth and 523.2 µm X 523.2 µm for area. With the simulation the 

wave propagation mode and velocity can be observed and calculated. The insertion 

loss of the sensor with/without H2 was obtained from the impulse response analysis. In 

[102] , the propagation of laser generated thermoelastic surface acoustic waves was 

simulated using a multilayered finite element model by ANSYS®. The similar analysis for 

non-metallic material was conducted in [103-104] . A thin-film structure of ZnO/LiNbO3 

device was simulated by software package ANSYS using 3D FEM [107]. The substrate 

geometry for simulations is 1600LX500DX400W µm and used 72000 elements. The 3 

µm thick ZnO layer used 84500 elements. 4 degrees of freedom including displacement 

in x, y and z planes and voltage was defined for each node. The simulation show good 

agreement experimental measurements. The software COMSOL Multiphysics® [105] 

[106] was also used for SAW resonant frequencies simulation. The two-port SH-SAW 

resonator sensor was simulated using MemMech module in ConventorWare™ [108]. 

The sensor was fabricated on 64 rotated Y-cut LiNbO3 with the following dimensions 

6000µmX820µmX500µm. The IDTs and reflectors were defined using Cr and Au with a 

thickness of 40 nm and 60 nm respectively. Each IDT end has 8 finger pairs with a 

periodicity of 40 µm and the acoustic aperture is 700 µm. In the simulation the depth of 

the substrate is reduced to 100 µm in order to have a finer mesh. There were a total of 

65000 elements forming the mesh and the element sizes were 5 µm, 50 µm and 75 µm 

in the x, y and z directions respectively. The propagation velocity and frequency 
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response were obtained and compared with the measurement. Sanna Harma etc. 

developed an analytical method [109] to extract he reflection and transmission 

coefficients by using the output of the software FEMSAW [110]. The energy scattered in 

to bulk is then formulized as a function of frequency for a LiNbO3 SAW device. The 3D-

FEM is applied to an IDT finger overlap in the grating structure. The similar analysis is 

made in [111]. 

3.3 2D Simulation for AlN-based SAW Device with COMSOL 4.1 

The first FEM software NASTRAN was developed in 1965 by NASA. 

Nowadays there are a lot of FEM software packages available, commercial or open 

source, e.g., ABAQUS®, ANSYS®, COMSOL®, FEBuilder®, etc. Considering the 

functionality, feasibility and price COMSOL Multiphysics® 4.1 is selected as our FEM 

simulation tool in this work. 

In order to simulate the device performance, the most accurate way is to 

reconstruct the 3D structure of the device with the same design parameters in 

COMSOL. However, the current computer hardware is unable to provide enough 

computational capability. Therefore, in this work, we will carry out the simulation in two 

simplified way: 2D plane strain simulation and 3D simplified model simulation.  

Generally, a 3D elastic object can be treated as a 2D plane object with some 

restrictions and assumptions using either plane strain analysis or plane stress analysis. 

Plane stress is defined to be a state that one direction of stresses, both normal and 

shear, are assumed to be zero. Such an assumption occurs when the object is a plane 

where one dimension is much smaller than other two dimensions.  A typical example is 
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the thin plate where its external force is parallel to the plate. Plane strain is defined to be 

a state that one direction of strains, both normal and shear, are assumed to be zero. 

This assumption happens when one dimension of the object is much larger than other 

two dimensions. A representative instance is the water pressure analysis on a dam. The 

length of the dam is much larger than the section that makes the strain along the length 

can be omitted. For our applications from the design parameters (Table 2.1) one can 

observe that the length of IDT finger is much larger than width and thickness. 

Furthermore based on the analysis in Section 2.3 the surface displacement of SAW 

happens within the section area of IDT fingers. Hence, the 2D plane strain analysis will 

be implemented as follows. The computer to run all simulations has one 2.66GHz Intel® 

Core2 Duo CPU and 3GB memory installed.  

3.3.1 FEM simulation for the device without the insulator 

When the COMSOL Multiphysics® 4.1 is started up, a new model is selected. 

From Model Wizard, the options, 2D and piezoelectric devices are chosen. Then in the 

new model, three parts of the device, IDT, AlN and sapphire are added under Model 

identifier (shown in Fig. 3.1). The IDT fingers can be added by one rectangle and then 

expended to 100 pairs by two array operations.  

In the material tab, all related materials are added, elastic material Al2O3, 

piezoelectric material AlN and conduct metal aluminum (Fig. 3.2). Each material is 

assigned to one or more geometries in the tab of geometric scope. Note that the 

elasticity matrix and piezoelectric constants in the database of COMSOL are slightly 

different from our desire and therefore will be modified in the material model tabs next. 
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Fig. 3.1 The geometry setup for 2D device simulation 

In the physics tab, i.e. piezoelectric devices, the plane strain analysis is selected 

for 2D approximation. The thickness is chosen as the IDT finger length 1680 µm. Three 

material models are added: Piezoelectric material model, linear elastic material model 

and linear elastic material model. In the piezoelectric material model, we select the 

domain for AlN layer. From Fig. 2.3, we select Y-Z plane as the coordinate system. The 

constitutive relation employs stress-charge form and its associate constant matrices are 

manually selected (user defined). Although Table 1.1 provides a set of piezoelectric 

constants, in fact, a variety of different elastic constants are discovered from theoretical 

[112-118] or experiments [119-123], as well as the piezoelectric constants [124-128]. 
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After numerous trials, the following constants are used in this work. The elasticity matrix 

is, 

910

135
0125
00125

380
100410
100140410

*

0

EC  

where the constant 
2

1211
66

CCC  from the crystal structure and * is the symmetric 

elements about the diagonal.  The coupling matrix is, 

2/
55.158.058.0

48.0
48.0

mCe
0

0
 

The relativity permittivity matrix is, 

11
9

9
 

and the density is 3260 kg/m3.  

Since the crystal direction of AlN is C plane and the device is parallel to the y-

axis (from Fig. 4.4), no further rotation needs to be made on these matrices. 
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Fig. 3.2. Specify material properties for 2D device simulation 

In the linear elastic material model 2, the sapphire substrate is selected as the 

domain. Same as the piezoelectric material, Y-Z plane is employed as the coordinate 

system. The anisotropic model is selected as per the sapphire property. According to 

[129], the density is set as 3980 kg/m3 and the original elastic matrix is defined as 

follows,  

910

166
0148
00148

498
115410
115164496

*

0

D  

Since the substrate is A-plane sapphire, i.e. the coordinate axes of the device do 

not coincide with the material axes, the elasticity matrix D can not be directly input into 
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COMSOL. A feasible way is to apply Euler angle rotation approach [130-131] to rotate 

the material axes to the device coordinate. The elasticity matrix is changed accordingly. 

From Fig. 3.3, one can easily observe that the axes need to be rotated counter 

clockwise 90 degree about y axis first and 30 degree about z axis to make x-y plane 

become x’’-y’’ plane. The elasticity matrix can be obtained from [132] that is, 

 910

13.164
05.152*
079.75.161
22.2100496
74.90075.15188.415
36.280025.12712.13188.459

D  

 For linear elastic material model 1, no more modification needs to be made 

except for selecting all IDT fingers as the domain.  The material properties are defined 

through material tabs where the density is 2700 kg/m3, Young’s modulus E is 70 GPa 

and the Poisson’s ratio v is 0.33. It worth noting that the mass of IDT fingers is 

considered in this work instead of neglected in some references [133-134].  

 The structural boundary conditions and electric boundary conditions need to be 

added and defined under the physics, piezoelectric devices shown in Fig. 3.4. Here, we 

have two structural boundary conditions; fixed constraint which is applied to the bottom 

boundary due to the device is fixed in the socket and free boundaries which is true for 

all other boundaries.  
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Fig. 3.3 Euler rotation to compute the elasticity matrix for A-plane sapphire  

 

Fig. 3.4 Define the boundary conditions and material models   
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 The electrical boundary conditions include electrical inputs: electrical potential 1 

and electrical potential 2, electrical outputs: floating potential 1 and floating potential 2, 

and the zero charge constraint. For each condition, we need to assign the 

corresponding boundaries. Fig. 3.5 shows that the electrical potential 1 boundaries.  

The value for electrical potential 1 is set as 1 and the electrical potential 2 is set as -1. 

For initial values, we set 0 for all variables.  

 

Fig. 3.5 The assignment for the boundary condition electrical potential 1   

 The next step is to mesh the whole geometry. Here the sequence type is 

selected as physical-controlled mesh and the element size is chosen as normal. We can 

also choose user-controlled mesh to generate mesh manually if the automatic mesh is 

not satisfied. There are totally 139544 elements generated which are shown in Fig. 3.6.  
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Fig. 3.6 The mesh plot for 2D device without the insulator 

After meshing the whole domain, some studies, e.g. frequency response analysis 

or time domain response analysis can be carried out. In this work the frequency 

response is investigated by adding the frequency-domain model under the study tab. 

The interested frequency is set from 230MHz to 260MHz. The step is chosen as 1MHz.   

A parallel sparse direct solver MUMPS is in use for its fast computational speed [135]. 

