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Preface 

In the age when the electrification of transportation is no longer a distant dream, 

the need for advanced energy storage is more crucial than ever. Supercapacitors are 

among the most sought after devices for the storage of electrical charge. Its simple, 

effective, stable and eco-friendly design has propelled it to the top researched areas in 

electrochemistry, and it is widely believed to be the last corner stone in vehicle 

electrification. The supercapacitor enjoys a rapid charge-discharge time, an extensive 

cycle life, inexpensive and light parts, and able to deliver a sweeping amount of power 

in short bursts. This is why numerous researches are geared towards coupling the 

supercapacitor with lithium batteries, since the latter is endowed with a wide energy 

density whilst supercapacitors boast a superb power density. 

In the present work, we introduce the technology’s history and current status, its 

working mechanisms and working milieus, as well as its future trends. Chapters 4 and 5 

of this thesis present work done on material for a pseudocapacitor: The material 

preparation and characterization are shown in chapter 4 and its electrochemical 

performance is studied in chapter 5. 

This thesis also includes a modeling appendix to further emphasis the 

performance advancement in hybrid electric vehicles, with the tethering of a 

supercapacitor bank to the on-board energy storage.  
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Chapter 1 

Introduction 

The energy storage systems are crucial part of any energy strategy, and 

supercapacitors are one of the most efficient energy storage devices with very high 

power capability. The global market share of supercapacitors is rapidly growing, and 

newer models have higher energy density than their predecessors. Current primary 

energy sources such as fossil fuels (Gas, Oil and Coal) are limited and will not likely be 

easily available past 20421. Energy is crucial for the sustainability of modern societies; it 

is the economic backbone of any sustainable social construct. Recently geopolitical 

conflicts as well as the constant rise in the price of fuel, the continuous rise in world 

population and modernization of societies, the wide spread use of portable electronics, 

power tools and electric-based transportation have created a sharp increase in 

consumption of energy sources.2 Currently, less than 20% of the world’s energy 

demands are being met by renewables and nuclear power, and the efficiency of 

converting these alternative energy sources to electricity is not as high as that of fossil 

fuels. 

Carbon-based resources are basis of the worldwide energy economy, and have 

been for the last two centuries. The world started feeling the impact of this long term 

dependence on fossil fuels, and the increase in public awareness of the dangers that 



 
 

 

NOx, SOx and other greenhouse gases that are being released into the atmosphere from 

combustion processes, drove several nations to sign the famous Kyoto protocol and 

commit to hard challenges to curb global warming3. On the other hand, solar, 

geothermal, Biomass and wind power energies are abundant and underused. The cost 

of energy from these sources is continuously coming down whilst the cost to extract 

energy from fossil fuels is on the rise. Creating a grid and developing these energy 

source are the world’s greatest challenges for this century4. Unfortunately most of the 

alternative energies such as solar and wind are intermittent. To deal with their 

intermittency, energy storage devices are needed. Among various energy storage 

systems, the electrochemical systems are the most efficient for storing energy and 

releasing energy on demand at ambient and sub-ambient temperatures. Advanced 

batteries have made significant progress during last two decades, and lithium-ion 

battery is dominating the field. However, the power capability of the lithium battery is 

limited to the rate of ion diffusion in solid electrodes. There is an urgent need to 

develop high power energy storage device, and supercapacitors are the most desirable 

sources for high rate high power applications. New portable electronics require portable 

energy sources that could handle various power peak demands. Current lithium 

batteries are facing a challenge to provide the necessary requirements for powering the 

electric based transportation and for future electronics5. 

Transportation sectors currently use over 60% of the world’s production of oil, 

and are also contributing the most to the increase in greenhouse gases. Rising 



 
 

 

awareness of environmental concerns as well as the unsustainability in current oil 

supply model is prompting auto makers to intensify their search for environmentally 

friendly and more energy efficient vehicles.  Almost every automotive company has 

rolled out several HEV and EV models. In recent years, more automakers6 are making 

use of the supercapacitor’s ability to deliver very high charge/discharge cycles, to meet 

the power requirements of newer HEVs and EVs7. Peak power sizing of the battery pack 

aboard the electric vehicle greatly affects the requirement for size and weight of the 

energy storage system. The battery pack is required to deliver power surges needed for 

grade climbing and acceleration, while accepting transient power through regenerative 

breaking8. These wildly varying current surges generate heat inside the battery, and lead 

to premature failure of the battery pack, especially when the battery is near its full state 

of charge (SOC). Using a supercapacitor relieves the battery peak power stress and it 

seems to have become a crucial part in vehicle electrification7, 8. Hybridization of battery 

and supercapacitor is also an ideal energy management for buses and fleets operations. 

Schematic of battery and supercapacitor hybridization is shown in Figure 1. With this 

novel approach to the electrification of the automobile, several designs have been 

proposed to couple the battery and a supercapacitor in numerous HEV and EV models9. 

Figure 2 present one such design with a variable primary energy source (i.e. gasoline or 

fuel cells or batteries). The role of the inverter is to deliver energy from the battery pack 

into the motor on demand and reversibly input the charge back into the supercapacitor 

upon regenerative braking. 



 
 

 

 

 

Figure 1. Illustraction of battery – supercapacitor hybrid for electrification of 
automobile. The battery and the supercapacitor are using convertors to adjust their 
voltages for the application. 

 

 

 

 

 

 

 

Figure 2. A general perspective of hybrid electric vehicle components, a small ICE, hybrid 
of battery – supercapacitor, convertors-invertors and electric motor10. 

 



 
 

 

1.1 Current and Future Status of Supercapacitors 

While capacitors have been in use for more than a century, they have not been 

known to hold much charge, and their use was mainly to compliment circuits or memory 

storage devices. In 1957, G.E. patented a device made of porous carbon which showed 

promise in holding high capacitance. SOHIO patented another device in 1966 and 

explicitly explained how the energy is stored at the carbon pores, with the 

electrode/electrolyte double-layer interfaces acting as capacitors. The sales of the 

device were limited, and SOHIO sold the patent to NEC (NIPPON ELECTRIC COMPANY). 

NEC coined the term SUPERCAPACITOR and its successful model finally pushed these 

devices into commercial use in memory backups and home appliances. Other examples 

followed such as Dynacap and PRI, and were able to establish supercapacitors as high 

power energy storage devices. By the end of 1992 the United States Department of 

Energy (DOE) had already a supercapacitor program being run at Maxwell labs. Various 

companies have their own system available on the market and many more actively 

involved in research and development of supercapacitor materials.  

Another avenue of interest for supercapacitor research is flexible energy storage 

devices. The malleability of most carbonaceous material suitable for supercapacitor 

electrodes, such as free standing graphene oxide films, makes them attractive as 

electrodes, or as a conductive base to grow metal oxides for pseudocapacitive effects11. 

The excellent conductivity and mechanical properties of these electrodes makes them 



 
 

 

attractive for the area of flexible high power electronics12, as well as textile energy 

storage devices. These “wearable” energy storage systems could provide power to 

medical monitoring devices, illumination, as well as an array of consumer electronics13. 



 
 

 

Chapter 2 

Principles of Operation of Supercapacitors 

The supercapacitor stores energy in three ways:  

a) In the electric field of the interfacial double layer of the electrode/electrolyte 

interfaces. This is referred to as the double layered capacitance originally thought out by 

Hermann Von Helmholtz. This is an entirely non-faradaic process which does not involve 

any making or breaking of chemical bonds 14, but rather charges are stored in the 

electric field formed between electrons on the surface of the electrode and ions in the 

electrolyte that are adsorbed at the electrode surface. Helmholtz’s model fell short is 

describing the multitude of processes happening at the electrode/electrolyte interface. 

Gouy and Chapman presented a model of the double layer effect that accounts for the 

diffusion of the ions in the electrolyte called a diffusion layer then Stern combined both 

models and presented a more complete model coined as stern layer.  

b) Through electrosorption and surface redox reactions (pseudocapacitance) on 

p-doped or n-doped electrodes, which have been reported to match and sometimes 

exceed the performance of EDLC15. The type of reactions happening at the surface is 

faradaic in nature in the sense that the charge transfer is voltage dependent, as shown 

in the following Nernst equation (1) which relates the half-cell reactions to its standard 

potential and concentration of the species: E0 is the standard potential, R is the gas 



 
 

 

constant, T is the absolute temperature, F is the Faraday constant, and  is defined as 

the concentration of oxidants divided by the concentration of the reductant. 

