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Maximum Downside Semi Deviation Stochastic Programming 
for Portfolio Optimization Problem 
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Terengganu, Malaysia 

 
 
Portfolio optimization is an important research field in financial decision making. The chief character 
within optimization problems is the uncertainty of future returns. Probabilistic methods are used 
alongside optimization techniques. Markowitz (1952, 1959) introduced the concept of risk into the 
problem and used a mean-variance model to identify risk with the volatility (variance) of the random 
objective. The mean-risk optimization paradigm has since been expanded extensively both theoretically 
and computationally. A single stage and two stage stochastic programming model with recourse are 
presented for risk averse investors with the objective of minimizing the maximum downside semi-
deviation. The models employ the here-and-now approach, where a decision-maker makes a decision 
before observing the actual outcome for a stochastic parameter. The optimal portfolios from the two 
models are compared with the incorporation of the deviation measure. The models are applied to the 
optimal selection of stocks listed in Bursa Malaysia and the return of the optimal portfolio is compared 
between the two stochastic models. Results show that the two stage model outperforms the single stage 
model for the optimal and in-sample analysis. 
 
Key words: Portfolio optimization, maximum semi-deviation measure, downside risk, stochastic linear 

programming. 
 
 

Introduction 
Portfolio optimization is an important research 
field in financial decision making. The most 
important character within optimization 
problems is the uncertainty of future returns. To 
handle such problems, probabilistic methods are 
utilized alongside optimization techniques. 
Stochastic programming is the approach 
employed in this study to deal with uncertainty. 
Stochastic programming is a branch of 
mathematical programming where the 
parameters are random, the objective of which is  
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to find the optimum solution to problems with 
uncertain data. This approach can 
simultaneously deal with both the management 
of portfolio risk and the identification of the 
optimal portfolio. Stochastic programming 
models explicitly consider uncertainty in the 
model parameters and they provide optimal 
decisions which are hedged against such 
uncertainty. 

In the deterministic framework, a typical 
mathematical programming problem could be 
stated as 
 

,
x

i

min f(x)

s.t g (x) 0, i 1,...m≤ =
    (1.1) 

 

where x  is from nR  or nZ . Uncertainty, 
which is usually described by a random element, 

)(ωξ , where ω  is a random outcome from a 
space Ω , leads to situation where one has to 
deal with ξ(ω))f(x,  and ξ(ω))(x,gi , as 
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opposed to just f(x)  and (x)gi . Traditionally, 

the probability distribution of ξ  is assumed to 
be known (or can be estimated) and is 
unaffected by the decision vector x . The 
problem becomes decision making under 
uncertainty where decision vector x  must be 
chosen before the outcome from the distribution 
of )(ωξ  can be observed. 

Markowitz (1952, 1959) incorporated 
the concept of risk into the problem and 
introduced the mean-risk approach, which 
identifies risk with the volatility (variance) of 
the random objective. Since 1952, the mean-risk 
optimization paradigm has been extensively 
developed both theoretically and 
computationally. Konno and Yamazaki (1991) 
proposed mean absolute deviation (MAD) from 
the mean as the risk measure to estimate the 
nonlinear variance-covariance of the stocks in 
the mean-variance (MV) model. It transforms 
the portfolio selection problem from a quadratic 
programming problem into a linear problem. 
The popularity of downside risk among 
investors is growing and mean-return-downside 
risk portfolio selection models seem to oppress 
the familiar mean-variance approach.  

The reason mean-variance models are 
successful is because they separate return 
fluctuations into downside risk and upside 
potential. This is relevant for asymmetrical 
return distributions, for which the mean-variance 
model punishes the upside potential in the same 
fashion as the downside risk. Thus, Markowitz 
(1959) proposed downside risk measures, such 
as semi variance, to replace variance as the risk 
measure. Subsequently, downside risk models 
for portfolio selection have grown in popularity 
(Sortino & Forsey, 1996). 