The number of degrees of freedom in this study is 746665. 
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Fig. 3.7 The detailed settings for frequency response analysis 

We can add 2D plots and 1D plots to display the final result. With a 2D plot, the 

surface plot of all variables including electrical potential, displacement, stress, strain etc. 

can be displayed. In Fig. 3.8, the Y displacement (Z direction in 3D) at 242 MHz is 

shown. The surface acoustic wave can be observed clearly. In Fig. 3.9, the x 

component of strain tensor is displayed. The periodical pattern indicates the existence 

of surface wave. As a comparison, the Y displacement at 231 MHz is shown in Fig. 3.10. 

The strength of displacement is weaker by around 10-4 regarding to the 242MHz case. 

The terminal voltage of the floating potential can be observed with 1D plot shown in Fig. 

3.11. The peak located at 242MHz agrees with the previous experimental result 

243.325MHz [2]. The simulation error is about 1.325 MHz. Comparing to other FEM 

simulation references (e.g. [100, 107] more than 2.44MHz error) our simulation is better 
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in terms of the center frequency. The wave propagation attenuation is neglected in the 

simulation that makes the value of terminal voltage high (Fig. 3.11). Considering the 

design validation purpose, such simplification is tolerable.  

 

Fig. 3.8 The Y displacement (Z direction in 3D) at 242MHz. The surface acoustic wave 

can be observed clearly. 
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Fig. 3.9 The X component of strain tensors  

Under the report tab, the 1D plot can be exported to Matlab® for further analysis. 

In this work a program to calculate insertion loss is written in Matlab® 2009. The result is 

shown in Fig. 3.12 (left).  Comparing to the experimental results, the SAW mode at 242 

MHz is apparently similar. The result proves the effectiveness of design for the device 

without the insulator.  
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Fig. 3.10 The Y displacement (Z direction in 3D) at 231MHz. The surface acoustic wave 

is not obvious. 

 



55 
 

 

 

Fig. 3.11 The 1D plot of frequency response on the terminal voltage 

 

Fig. 3.12 The insertion loss for the device without the insulator (left). The right figure 

shows the experimental result [2]. The SAW mode from the simulation highly agreed 

with the experimental result in terms of center frequency.    
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3.3.2 FEM simulation for the device with the insulator 

 Based on the simulation model in the previous section, an AlN insulate layer is 

introduced into the simulation. In Geometry tab, two rectangles are added to cover the 

transceiver and receiver parts separately (shown in Fig. 3.13) whose parameters are 

specified according to Table 2.1. Since the insulator is also AlN, the boundary 

conditions for electrical potentials and floating potentials need to be changed to cover all 

boundaries (shown in 3.14).   

 

Fig. 3.13 The insulator layer is added to cover IDT 
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Fig. 3.14 The assignment for the boundary condition floating potential 1 

In the step of mesh, the mesh size extra coarse is selected due to the more 

complex geometry. The resulting mesh element number is 174565. The mesh results 

are shown in Fig. 3.15. After 2 hours computation the frequency response is achieved. 

With 2D plot, the displacement can be observed for any frequency. Fig. 3.16 shows the 

obvious surface acoustic wave in Y direction. From Figs. 3.17 and 3.18 one can 

observe that the X component of the stress varies periodically on the top of the device 

and the Y component of the stress are changed in the internal of the device.  

The terminal voltage and insertion loss are shown in Figs 3.19 and 3.20 

respectively. From the simulation we can conclude that the AlN insulator will also bring 
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in attenuation. The centre frequency will also be shifted due to the mass change of the 

surface.  

 

Fig. 3.15 The mesh plot for the device with the insulator 
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Fig. 3.16 The Y direction (Z direction in 3D) displacement for the device 

 

Fig. 3.17 The X component of stress tensor for the device 
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Fig. 3.18 The Y component of stress tensor for the device 

 

Fig. 3.19 The 1D plot of frequency response on the terminal voltage 
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Fig. 3.20 The insertion loss for the device with the insulator  

3.4 3D Simulation for AlN-based SAW Device with COMSOL 4.1 

The whole device modeling based on the design parameters is tried initially 

however abandoned due to the memory limitation. In this section a simplified 3D model 

simulation is performed. Note that most SAW device simulations are based on simplified 

model in the existing literatures [100, 107-108, 136]  or reduced mesh size ( [137] from 

the workstation equipped with 48GB memory) . 

The geometry for each device component is created first in COMSOL (shown in 

Fig. 3.21). The detailed dimension for each component is listed in the Table 3.1.  
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Fig 3.21 The 3D model geometries.   

Table 2.1 All geometric parameters for simplified 3D model 

IDT finger width 6 m 

IDT finger length 40 m 

Distance between two adjacent IDT fingers 6 m 

Distance between transmitter and receiver 
IDT 

24 m 

Number of IDT pairs 1+1 

Insulator width 48 m 

Insulator length 40 m 

Insulator center distance 6 m 

Insulator thickness 1 m 
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Substrate thickness 40 m 

Piezoelectric layer thickness 2 m 

Substrate width 60 m 

Substrate length 120 m 

 

Similar to the 2D case, the boundary condition needs to be specified for each 

boundary. In 3D case the boundary becomes a surface instead of a line. Fig. 3.22 

shows the boundary selection for floating potential 2. 

 

Fig. 3.22 The boundary condition assignment for floating potential 2   



64 
 

 

The physics-controlled mess creation is also employed. The coarser option is 

selected to control the element size. Total element number is 65602 and the mesh 

status is shown in Fig. 3.23.  

 

Fig. 3.23 The mesh plot for the simplified 3D model   

MUMPS solver is used to solve this FEM problem. After 8 hours simulation, the 

results are shown in Figs. 3.24 - 3.27. From the Fig. 3.24, the SAW mode can be 

observed while the SH-SAW mode can be found from Fig. 3.25 which is unable to be 

observed in the 2D simulation. Fig 3.27 shows the insertion loss of the frequency 

response. The result reveals the existence of SAW mode and SH-SAW mode however 

it is not perfect matched our experimental result possibly due to the model simplification.  
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Fig. 3.24 The displacement amplitude for Z component   
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Fig. 3.25 The displacement amplitude for X component   

 

Fig. 3.26 The output terminal voltage for the simplified 3D model    
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Fig. 3.27 The insertion loss for the simplified 3D model   
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CHAPTER 4 THE FABRICATION PROCESS FOR AIN-BASED SAW DEVICES 

After theoretical and FEM validations, the design scheme was implemented in 

our SSIM clean room. Based on previous work in SSIM group for SAW device 

fabrications [2, 49], the detailed procedures for our AlN-based SAW devices are 

illustrated below.   

4.1 The Piezoelectric Material AlN Synthesis 

4.1.1 A Review on AlN Synthesis Approaches 

AlN was first synthesized in 1862 from liquid Al and N2 gas [47, 138]. Since then 

several growth methods have been used to get AlN but only some AlN powders 

containing very small crystals can be obtained [139]. These early results imply that the 

heteroepitaxy growth may be a promising way to synthesize AlN in large crystalline 

form. Here heteroepitaxy is one of epitaxy methods where the material for film and the 

material for substrate are different from each other. Epitaxy refers to the method of 

depositing a  single crystalline film on a single crystalline substrate.  

The first systematic effort to grow crystalline AlN by chemical vapor deposition or 

sputtering processes took place in the 1970s in order to characterize the optical and 

structural properties of thin films [47]. Thenceforward, a couple of groups have 

proposed various methods to grow high quality AlN thin film. Generally, these growing 

methods can be divided into three categories [42], physical transporting techniques 

(mechanical or thermodynamic methods), chemical transporting techniques (chemical 

change by fluid, gas or ionized vapor), and hybrid transporting techniques. These 

techniques are briefly overviewed as follows. 
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The first category includes liquid phase epitaxy (LPE) [140], physical vapor 

deposition(PVD) [141-142], pulsed laser deposition (PLD) [143-146], etc. PLD employs 

high energy laser to irradiate the stoichiometric AlN target so that the evaporated 

material is induced and condensed onto the heated substrate near the target surface 

with low growth temperature because the average energy of particles in the laser is 100 

to 200 times of thermal evaporation process. The disadvantages of PLD technique are 

the expensive solid nitrides targets and limited thickness of deposition layer (about 250 

nm in [144]). For PVD technique, AlN thin films were deposited by DC reactive 

magnetron sputtering at room temperature using a Minimak cathode and an aluminum 

target connected to a variable power supply with 30% nitrogen partial pressure in the 

nitrogen-argon gas mixer. The deposition rate can be 40nm/min. This method avoids 

the solid nitrides target using in PLD but still associate with limited thickness of AlN 

layer (about 500nm on Si substrate in [142]). LPE employs Sn-Ca flux which has a low 

melting point as well as the ability to resolve N2 gas by relatively small pressure to react 

with Al in a boron nitride crucible. The temperature is about 900°C and gas pressure 

maintains 5 atm. The AlN grain with 10 µm thicknesses or thin film with 1.8 µm 

thicknesses can be synthesized in 96 hours.  