 

E = E0 - 
  

  
ln ()                               (1) 

Z is the amount of charge. Pseudocapacitance occurs due to adsorption/desorption of 

ions on the surface as well: A monolayer of ions gets deposited on the surface of the 

electrode which gives rise to faradaic reactions: 

                   I+/- ± e-  I.Aads 

Where I is the concentration of depositable ionic species, Aads is the surface area 

available for adsorption at some cell potential V. 

c) By utilizing both the faradaic electrode and non-faradaic electrode processes, 

in what is known as the “Hybrid” capacitor16. This is a recent advancement to research 

on supercapacitors and yet at infancy. It aims to integrate the advantages of both 

Lithium Ion Batteries and the double layer effect of the traditional supercapacitor. The 

attractiveness of such an energy storage device is its high energy density coming from 

the battery – like anode as well as the non-faradaic high power density coming from the 

carbonaceous cathode. In other words, adsorption/desorption of anions occur at the 

surface of the cathode, whilst lithium ions are being inserted/extracted on the anodic 

side17. 



 
 

 

2.1 The double layered supercapacitor. 

As shown in Figure 3 below, the construction of a supercapacitor includes a 

separator soaked in electrolyte, sandwiched between two high surface area electrodes 

usually made from activated carbon 18,19. 

 

Figure 3 – Basic construction of a double layered Supercapacitor. 

 

The capacitance of an EDLC follows the equation  

   
   

 
                         (2) 

Where ϵ is the relative dielectric constant,  A is the electrode surface area, and d is 

electrodes separation distance20. In order to enhance energy storage capacity of a 

capacitor, its surface area must be maximized and the electrode separation minimized. 

In addition the energy (E) of a capacitor is related to the square of its voltage (V) and its 

capacitance (C) through the following equation 



 
 

 

                          (
 

 
)                               (3) 

Therefore increasing capacitor voltage is one of the main approaches to enhance energy 

density of the capacitors, this is why recently researchers are leaning towards the use of 

organic electrolytes which benefit from a wide voltage window. 

Studies have already shown that porous carbon electrodes could have a surface 

area upwards of 2000 m2 per gram. This type of capacitors is well researched in 

laboratories since the 1980s; it can withstand an applied voltage between -0.5 V and 1 V 

in an aqueous electrolyte. Further increase in the applied voltage may result in breaking 

down of the electrolyte (the electrochemical stability for water is about 1.23 V) or in 

irreversible polarization of the carbon electrode into CO2 and any increase on the 

negative side might result in hydrogen evolution. The realistic capacitance of EDLCs 

made with porous carbon material such as activated carbon (AC), activated charcoal, 

carbon cloth and such is limited to about 100 F.g-1. Such a limited specific capacitance 

has been attributed to pore sizes being too small for the ions to pass through, and the 

electrolyte is believed not to be in direct contact with the entire surface area of the 

carbon electrode21-23. 

Activated carbons were the first and most widely used material for EDLCs. Their 

high surface area (around 500 m2 per gram) is due to the large number of micro-pores 

which riddle its surface. The most common activation method for this carbon is 



 
 

 

chemical, through the use of acids or a strong base to create the pores needed to 

enlarge the surface area, followed by pyrolysis24, 25. The reported capacitance ranges 

from 63 to 100 F.g-1 26. The same could be applied to activated carbon fibers, which 

benefit from slightly higher surface area than AC, but does not exhibit much larger 

capacitive behavior, which has been attributed to its low bulk density23. Carbon nano-

fibers have been employed to increase tensile strength in many composites, and when 

activated, used as electrodes for Lithium batteries. However the reported specific 

capacitance is not very encouraging as possible electrodes for supercapacitors (1 to 60 

F.g-1)27. 

Templated mesoporous carbons were thought of as possible electrodes for 

double-layered capacitors, as they contains extended micro-pores allowing a better 

wetting of the interface area with the electrolyte28. Template mesoporous carbon is 

produced by allowing carbon material in the liquid phase to enter the well-controlled 

pores of a silica substrate: When the carbonation process is over, the pores that are 

formed in the carbonaceous material are well connected. However, template carbons 

exhibit a wide range of specific capacitance due to the pore size distribution, which is 

usually attributed to the varying nature of the precursor involved 29. Capacitance values 

ranged from 89 F.g-1 to 160 F.g-1 depending on the electrolyte30. 

Carbon nanotubes are another candidate electrode material for supercapacitor. 

They are long hollow tubes with walls made from single sheet graphene. This of course 



 
 

 

allows CNTS to enjoy high conductivity, coupled with a large exposed area. Unlike other 

carbonaceous sheets, CNTs suffer from no edge effect or decomposition of the 

electrolyte at higher potentials31. 

These advantageous effects make CNTs an ideal material for supercapacitors, 

but the bundling of the fibers together due to Van der Waals forces prevents wetting of 

the entire surface area and therefore limit the capacitance to around 160 F.g-1 23. CNTs 

suffer as well from micro pores volume and defects, which are requiring researchers to 

invent techniques to circumvent these difficulties (such as acid and heat treatments or 

doping with transition metal oxides)32.  

There are three separate types of CNTs with varying degree of usefulness for 

supercapacitive applications: Single walled carbon nanotubes (Figure 4) which are made 

from single wrapped graphene sheets which could be semiconductors with a band gap 

inversely depending on the diameter of the tube33.  

 

 

 

 

 

Figure 4- a) Schematic of a single walled Carbon nanotube formed by rolling a single 
Graphene sheet. b) a 2D Graphene sheet34. 



 
 

 

Multi-walled carbon nanotubes (Figure 5) are several concentrically wrapped 

sheets of graphene, with an interlayer separation of only a few angstroms. They enjoy a 

rather modest specific area (400 m2 per gram) but make up for it in a rather large 

number of meso pores35.  

 

 

Figure 5 – Transmission Electron Micrograph a mutiwalled CNT36. 

Truncated conical CNTs (Figure 6) are especially attractive as they offer a 

hollowed tubular morphology, exposes the electrolyte to inner and outer edges of the 

conical structure37 whilst still maintaining a long tubular morphology of a nano-fiber. 

The edges of these conical structures are highly reactive and exhibit high crystallinity38, 

39 good conductivity and promising specific capacitance. However, like most 

carbonaceous material, the differential capacitance at the edge planes leads to 

formation of amorphous carbon on the edges and therefore greatly degrades the 

electrochemical effectiveness of CSCNTs40. 



 
 

 

 

Figure 6- Stack cone carbon nano-fiber showing the average width of the cone38. 

Graphene - based material hold high promise for use as electrodes for 

supercapacitors due to their unique two dimensional structures41, excellent 

conductivity42, and stability43, coupled with an extremely high theoretical surface area 

(2600 m2/g)44. Graphitic sheets can be easily obtained by thermal shock treatment of 

graphite flakes which preserve their electrical conductivity without limiting their surface 

area45.  It could be kept suspended in a solution or given in a paper shape, or 

incorporated into polymers. In short it is really a dream material. Their surface area is 

entirely accessible to most electrolytes used in supercapacitors, with a specific 

capacitance ranging between 95 Fg-1 to 160 F.g-1 depending on the electrolyte42. 

Extensive work has been dedicated to the study of Graphene based material as possible 

electrodes for batteries and supercapacitors18, 42, 44, 46-51. Graphene being a flexible single 

sheet of graphite (seem Figure 7 below) was under heavy investigation by various 

researchers12, though further activation of the graphitic sheet is needed to increase the 

number of micro and meso-pores on the surface. 



 
 

 

 

Figure 7- SEM image of a single sheet of Graphene prepared from Hydrazine 
dispersion52. 

 

Its excellent conductivity and ease of fabrication, makes graphene attractive as high 

surface area electrodes for supercapacitors for both academic research and industrial 

commercialization. 

2.2 Pseudocapacitors. 

Pseudocapacitors are developed to increase energy density of the previously 

mentioned double layer capacitors. In this technology the charge storage is based on 

both the adsorption of ion at the electrode/electrolyte interface as well as the faradic 

reaction of a redox couple system deposited on the electrode surface. Schematic of 

pseudocapacitor is shown in Figure 8 below:  

 



 
 

 

 

Figure 8-A basic schematic of a Pseudocapacitor showing the adsorption of ions at the 
electrode/electrolyte interface53. 

 

The pseudocapacitor benefits from combined faradaic and non-faradaic charge 

accumulations. It is an energy storage device that works on electron transfer between 

electrodes through redox reaction and charge storage due the double layer effect. 

Conway affirms that the charge storage mechanism for pseudocapacitors is similar to 

batteries’ operations than the traditional capacitors16. The capacitance obtained from 

pseudocapacitors could be  10 times larger than EDLCs, however this capacitive 

behavior is strongly voltage dependent, and its power limited by kinetic factors 54. Two 

types of energy storage are possible for a pseudocapacitor: a) The Oxidation/Reduction 

of transition metal oxides. b) Redox processes of two dimensional material. The 

difference arises due to thermodynamics reasons such as valency dependent 

electrosorption of species at the electrode surfaces, where the potential is dependent 



 
 

 

on the logarithmic ratios of oxidants and reducers in redox reactions. Conway has also 

shown that to some extent, the double layer effect at the surface, would still occur even 

in an entirely pseudocapacitive behavior55. 