Young (1998) introduced another linear 
programming model to maximize the minimum 
return or minimize the maximum loss (minimax) 
over time periods and he applied it to stock 
indices of eight countries from January 1991 
until December 1995. The analysis showed that 
the model performs similarly with the classical 
mean-variance model. In addition, Young 
argued that - when data is log-normally 
distributed or skewed - the minimax formulation 
might be a more appropriate method compared 
to the classical mean-variance formulation, 

which is optimal for normally distributed data. 
Ogryczak (2000) also considered the minimax 
model but analyzed it with the maximum semi 
deviation. 

Dantzig (1955) and Beale (1955) 
independently suggested an approach to 
stochastic programming termed stochastic 
programming with recourse; recourse is the 
ability to take corrective action after a random 
event has taken place. Their innovation was to 
amend the problem to allow a decision maker 
the opportunity to make corrective actions after 
a random event has taken place. In the first 
stage, a decision maker makes a here and now 
decision. In the second stage the decision maker 
sees a realization of the stochastic elements of 
the problem but is allowed to make further 
decisions to avoid the constraints of the problem 
becoming infeasible. 

Stochastic programming is becoming 
more popular in finance as computing power 
increases and there have been numerous 
applications of stochastic programming 
methodology to real life problems over the last 
two decades. The applicability of stochastic 
programs to financial planning problems was 
first recognized by Crane (1971). More recently 
Worzel, et al. (1994) and Zenios, et al. (1998) 
have developed multistage stochastic programs 
with recourse to address portfolio management 
problems with fixed-income securities under 
uncertainty in interest rates. Their models 
integrate stochastic programming for the 
selection of portfolios using Monte Carlo 
simulation models of the term structure of 
interest rates. 

Hiller and Eckstein (1994), Zenios 
(1995) and Consiglo and Zenios (2001) also 
applied stochastic programs to fixed-income 
portfolio management problems. Chang, et al. 
(2002) modeled a portfolio selection problem 
with transaction costs as a two-stage stochastic 
programming problem and evaluated the model 
using historical data obtained from the Taiwan 
Stock Exchange; their results show that the 
model outperforms the market and the MV and 
MAD models. 

In this article, a single stage and two 
stage stochastic programming model are 
developed with recourse for portfolio selection. 
The objective is to minimize the maximum 
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downside deviation measure of portfolio returns 
from the expected return. The so-called here-
and-now approach is utilized: a decision-maker 
makes a decision (now) before observing the 
actual outcome for the stochastic parameter. The 
portfolio optimization problem considered 
follows the original Markowitz (1959) 
formulation and is based on a single period 
model of investment. At the beginning of a 
period, an investor allocates capital among 
various securities assuming that each security is 
represented by a variable; this is equivalent to 
assigning a nonnegative weight to each variable. 
During the investment period, a security 
generates a random rate of return. The change of 
invested capital observed at the end of the period 
is measured by the weighted average of the 
individual rates of return. 

The objective of this study is to compare 
the optimal portfolio selected using two different 
stochastic programming models. The optimal 
portfolios are compared between the single stage 
and two stage models with the incorporation of 
deviation measure. This method is applied to the 
optimal selection of stocks listed in Bursa 
Malaysia and the return of the optimal portfolio 
from the two models is compared. 
 

Methodology 
Consider a set of securities n}1,2,...,i:{iI ==  
for an investment; at the end of a certain holding 
period the assets generate returns, 

.=    T
1 2 nr (r ,r ,...,r )  The returns are unknown at 

the beginning of the holding period, that is at the 
time of the portfolio selection, and are treated as 
random variables; their mean value is denoted 

by, . T
1 2 nr = E(r)=(r ,r ,...,r )  At the beginning of 

a holding period an investor wishes to apportion 
his budget to these assets by deciding on a 

specific allocation T
n21 )x,...,x,(x=x  such 

that 0xi ≥  (i.e., short sales are not allowed) 

and 
∈

=
Ii

i 1x  (budget constraint). In this article, 

boldface characters are used to denote vectors, 
and the symbol ~ denotes random variables. 