The second category consists of chemical vapor deposition (CVD) [147], vapor 

phase epitaxy (VPE) [47], metal-organic chemical vapor deposition (MOCVD) [148-149], 

metal-organic vapor phase epitaxy(MOVPE) [150-151]. Chemical methods have been 

widely used because of its high growth rates which is up to a few tens of micrometers 

per hour [47]. The deposition of AlN by MOCVD has traditionally carried out from 
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trimethyaluminum (TMA) and ammonia (NH3). Reactor pressure and temperature were 

20 Torr and 1150.8 C, respectively. A typical growth rate is about 1µm per hour.  

The third category includes molecular beam epitaxy (MBE) [50, 152], plasma 

assisted molecular beam epitaxy (PAMBE) [153], ion source molecular beam epitaxy 

(ISMBE), gas source molecular beam epitaxy (GSMBE) [154], plasma source molecular 

beam epitaxy (PSMBE), radio-frequency plasma-assisted molecular beam epitaxy 

(RFMBE) [155], metal-organic molecular beam epitaxy (MOMBE) [156], RF diode 

sputtering [157] etc. In this category, the plasma source or ion source is used to lower 

the substrate temperature during deposition. In the growth of basal-oriented AlN on Si 

(111) substrates is only at the temperature of 100°C [158]. PSMBE method will be 

employed in this work for AlN SAW device fabrication. 

4.1.2 AlN Thin Film Deposition 

The AlN thin film is grown with the help of plasma source molecular beam epitaxy 

(PSMBE) system [159] in our group. PSMBE is a magnetron sputtering system whose 

root can traced back to 1970s [160]. Our group has employed the PSMBE system 

(shown in Fig. 4.1) on AlN film growth on Si and sapphire substrates from 1995 [161]. 

The system was initially designed by Dr. Gregory Auner and fabricated by Perkin-

Elmer’s physical electronic division [162]. The main part of the system is a 24-inch-

diameter stainless steel chamber attaching various ports with different sizes for 

mounting additional equipments [163]. The sample is loaded through load-lock chamber 

and fixed on the main chamber holder. The sample can be heated and rotated 

controlled remotely. The growth temperature is measured by a K-thermocouple on the 
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back of the substrate and an infrared 2  pyrometer OMEGA IRRC-300-43-C24. There 

are two ultra-high vacuum pumps, CTI-Cryogenics cryopump and Perkin Elmer ion 

pump, to maintain the main chamber base pressure at 10-10 Torr. The ion pump uses 

high powered magnet to capture any gaseous species present, while the cryogenic 

pump uses an extremely cold liquid helium baffle (4K) to condense and trap gases. A 

roughing pump and a turbo pump are employed to reduce pressure in the load-lock 

chamber. A high vacuum environment is very important to grow pure AlN crystalline 

film.  

Four cylindrical magnetically-enhanced hollow cathode sources are installed in the 

bottom of the chamber and aimed towards the substrate (shown in Fig.4.2). The inner 

walls of the hollow cathode are lined with MBE grade Aluminum (99.999% purity). The 

target aluminum has 3° inward taper to allow the sputtering ions with a relatively low 

energy. The ions out of the sources with low energy avoid the bombardments on the 

wall of the main chamber which contains some impurities that may affect the quality of 

the AlN thin film. The cathode for each source is connected to an RF power supply 

operating at 13.56 MHz, controller and an impedance matching network independently. 

In our group, the advanced energy RFX 3000, RFX 1250 or RF plasma products RF-5S 

power supplies is in use. The metal anode shield is grounded to the chamber body and 

electrically insulated from the cathode. To be similar in principle to the fluorescent light, 

a capacitive coupled plasma (CCP) is generated between the anode and cathode. 

When the nitrogen and argon gas are injected from impeller, the electrical field between 

electrodes makes gas atoms ionized and release electrons. An ion is an atom (or 

molecule) with a net positive or negative electrical charge. The charge of an ion is equal 
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to the difference between the number of protons and the number of electrons which is 

denoted as a superscript ‘+’ or ‘-’ following a number indicating the difference. If an ion 

contains unpaired electrons, it is called a radical ion which is generally very reactive. 

The electrons in the gas are accelerated by the RF field and hit the other atom to 

produce secondary electrons. When the RF power is high enough, the whole gas 

becomes electrically conductive (the plasma with radicals) due to this phenomenon 

called electron avalanche. Generally, the light emission is accompanied in this process. 

Therefore, we can see the pink light if the plasma is successfully ignited. Since the ions 

are much heavier than the electron, the cathode collects more electrons in the positive 

cycle of RF power than positive ions in the negative cycle [164]. A negative DC potential 

is self-developed, so called “self-bias” between the plasma and the electrode [165]. As a 

consequence, the ions’ energy can reach a few hundred eV and be accelerated to the 

cathode. When the ions in plasma bombard on the wall of cathode the Al atoms are 

induced sputtering from the cathode surface since the energy of the incoming ions is 

much greater than the binding energy of the target atoms. The heavy Ar+ ions help to 

create Al atoms. The sputtered atoms are not in their thermodynamic equilibrium state, 

and therefore tend to deposit on the surface (e.g. the sapphire wafer in our case). The 

average energy of the ions out of sources is much smaller (1eV) than that in the 

sources. A DC bias potential is added in the substrate holder to accelerate the ions to 

deposit to the substrate.  
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Fig. 4.1 Schematics of the PSMBE system 
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Fig. 4.2 The cylindrical magnetically-enhanced hollow cathode source 

The permanent magnets are imbedded in the source wall to generate a magnetic 
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substrate holder. The plasma containing Ar+, Al+, and N+ ( 2N ) move towards the 

substrate to complete the deposition. The AlN growth can be amorphous, polycrystalline 

or single crystal depending on the deposition conditions.  

There are several equipments to monitor the deposition process. The chamber 

residual gas composition can be measured by a Stanford research systems (SRS) 

RGA200 residual gas analyzer and displayed on the remote computer. The reflection 

high energy electron diffraction (RHEED) provides a direct measurement of the surface 

structure of the substrate wafer. The Staib instrument EK-2035-R RHEED electron gun 

is mounted on one side of the main chamber and a phosphor screen with a digital 

camera on the other side. The software KSA-400 is used to take the photos or movies 

remotely.  

With these equipments, the AlN is able to be deposited to the sapphire substrate. 

The detailed steps are listed in Appendix 1.  
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4.2 IDT Fabrication Using Photolithography Techniques 

After AlN film deposition on the sapphire substrate, the aluminum IDT will be 

coated on the surface of AlN. As shown in Chapter 2, our SAW device has 6 m finger 

width and 150 nm film thickness. For split-finger design, the finger width is only 3 µm. 

To fabricate such a sophisticated device, different lithography techniques 

(photolithography, electron lithography [167], X-ray lithography [168-169] or ion 

bombardment etching [170]) can be employed. Electron beams can be readily focused 

to diameters on the order of 150 Å. Therefore electron lithography is suitable for small 

devices. X-ray lithography is similar to the photolithography but employs a much shorter 

wavelength radiation (10 Å). In our group, the photolithography technique is used for 

IDT deposition in our SSIM clean room [2, 49].   

The photolithography is an optical lithography technique widely used in micro-

fabrication field [171]. It shares some fundamental principles with photography e.g. 

exposing, etching, etc. The standard procedure is shown in Fig. 4.3. Firstly the 

substrate surface is coated with a radiation-sensitive polymer (known as photoresist) 

film. The photoresist is sensitive to short wavelength visible and ultraviolet light which 

results in the exposed area soluble in the developer (positive photoresist) or 

polymerized, i.e. difficult to dissolve (negative photoresist). The existing well-known 

produces include Shipley® (Rohm and Haas), Hoechst® (now called AZ electronic 

materials) and MicroChem® [172]. In this work, the photoresist S1811 made by Shipley® 
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and LOR 3A from MicroChem® are employed. The photoresist can be evenly coated 

onto the substrate through the photoresist spinner and baked in the oven or hotplate.   

With the pre-designed photo mask, the surface of substrate is exposed to the light 

and the IDT pattern is recorded in the photoresist layer. A photo mask is an opaque 

plate with holes or transparencies that allows the light to pass through. Figs. 4.4 and 4.5 

show the 6-inch photo mask used in this work (designed in [2], courtesy to Dr. Guopeng 

Hu). The software AutoCAD® is employed to design the photo mask and all rectangles 

drawn in Figs. 4.4 and 4.5 represent IDT pattern which will be fabricated as the 

transparent areas. Since the area for IDT should be covered by aluminum, the 

photoresist have to be positive type. 
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Fig. 4.3 Photolithography procedures and comparison between conventional 

photolithography and lift-off photolithography 

 

 

Exposing  

Photoresist 

Coating and 
Baking 

Developing  

Al Deposition 

Removing 
Photoresist  

Conventional Photolithography Lift-off Technique 



79 
 

 

 

Fig. 4.4 The 6-inch photo mask with IDT patterns used in this work.  

  

Fig. 4.5 The locally enlarged view 
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Generally, there are three exposing methods: projection printing, shadow printing 

and holographic recording. Projection printing uses an optical system to image the 

pattern onto substrate with some demagnification [173-174]. Shadow printing is the 

most widely used technique in photolithography also called contact printing. In this 

technique the glass photo mask is covered by thin-film chromium, Fe2O3, silicon, 

photographic emulsion or other ultraviolet attenuator and is contacted with or close to 

the substrate. The pattern will be duplicated on the substrate. It is a simple and 

inexpensive method but the exposed area is limited by the size of photo mask [175]. 