Since it was shown that the electrochemical performance of carbonaceous 

material may deteriorate under the effect of oxidation, which leads to an increase in 

internal resistance, the interest in these pseudocapacitive devices rose sharply56. 

Transition metal oxides are material sought for pseudocapacitors as they exhibit high 

specific capacitance and low resistance, and they provide specific energy values higher 

than carbon. While ruthenium oxides with excellent theoretical capacitance (700 F.g-1) 

were chiefly researched during the infancy of the technology, their commercialization 

was limited by their cost57. On the other hand, manganese dioxide is a cheap, abundant, 

environmentally benign, and can be easily deposited on a carbonaceous material. The 

deposition of the manganese is also desirable since hydrating it into an amorphous state 

greatly reduces its conductivity58. 

It was reported that graphene oxide – MnO2 nano-composites exhibited a 

specific capacitance of 210 F.g-1 59. This could be explained by the pseudocapacitive 

behavior of MnO2 adjunct to EDLC phenomena exhibited by graphene oxide. MnO2 

enjoys a large specific energy, is environmentally benign and unlike other transition 

metal oxides considered for capacitor work, MnO2 is rather inexpensive60. 



 
 

 

 Polymers are rendered conductive through a conjugated bond system along the 

polymer’s backbone, which makes them suitable as material for Pseudocapacitor 

electrodes. When compared with carbon based electrodes, polymers exhibit a lower 

equivalent series resistance (ESR) and are relatively cheaper61. The energy storage in 

polymers is not electrostatic but results from the insertion and deinsertion of counter 

ions from the electrolyte15. N-doped polymers on one electrode and p-doped ones on 

the other seem to be the most promising system in terms of specific power. However, n-

doped polymers are rare and expensive, and the mechanical stress on the electrodes 

during charge and discharge greatly reduces the cyclability of the cell14. Thiophene-

based polymer materials, such as poly(dithien-thiophene) (pDTT1) and poly(3-p-

fluorophenylthiophene) (pFPT), are commonly used p-doped polymers, which provide a 

noticeable improvement to the cell’s working potential. Arbizzani15 showed that the 

capacitance obtained from n-doped polymers is inferior to those possible from p-doped 

polymers, however the design of the cell (combining p-doped electrode with an n-doped 

one) seem to yield a greatly improved result for both capacitance and impedance.  

While conductive polymers hold great promise for supercapacitor electrodes, 

they are not free of drawbacks: As polymers undergo redox reactions to store charge in 

the bulk of the material, the charge/discharge rate of the cells slows down considerably 

as compared with a standard EDLC, due to the slow rate of ionic diffusion within the 

bulk of the electrode. This in turn translates into a reduced power capability: On 

average, a conductive polymer based supercapacitor (polyaniline for example) can 



 
 

 

attain only 2 Kw/Kg, which is a great reduction from a carbon-carbon capacitor which 

boasts about 4 to 5 Kw/Kg. It is worth noting that is drawback in specific power is 

balanced by an impressive improvement to energy density (about 10 wh/Kg) when 

compared with average energy density of an ELDC (3 – 5 wh/Kg)62. 

2.3 – Hybrid Supercapacitors 

Since EDLCs have in general lower energy densities than batteries, there is 

growing need for devices that possess hybrid characteristic of batteries and EDLC. To 

achieve the goal of a high energy density capacitor, research has been focused on 

devices that use both faradaic and non-faradaic processes to store charges, which allow 

them to achieve higher power densities than the carbon-carbon capacitor without being 

hindered by the low cycle life of pseudocapacitors. Hybrids (Figure 10) also circumvent 

the problem of gas evolution problem which limits the operating voltage window in the 

EDLC. While this type of capacitor is relatively new, its theoretical characteristics places 

it high on the list of desirable energy storage device (see figure 9). 

 

 

 

 

 

Figure 9- A ragone plot of specific power vs specific energy, showing the highly desirable 
range for Hybrid capacitors63. 



 
 

 

Asymmetric supercapacitors are hybrids that couple a carbonaceous electrode 

with a pseudo-capacitive electrode which acts as positive electrode such a NiOOH or 

Li4Ti5O12. It is worth noting that while this design delivers a better energy density and 

cyclability than polymer pseudocapacitors , it still lags behind EDLCs in stability and cycle 

life14. 

 

Figure 10- A basic schematic of a Hybrid Supercapacitor: Carbonaceous material on the 
cathode storing charge electrostatically, and faradic charge storage on the anodic side64. 

 

Battery-like hybrid supercapacitors are also undergoing active research in recent 

years. As their name suggests, they couple dissimilar electrodes in hopes of gaining the 

high energy density from the battery electrode and higher power density from the 

carbonaceous one. Data about these devices is still lacking as research is progressing 

slower on this front than the other type of capacitors. The most widely researched 

hybrid is the lithium ion capacitor with electrodes made of activated carbons or graphite 

is coupled with high rate electrodes such as Li4Ti5O12. It is the marriage of a lithium ion 

battery on the negative side and an EDLC on the positive electrode. The reactions taking 

place in such a system are unique: Li+ cations are intercalated and de-intercalated on 



 
 

 

the anode with an SOC less than 50% whilst the usual adsorption and dis-adsorption of 

anions happen at the positive electrode, allowing for both a higher voltage and higher 

specific energy65. This system is not without draw backs: The high voltage window 

causes some metal deposition which in turn increases the impedance at the 

electrode/electrolyte interface with each cycle. The future of hybrid capacitors would 

require addressing these interfacial issues. One method under investigation employs 

Li4Ti5O12, which operates in a voltage window out of the range where electrolyte 

decomposition may occur. As a nano sized redox material for hybrids, Li4Ti5O12 promises 

a theoretical capacity four times larger than those provided by EDLC, and shows very 

little sign of degradation or gas evolution. Work is being done to couple Li4Ti5O12 and 

carbon nano fibers, which is exhibiting high power and high energy densities. Results on 

this front are yet too preliminary. 

Finally, composite hybrids are certainly the most popular, and stable of hybrid 

supercapacitors: Two identical electrodes made by integrating a transition metal oxide 

(TMO) into carbonaceous material. These capacitors manage to circumvent most 

deficiencies in pseudocapacitors, and enjoy the long cycle life associated with EDLCs (106 

cycles). Several systems have been tried and reported such as carbon nanotubes and 

polypyrrole, graphene and MnO2, graphene and Mn3O4 and so on. Recently one such 

system has been gaining in popularity which is a composite of NI (OH) 2/multiwalled 

carbon nanotube with adequate capacitance and superb cyclability. In such system, the 

activated carbon (AC) electrode stores charge through surface localized non faradaic ion 



 
 

 

adsorption/desorption, while the other electrode utilizes the reversible redox reaction 

of a transition metal oxide or a lithium intercalated compound. The immediate benefits 

of such a system result from the high working voltage of the battery-like electrode 

which of course leads to an increase in the energy density of the overall cell66. 

2.4 – Electrolytes for supercapacitors 

 Currently electrolytes used in supercapacitors are either aqueous, organics, or 

ionic liquids (liquid salts). Typically these salts are dissolved in one or more solvents, 

before being suited to the type of electrodes employed in the design of the cell. Several 

criteria are demanded of electrolytes for supercapacitors: Electrochemical stability over 

a wide voltage window, and a good degree of dissociation of the selected salt into free 

ions, which would lead to good ionic conductivity. The latter is crucial in maximizing 

specific power of the cell which is given by the following: 

                                          
  

       
                              (4) 

Where P is the power in w/Kg V is the maximum stability voltage of the supercapacitor, 

m is the weight of the supercapacitor, and the equivalent series resistance (ESR) is the 

sum of all resistances of the cell from ionic resistance in the electrolyte, to interface 

resistance between the electrodes and the electrolyte as well as the electronic 

resistance of the electrodes themselves. Solvents used must also enjoy an 

electrochemically stable cycle life and show good ability to solvate the salt ions67. 



 
 

 

 Generally, alkali and acidic electrolytes such as potassium hydroxide (KOH) and 

sulfuric acid (H2SO4) enjoy good conductivity but are hindered by the narrow voltage 

window (around 1.23v) due to the dissociation of water molecules. Some work has been 

done to widen this operating window through the optimization of the carbon material 

used as electrodes68, 69; however this hindrance is pushing research towards organic 

electrolytes which enjoy a wider operating window, despite the fact that neutral 

aqueous electrolytes showed promise in extending the voltage of window of 

supercapacitor cells. 

Ionic liquids are molten salts that have been gaining momentum as candidates 

for supercapacitor electrolyte. They consist of ions and their combinations and are 

solvent free. For these salts to be useful in supercapacitor application, they must have a 

low melting point so that they can remain in a liquid phase at room temperature. In the 

1990s new ionic liquids were described, based on 1-ethyl-3-methylimidazolium cation 

and tetrafluoroborate anion, resistant to moisture traces, and hold great promise as 

electrolyte for supercapacitors. Other examples are tetralkylammonium, or pyridinium, 

but the use of those salts have been hindered by their low conductivity. Ionic liquids 

enjoy a rather wide operating voltage window (between 3 and 4 volts) which makes 

them ideal for improving the energy density of the supercapacitor, however further 

research is needed on ionic liquid to optimize their use70. 