The uncertain return of a portfolio at the 

end of a holding period is =R~ rxrx, T ~)~(R = . 
This is a random variable with a distribution 

function F, that is, F( x, ) P{R(x,r ) }.μ = ≤ μ  
It is assumed that F does not depend on the 
portfolio composition x. The expected return of 
the portfolio is 
 

)~,(R)]~,(R[]R~[ R rxrx === ΕΕ . 
 

Suppose the uncertain returns of the 
assets, r~ , are represented by a finite set of 
discrete scenarios }S,...,2,1ω:ω{ ==Ω , 
whereby the returns under a particular scenario 

Ω∈ω  take the values 
Tr )r,...,r,r( nω2ω1ωω =  with associated 

probability 0pω > , 
∈

=
Ωω

ω 1p . The mean 

return of the assets is 
∈

=
Ωω

ωωp rr . The 

portfolio return under a particular realization of 
asset return ωr  is denoted by ),(RR ωω rx= . 

The expected portfolio return is expressed as: 
 

ω Ω

R (x, r )

x, r )]

(x, r ).

ω

ω

∈

=
=

=  ω ω

R
 E[R(

p R
 

 
Let )],(RM[ ωrx  be the minimum of 

the portfolio return. The maximum (downside) 
semideviation measure is defined as 
 

(x) [ (x, r )]

[E[ (x, r )] x, r
ω

ω ω

κ =
=

MM R
R  - Min [R( )]

  (2.1) 

 
Maximum downside deviation risk 

)],(R[MM ωrx  is a very pessimistic risk 

measure related to the worst case analysis. It 
does not take into account any distribution of 
outcomes other than the worst one. 
 
Properties of the )]~,(R[MM rx  Measures 

Artzner, et al. (1999) introduced the 
axiomatic approach to construction of risk 
measures. This approach has since been 
repeatedly employed by many authors for the 
development of other types of risk measures 
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tailored to specific preferences and applications 
(see Rockafellar, et al., 2002, 2004; Acerbi, 
2002; Ruszcynski & Shapiro, 2004). 
 
Proposition 1: )]~,(R[MM rx  measure is a 
deviation measure. 
 
Proof: 
1. Subadditivity:  

)κ(X)κ(X)Xκ(X 2121 +≤+ . 
 

2[ (x, r) (x, r)]

max{ (x, r) (x, r)]

[ (x, r) (x, r)]}

max{( (x, r)] (x, r) )

( [ (x, r)] (x, r)}

max{ (x, r)]

+
= +

− +
= −

+ −
≤

 
 
 
 
 


1

1 2

1 2

1 1

2 2

1

MM R R
E[R R

                             R R
E[R R

                             E R R
         E[R (x, r) }

max{ [ (x, r)] (x, r)}

[ (x, r)] [ (x, r)]

−
+ −

≤ +


 

 

1

2 2

1 2

R
                             E R R

         MM R MM R
 
2. Positive Homogeneity: 

0 0 0 0MM [ ] max( E[ ] ) .= − =  
 

0

MM[ ( R( x,r )]
           max{ E[ R( x,r )] R( x,r )}
     max{ E[R( x,r )] R( x,r )}

   MM[R( x,r )], for all

λ
= λ − λ
=λ −
= λ λ >


 
 



 

 
3. Translation invariance: 

,)X()(X ακακ −=+  for all real 

constants α . 
 
MM[( R( x,r ) ]
            max{ E([R( x,r ) ] [ R( x,r ) ])}

max{ E[R( x,r )] R( x,r ) }
max{ E[R( x,r )] R( x,r )}
MM[( R( x,r )]

+ α
= + α − + α
= + α − −α
= −
=


 
 
 


 
4. Convexity:  

)λ)κ(X(1)λκ(X]λ)X(1κ[λX 2121 −+≤−+
 for all 0 1[ , ].λ ∈  

2

2

2

[ (x, r) (1 ) (x, r)]

max{ (x, r) (1 ) (x, r)]

[ (x, r) (1 ) (x, r)]}

max{( (x, r)] (1 ) (x, r) )]

(x, r) (1 ) (x, r)}

max{ ( (x, r

λ + − λ
= λ + − λ

− λ + − λ
= λ + − λ

−λ + − λ
= λ

 
 