Some commercial instruments have been developed for shadow printing, e.g. MA6 

mask aligner is employed in this work. The holographic recording utilizes the interfering 

of two laser beam [176-177]. A beam from argon, helium-cadmium, krypton or other 

short-wavelength laser is passed through a spatial filter and beam expander. Then it is 

split into two plane-wave beams with roughly equal intensity. The two beams are 

brought onto the photoresist-coated substrate together by a pair of plane mirrors. This 

method is able to provide more accurate and low distortion gratings.   

After exposing, the whole sample needs to be treated in the developer bench to 

remove the exposed photoresist. In this work, the CD26 developer is in use. Then, on 

the top substrate, a layer of metal (aluminum is used in this work) will be deposited. 

Note that after developing, the IDT area will be directly covered by aluminum from metal 

deposition and for other areas, the aluminum is deposited on the photoresist. There are 

several ways to deposit aluminum, e.g. thermal evaporation, electron-beam-induced 

evaporation, plasma sputtering, etc [1]. The electron-beam-induced evaporation method 

is used in this work with the equipment BJD 1800 shown in Fig. 4.6. The last step is to 
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remove the residual photoresist with the aluminum on top. The photoresist stripper 

Shipley® 1165 is employed in this work. 

A problem for conventional photolithography technique is that it takes long time 

to remove photoresist after IDT deposition if the thickness of coated metal exceeds 50 

nm [178] (the thick metal prevents the contact between the photoresist and photoresist 

stripper). Since the thickness of our IDT is about 150 nm, the lift off technique is used 

for photolithography in this work. The lift off technique makes the polymer and its 

coating of material be readily removable after deposition [2, 170, 175, 178-179]. The lift 

off process includes two photoresist coating. The LOR 3A from Microchem® is firstly 

coated and baked on the substrate surface. Photoresist 1811 from Shipley® is then 

coated on the top of LOR 3A. Since the LOR 3A is an inert, non-UV-sensitive polymer 

but solvent in most developers, after exposing and developing, an undercut can be 

found and shown in Fig. 4.3. In this way, the deposited aluminum will not block the 

photoresist stripper and make it easy to flow through the undercut and solve the 

photoresist residue fast. Note that the develop time is very important in lift off process. If 

the time is too long the whole photoresist layer will be lift off, on the other hand, the 

under cut may not be formed.  

The detailed photolithography procedures, adjustable parameters and recipe for 

this work are listed in Appendix 2. 
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Fig. 4.6 The E-beam evaporation equipment BJD1800 in SIMM clean room 

4.3 AlN Insulator Layer Depositions 

In order to deposit AlN insulator to the substrate, the original substrate holder 

cannot be used since we don’t want to cover the whole area of the device by the 

insulator. Therefore, a PSMBE compatible mask which is able to control the deposition 

area and its support holder have to be designed first. Based on the Table 2-1, the layout 

and parameters of the mask shown in Fig. 4.7 are determined and drawn in AutoCAD 

2005 where the small rectangles are the insulator area. Since the material for all holder 

parts inside the PSMBE are molybdenum (high melting point), the mask is also made of 

molybdenum considering the heat expansion during deposition. The mask and the 
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holder are fabricated in the engineering school machine shop of Wayne State University. 

The alignment between the mask and the substrate devices is shown in Fig. 4.8. The 

flat part at the bottom of the mask is used to make the alignment.  

 

Fig. 4.7 The layout and design parameters for PSMBE compatible mask   
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Fig. 4.8 The alignment between the insulator mask and the substrate 

Similarly the substrate holder is also designed with AutoCAD 2005 and shown in 

Fig. 4.9. The material of the holder is molybdenum and the screws are made of 

Tantalum. Besides the center hold for 2 inch wafer three additional rectangle holes are 

open for the small samples that can be utilized in X-Ray Diffraction (XRD) test .   

 

Fig. 4.9 The schematic and design parameters for PSMBE compatible holder 

The deposition process is similar to the AlN deposition stated in the section 4.1.2. 

The only difference is that the deposition temperature can not exceed the IDT melting 

point 660oC (580oC-740oC) otherwise the IDT will be damaged. During the deposition 

the RHEED pattern can be observed to examine if the crystal structure is good or not. In 
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order to clean the surface of the substrate before and after the deposition, the plastic 

holders for 2 inch wafer and 1 inch wafer are designed and shown in Figs 4.10 and 4.11, 

respectively. The plastic ring to clamp the wafer is designed shown in Fig. 4.12.  

 

Fig. 4.10 The layout and design parameters of the plastic holder for two inch wafer 
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Fig. 4.11 The layout and design parameters of the plastic holder for 1 inch wafer. 

 

Fig. 4.12 The layout and design parameters for the plastic holder covering ring. 
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With the XRD measurement, the crystal structure of the material in each layer is 

characterized. We also examine the surface of the device with the optical microscope. 

The results are shown in Figs. 4.13 and 4.14. The blue rectangles in the figures show 

the insulator region. The aureole indicates the thickness change at the insulator 

boundary. The IDT fingers can be clearly observed from the detailed view. From one 

wafer, several devices are successfully deposited.  

 

Fig. 4.13 The device surface under the optical microscope. The device #3 is shown 

above. 
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Fig. 4.14 The device surface under the optical microscope. The device #8 is shown on 

the top and the device #9 is shown on the bottom. 

 With the Labview® program and the network analyzer, the frequency response 

for each device is acquired before and after insulator deposition (shown in Figs. 4.15 - 

4.19).  From Figs. 4.16, 4.18 and 4.19, the amplitude is attenuated by 5-30 db with the 

AlN insulator. From Fig. 4.17, the amplitude is increase by 3 db which possibly caused 

by the piezoelectric insulator enhancement. The reason for different insulator impaction 

is possible from the crystal quality of the insulator. Since too many factors e.g. if the 

surface is clean enough may affect the quality, its common that different performances 

appear from different devices on the same wafer. The center frequency is also shifted 
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due to the insulator mass loading. These results coincide with our FEM simulation 

results and partially validate our FEM analysis.  

 Comparing with the previous work on coatings ([2]), the AlN coating has smaller 

attenuation/thickness ratio. Furthermore as we discussed in Chapter 1 the physical and 

chemical stability of AlN is the best among these possible coatings. 
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Fig. 4.15 The frequency response for device # 3. (a) Amplitude (b) Phase 

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

x 10
8

-100

-90

-80

-70

-60

-50

-40

 

 
1 layer AlN
2 layers of AlN

 

(a) 



91 
 

 

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

x 10
8

-200

-150

-100

-50

0

50

100

150

200

 

 
1 layer AlN
2 layers of AlN

 

(b) 

Fig. 4.16 The frequency response for the device # 8 (a) Amplitude (b) Phase 
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Fig. 4.17 The frequency response for device # 9 (a) Amplitude (b) Phase. 
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Fig. 4.18 The frequency response for device # 15 (a) Amplitude (b) Phase. 

Table 4-1 Comparison between different coatings on AlN-based SAW Device [2] 

Coating Layers 
Thickness 

(nm) 

Attenuation on 

SAW (db) 

Attenuation on SH-

SAW (db) 

LOR 1A 140 0 0 

LOR 3B 780 2 25 

SiO2 500 2 10 

AlN 1500 -3 -5 
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CHAPTER 5 SYSTEM INTEGRATION AND DEVELOPMENT   

 In order to build the whole pressure sensor system, the electric circuit and some 

signal processing algorithms are developed in this section. First a prototype system is 

set up using separate electric components to evaluate the baseline performance. Some 

algorithms are developed to capture the sensing signatures. The thermo stability of the 

system is then investigated to test the system robustness in various environments. The 

portable electric circuit is designed based on the prototype system at last.  

5.1 Frequency Measurement System Setup  

As pointed out in the Chapter 2, the possible sensing signatures of SAW devices 

are frequency, phase and amplitude. Considering the system robustness [180], the 

frequency and phase measurements are the most two common ways to sense the 

pressure. For the phase measurement system, the phase difference for the signal 

excited by an external signal generator passing through the sensor or bypass the 

sensor is the sensing signature. While for the frequency measurement system, the 

frequency of the signal self-excited by a loop containing the device is the interest. 

Considering the system complexity, in this work, the frequency measurement scheme is 

employed. 

The system contains a self-excited loop and a frequency measurement device 

which is shown in Fig. 5.1. As we know the condition of a self-excited closed loop 

system is that the total loop gain is greater than 0 db and the loop phase is equal to 2k  

where k is an integer. From Figs. 4.16-4.19, the phase range over the pass band of our 
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device is [- , ], so the phase balance condition can be neglected here. Only enough 

amplifiers and proper band-pass filter are required to guarantee the maximum loop gain 

is over 0 db and locates at the desirable frequency band.  

As a starting point, some separate components are employed to implement the 

frequency measurement scheme which are listed in Table 5.1. Either an oscilloscope or 

a frequency counter can be used as the frequency measurement device. In this work 

both the frequency counter HP/Agilent 53131A and the oscilloscope HP/Agilent 54852A 

are used to evaluate the corresponding estimation algorithms. Similar to the phase 

detection system in [2], The differential set up is adopted in this work by using two 

identical set of components. Each set contains two/three 18 db amplifiers, one AlN-

based SAW device, one band-pass filter and one Power splitter. The frequency 

difference between two neighboring identical SAW devices is the system output.   