 
 

 

Commercial supercapacitors often use organic electrolytes. These are salts 

dissolved in an organic solvent which in turn provides a wider operating voltage (2.5 to 

2.7v) which provides higher specific energy for the supercapacitor cell. The stability of 

this operating voltage is strongly dependent on the nature of the electrolyte and the 

residual water content in the electrolyte. Therefore in industry, several purification 

methods as well as dry electrode coating processes are employed to ensure the stability 

of this electrochemical window. Propylene carbonate (PC) and acetonitrile (AN) are the 

most commonly used solvents in supercapacitors, and both present advantages and 

come with their own sets of drawbacks as well: The high viscosity of Propylene 

carbonate makes the supercapacitor cell a lot more sensitive to temperature variation, 

whilst acetonitrile containing salt may precipitate during cell ageing, due to reaction 

with electrodes on long exposure71, 72. 



 
 

 

Chapter 3 

Fabrication and Characterization Methods of 
Supercapacitor Electrodes 

Graphene is a unique two dimensional material with excellent qualities in the 

several physical domains such as optical electrical and mechanical. Its use in electronics 

and sensors and various other applications was also driven by its low cost, and relatively 

effortless method of synthesis. Among the various methods of synthesis, Hummers’ 

method proved to be the most effective in terms of safety and satisfactory outcome 73, 

though other methods have been used to produce exfoliated graphite, such as 

microwave assisted exfoliation74, chemical reduction of graphene oxide or simple micro-

mechanical exfoliation75. The exfoliation process may expand graphite to near a 

hundred times along its C-axis. The expanded graphite flakes are flexible, conductive, 

heat resistant, and enjoy a large surface area, and extreme sorption capacity76, 77. Care 

must be taken when rapidly expanding graphite as oxygen group tend to form chemical 

bonds at the edge and in between the layers, in particular, at the defect sites, and 

further reduction of the formed expanded graphite would be required. In our study, we 

subject graphite flakes (obtained from Sigma-Aldrich) which were presoaked in sulfuric 

acid, to a thermal shock, by introducing them to a preheated box oven set at 1100⁰ C. 

The flakes expanded along their c-axis as expected and had a fluffy serpentine shape. 

Based on previous work done on this exfoliation process, we expected our sample to 

have larger surface area, with pores varying in diameter (190 to 320 µm)78. 



 
 

 

3.1 Fabrication of Supercapacitor Electrode Materials 

a) Exfoliated graphite: 

0.1 g of as prepared Exfoliated Graphite (EG) was soaked in 30 ml of N-Methyl-2-

Pyrrolidone (NMP) solvent (purchased from Alpha Aesar) and placed in a sonication 

bath for 24 hours: The serpentine EG lost its fluffiness at first and formed black 

agglomerations at the bottom of the beaker, then dispersed to form a homogenous 

black solution of graphite/NMP. While undergoing vigorous stirring with a magnetic 

bar, 100 ml of 1 molar potassium hydroxide (KOH) (obtained from Alfa Aesar) 

solution was added drops wise to our EG/NMP solution. The solution was allowed to 

stir for half an hour before being refluxed at 100⁰C for 48 hours. The sample was 

dried, and the agglomerate of EG and KOH was annealed under Argon/Hydrogen 

environment for two hours at 600⁰C, in order to activate the carbon by creating 

pores on the surface. This activated carbon mixture was then washed thoroughly to 

bring the PH down to neutral and filtered. The resulting activated carbon was dried 

on a hotplate in air at 70 ⁰C then collected. By adding 20 ml of solvent (NMP), a 

slurry of ink-like consistency was formed to coat our electrodes: Pre-cleaned nickel 

foam substrates were then dipped in the EG-NMP solution for a few minutes to 

allow the material to enter the pores of the foam. The electrodes were dried using a 

heat-gun to evaporate the NMP. As formed electrodes were then weighed to 

determine the amount of EG loaded in each, and then used in a three electrode 

system to determine their electrochemical properties. 



 
 

 

b) Exfoliated graphite/MnO2 nano-composite: 

0.13 g of Potassium Permanganate (KMnO4) powder (Purchased from Alfa Aesar) 

was added to a beaker containing 20 ml of deionized water. After stirring for about 

an hour at room temperature to ensure proper dissolution, 0.1 grams of the 

activated EG were slowly added to the beaker and allowed to stir until proper 

wetting of the graphite was achieved. The beaker was then placed in a sonication 

bath for 48 hours at room temperature. The shear forces that give birth to voids in 

the liquid due to fluctuations in the pressure, serve in further exfoliating the EG and 

allow the good soaking of carbon in the potassium permanganate solution. While 

undergoing vigorous stirring in an ice bath, hydrogen peroxide (H2O2) (Sigma Aldrich) 

was introduced drop wise into the solution. The color changed from violet to deep 

brown and then to dark black signifying an oxidation of the previously reduced 

potassium permanganate to final product, the  nano-sized MnO2. The sample was 

allowed to stir for 30 minutes to return to room temperature, then washed with 

plenty of distilled water and filtered. After drying at 70 ⁰C overnight, the formed 

filtrate was characterized via X-ray Diffraction and SEM. A paste was prepared by 

ball milling the filtrate in presence of NMP for 15 minutes. Electrodes were prepared 

for electrochemical testing as described above. 

c) Exfoliated graphite/MnO2/Carbon nano-fiber composite: 

The desire to combine the double layered effect of the EG-CNF mixture with the 

pseudo-capacitance of MnO2 drove to test the combined effect of the mixture: 



 
 

 

Equal amounts of activated EG and CNF were dispersed in NMP under sonication for 

two days. The liquid was homogenous and well dispersed. We added an equal part 

of KMnO4 dissolved in deionized water to the beaker whilst undergoing rigorous 

stirring. After ten minutes of mixing, the KMnO4 start to reduce in presence of NMP 

to form Mn3O4 with its distinctive brown color. We then drop wise introduce 

hydrogen peroxide to the mixture to further reduce the previously formed 

manganese (II, III) oxide into MnO2 phases. The formed black mixture was washed 

with copious amounts of deionized water and dried overnight. The dried filtrate was 

characterized via x-ray diffraction and scanning electron microscopy. Slurry was then 

made by ball-milling the filtrate in presence of NMP. Electrodes were made for 

electrochemical testing. 

Electrodes were made by coating pieces of Nickel foam with the respective slurries, 

Nickel foam was chosen because of its good conductivity, large number of pores and 

high surface area. Pre-cleaned pieces of nickel foam were weighed before being dipped 

in the various solutions prepared above. After drying, the now coated nickel pieces were 

weighed again to determine the loaded mass of active material. 

 

3.2 Characterization of Supercapacitor Electrode Materials 

3.2-1 X-ray diffraction 



 
 

 

X-ray diffraction measurements were conducted using Rigaku MiniFlex 

diffractometer (Figure 10) (λ = 1.54 Å) with Cu-Kα radiation operated at 40 kV and 15 

mA.  

 

Figure 11: Rigaku XRD 

When an x-ray beam diffracts off a crystal as shown in Figure 12, angles and 

intensities of the diffracted beams are commonly used to identify atomic and molecular 

structure of the crystal. This is possible because the wavelength of x-ray is comparable 

to the interatomic spacing of materials. Following Bragg’s law, the position and the 

intensity of the diffracted x-ray beam can inform us on the size and geometry of the unit 

cell. 

 

 
 
 
 
 
Figure 12- Classical schematic of reflection of a beam of light from a 
reflexive surface79. 

 



 
 

 

An X-ray crystallographer would employ Miller indices to label different 

reflection off the planes forming the crystal lattice. The inter layer spacing of the 

reflected beam correspond to the angle of diffraction according to the Bragg's law: 

                            (5) 

Where θ is the diffraction angle, λ is the wavelength of the x-rays and n is the order of 

diffraction79. 

The crystallite size D may also be determined by using the Scherrer’s equation:  

     ( )                        (6) 

Where, β is the full-width-at-half-maximum (FWHM) of the XRD peak and K is the 

dimensionless Scherrer constant, which is heavily dependent on the size and shape of 

the crystal, but normally taken to be (0.9). Typically a θ - 2θ scan is performed in such a 

way that an incident wave is reflected at an angle 2θ after being incident at an angle θ. 

3.2.2-Scanning Electron Microscopy 

Scanning Electron Microscopy (SEM) images were obtained using JSM-6510-LV-

LGS SEM operating at 25~30 KV.  