 
 
 


1

1

1

1 2

1 2

1

MM R R
E[ R R

                   R R
E[ R E[ R

                   R R
E[R )] (x, r) )

(1 )( [ (x, r)] (x, r))}

max{( (x, r)] (x, r) )}

(1 ) max{ [ (x, r)] (x, r))}

(x, r)] (1 ) [ (x, r)]

−
+ − λ −

≤ λ − +
− λ −

≤ λ + − λ


 

 
 

 

1

2 2

1 1

2 2

1 2

R
                   E R R

E[R R
                     E R R

MM[R MM R
 
Single Stage Stochastic Programming Portfolio 
Optimization Model with MM Deviation 
Measure 

The portfolio selection optimization 
model is formulated as a single stage stochastic 
programming model as follows. 
 
Definition 1: S_MM 

The stochastic portfolio optimization 
problem where the difference between the 
expected portfolio return and the maximum of 
minimum portfolio returns is minimized and 
constraining the expected portfolio return is: 
 

x X
(x, r ) x, r

ω
Minimize  max  [R R( )]ω ω∈ ∈Ω

−  

(2.2a) 
 
Subject to:

 

 

ω i ωi
i I

R( x,r ) x r    ω Ω
∈

= ∀ ∈    (2.2b) 

 

ω ω
ω Ω

R( x,r ) p R( x,r )ω
∈

=       (2.2c) 

 

R ( x,r ) αω ≥                   (2.2d) 

 

i
i I

x 1
∈

=                       (2.2e) 

 

i i iL x U      i I≤ ≤ ∀ ∈           (2.2f) 
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Model S_MM minimizes the maximum 
semi deviation of portfolio returns from the 
expected portfolio return at the end of the 
investment horizon. Equation (2.2b) defines the 
total portfolio return under each scenario ω . 
Equation (2.2c) defines the expected return of 
the portfolio at the end of the horizon, while 
equation (2.2d) constrains the expected return by 
the target return .α  Equation (2.2e) insures that 
the total weights of all investments sum to one, 
that is, budget constraints ensuring full 
investment of available budget. Finally equation 
(2.2f) insures that the weights on assets 
purchased are nonnegative, disallowing short 
sales and placing upper bounds on the weights. 
Solving the parametric programs (2.2) for 
different values of the expected portfolio return 
α  yields the MM-efficient frontier. 
 
Linear Programming Formulation for S_MM 

Models S_MM have a non linear 
objective function and a set of linear constraints, 
thus the models are non linear stochastic 
programming. However, the models can be 
transformed to linear models as follows. 

For every scenario Ω∈ω , let an 
auxiliary variable, 
 

)],R(  -  ),(R[ max  
ω

ωω
Ω

η rxrx
∈

=    (2.3) 

 
subject to  
 

ω
max [R( x,r ) R(x,r )] for  ,ω ω∈Ω

η ≥ − ∀ω∈Ω  

 
then, 

ηω     )],(R[MM =rx               (2.4) 

 
subject to 
 

ω
max [R( x,r )-R(x,r )] for .ω ω∈Ω

η ≥ ∀ω∈Ω  

 
Substituting (2.4) in the portfolio optimization 
models (2.2) results in the following stochastic 
linear programming model: 
 

Minimize η ,                    (2.5a) 
subject to: 

ω i ωi
i I

R( x,r ) x r
∈

=              (2.5b) 

ω ω
ω Ω

R( x,r ) p R( x,r )ω
∈

=     (2.5c) 

 

R ( x,r ) αω ≥                   (2.5d) 

 

ωR( x,r ) R( x,r )ω − ≤ η          (2.5e) 

 

i
i I

x 1
∈

=                         (2.5f) 

 

i i iL x U    i I≤ ≤ ∀ ∈              (2.5g) 

 
Theorem 1 

If *x  is an optimal solution to (2.2), 

then ),( ** ηx  is an optimal solution to (2.5), 

where )],R(  -  ),(R[ max  
ω

ωω
Ω

η rxrx
∈

= . 