 

Device 

Amp Amp Amp 

Bandpass 
Filter 

Counter 

Power 
Splitter 

 

Fig. 5.1 Schematic diagram of single device frequency measurement system 

Table 5.1 Components list for frequency measurement system 

Name Quantity Model Corp 
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Amplifier 4 ZFL-750 Mini-circuit ® 

Filter 1 5VF200/400-5-50-KK Trilithic® 

Power splitter 2 ZFSC-2-1W Mini-circuit® 

SMA Cable 10 J3306-ND Digi-key® 

SMA Cable(long) 5 J3324-ND Digi-key® 

Frequency Counter 1 HP 53131A HP/ Agilent® 

Oscilloscope 1 HP 54852A HP/Agilent® 

 

5.2 Frequency Estimation Algorithms  

The output of the SAW device is an electrical signal with time-varying voltage. To 

acquire the pressure value the frequency of the signal needs to be estimated. The 

common estimation algorithms include, fast Fourier transform (FFT) [181], interpolated 

FFT [182-183], zero-crossing method [184], sine-wave fitting [185], Kalman filter [186], 

Chirp-Z transform [187], short-time Fourier transform [188], etc. Here frequency 

estimation using FFT is to look for the strongest component in frequency domain while 

an interpolated FFT interpolate the spectrum from FFT by utilizing the knowledge of the 

sampling window shape and pure sine wave source. The latter is able to achieve better 

accuracy from the same data. Chirp-Z transform is based the z transform and estimate 

the frequency in the frequency domain. The sine-wave fitting is a time-domain method 

to estimate frequency with least square optimization. Kalman filter is a system 

identification approach and it’s fit for distorted or time-varying signals. Zero-crossing is 

an easy implemented time-domain algorithm which estimates the frequency by 

calculating the time between two cross-zero points. The computation burden is the 
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smallest among all estimation algorithms. A more detailed comparison can be found in 

[189]. 

In this work two estimation schemes are employed. The first one is to use the 

oscilloscope to sample output data. Then the interpolated zero-crossing method is used 

to obtain the estimated frequency. The moving average method is applied to remove the 

signal noise. The flow chart of the estimation process is shown in Fig. 5.2.  

 

Fig. 5.2 The flow chart of frequency estimation approach using the oscilloscope.  
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To validate the algorithm, the device No. 16 was used in our differential 

frequency measurement system. The frequency estimation results without moving 

average for both channels are shown in Figs. 5.3 and 5.4 respectively where no 

pressure is imposed on the device. One can observed that the frequency value for 

either channel is not stable due to the environment change (i.e. temperature). The 

differential result shown in Fig. 5.5 is more stable than either single channel indicating 

the differential configuration helps to weaken the environment impaction.  
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Fig. 5.3 The frequency estimation result for differential system channel 1 
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Fig. 5.4 The frequency estimation result for differential system channel 2 
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Fig. 5.5 The frequency estimation result for differential system 
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Since the range of differential output is still very large (i.e. the measurement 

system is not stable), the 101-point moving-average is employed to filter the differential 

output. Shown in Figs. 5.6 and 5.7, after the moving-average step, the stability for either 

the single channel frequency estimation or the differential output is dramatically 

increased. The range of frequency fluctuation is only 971 Hz.  
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Fig. 5.6 The frequency estimation result for differential system channel 1 after moving-

average 
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Fig. 5.7 The frequency estimation result for the differential system output after moving-

average 

Similarly, device #19 was used in the same differential frequency measurement 

system. The system configuration is exactly same as the above one except for the SAW 

device. The experiment results are shown in Fig. 5.8, Fig. 5.9, Fig. 5.10, Fig. 5.11 and 

Fig. 5.12. The results indicate that the differential system can suppress the signal 

fluctuation from 3495 Hz (Ch1) to 1130 Hz (differential).  

. 
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Fig. 5.8 The frequency estimation result for differential system channel 1 
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Fig. 5.9 The frequency estimation result for differential system channel 1 after moving-

average 
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Fig. 5.10 The frequency estimation result for differential system channel 2 
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Fig. 5.11 The frequency estimation result for differential system channel 2 after moving-

average 
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Fig. 5.12 The frequency estimation result for differential system output 



105 
 

 

0 100 200 300 400 500 600 700 800 900
-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

time (s)

Fr
eq

ue
nc

y 
(H

z)

Differential Frequency(Moving-average), Max-Min= 1130Hz

 
Fig. 5.13 The frequency estimation result for differential system output 

In the same fashion, we repeat these baseline experiments for several times in 

different time. The similar results are achieved and listed in Table 5.2. Comparing the 

results with references [2, 17], the frequency measurement results are comparable to 

the phase measurement results using oscilloscope’s average sampling mode and worse 

than the results using oscilloscope’s real time sampling mode.  

Table 5.2 The experimental results for differential frequency measurement system 

Experiment Sensor 
Ch1 

(Hz) 

Ch2 

(Hz) 

Difference 

(Hz) 

Corresponding Phase  

(Mili-degree)  (3.4 :1) 

1 
No. 16 

(SAW) 

7527 8498 971 286 

2 15742 16548 2239 658 

3 4209 4481 477 140 
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4 2849 3006 537 157 

5 4560 3719 899 264 

6 No. 19 

(SAW) 

3495 2671 1130 332 

7 7066 9620 2596 761 

 

To achieve better results, the frequency estimation using frequency counter is 

attempt as follows. The estimation process is shown in Fig. 5.14.   First, the LabView ® 

program was developed to record two channels simultaneously using the frequency 

counter HP53131A. The front panel and block diagram of the program are shown in 

Figs. 5.15 and 5.16. The differential results are not as good as what we expect. By 

analyzing the raw data, we found that the sampling time for dual channels sampling are 

not exactly at the same time stamp. Therefore, we shift channel 2 data backward by half 

of the sampling interval, the result shows great improvement.  

 

Fig. 5.14 The flow chart of frequency estimation approach using frequency counter 

Record the device output 
signals by frequency 
counter 

Shift the second channel by 
half of sampling period 
backward 

Calculate the differential 
output 

Apply the moving average 
to the differential result 
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Fig. 5.15 The front panel of the Labview® program 

 

Fig. 5.16 The block diagram of the LabVIEW ® program 
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To evaluate the second estimation scheme, the stability test without and with 

channel 2 shift are performed respectively. The results shown in Figs. 5.28 to 5.36 are 

from three independent experiments without channel 2 shift step. Comparing with the 

frequency estimation method 1, this method already achieves better stability (the range 

is only about 100 Hz). 

 

Fig. 5.17 The frequency estimation result for differential system channel 1 in experiment 

1 
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Fig. 5.18 The frequency estimation result for differential system channel 2 in experiment 
1 

 

Fig. 5.19 The frequency estimation result for differential system output in experiment 1. 
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Fig. 5.20 The frequency estimation result for differential system channel 1 in experiment 

2 

   

Fig. 5.21 The frequency estimation result for differential system channel 2 in experiment 

2 
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Fig. 5.22 The frequency estimation result for differential system output in experiment 2 

 

Fig. 5.23 The frequency estimation result for differential system channel 1 in experiment 

3 
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Fig. 5.24 The frequency estimation result for differential system channel 2 in experiment 

3 

 

Fig.5.25 The frequency estimation result for differential system output in experiment 3 
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With the channel 2 shift step, the range of the differential output is reduced to 

around 30 Hz.  Two independent experiments are performed and shown in Figs. 5.26-

5.31. 

 
Fig. 5.26 The frequency estimation result for differential system channel 1 in experiment 

4 

 
Fig. 5.27 The frequency estimation result for differential system channel 2 in experiment 

4. The signal of channel 2 has been shifted backwards 
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Fig. 5.28 The frequency estimation result for differential system output in experiment 4 

 

Fig. 5.29 The frequency estimation result for differential system channel 1 in experiment 

5 
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Fig. 5.30 The frequency estimation result for differential system channel 2 in experiment 

5. The signal of channel 2 has been shifted backwards 

 

Fig. 5.31 The frequency estimation result for differential system output in experiment 5 
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To test the system performance in aqueous environment, we drop some water on 

the surface of the device. The system oscillation frequency becomes 254.51MHz which 

is SH-SAW Mode. The result shown in Fig. 5.32 indicates that the system successfully 

works in SH-SAW mode. Figs. 5.33 and 5.34 show the differential result before and 

after 50-points moving average in 8000 seconds. The measurement system shows 

great stability where the range is only 13.58 Hz.  
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Fig. 5.32 Frequency experiment for the device working in SH mode 
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Fig. 5.33 The frequency estimation result for differential system output. 

 

Fig. 5.34 The frequency estimation result for differential system output after moving 

average. 
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5.3 Temperature Compensation on the Frequency Measurement System 

As we know, the frequency response of the AlN-based SAW device is 

temperature related [2, 190], and so is the proposed system. Although the differential 

configuration discussed above can help the system partially by canceling the effect of 

environment temperature change, it cannot remove the distinction of the two ‘so-called 

identical’ systems. Therefore, the temperature experiments based on our frequency 

detection system were conducted here to increase the system stability in large scale 

due to the environment temperature change.  

A temperature control system is setup for the proposed frequency measurement 

system shown in Fig. 5.35. A heater connected to the power supply is placed under the 

device to control the temperature. By controlling the voltage of power supply, the 

temperature of the heater can be adjusted. Consequently, the temperature of devices 

can be controlled. The temperature will be read through a temperature sensor which is 

connected to a hand-held thermometer and recorded manually.  