A focused electron beam is used during Scanning Electron Microscopy to scan a 

sample specimen. This irradiation of the sample’s surface by this focused electron beam 



 
 

 

helps in creating images helpful in studying the morphology of the sample. Quality of 

the images produced is greatly dependent on the conductivity of the material which is 

why a gold coating is applied to the surface of the sample prior to irradiation. Some of 

the probing focused electrons will penetrate the sample to a certain depth resulting in a 

collision with a surface atom and four characteristic scattered beams are produced and 

are shown in Figure 15: 

Secondary electrons: Used to deduce high resolution topographic information 

about the surface scanned. These secondary electrons have low energy (a few eV) they 

result from the interaction of the primary beam with the surface of the sample. 

Charging effect which is displayed by distorted white flashes in the image produced is 

normally due to the charging of the non-conducting material in the sample. 

Backscattered electrons: Primary beam electrons scatter off the surface and are 

re-emitted with little loss in energy. The main function of these backscattered electrons 

is to modulate the contrast of the images formed. Detection happens along large area 

semi conducting diodes. 

X-rays are also generated during SEM which is characteristic of the sample being 

studied. These photons are generated due to electronic transition created by the 

vacancies in atoms being irradiated by the electrons beam. The rays are used to 

characterize of the specimen being studied. 



 
 

 

Scanning Electron Microscopes have been produced commercially since 1965 

and have evolved much though the years, increasing magnification and reducing energy 

requirements. Figure 13 below shows a very basic schematic of a scanning electron 

microscope. Its use has spread into every branch of science such as polymer studies as 

well as ceramics and metals. SEM imaging of semiconductors is wide spread, and 

considered now to be standard characterization tool for most nanomaterial. 

 

Figure 13- a) A spectrum of backscattered electron beams generated during SEM79. b) 
Schematic of a Scanning Electron Microscope80. 

 

For supercapacitors, SEM provides information about surface morphology  and 

particle size of electrode material as well as separator membrane porosity. Usually 

images are obtained before and after chemical activation of material to study the effect 

a 

b 



 
 

 

on the phase and morphology of the sample. More importantly, during the study of 

Pseudocapacitors, SEM would be used to study the transition metal oxide particles’ 

location in correspondence to the carbonaceous material. 

3.3-Electrochemical Measurements 

A Gamry potentiostat operating with a Gamry 1800 software was used to 

perform electrochemical measurements on our prepared electrodes in a three electrode 

cell (see Figure 14 below), using an aqueous electrolyte of a 1 molar sodium sulfate 

Na2SO4. The electrolyte contains Na+ and SO4
2- ions, that may adsorbed on electrode 

surface and also provide ionic conductivity within the separator medium.   

 

 

Figure 14- Three electrodes set up for testing supercapacitor material: A 
platinum mesh electrode as a counter electrode a working electrode in the 
middle to hold the sample and a Calomel reference electrode on the right. 

 



 
 

 

The MnO2 may also go under reduction process to form MnOOH and Mn(OH)2 specious 

on the surface of the MnO2 particels. 

  MnO2 + H+ +e- MnOOH and  MnOOH + H+ + e-  Mn(OH)2 

the intercalation of the H+ protons or the Na+ cations in the bulk of the material upon 

reduction81. 

The three electrodes cell setup was chosen because it allows for electrochemical 

tests to be conducted rapidly while providing useful information about reaction kinetics, 

and the energetic of the various redox couples on the electrode surface. 

 

3.3.1 Impedance Spectroscopy 

In later half of the nineteenth century O. Heaviside's mathematical 

transformations laid the ground for electrical engineering as we know it today, and 

defined impedance as  

 ( )  
 ( )

 ( )
  (7) 

where S is the Laplace frequency82. 

Impedance spectroscopy is a widely used technique to investigate 

electrochemical systems. The advantage of EIS is that it is generally non-destructive to 

the investigated system. Heaviside realized that his transformations into the Laplace 

space are only valid for a non-perturbed system. This of course comes from the desire to 



 
 

 

describe the analyzed system with linear differential equations. This enables the 

possibility for further electrochemical measurements and post-mortem investigations. 

EIS is the most common method for measuring the equivalent series resistance (ESR) of 

ECs. It also allows creating models to describe underlying reaction mechanisms. With 

these models capacitor non-idealities also can be investigated: 

Generally, a sinusoidal AC excitation signal is applied to the investigated system 

during an EIS experiment and the AC response is measured. The frequency of the input 

signal is varied during the measurement. Finally, the impedance Z of the system is 

calculated. 

 

The modern form of the impedance function:  

 ( )  
 

 
 
 

–
  

 
 
 

                                  (8) 

was introduced by Emil Warburg in a now famous paper published in 1889. Where Z (ω) 

is the Warburg impedance, ω is the radial frequency and σ is the Warburg coefficient 

defined as 
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in which D0 is the diffusion coefficient of the oxidant, DR is the diffusion coefficient of 

the reductant, A is the surface area of the electrode, F is the Faraday constant,n the 

 



 
 

 

number of electrons involved and C*⁰ is the bulk concentration of the oxidant, C*R is the 

concentration of the reductant. 

When an electron is transferred through the diffusion layer of an electrified 

surface, non-faradaic components to the current generated result from charging of the 

double layer capacitor (Cdl). This flow of current through the faradaic reaction is 

modeled by the following: 

Oxidant + ne-  Reductant              (10) 

An electrochemical technique capable of providing equivalent circuit 

components of an electrochemical cell. For the case of a supercapacitor, a typical 

impedance spectroscopy can be modeled by the equivalent circuit (Fig. 15) 

 

Figure 15-Equivalent Circuit Diagram of an electrochemical capacitor83, 84. 

 

where n is the number of electrons that need to overcome the polarization resistance 

(Rct) as well as the electrolyte resistance (Rs). The semi-circle resulting from a typical EIS 

has a radius of Rct/2 with a high frequency intercept of Rs and a low frequency intercept 

of Rs + Rct. (Fig. 16) Here Rs is the electrolyte resistance, Rct is the charge transfer 

resistance, and Cdl is the double layer capacitor. The maximum on the semi circle 



 
 

 

represent the time constant (RC) for the system. The Nyquist plot of impedance 

provides information about the equivalent resistance of a supercapacitor as well as a 

good model for its ionic transfer. A sample Nyquist plot is shown in Figure 16 below: 

 

Figure 16-Nyquist plot of the galvanostatic Impedance of a few electrodes85. 

 

The Warburg “tail” is a good indicator of the diffusion of ionic species, for an 

ideal EDLC behavior, the tail is nearly vertical, due to the fast response and  a good 

stacking of the ions on the carbon pores in the Helmholtz layer and a relatively smaller 

diffusion layer. Figure 16 above shows a Nyquist tail sloped at 45⁰ which is traditionally 

linked with battery faradaic behavior, where faradaic reactions are used to transfer 

charge into the electrode. 

 

 



 
 

 

3.3.2 Cyclic Voltammetry 

The Gibbs and Nernst equations are used to predict the potential for an 

electrochemical cell.       

G = -nFEcell  (11) 

Where G is the Gibbs free energy of the chemical reaction, n is number electron 

exchange in the reaction, and F is the Faraday’s constant, and Ecell  is the theoretical cell 

potential. The cell potential is also depends on the concentration of reactants and 

products according to the Nernst equation:  

             
  – (
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)                      (12) 

However, the practical cell voltage is less than the predicted value by the above 

equations, due to various voltage losses, including activation, ohmic and concentration 

over-potentials. Cyclic voltammetry (CV) is one of the most reliable and sensitive 

methods for studying electrochemical reactions. The CV measures the current response 

of an electrode as a function of applied voltage. The importance of this technique lies in 

its ability to provide reaction potential, and adsorption processes at the 

electrode/electrolyte interface. In cyclic voltammetry, the potential of the working 

electrode is ramped linearly using a triangular potential scan against a reference 



 
 

 

electrode which is maintained at constant potential. Figure 17 shows the triangular 

voltage sweep versus time commonly used in cyclic voltammetry measurements. 

 

Figure 17: Schematic of triangular voltage scan vs. time used in cyclic voltammetry86. 

             The excitation signal above, which is the controlling potential applied between 

the working electrode and the reference electrode, reaction potential where oxidation-

reduction reaction happens in the cell. The upper and lower voltage limits are selected 

to include the redox reaction potential under study. The sweep rate is given by the 

slope: 
 

 
  .  

                The redox reaction at the electrode produces current that will be monitored 

during the voltage sweep. The cyclic voltammogram typically displays the current on the 

vertical axis and the potential on the horizontal one. An ideal capacitor with no 

impedance, would display a rectangular voltammogram, as shown in figure 18. 



 
 

 

 

Figure 18- Theoretical CV curve of an ideal 3 Farad EDLC84. 

 

however there is  often presence of redox reactions near the electrode surface which 

may produce oxidation and reduction peaks 51.  The formation of concentration gradient 

in the ionic diffuse layer near the electrode also produce changes in the ideal 

rectangular shape of the voltammograms, as shown in Figure 19.    