Conversely, if ),x( ** η  where 

)],R(  -  ),(R[ max  
ω

ωω
Ω

η rxrx
∈

=  is an optimal 

solution to (2.5), then *x  is an optimal solution 
to (2.2). 
 
Proof: 

If *x  is an optimal solution to (2.2), 

then ),( ** ηx  is a feasible solution to (2.5), 

where )],R(  -  ),(R[ max  **
ω

ωωΩ
η rxrx

∈
= . If 

),( ** ηx  is not an optimal solution to (2.5), 

then a feasible solution ),( ηx  exists to (2.5) 

where )],R(  -  ),(R[ max  
ω

ωω
Ω

η rxrx
∈

=  such 

that *ηη ≤ . 

If ηωω
Ω

 )] ,R(  -  ),(R[ max
ω

≤
∈

rxrx , 

then 
 

* *

(x, r ) x, r

(x , r ) x , r

*

ω

ω

max [R -R( )]

                       max [R -R( )] 

ω ω∈Ω

ω ω∈Ω

≤ η < η

<
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which contradicts that *x  is an optimal solution 
to (2.2). 

However, if ),( ** ηx  is an optimal 
solution to (2.5), where 

)],R(  -  ),(R[ max  
ω

ωω
Ω

η rxrx
∈

=  then *x  is 

an optimal solution to (2.2). Otherwise, a 
feasible solution x  to (2.2) exists such that 
 

* *(x, r ) x, r (x , r ) x , rω ω ω ω∈Ω ∈Ω
<

ω ω
max [R -R( )] max [R -R( )]

 

Denoting )],R(  -  ),(R[ max  
ω

ωω
Ω

η rxrx
∈

= , 

leads to 
 

)],R(  -  ),(R[ max  
ω

ωωΩ
η rxrx

∈
=  

 
* *(x , r ) x , rω ω∈Ω

<

<η
ω

*

max [R -R( )]
 

 

which contradicts that ),( ** ηx  is an optimal 
solution to (2.5). 
 
Two Stage Stochastic Programming Model with 
Recourse 

A dynamic model where not only the 
uncertainty of the returns is included in the 
model but future changes, recourse, to the initial 
compositions are allowed is now introduced. 
The portfolio optimization is formulated by 
assuming an investor can make corrective action 
after the realization of random values by 
changing the composition of the optimal 
portfolio. This can be accomplished by 
formulating the single period stochastic linear 
programming models with the mean absolute 
negative deviation measure as a two-stage 
stochastic programming problem with recourse. 
The two-stage stochastic programming problem 
allows a recourse decision to be made after 
uncertainty of the returns is realized. 

Consider the case when the investor is 
interested in a first stage decision x  which 
hedges against the risk of the second-stage 
action. At the beginning of the investment 
period, the investor selects the initial 

composition of the portfolio, x . The first stage 
decision, x , is made when there is a known 
distribution of future returns. At the end of the 
planning horizon, after a particular scenario of 
return is realized, the investor rebalances the 
composition by either purchasing or selling 
selected stocks. In addition to the initial - or first 
stage - decision variables x , let a set of second 
stage variables, ωi,y  represent the composition 

of stock i after rebalancing is done, that is, 

ωi,iωi,    Pxy +=  or ωi,iωi,  -   Qxy = , where 

ωi,P  and ωi,Q  are the quantity purchased and 

sold respectively and ωi,y is selected after the 

uncertainty of returns is realized. 
 
Linear Representation of MM 

Before formulating the two stage 
stochastic programming models to minimize the 
second stage risk measure to address the 
portfolio optimization problem, the mean 
absolute negative deviation and maximum 
downside deviation of portfolio returns are 
formulated from the expected return in terms of 
the second stage variables y . 
 