In the experiment, the temperature is changed from 24oC (room temperature) to 

32.0 oC. The frequency counter is employed to collect data where 6 measurements 

were taken for every 0.1 oC. The results are shown in Fig. 5.36. With the second 

frequency estimation algorithm, the differential output is calculated and shown in Fig. 

5.37. The enlarged view is shown in Figs. 5.38 and 5.39, respectively. One can observe 

that the differential configuration works well in the interval from 24 oC to 26.5oC, while 

requires compensation for higher temperature. Using Matlab data fitting toolbox, the 

temperature coefficients (from 27 oC - 32 oC) can be estimated as follows, the coefficient 
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for the differential output is 2276 Hz/ oC, the coefficient for channel 1 is 18027 Hz/ oC, 

and the coefficient for channel 2 is 15750 Hz/ oC.  

 

 

Temperature 
Sensor 

Thermo
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Power Supply 

Device 1 Loop 

Device 2 Loop 

Temperature 
Control 

Equipment 

 

Fig. 5.35 The frequency measurement system and its temperature control system 

 
Fig. 5.36 The frequency measurements for two channels when the temperature is 

changed 
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Fig. 5.37 The frequency estimation result on differential system output 

 
Fig. 5.38 The frequency estimation result on differential system output (enlarged view in 

24 -26 ) 
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Fig. 5.39 The frequency estimation result on differential system output (enlarged view in 

26.5 -32 ) 

Another experiment was conducted with different initial oscillation frequency. The 

results are shown in Figs. 5.40 and 5.41. Using Matlab data fitting toolbox, the 

temperature coefficients (from 26 oC  -  40 oC) are obtained as follows, differential 

coefficient is 2722 Hz/ oC, channel 1 coefficient is 19710 Hz/ oC, and channel 2 

coefficient is 16980 Hz/ oC. The Comparison between these two temperature 

experiments are shown in Figs. 5.42 and 5.43. The results indicate that different 

oscillation frequency results in different temperature coefficient which should be counted 

in the compensation algorithm.  
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Fig. 5.40 The frequency measurements for two channels when the temperature is 

changed 

 

Fig. 5.41 The frequency estimation result on differential system output 



123 
 

 

 
Fig. 5.42 The comparison between two temperature experiments on individual channels 

 
Fig. 5.43 The comparison between two temperature experiments on differential output 
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With the experiment data, the relationship between channel 1 and differential 

output can be fitted using piecewise linear function. Then the coefficients are 

interpolated using the data from different oscillation frequency. The final frequency 

estimation result will be subtracted by the temperature effects. By applying the 

compensation algorithm, the frequency estimation results are shown in Figs. 5.44 and 

5.45 (Temperature experiment 1 data is in use). After compensation, the differential 

result will be much more stable than the original differential output which results in the 

resolution of the system increasing to 0.12 nN.  

 

Fig. 5.44 Comparison on the differential output results before and after temperature 

effect compensation 
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Fig. 5.45 The frequency estimation result on differential system output after temperature 

effect compensation 

We also compare the proposed frequency measurement approach with the 

phase measurement approach [17]. The phase detection approach is applied and the 

results are shown in Fig. 5.46 and Fig. 5.47. Using Matlab data fitting toolbox, we can 

obtain the temperature coefficients as follows, the coefficient for differential channel is 

1.21 degree/ , the coefficient for channel 1 is 6.26 degree/ , and the coefficient for 

channel 2 is 7.47 degree/ . Comparing with frequency temperature coefficient, the 

ratio between the frequency and phase results for channel 1 is 2.712 (Hz/mD) and the 

ration between the frequency and phase results for channel 2 is 2.639 (Hz/mD). 
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Fig. 5.46 The phase estimation results on individual channels 

 

Fig. 5.47 The phase estimation results on differential system output 
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For the temperature experiment 2, the comparisons between the frequency 

method and phase method are shown in Figs. 5.48, 5.49 and 5.50. The ratio between 

the frequency and phase results for the differential output is 3.4 (Hz/mD). The 

comparison results are shown in Fig. 5.51.  

 
Fig. 5.48 The comparison between frequency and phase estimation methods on 

channel 1 

 
Fig. 5.49 The comparison between the frequency and phase estimation methods on 

channel 2 
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Fig. 5.50 The comparison between the frequency and phase estimation methods 

on the differential output 

 
Fig. 5.51 The comparison between frequency and phase (multiplying the ratio 

coefficient 3400) on differential output 
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5.4 Portable Electrical Circuit Design  

The prototype system consisting of separate components is difficult to be 

installed on the surgical robot. A practical solution is to integrate all separate 

components into one small printed circuit board (PCB) and attach it to the robot arm.  

Similar to the prototype system, the system schematic of the whole differential 

system is shown in Fig. 5.52. A pair of differential devices is employed in two oscillation 

loops. The oscillation frequency is 242MHz for SAW mode and 255MHz for the 

SH/SAW mode. To prevent the system working in other frequency band, a low pass 

filter and a high pass filter are placed in each loop. The 1 db pass band for these two 

filters is from 225MHz to 265MHz. When the device is working in SAW mode, the loop 

insertion loss is about 30db+3 db (power splitter) + 2.2db (switches)+ 2 (filters)=37.2 db. 

When the device is working in SH-SAW mode, the loop insertion loss is about 

50db+3db+ 2.2db+ 2=57.2db. Therefore, we need 2 amplifiers (each gain is 20db) for 

the SAW mode, one additional amplifier for the SH-SAW mode. Two switches are used 

to control the number of amplifiers. Two SMA terminators connected to the loop to 

export the output signal. A small circuit using mixer is employed to convert the 

frequency to voltage. The design diagram is shown in Fig. 5.53 or Fig. 5.54. The 

difference between design 1 and design 2 is the number of the output. So design 1 is 

easier to be realized but the design 2 is more flexible to process the results.  
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Fig. 5.52. The system diagram of the differential frequency measurement system using 

PCB 
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Fig. 5.53. The system diagram of frequency conversion design 1 
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Fig. 5.54. The system diagram of frequency conversion design 2 
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The components selection is shown in Table 5.3. All components are bought 

from http://www.minicircuits.com and http://digikey.com. The PCB is fabricated by 

http://apcircuits.com. 

Table 5.3 The components for the portable electric PCB 

Amplifier Ram6 6 MINICIRC 

Amplifier(backup) Ram8 2 MINICIRC 

Power splitter ADP-2-1 3 MINICIRC 

Switch RSW-2-25P 4 MINICIRC 

LPF1 SALF-265 5 MINICIRC 

LPF2 SCLF-5 3 MINICIRC 

HPF1 PHP-250 2 MINICIRC 

Transformer ADT1.5-1 4 MINICIRC 

Terminator J502-ND 7 DIGIKEY 

SMA adapter J633-ND 2 DIGIKEY 

C bypass PCE3014CT-ND (0.1 uF) 4 DIGIKEY 

C bypass 478-1230-1-ND(18000pF) 12 DIGIKEY 

C block 478-1234-1-ND(39000pF) 8+4 DIGIKEY 

Resistor RHM100FCT-ND 4 DIGIKEY 

Resistor RHM536FCT-ND 8 DIGIKEY 

Resistor RHM121FCT-ND 2 DIGIKEY 

Mixer TBD 3 MINICIRC 

PCB PROD TBD 3 APCIRC 
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There are two versions of PCB designed in this work a test version and a 

compact version. The test version PCB is bigger than the compact version PCB and 

therefore suitable for test, measurement and evaluate in the lab environment while the 

compact version PCB is for robotic use.  

The schematic plot of test version PCB Design is show in Fig. 5.55. The 

dimension of PCB is 3.0 inch X 3.0 inch. The PCB is designed with the software of 

Altium Designer ® 6. The PCB design file is shown in Fig. 5.56. The 3D effect figures 

are shown in Fig. 5.57 and Fig. 5.58. When it works in SAW mode, the signal spectrum 

is shown in Fig. 5.59 that indicates the oscillation circuit is working properly.  

 

Fig. 5.55 The schematic plot for the test version PCB design 
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Fig. 5.56 The PCB design file for test version PCB 

 

Fig. 5.57 The top view of 3D effect for the test version PCB 
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Fig. 5.58 The rear view of 3D effect for the test version PCB 

 

Fig. 5.59 The signal spectrum measured from the test version PCB 

The compact version PCB is redesigned based on the test version PCB. All 

electric components are placed and aligned to reduce the size. The area of the compact 

version PCB is 58% of the size of the test one. We remove the all switches to reduce 
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size and prevent more electromagnetic radiation. Thus the working mode will be 

selected automatically: when there is no water on the surface of device, the insertion 

loss of SAW mode is less than the second mode for our device. So the system works in 

SAW mode. On the other hand, the insertion loss of the second mode is less than SAW 

mode. Subsequently, the system works in the SH-SAW mode. The RF shield cover is 

added to meet EMC requirements. Furthermore, more through holes are added into the 

design to increase the electromagnetic property of the system.  The resulted schematic 

figure and PCB design files are shown in the Fig. 5.60 and Fig. 5.61, respectively. After 

elaborative testing most devices are working properly.  