 

Figure 19-A voltammogram of an activated Graphene electrode where a forward scan 
was initiated at 0 volts51. 

The anodic current will oxidize the material and the cathodic current 

corresponds to a reduction process. The peak observed around 3.5v corresponds to 

oxidation of carbon surface groups and possibly the beginning of electrolyte 



 
 

 

decomposition. This process will continue until such time as the anions concentration is 

diminished enough to cause a dip in the current at which point the scan is reversed. 

Charging or discharging the capacitor at higher sweep rates would demonstrate 

its behavior at higher power demand. A supercapacitor, with good cyclability provides 

mirror image charge and discharge curves in a CV plot. 



 
 

 

Chapter 4 

The exfoliated graphite/carbon Nano-fiber/MnO2 
nannocomposite supercapacitor electrode material. 

4.1 Structural characterization 

4.1.1  X-ray Diffraction Measurements 

The XRD patterns of various samples and their components showed great 

agreement with the reported literature. Figure 20 below presents the diffraction 

patterns for pristine Graphite. The strong (002) peak around 26.5⁰ and 75⁰ which is a 

characteristic peak of carbon.  

 

 

 

 

 

 

 

Figure 20- XRD of Graphite soaked in concentrated acid showing characteristic peaks at 
26.5, 26.7 and 54.2 degrees, indicating various stages of graphite intercalation with acid. 

 



 
 

 

The inter layer distance between the graphene planes are reported in 

literature87 indicated that the interlayer spacing  was about 0.314 nm. The diffracted 

beams at lower 2- correspond the expanded interlayer distance of graphene due to 

intercalation of acid between some of the graphene planes. However, most part of the 

graphite structure has remained unperturbed with no intercalation. The multiplicity of 

the XRD peaks around 26.7 have been resulted due to the formation of various stages 

on acid intercalation, providing different inter-layer graphene distances. 

Figure 21 shows the X-ray diffraction pattern of exfoliated Graphite. The 

persistent presence of the (002)  at 26.7⁰ and (004) at 54.2⁰  peaks in the EG sample is 

an indication that the intercalated acids between the graphene planes are removed due 

to the heat treatment, and the pure graphitic part contribute mostly to the diffracted  

 

 

 

 

 

 

Figure 21- XRD of Exfoliated Graphite. There is not shift in the peaks at 26.5⁰ or at 54.2⁰. 



 
 

 

beam. The interconnected Graphitic sheets still exist. The full width at half maximums 

(FWHM) at 26.5⁰ increased after thermal shock treatment indicating a reduction in the 

particle size, and disorder in stacking of graphene sheets. The fact that we observe 

single (002) peak with no peak between the Graphite and the Exfoliated graphite, 

despite the reduction in size of the crystallites, which could be an indication of complete 

removal of the intercalated acids88. 

To contrast, Figure 22 below presents the diffraction pattern of the cone-stack 

carbon nano fiber.  

 

 

 

 

 

Figure 22- Xrd patterns of CNF, showing the characteristic peaks of Carbon. 

The characteristic carbon peaks at 26.2⁰ (002), 44.5⁰(101) and 53.4⁰(004) are 

present in both sample and match precisely with those reported by Fujimoto88 and 

Zhou89. There is broadening of the (002) peak which may be due to disorder and strain 



 
 

 

on the lattice site, and a reduced size of the particles. The Scherrer equation is used for 

particle size reduction: 

   
  

     
  (12) 

D being the means size of the ordered crystalline domain, β is the broadening at half the 

width intensity (FWHM) and θ the Bragg angle, can be used to determine the particle 

size and in the case of CNF we obtain 2.3 nm at (002). 

These Carbon peaks were also observed in the other sample containing 

Manganese Dioxide (MnO2) as shown in Figure 23 below. We notice that our synthesis 

method have reduced the KMnO4 into two different phases of MnO2: α-MnO2 crystals 

with peaks at: 28.9⁰(311), 36.6⁰(400) and at 42⁰(301) and Ramsdellite MnO2 with peaks 

at: 43.8⁰(401), 65.1⁰(020) and 69.5⁰(303). 

 

 

 

 

 

 

 

Figure 23- A scaled view of the X-ray diffraction pattern of EG-Manganese Oxide 
composites. The peak positions corresponding to MnO2 are in agreement with those 
reported in literature. The intense graphite (002) line is shown around 26.7 ⁰. 



 
 

 

The same varying phases of MnO2 could also be observed in the EG-CNF-MnO2 

composite as shown in Figure 24 below.  

 

 

 

 

 

 

Figure 24-XRD patterns of EG-CNF-MnO2 composite. 

 

The Carbon peaks are present and so are the (311), (301) and (411) peaks 

corresponding to Alpha MnO2 in addition to those peaks characteristic of Ramsdellite 

MnO2 such as (401), (020) and (313). The main observable difference that the addition 

of CNF to the Exfoliated Graphite sample containing MnO2 is a sharpening of the peaks 

which may indicate lessening of the strain on the crystalline structure and a further 

increase in the particle size. 

 

 



 
 

 

4.1.2 Scanning Electron Microscopy (SEM) 

SEM images of the various samples are presented below: 

The Graphitic flakes of different sizes extending over 10 microns in x and y axis, 

and with many layers of stacked graphene sheets along their C axis. It is along this axis 

that we see the expansion upon exfoliation through thermal shock, as shown in Figure 

25. The expansion of the graphite appears to have reduced the number of the stacked 

graphene layers and increased their interlayer spacing. The size of the graphite sheets as 

apparent from the images seems to be on the order of 300 nanometer. 

Figure 25- a) Worm-Like Exfoliated Graphite. b) SEM image of Exfoliated Graphite. 

In addition to further increasing the surface area of the electrode, we have 

added carbon fiber to the exfoliated graphite. Figure 28 shows the morphology and 

aspect ratio of the carbon Nano-Fiber (26 a) and the composite of Carbon Nano-Fiber 

and the expanded graphite (26 b), as a suitable substrate for the Pseudocapacitor. The 



 
 

 

dispersion of the carbon fibers on the graphite flakes as well as in the pores created 

during activation might be an indication of good capacitive behavior though the double 

layer effect. 

 

Figure 26- a) SEM image of cone stack Carbon Nano-fiber. b) SEM image of a mixture of 
Exfoliated Graphite and Cone Stack Carbon Nano-fiber. 

 

In order to enhance the overall capacity of our Supercapacitor, we have 

deposited nano sized Manganese dioxide (MnO2) on the exfoliated graphite. Figure 27 

shows the morphology and uniform distribution of MnO2 particles on exfoliated 

graphite. The Manganese oxide particle sizes are between 60 and 100 nm. This disparity 

may be attributed to the varying phases of MnO2 formed during synthesis. 



 
 

 

 

Figure 27- a) SEM image of exfoliated graphite. b) SEM image of a mixture of exfoliate 
graphite and manganese dioxide. 

 

In the final stage, we made composite containing Exfoliated Graphite (EG) – 

Carbon Nano-Fiber (CNF) containing Manganese dioxide (MnO2) nano particles. Figure 

28 a, shows the SEM images of the Exfoliated Graphite (EG) – Carbon Nano-Fiber (CNF) 

(28 b) and the Exfoliated Graphite – Carbon Nano-Fiber, containing Manganese dioxide 

(MnO2).   

Figure 28- a) SEM image of a mixture of exfoliated graphite, carbon Nano-fiber. b) SEM 
image of a mixture of exfoliated graphite, carbon nano-fiber and MnO2. 



 
 

 

A uniform dispersion of Carbon Nano-Fiber on Exfoliated Graphite is clearly seen 

with good connectivity. The Manganese Dioxide (MnO2) particles with varying sizes are 

present on the tubular fibers as well as on and between the Graphitic layers. This is a 

good indication of the sought after uniform dispersion of materials in the composite.  

The electrochemical performance of the samples discussed above is reported in the 

following section. 

4.2 Electrochemical performance 

 4.2.1 Electrochemical Impedance Spectroscopy (EIS) measurements 

The impedance spectrum of the exfoliated graphite impregnated into the Nickel 

foam is reported in Figure 29.  

 

 

 

 

 

 

Figure 29-Impedance Spectroscopy measurement of a 1mg electrode of exfoliated 
graphite (EG). 

 



 
 

 

A very low resistance (<10 Ohms) is observed for the combined electrolyte and 

the charge transfer resistance (the intercept of the semi-circle with the Zreal axis). A 

sharp rise in Zimaginary due to the Warburg impedance is also observed, which is 

characteristic of the diffusion of the ions in the diffuse layer next to the electrode. The 

initial intercept of the impedance plot, representing the electrolyte resistance is less 

than 1 ohm.  

Impedance spectroscopy of the Exfoliated Graphite and Carbon Nano-fiber 

composite deposited on nickel foam is shown in Figure 30.  