)],(R),(R[max
)],(R[MM)),(R( Let

ωωωωΞω

ωωωωκ
ryry

ryry
−=

=

∈  
(2.6) 

 
For every scenario Ω∈ω , if the auxiliary 
variable is 
 

)],(R),(R[max , ωωωωΩω
η ryry −=

∈
  (2.7) 

 
subject to 
 

ω
 max [R( y ,r )-R(y ,r )] for  ω ω ω ω∈Ω

η ≥ ∀ω∈Ω

(2.8) 
then 

ηω     )],(R[MM =rx               (2.9) 

 
subject to 
 

ω
max [R( y ,r )-R(y ,r )] for  .ω ω ω ω∈Ω

η ≥ ∀ω∈Ω  
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Two Stage Stochastic Linear Programming 
Formulation of 2S_MM 

The two stage stochastic linear 
programming model is formulated for the 
portfolio optimization problem that hedges 
against second stage MM as follows. 
 
Definition 2: 2S_MM 

The stochastic portfolio optimization 
problem where the downside maximum semi-
deviation of portfolio returns from the expected 
return is minimized and the expected portfolio 
return is constrained is: 
 

Minimize η                   (2.10a) 
 

i
i I

x 1
∈

=                    (2.10b) 

 

ωi
i I

y 1  ω Ω
∈

= ∀ ∈           (2.10c) 

 

R( x,r ) R( y ,r )  α  ω Ωω ω ω+ ≥ ∀ ∈  

(2.10d) 
 

i i iL x U     i I≤ ≤ ∀ ∈            (2.10e) 

 

ωi ωi ωiL y U     i I, ω Ω≤ ≤ ∀ ∈ ∀ ∈  

(2.10f) 
 

R( y ,r )     ω Ωω ω ≥ η ∀ ∈        (2.10g) 

 
Model (2.10) minimizes the maximum downside 
semi deviation of the portfolio return from the 
expected portfolio return of the second stage 
variable, y , at the end of the investment period. 
Equation (2.10b) insures that the total weights of 
all investments in the first stage sum to one, and 
equation (2.10c) insures that the total weights of 
all investments in the second stage under each 
scenario, ω , sum to one - that is, budget 
constraints ensuring full investment of available 
budget. Equation (2.10d) constrains the expected 
return by the target return, α , while equations 
(2.10e) and (2.10f) insure that the weights on 
assets purchased are nonnegative, disallowing 
short sales and placing an upper bound on the 

weights in the first stage and second stage 
respectively. Finally, equations (2.10g) and 
(2.10h) define the mean absolute negative 
deviation of portfolio returns from the expected 
portfolio return in the second stage and the 
auxiliary variables for the linear representation 
of the deviation measure. 
 
Numerical Analysis 

Models developed herein were tested on 
ten common stocks listed on the main board of 
Bursa Malaysia. These stocks were randomly 
selected from a set of stocks that were listed on 
December 1989 and were still in the list in May 
2004; closing prices were obtained from 
Investors Digest.  At first, sixty companies were 
selected at random, ten stocks were then selected 
and the criterion used to select the ten stocks in 
the analysis is as follows: 
 
i. Those companies which do not have a 

complete closing monthly price during the 
analysis period were excluded. 

 
ii. Because the portfolios were examined on 

the basis of historical data, those with 
negative average returns over the analysis 
period were excluded. 

 
Empirical distributions computed from 

past returns were used as equiprobable 
scenarios. Observations of returns over SN  

overlapping periods of length tΔ  are considered 
as the SN  possible outcomes (or scenarios) of 

future returns and a probability of 
sN

1  is 

assigned to each of them. Assume T historical 
prices, T1,2,...,t,Pt =  of the stocks under 

consideration. For each point of time, the 
realized return vector over the previous period of 
1 month is computed, which will be further 
considered as one of the SN scenarios for future 

returns on the assets. Thus, for example, a 
scenario isr  for the return on asset i  is obtained 

as: 

i i
is

i

P(t 1) P(t)r .
P(t)

+ −=                  (3.1) 
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For each stock, 100 scenarios of the overlapping 
periods of length 1 month were obtained, that is, 

SN . 