 

 

Fig. 5.60 The schematic plot for the compact version PCB design 
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Fig. 5.61. PCB design file for compact version PCB 

An auxiliary PCB was also designed to test our PCB (shown in Fig. 5.62). There 

are 3 parts of the auxiliary PCB, One is to test the device performance, another is to test 

the mixer performance and the center part is to test the electrical switch. The test PCB 

works properly. The experiment proved the mixer can produce a low frequency sin wave 

signal with the difference frequency of two inputs when its inputs are the signal from the 

signal generator and the signal from one output port of test or compact version PCB.  

 

Fig. 5.62. The auxiliary PCB design file 
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CHAPTER 6 CONCLUSIONS AND FUTURE WORK 

6.1 Summary of the Technical Contributions 

A novel prototype pressure sensor based on AlN SAW/ SH-SAW device is 

proposed in this work. The core component AlN-based SAW/SH-SAW device is 

designed, fabricated, analyzed and evaluated. The data acquisition (DAQ) system 

including prototype and portable peripheral circuits and signal processing algorithms are 

explored afterwards..  

The SAW device used in the proposed pressure sensor employs AlN as the 

piezoelectric material and the insulator. With a delay-line IDT structure design, the  

SAW mode and SH-SAW mode are expected to be excited. Comparing to the previous 

design in bacterial sensing application, the new scheme inherits the basic features of 

dual model AlN devices but also greatly improves its applicability in aqueous 

environment for surgical robotic applications.  

In order to validate the new design, both theoretical and computational analyses 

are performed. In the aspect of theoretical analysis, the delta function model and 

structural mechanics models are employed. The qualitative results point out the 

impaction of design parameters and validate the device design. Since the geometry of 

the device is too complex to make the analytical derivation, the FEM analysis is 

implemented using COMSOL Multiphysics ® in this work. Due to the computer hardware 

limitation the FEM analysis is performed using two types of approximations. First the 2D 

plane strain approximation is in use with the real device dimensions. The device with 
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insulator and without insulator is modeled, meshed and simulated. The simulation 

results from frequency domain analysis on insertion loss show good agreement the 

experimental measurement in terms of the shape and center frequency. These results 

reveal the existence of the SAW mode and prove the correctness of the design. Another 

trial is the 3D simplified model approximation. Different mode and wave propagation can 

be observed from the simulation results. It is also found that the different reduced 

dimensions affect the simulation results greatly as well as the material constants. The 

FEM analysis performed in this work lays a solid foundation for providing an opportunity 

in the future to reduce the design time and fabrication cost in the conventional design 

and fabrication processes for micro electro mechanical systems. 

The proposed design scheme of the AlN-based device is fulfilled in the SSIM 

clean room. The crystalline epitaxial AlN thin film is successfully grown on the surface of 

A-plane Al2O3 as well as on the top being an insulator using our PSMBE system. The 

crystal structure is monitored during the deposition by RHEED and checked with XRD 

after deposition. The aluminum IDT is evaporated using lift-off photolithography 

techniques. In order to cover the IDT with a layer of AlN, several masks and holders are 

designed and fabricated to facilitate the insulator deposition. The frequency response 

from the network analyzer shows the effectiveness of the new design. Comparing to the 

previous trials on different photoresist and SiO2 the AlN insulator has the advantages on 

low attenuation (-5 to 3 db vs. 10 db in SiO2) and superb stability (1.5 m crystal vs. 

500nm in SiO2, or 780 nm in photo resist). 

We also investigate the DAQ system. A prototype DAQ system is setup using 

separate components. The differential system shows great system detection stability. 
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An enhanced zero crossing method based on oscilloscope and time-shift method based 

on the frequency counter are employed, respectively, to detected the frequency shift 

due to external load change. Based on the prototype system, the environment 

temperature impaction is measured and identified. The compensation algorithm is 

developed to improve the system robustness. With the proposed measurement system 

and the temperature compensation algorithm the system sensitivity is 8.16 kHz/nN and 

the resolution in a temperature-variant environment becomes 0.12 nN. To the end, the 

portable peripheral circuit is designed based on the prototype system.  

6.2 Future Work on the AlN-Based Pressure Sensor 

The pressure sensor proposed in this work has small dimension, excellent 

durability, high sensitivity and applicability working in aqueous environment. Although 

some substantial progresses have been made, it is still worth putting in more efforts in 

the future.  

The insertion loss of the device is still relatively low comparing to the device 

based on other piezoelectric materials such as LiNbO3, Quartz, etc. One possible 

change is to employ the resonator IDT structure instead of the delay line structure. 

Multiple-device array is also a potential scheme to increase the insertion loss. These 

kinds of optimization can be implemented using FEM simulation platform. With more 

powerful computers or work stations, a 3D model with the real size is able to accurately 

predict the device performance when design parameters are changed. By applying the 

statistical method Taguchi method [191], the most impact factors from numerous 

geometric or physic parameters can be revealed. The Taguchi method is developed by 
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Genichi Taguchi and broadly applied to experiment design in the field of engineering, 

biotechnology and marketing field [192-193]. The first step of Taguchi method is to 

define the process objective, i.e. maximize the insertion loss in this application. The 

second step is to determine the design parameters, that the number of design freedom. 

Then create the orthogonal arrays for all design parameters to indicate the number and 

conditions for experiment. When the trial experiments are conducted, the performance 

data will be collected and used to complete orthogonal arrays. At last the data is 

analyzed to predict the optimal performance and the parameter influence.   

Even though the parameters are analyzed, it’s still not easy to tune these most 

important parameters to achieve the best design solution manually since the scope of 

the parameter is large. An automatic way is to employ the commercial software Isight®  

[194] which is the product of Dassault Systèmes to seek the optimal solution. With the 

help of Isight® add-on components, the parameters to be tuned can be automatically 

feed into Comsol Multiphysics®. The result from Comsol Multiphysics® then flows into 

Matlab® to calculate the performance index e.g. the insertion loss. By pre-defining the 

objective value, Isight® can search the parameters in the predefined scope until the 

optimal and robust one is finally found.  

To better serve the surgery’s needs, the pressure information at certain 

measured locations should be converted to the area textile information, e.g. normal 

tissue, tumor etc. Such conversions can be made by fuzzy expert systems [195] or 

machine learning algorithms [196-197]. As a robotic probe, the 3D textile reconstruction 

for the sensing space is desired. How to effectively select the measurement location is 

an interesting topic. A new emerging algorithm, compressed sensing [198-199] is a 
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possible solution. Through preliminary exploring the signal sparsity, the measurement 

points can be dramatically reduced. The complete signal will be reconstructed after 

transmitting to the computer. Compressed sensing is already successfully applied to the 

similar scene the robotic controls [200]. 
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APPENDIX 1. ALN DEPOSITION EXPERIMENT STEPS 

1. Loading Procedure. The substrate will be loaded to the main chamber in this step.  

(1) Clean the substrate properly. 

(2) Unscrew the load-lock door. Open N2 valve at the load lock. When the pressure 

in the load-lock reaches 760 Torr, the load-lock door will open. Close N2 valve 

and place sample holder inside. Make sure the holder is facing towards down.  

(3) Close the load-lock door. Turn on the roughing pump, open the roughing valve 

and turn on the turbo pump at once. 

(4) Close the ion pump valve. 

(5) After the pressure in the load-lock goes off scale, turn off the turbo pump and 

close the roughing valve. 

(6) Open the valve between the load-lock chamber and main chamber. 

(7) Using the load-lock fork, place the substrate & holder into the main chamber.   

(8) Retract loading fork and close the valve between the load-lock chamber and 

main chamber.  

(9) Open the cryo-pump valve. 

(10) Turn on the ion pressure gauge G1 or G2. 

(11) Turn off turbo pump, close the roughing valve. After 20 minutes, turn off the 

roughing pump.  
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(12) Turn on the RGA valve and the separate pumping system for RGA. 

(13) When the pressure in the Main chamber reaches vacuum more than 10-7 Torr. 

Turn on RGA and perform degassing process.  

(14) When the pressure in the chamber is 10-8 Torr or less then open the ion pump 

valve. 

2. Chamber Baking and Substrate degassing. The water in the chamber and inside the 

substrate will be removed in this step. 

(1) Turn on the affinity water cooling unit. Open the cooling water output valves and 

input valves for all sources and heater.  

(2) Close all shutters. 

(3) If desired, turn on the substrate rotation. Switch on motor power toggle. Start the 

QuickStart software in computer. Select EXITS, DUMB TERMINAL. Enter, Send 

commands, Exit. Open Commands, Select Constant Velocity, rotation=20 

steps/sec. OK. 

(4) Switch on the thermocouple unit and pyrometer.  

(5) Raise substrate and lower heater to within 3 mm of each other.  

(6) Press Power ON for HP6675A DC power supply. Set current and voltage value 

(start from 15A/20V) to for desired temperature level. For substrate degassing, 

90V (798oC) is selected. Note that the relation between voltage and temperature 

is not constant but depending on the environment.  
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(7) Turn on the power switch for RGA.  

(8) Start RGA software, Select Utilities, RS232 Setup, Com5, connect. Select Head, 

Channel, Electron Multiplier, Gain=1078, Reference Mass=28, Voltage=1351, 

ON, OK. Select Scan, Mass Spec Parameters, Mass scan range=1-60, Scan 

rate=3, Scaling factor =1, Points per AMU=10. Select Utilities, Analyze, GO. 