 

 

 

 

 

 

Figure 30- Impedance spectroscopy measurements of a 1 mg electrode of an EG-CNF 
composite. 

 



 
 

 

As shown by the intercept of the semi-circle with ZReal axis, the charge transfer 

resistance is much high in the Cone-stack Carbon Nano-fiber sample (around 60 Ώ), 

however the sharp slop of the “tail” on low frequencies indicate a good double layer 

effect in the sense that the width of the diffusion layer is small compared to the 

Helmholtz layer on the electrode/electrolyte interface. 

A marked increase in the charge transfer resistance (> 60 Ohms) is observed. This 

result indicates that carbon Nano-Fiber is less conductive than the graphene sheets. 

However, the interlacing of carbon Nano-Fiber between the layers of the Exfoliated 

Graphite provides a more open space with exposed surfaces.   

Impedance of exfoliated graphite containing MnO2 is presented in Figure 31. 

 

 

 

 

 

 

Figure 31- Impedance spectroscopy of a 1 mg electrode of an EG-MnO2 composite. 



 
 

 

The charge transfer resistance is increased as compared to the impedance of the 

pure exfoliated graphite sample.  This is expected as the MnO2 is less conductive than 

the Exfoliated Graphite. However, the shape of the impedance plot is more complex due 

to the contribution of both the exfoliated graphite and the Manganese dioxide with two 

different time constants. The sloped Warburg impedance tail is an indication of the 

charge transfer occurring in the cell during redox reactions. The impedance spectrum of 

the exfoliated graphite – carbon Nano-Fiber – MnO2 is shown in Figure 32. 

 

Figure 32- Impedance spectroscopy of a 1mg electrode of an EG-CNF-MnO2 composite. 

A complex impedance plot is observed with a small semicircle at the beginning of 

the spectrum, and a big loop almost similar to the Warburg impedance at higher 

frequencies. The charge transfer resistance calculated form the first semicircle is very 

small (<10 Ohms) indicating a fast responsive electrode desirable for high rate charging.  



 
 

 

4.2.2 Cyclic Voltammetry 

Capacitance of the various samples was obtained via cyclic voltammetry. Figure 

33 shows the cyclic voltammogram of Exfoliated Graphite. The weight of the electrode 

was 1 mg and the electrode was cycled at a scan rate of 5 and 100 mV.S-1.The total 

accumulated charges are obtained by integrating the area between the charging curve 

(positive current) and the x axis via triangulation method within the one volt range. 

 

Figure 33-a) Cyclic Voltammetry of a 1 mg exfoliated graphite electrode at 100 mV/s. b) 
CV of exfoliated graphite at various scan rates.  

The near ideal rectangular shape of the voltammogram is an indication of the 

activation of carbon and the creation of pores through reflux in KOH. At 5 mV.s-1 the 

electrode showed a capacitance of 40.1 F/g with a drop to almost half that value at the 

100 mV.s-1 scan rate. The electrode showed very little drop in capacitance even after 

1000 cycles.  



 
 

 

Figure 34- a) 1000 CV cycles between 0 and 1 volt. There is little sign of degradation in 
the shape. b) Capacity versus cycle life for an electrode containing 1 mg of EG. 

 

After an initial drop in capacitance from 60 F/g on Cycle # 10 to finally stabilizing 

at around 30 F/g after the 300th cycle, the Exfoliated Graphite electrode seem to exhibit 

stable cycling and show no further drop in capacitance. This initial high capacitance on 

initial cycling may be due to redox reaction of the surface groups of the graphite, which 

might also explain the absence of the redox peak apparent past the 10th cycle at around 

0.8 V, after the 300th cycle.   

Cyclic voltammetry of the exfoliated graphite and the MnO2 composite is shown 

in Figure 35.  



 
 

 

 

Figure 35 – a) Cyclic Voltammetry of an EG – MnO2 composite at 100 mV/s. b) CV of EG-
MnO2 composite at different scan rates. 

 

Figure 35 above shows the cyclic voltammetry of exfoliated graphite and 

Manganese dioxide (50:50% weight ratios) mixture. The specific capacitance was 

computed to be 156.9 F/g for a scan rate of 5 mV/s. The capacitance drops when the 

scan rate increases to 100 mV/s to 126.3 F/g which still competitive with most reported 

data of similar composites. The plot clearly presents a “hump” on the oxidation curve 

which corresponds to the pseudocapacitive behavior of MnO2. The symmetric nearly 

“box-shaped” curve indicates good capacitive behavior, and high surface area as seen in 

the SEM of the sample (Figure 27). Figure 36 below demonstrates the stability of the 

sample by presenting its cycles life (1000 cycles). 



 
 

 

Figure 36- a) Cyclic voltammogram of 1mg electrode of EG-MnO2 composite cycled 1000 
times at 100 mv/s. b) Cycle life and capacity retention of a 1 mg electrode of Exfoliated 
Graphite and MnO2 composite. 

 

 Figure 37 shows the CV of our novel EG-CNF-MnO2 nano-composite. 

Figure 37- a) cyclic voltammogram of a 1mg EG-CNF-MnO2 Composite, between -0.1 and 
1.0 volt. b) CV of EG-CNF-MnO2 nano-composite at different scan rates. 

 

High specific capacitance around 200 F/g is observed for this type of composite 

electrodes. Figure 37 shows capacity retention of the composite.  We have observed 



 
 

 

that during extensive cycling, the electrode response becomes more capacitive like 

losing their redox peaks resolution with slight capacity fading. However, after 1000 cycle 

the capacity fading was less than 5%. It is worth noting that in figure 41; the 

pseudocapacitive behavior becomes noticeable around 0.5 volts, and culminated in a 

redox peaks typical of MnO2 according to the equation:         

MnO2 + e-⇌MnOOH  and  MnOOH + e- ⇌ Mn(OH)2  

Two faradaic reactions typically happen during the oxidation of manganese on 

charging: near 0.43 volt, the formation of Mn(OH)2  gives rise to an oxidation peak 

during cyclic voltammetry and again 0.6 volt when MnOOH is created. Lastly, as the 

applied voltage gets close to 1 volt, MnO2 is formed on the surface of the electrode, the 

ionic species start to deplete from the electrolyte and the current starts to fade.  

 

Figure 38- a) cyclic voltammogram of a 1 mg electrode of EG-CNF-MnO2 cycled a 1000 
times. b) Cycle life of a 1 mg of an EG-CNF-MnO2 composite. 



 
 

 

The excellent capacity retention rate of the Exfoliated Graphite (EG) – Carbon 

Nano-fiber (CNF) – Manganese dioxide (MnO2) composite may be attributed to its 

microstructure and excellent dispersion as shown in figure 28b. The nanoscale size of 

MnO2 particle will reduce is the diffusion length over which the ions in the electrolyte 

must transfer for charging and discharging which would enhance the conductivity of 

MnO2 as presented in figure 32. The carbonaceous material (EG-CNF) act as excellent 

conductive channels for fast transportation of electrons to and from the surface pores. 

  



 
 

 

Chapter 5 

Conclusions and Future directions 

The physical and chemical operation of various electrodes has been briefly 

mentioned such as carbons, metal oxides and carbon Nano-fiber. It is apparent that 

supercapacitors technology may improve by adoption of new composite, particularly 

the incorporation of nano sized metal oxides into high surface area supports such as 

graphene.  The present work has shown proper selections of composite materials to 

provide high surface area, high conductivity, and high charge retention during cycling 

are crucial to further improve the capacity and cycle life of the future supercapacitors. 

For example, Fig. 39 compares the cyclic voltammogram of our exfoliated graphite based 

samples at 100 mV/s.  

 

 

 

 

 

Figure 39- A comparative plot of cyclic voltammetry performance of EG, EG-MnO2 
composite, and EG-CNF-MnO2. 



 
 

 

Activated exfoliated graphite shows the expected shape of an EDLC with less capacitive 

opening (89 F/g at 5 mv/s) than samples incorporating faradaic reactions corresponding 

to manganese dioxide (159.7 F/g at 5 mv/s for EG-MnO2 and 180 F/g for at 5 mv/s for 

EG-CNF-MnO2). Further work is need to fine tune the loading of the material on the 

electrodes, as well as optimizing the different phases of the manganese dioxide, for a 

prime performance of our composite. 

The supercapacitors are presently available with an energy density of 5–6 

Whr/kg and projections of improved performance indicate that future devices could 

have energy densities exceeding 20-50 Whr/kg. The handful of applications described in 

this survey therefore represents only a small selection of the possible uses of EDLC 

energy storage as the technology stands today. Because of the advantages of charging 

efficiency, long lifetime, fast response, and wide operating temperature range, it is 

tempting to try and apply EDLCs to any application that requires high rate energy 

storage. The only current hindrance to such application is cost. This is an obstacle to be 

circumvented by researching lower cost material for electrodes.  