To evaluate the performance of the two 
models, the portfolio returns resulting from 
applying the two stochastic optimization models 
were examined. A comparison is made between 
the S_MM and 2S_MM models by analyzing the 
optimal portfolio returns in-sample portfolio 
returns and out-of-sample portfolio returns over 
a 60-month period from June 1998 to May 2004. 
At each month, the historical data from the 
previous 100 monthly observations is used to 
solve the resulting optimization models and 
record the return of the optimal portfolio. The 
in-sample realized portfolio return is then 
calculated. The clock is advanced one month 
and the out-of-sample realized return of the 
portfolio is determined from the actual return of 
the assets. The same procedure is repeated for 
the next period and the average returns are 
computed for in-sample and out-of-sample 
realized portfolio return. The minimum monthly 
required return α is equal to one in the analysis 
for both the S_MM and 2S_MM models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Results 
Comparison of Optimal Portfolio Returns 
between S_MM and 2S_MM 

Figure 1 presents the graphs of optimal 
portfolio returns resulting from solving the two 
models; S_MM and 2S_MM. The optimal 
portfolio returns of the two models exhibit a 
similar pattern: a decreasing trend is observed in 
the optimal returns for both models. However, as 
illustrated in Figure 1, the optimal portfolio 
returns from the two stage stochastic 
programming with recourse model (2S_MM) are 
higher than the optimal portfolio returns from 
the single stage stochastic programming model 
(S_MM) in all testing periods. This shows that 
an investor can make a better decision regarding 
the selection of stocks in a portfolio when taking 
into consideration both making decision facing 
the uncertainty and the ability of making 
corrective actions when the uncertain returns are 
realized compared to considering only making 
decisions facing the uncertainty alone. 
 
Comparison of Average In-Sample Portfolio 
returns between S_MM and 2S_MM 

The average realized returns were used  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Comparison of Optimal Portfolio Returns S_MM and 2S_MM Models 
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to compare in-sample portfolio returns between 
the S_MM model and 2S_MM model; results 
are presented in Figure 2. An increasing trend is 
observed in the months from December 1999 
until April 2000, and then a decreasing trend is 
noted until June 2001. From June 2001 until 
May 2004 both averages show an increasing 
trend. The average in-sample portfolio returns of 
2S_MM are higher than the average in-sample 
portfolio returns in all testing periods. 
 
Comparison of Out-Of-Sample Portfolio Returns 
between S_MM and 2S_MM Models 

In a real-life environment, model 
comparison is usually accomplished by means of 
ex-post analysis. Several approaches can be used 
to compare models. One of the most commonly 
applied methods is based on the representation 
of the ex-post returns of selected portfolios over 
a given period and on comparing them against a 
required level of return. The comparison of out-
of-sample portfolio returns between the single 
stage stochastic programming model S_MM and  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the two stage stochastic programming with 
recourse model 2S_MM is also accomplished 
using the average return. The results of the out-
of-sample analysis are presented in Figure 3. 

Throughout the testing periods, the 
average returns from the two models show 
similar patterns. An increasing trend is observed 
in the months from December 1999 until 
December 2000, and then a decreasing trend is 
observed until June 2001. Starting from June 
2001, both averages show an increasing trend. 
The average out-of-sample of the two-stage 
model 2S_MM is higher than those of single 
stage model S_MM. The models have been 
applied directly to the original historical data 
treated as future returns scenarios, thus 
loosening the trend information. Possible 
application of forecasting procedures prior to the 
portfolio optimization models considered may 
be an interesting direction for future research. 
For references on scenario generation see 
Carino, et al., (1998). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Comparison of Average In-Sample Portfolio Return between S_MM 
and 2S_MM Models 
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Conclusion 

A portfolio selection of stocks with maximum 
downside semi deviation measure is modeled as 
single stage and two stage stochastic 
programming models in this article. The single 
stage model and the two stage model incorporate 
uncertainty and at the same consider rebalancing 
the portfolio composition at the end of 
investment period. The comparison of the 
optimal portfolio returns, the in-sample portfolio 
returns and the out-of-sample portfolio returns 
show that the performance of the two stage 
model is better than that of the single stage 
model. Historical data was used for scenarios of 
future returns. Future research should generate 
scenarios of future asset returns using an 
appropriate scenario generation method before 
applying models developed in this article. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Acknowledgements 
The work funded by the FRGS (Fundamental 
Research Grant Scheme) of Ministry for Higher 
Education of Malaysia, Grant 
203/PJJAUH/671128 Universiti Sains Malaysia. 
 