(9) Open the valve between turbo pump and electron gun. Start the turbo pump and 

let it run at higher 70000 rpm to get the desired vacuum. Open the main shutter 

and closed the observation shutter.  

(10) When pressure gauge reading < 15, close the turbo pump valve and immediately 

open the gate valve between the main chamber and the electron gun. 

(11) Turn on the RHEED power supply and increase the voltage slowly up to 30 kV. 

Increase the current slowly to 1.4A.  

(12) Be sure the substrate is raised to maximum height (to the stopper). 

(13) Open the RHEED screen.  

(14) Start the KSA program in the computer. 

(15) Turn ON electron beam on the hand held control panel. 

(16) Adjust sample height, x, y axis position and get the RHEED pattern.  

3. Pre-sputtering. The source will be cleaned by plasma. No deposition happens by 

closing all shutters. 
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(1) All shutters should be closed.  

(2) Turn ON the RFX power supplies for the desired sources.  

(3) Close ion pump valve, RGA valve and turn off the ion pressure gauge. Close the 

cryo-pump gate valve by 50%. 

(4) Turn on the main N2 and Ar line, and turn on the desired sources. Turn on only 

Ar lines to the mass-flow controller (set at 40 sccm). 

(5) Adjust the cryo-pump gate valve so that the left hand side baratron gauge 

reading is 0.05 torr.  

(6) Set the initial power as 100 W for all RF controllers. Press START. Check if 

Reflect=0. 

(7) With plasma at all sources, open the cryo-pump valve to get 1.2-1.3 mTorr of 

pressure on the right hand side baratron gauge.  

(8) Closed the observation shutter and wait for 15 minutes to one hour for sputtering.  

4. Buffer Layer Deposition and Annealing. The buffer layer will help to increase the AlN 

quality by reducing the lattice mismatch [201].   

(1) Adjust the substrate heater temperature as desired (45V, 400oC). 

(2) Starting the deposition. Set the substrate holder bias to 12 V (VSET=12, ISET=1). 

(3) Open the observation shutter. 
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(4) Switch ON for the main N2 gas  toggle.  Switch  ON  for  two  N2 flow controller 

switches. 

(5) Open the shutters for sources and main shutter. 

(6) Adjust the cryo-pump gate valve to obtain 1.2-1.3 mTorr of pressure. The buffer 

layer deposition lasts about 15mins 

(7) Close all shutters. Switch off for the main N2 gas toggle and two follow controller 

switches. Switch OFF for the main Ar gas toggle and flow controller switches 

(8) Stop RF controllers for all sources 

(9) Open cryo-pump gate valve fully.  

(10) Increase the substrate heater voltage to 77V. When temperature reaches 695oC, 

begin to time annealing. Annealing is no more than 10 minutes. 

5. Film deposition 

(1) Close ion pump gate valve, RGA valve. Turn OFF IG1 pressure gauge. Set ON 

for substrate bias. Adjust the substrate temperature at 643oC, 70V.  

(2) Switch ON for the main Ar gas toggle and all sources toggle. Switch ON for the 

Ar flow controller.  

(3) Adjust the cryo-pump gate valve to set the pressure 0.05 torr for left hand side 

baratron gauge. 

(4) Start RF power supplies. Set power 200W. 
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(5) With plasma on all sources, open the cryo-pump gate valve to get the pressure of 

1.2-1.3 mTorr at right hand side baratron gauge. 

(6) Switch ON for the main N2 gas toggle and N2 flow controllers. 

(7) Open the main shutter and all shutters for sources. 

(8) Close the observation shutter. The deposition is started. 

6. End of Deposition. 

(1) Close all shutters and turn off bias and RF power supplies. 

(2) Switch OFF for the N2 main gas toggle and flow controllers.  

(3) Stop RF power supplies. 

(4)  Switch OFF for  the main Ar gas toggle and flow controllers.  Switch OFF for  the 

toggles for all sources. 

(5) Open cryo-pump and ion pump valves, and wait until temperature drops to 50oC. 

Turn off heater controllers and coolant water. 

(6) Stop holder rotation. 

(7) Shutdown the pyrometer temperature unit and thermocouple temperature unit.  

(8) Turn on roughing pump. Open the load-lock to roughing pump valve. Start the 

turbo pump when pressure in load-lock chamber <75 Torr. 
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(9) When the load-lock pressure is less than 10-4 Torr, stop the turbo pump. Close 

roughing pump valve. Open the load-lock chamber to the main chamber gate 

valve.  

(10) Push the substrate carrier into the chamber and lift the substrate out of the holder.  

(11) Retract the substrate carrier arm. 

(12) Close the load-lock chamber to the main chamber gate valve.  

(13) Make sure that the turbo pump has been off more than 20 minutes. Loosen the 

two load-lock access door screws and N2 gas valve to the load-lock chamber. 

(14) Remove the substrate holder with substrate for the load-lock chamber. 
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APPENDIX 2 THE PROCEDURES FOR AL IDT DEPOSITION 

1. Clean the substrate by acetone and IPA manually and DI water by VERTEQ super 

clean 1600. Clean the mask and spin head by acetone.  

2. Dehydrate the substrate on hotplate for 10 minutes at 150oC. 

3. Center the substrate on the chuck of photoresist spinner 2 and check vacuum. 

Dispense 3 ml LOR3A on the substrate and start spinning at once at 400 rpm for 5 

seconds and then at 4500 rpm for 45 seconds. 

4. Bake the substrate on the hotplate for 5 minutes at 180oC. 

5. Center the substrate on the chuck of photoresist spinner 2 and check vacuum. 

Dispense 3 ml Shipley 1811 on the substrate and start spinning at once at 600 rpm 

for 5 seconds and then at 4000 rpm for 40 seconds. 

6. Bake the substrate on the hotplate for 90 seconds at 115oC. 

7. Install the photomask and load the substrate into MA6 mask aligner. Make sure the 

dark side of photomask towards the substrate. Align the photomask, substrate and 

baseline substrate (if necessary).  Set the program to SOFT and time parameter to 

8 seconds.  

8. Develop the substrate by immersing in CD 26 for 45-50 seconds.  

9. Rinse and dry the substrate for 2 minutes with DI water then cleaned in the 

VERTEQ super clean 1600.  

10. Check with the microscope. If the lines and undercuts are clear, continue. 
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11. Bake the wafer on hotplate for 5 minutes at 90oC. 

12. Deposit Al with 1500 nm thickness using E-beam evaporation. The tooling factor is 

set 40% and the active process and material is set to aluminum.  

13. Remove the residual photoresist with Shipley 1165 remover for 3 hours at 55oC. 

Then immerse the substrate into ultrasonic bath with DI water for 5 minutes.  
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ABSTRACT 

DESIGN AND FABRICATION OF A PROTOTYPE ALUMINUM NITRIDE-BASED 
PRESSURE SENSOR WITH FINITE ELEMENT ANALYSIS AND VALIDATION 
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Since 1985 when the first robot PUMA 560 was employed to place a needle 

during a brain CT biopsy, surgical robots have become ubiquitous in clinical surgeries. 

Despite its advantages and success in surgeries, the interactions between the robot and 

the surgeons remain deficient, especially for the pressure sensing which plays an 

important role. Inspired by our previous work on bacterial sensing, in the current work I 

have designed, fabricated, analyzed, and evaluated an innovative prototype pressure 

sensor based on Aluminum Nitride (AlN) Surface Acoustic Wave (SAW) and Shear 

Horizontal (SH)-SAW. This AlN-based device has unique superiorities over other SAW 

devices, including relatively lower cost, higher sensitivity, intrinsically higher reliability, 

more compact size, and faster response. In this novel design a sandwich-like structure 

is adopted and the AlN thin film on the top is used as the insulated layer to make the 

device applicable in aqueous environment. The delta function analysis and structural 

mechanics analysis have been performed to validate the proposed design scheme 

qualitatively. So as to make a quantitative and comprehensive analysis, the numerical 

computational analysis using finite element method (FEM) has been carried out using 
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the software package COMSOL Multiphysics®.  The 2D plane-strain simulation and 3D 

simplified model simulation have been executed to analyze the device performance with 

or without insulator. A good agreement has been achieved between the simulation and 

the experimental measurements, which validates the design scheme and establishes 

the effectiveness of the device. This SAW/SH-SAW device has been fabricated in the 

WSU SSIM clean room. The crystalline AlN thin film is deposited on A-plane sapphire 

with 2 µm thickness using the PSMBE system. The aluminum interdigital transducer  

(IDT) is evaporated on the AlN thin film with predefined delay-line pattern using the 

BJD-1800 vacuum deposition system.  Another layer of AlN thin film with 1 µm 

thickness is deposited on the top of the IDT area with some customized masks to make 

the device insulated.  

Furthermore, the differential frequency measurement system has been set up 

using electronic components to evaluate the system. Several signal processing 

algorithms are developed and compared to acquire system output. The thermal stability 

of the differential system is also studied and temperature compensation is developed to 

improve system robustness. The portable electrical circuit involving the frequency 

measurement system is finally designed and evaluated. Such a sensor could serve as a 

key component in artificial skin or be equipped on the end of a surgical robotic arm in 

the future.  
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