 

  



 
 

 

Appendix 

Supercapacitor sizing for HEV and EV 

Since the days of the early rise of modern western civilization, global economies 

developed an addiction to fossil fuel which has become problematic in recent years: The 

rising cost of extracting crude oil and volatile geo-political situations in oil rich countries 

have given the electrification of transportation the boost it was looking for. 

The electric vehicle started in Europe in the mid-19th century but was quickly abandoned 

with the discovery of the internal combustion engine, and the availability of crude oil. In 

the seventies, political turmoil in the Middle East placed western supplies of fuel in 

jeopardy and car companies scrambled for an answer. General Motors developed their 

EV1 model in the early nineties which was powered by an 1175 lbs. lead-acid battery 

pack and seated only two people. The program was quickly scrapped, and GM 

abandoned its efforts to electrify its vehicles until the onset of the economic downturn, 

when favorable consumer response, and rising environmental concern, made the 

electric vehicle profitable again.  

Electric vehicles, despite various advancements in their technology, suffer from limited 

range. Some car companies thought to solve the issue with the introduction of Hybrid 

cars, which combines a fuel efficient internal combustion engine (ICE), with a battery 

pack and an electric drivetrain90. A hybrid power train utilizes an electric motor to 

supplement the power needs of the (ICE) and to capture energy via regenerative 

breaking. The latter is quite possibly the most remarkable advancement in vehicle 



 
 

 

electrification in recent years, even though it is not a recent discovery91: Regenerative 

Breaking (Regen) offers the possibility of recovering the energy via a DC traction motor 

to operate in generator mode, some of the vehicle’s kinetic energy which is normally 

absorbed by the brakes and turned into heat, can be reintroduced into the on-board 

energy and stored in Supercapacitor  and reintroducing it into the on-board energy 

storage bank. It is a very effective approach to improving the range and energy 

efficiency of both EVs and HEVs92, especially in an urban setting, where lots of braking is 

required such as postal fleets, inner-city buses and metro vehicles. 

Another issue hindering the electrification of transportation is the size and weight of the 

on-board energy storage system (ESS). Range requirement tightens free space on-board 

the vehicle which is largely occupied by the (ESS), which in turn is rather expensive. The 

efficiency of an EV or HEV depends on the ability of the (ESS) to deliver large amounts of 

energy quickly depending on load and grade demands. Currently, Batteries are the most 

common (ESS) on-board most EVs and HEVs. They have superb energy density and are 

capable of holding a high amount of charge. On the other hand, rapid charge/discharge 

cycles lead to reduced performance and shortened cycle life in batteries93. 

Supercapacitors enjoy high power density, the ability to rapidly store and deliver large 

bursts of energy with little degradation even after thousands of cycles, and are able to 

store a substantial amount of charge at low voltage. Its drawbacks are a limited energy 

density94. 



 
 

 

Currently, no unique ESS system is able to meet all the requirements of EVs and HEVs. It 

has been postulated that in urban driving profiles, supercapacitors are ideal to capture 

the energy recovered from Regen, due to their long cycle life, and they are also ideal for 

delivering the rapid bursts of power needed to accelerate. Batteries would still be 

needed because of their high energy density, and combining them with a supercapacitor 

leads to cost effectiveness and maximize the benefits of both systems. Various 

topologies were introduced by researchers to combined supercapacitors with batteries 

and in the following is a hypothetical Battery-Supercap combo to be introduced to a 

modern HEV vehicle: The GM Volt.  

In December 2010, GM released the Chevrolet Volt in US markets and various other 

international markets (under different names). It is a plug-in Hybrid electric vehicle with 

a lean EcoFlux 84 horse power gasoline engine and 111 Kw electric motor. On-board is 

16 KWh Lithium-ion battery pack coupled with Regen granting the Volt an all-electric 

range of over 35 miles. Figure 51 below shows the Urban Driving Profile used to test the 

performance of various automobiles: 



 
 

 

 

Figure 39- Urban driving profile used to test performance of EV and HEV vehicles. 

The high power peak demand at the initial part of acceleration and for 

overcoming the road grading requires fast energy storage and release system. We are 

proposing a combination of Supercapacitor and the advanced battery to optimize 

performance and reduce the overall weight of energy storage system. In addition, usage 

of Supercapacitor may allow a widening of the state of charge of the battery, which 

leads to reducing both size and weight of the battery pack. 



 
 

 

 

Figure 40- Repartition of the electric vehicle global power between batteries and 
supercapacitors95. 

In this work, we have studied the size of a Supercapacitor that can manage the 

storage of Regenerative Breaking energy, even when the battery is fully charged. The 

energy of Regen in a typical HEV is around 500 Wh. This energy is used to calculate the 

size of the Supercapacitor, assuming that practical energy density of the Supercapacitor 

is about 1/3 of its theoretical value. 

During this performance profile, the theoretical value for kinetic energy available 

from Regenerative Braking may be computed using the equation: 

    (
 

 
)     (13) 

A typical gross mass of an HEV (its curb-side mass plus the mass of two 

passengers) is around 2000 kg. The total Kinetic energy available from Regen was 

computed to be 2900000 Joules. Considering less than 100% efficiency, due the rolling 

frictional resistances, gravitational resistance, road grading, and aerodynamic resistance 



 
 

 

the Regen energy of 0.8 – 1.0 KWh is generated during breaking. . This is the energy 

which regenerative breaking is supposed to deliver back into the battery pack. However, 

Regenerative Braking systems suffer from several setbacks such as mechanical frictions 

and heat dissipation, limiting the efficiency of Regen to less than 60%. In turn this 

implies that the actual total kinetic energy recovered is 0.48 – 0.6 Kwh. For our 

composite material (EG-CNF-MnO2) our measured capacitance of 241 F/g means that 

each gram of material corresponds to 0.0335 Kwh where we use the following equation 

to compute the energy per gram of active material: 

    (
 

 
)     (14) 

Where C is the capacity and V the voltage. 

For the purpose of this exercise, we shall make a few assumptions: We will allot 

100 volt for the Supercapacitor pack and assume a loading of active material no bigger 

than 5 mg/cm2. 

In equation 14 above, E is the total energy capture by the Regen system (490 

Wh) which will be used to compute the total weight of active material needed in the 

Supercapacitor pack. In practice, this theoretical value is assumed to be 1/3 of the actual 

energy needing for capacitor sizing, which brings the value of E from the Supercapacitor 

closer to 1470 Wh.  



 
 

 

We clocked our EG-CNF-MnO2 composite at about 200 Farad per gram or 0.066 

Ah per gram for a 1 volt operating voltage. We can now compute the amount of active 

material needed inside the Supercapacitor bank to capture 1470 Wh of energy: 22.28 Kg 

for the weight of capacitor bank. This is the practical weight needed to capture the 

Regen energy. The theoretical value is of course limited to 7.3 Kg. 

In other word, we need to distribute 7.3 Kg of active material on supercapacitor 

cells connected in series and parallel, each operating under one voltage to obtain the 

required capacitance and bring the total voltage of the pack to 100 volts. 

Considering that current on board energy storage packs, are limited to about 50 

% state of charge for various safety and practical operating conditions, designating a 

Supercapacitor pack made of our EG-CNF-MnO2 composite as power assist and 

regenerative breaking energy capture device, would improve the efficiency of the 

battery pack by over 20% by allowing a widening of the state of charge. This widening of 

battery SOC from 50% to 70% will justify the excess weight of supercapacitor, in 

addition to the overall improvement in vehicle performance. 
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 With the rapid development of electric-based transportation and introduction of 

various hybrids, plug-in and full electric vehicles, there is an urgent need to develop a 

high power energy storage system to complement the high energy density batteries, to 

extend the range and life of HEVs and EVs. In this work, we have developed and 

optimized a unique composite material that can serve as electrode materials for high 

power supercapacitor for various applications. The material is prepared form high 

surface area graphene–like carbon made from exfoliated graphite flakes through 

thermal shock process. The expanded graphite then is mixed with functionalized stacked 

cone carbon nano-fiber. The mixture was impregnated with nano size manganese oxide, 

MnO2, to further enhance the energy storage density and the high rate capability of the 

composite material. The formulation of our composite mixture contains, [(graphene) – 



 
 

 

(carbon nano-fiber), (MnO2)]. The optimized composite mixture was impregnated into 

metal foam that served as a current collector in an electrochemical cell.  

The X-ray diffraction of the composite has shown formation mixed phases of 

MnO2, and SEM results indicate uniform deposition of oxide on graphene-like carbon 

and on carbon nano-fibers. The electrochemical performance of the composite was 

tested for its energy storage capacity (F/g) and for its high rate capability using cyclic 

voltammetry. The stability of the composite was also tested during multiple charge-

discharge cycles. The composite electrode provides very good charge storage capacity (~ 

200 F/g), with high charge-discharge cycling stability over 1000 deep cycles.  Further 

optimization and scale – up of the composite material is in progress.  
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