References 
Acerbi, C. (2002). Spectral measures of 

risk: A coherent representation of subjective risk 
aversion. Journal of Banking Finance, 26(7), 
1487-1503. 

Beale, E. M. L. (1955). On minimizing a 
convex function subject to linear inequalities. 
Journal of the Royal Statistical Society, Series B, 
17, 173-184. 

Carino, D. R., Myers, D. H., & Ziemba, 
W. T. (1998). Concepts, technical issues and use 
of the Russel-Yasuda Kasai financial planning 
model. Operations Research, 46, 450-463.  

Figure 3: Comparison of Out-Of-Sample Analysis between Single Stage S_MM 
and Two Stage 2S_MM Models 

 

 

Average Out-of-Sample Portfolio Returns: S_MM and 2S_MM

0.98

1

1.02

1.04

1.06

1.08

Jun-99 Dec-99 Jun-00 Dec-00 Jun-01 Dec-01 Jun-02 Dec-02 Jun-03 Dec-03

Time Period

A
ve

ra
g

e 
P

o
rt

fo
lio

 R
et

u
rn

 

S_MM

2S_MM



SEMI DEVIATION STOCHASTIC PROGRAMMING FOR PORTFOLIO OPTIMIZATION 

546 
 

Chang, K. W., Chen, H. J., & Liu, C. Y. 
(2002). A stochastic programming model for 
portfolio selection. Journal of Chinese Institute 
of Industrial Engineers, 19(3), 31-41. 

Crane, D. B. (1971). A stochastic 
programming model for commercial bank bond 
portfolio management. Journal of Financial and 
Quantitative Analysis, 6, 955-976. 

Dantzig, G. B. (1955). Linear 
programming under uncertainty. Management 
Science, 1, 197-206. 

Konno, H., & Yamazaki, H. (1991). 
Mean-absolute deviation portfolio optimization 
model and its application to Tokyo stock market. 
Management Science, 7, 519-531. 

Markowitz, H. M. (1952). Portfolio 
selection. Journal of Finance, 8, 77-91. 

Markowitz,H. M. (1959). Portfolio 
selection: Efficient diversification of investment. 
New York: John Wiley& Sons.  

Rockafellar, R. T., Uryasev, S., & 
Zabarankin, M. (2002). Deviation measures in 
risk analysis and optimization. Technical Report 
2002-7, ISE Dept., University of Florida. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rockafellar, R. T., Uryasev, S., & 
Zabarankin, M. (2004). Generalized deviation in 
risk analysis. Technical Report 2004-4, ISE 
Dept., University of Florida. 

Ruszczynski, A., & Shapiro, A. (2004). 
Optimization of convex risk functions. Working 
paper. 

Sortino, F. A., & Forsey, H. J. (1996). 
On the use and misuse of downside risk. Journal 
of Portfolio Management, Winter, 35-42.  

Young, M. R. (1998). A minimax 
portfolio selection rule with linear programming 
solution. Management Science, 44, 673-683 

Worzel,K. J., Vassiadou-Zeniou, C., & 
Zenios, S. A. (1994). Integrated simulation and 
optimization models for tracking fixed-income 
securities. Operations Research, 42(2), 223-233. 

Zenios, S. A, Holmer, M. R., 
McKendall, R., & Vassiadou-Zeniou, C. (1998). 
Dynamic models for fixedincome portfolio 
management under uncertainty. Journal of 
Economic Dynamics and Control, 22, 1517-
1541. 
 


	Journal of Modern Applied Statistical Methods
	11-1-2010

	Maximum Downside Semi Deviation Stochastic Programming for Portfolio Optimization Problem
	Anton Abdulbasah Kamil
	Khlipah Ibrahim
	Recommended Citation


	Microsoft Word - toc_vol9_no2

