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Chapter 1: Energy transfer in multimetallic lanthanides  

 Multimetallic lanthanides are widely studied for their importance in contrast agents,
1
 

single molecule magnets,
2
 as catalysts for specific cleavage of RNA,

3
 and in luminescence 

imaging.
4
 In luminescence imaging, several examples of multimetallic lanthanides have been 

shown to be useful in display devices,
5
 telecom applications

6
,
 
and in imaging cells. In the last 

decade, there has been increased interest in the use of lanthanide probes for imaging cells 

because lanthanides exhibit long luminescence lifetimes that are on the order of milliseconds 

because their emissions are Laporte forbidden, in comparison to organic fluorophores that have 

emission lifetimes on the order of nanoseconds. Lanthanides show sharp emission bands which 

are narrow and do not overlap, in comparison with that of the broad emission bands of the 

organic fluorophores.
7
 Thus, due to the advantages of lanthanide probes over organic fluorescent 

probes, lanthanide probes are used for the detection of several important biological species such 

as peptides, proteins, and DNA.
8
 Based on the unique luminescence properties of lanthanides, 

energy transfer studies involving these rare earth metals have been  attempted during the past few 

decades. 

Lanthanide–lanthanide energy transfer has been studied in the solid state,
9
 concentrated 

solutions,
10

 and discrete homo- and hetero-bimetallic systems
11

 for use in biological assays and 

display devices. Among the lanthanides, Eu
3+

 and Tb
3+

 are the most commonly used lanthanides 

for the study of energy transfer due to the long mean lifetimes of their excited states. Lanthanides 

such as Eu
3+

 and Tb
3+

 often are sensitized via chromophores connected to a ligand by an energy 

transfer process that involves the triplet state of the chromophore and an excited state of the 

lanthanide ion.
12

 Although, numerous complexes have been reported involving the energy 
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transfer to a monometallic lanthanide complex from an antenna,
13 

energy transfers occurring in 

discrete multimetallic complexes containing lanthanides have been few (Figure 1.1).
14–17

   

 

Figure 1.1 Chemical structures of reported complexes that show energy transfer using-ligand 

sensitzed excitation.
14–17

 S stands for co-ordinated solvent molecules or anions. 

  

 The reported complexes include Eu
3+

/Nd
3+

 heterobimetallic complex 1.1,
14

 Tb
3+

/Yb
3+

 

heterotrimetallic complex 1.2,
15

 and homobimetallic Eu
3+

/Eu
3+

 complex 1.3.
16

 With these 

complexes, the presence of energy transfer was supported by decay data. Decay data provides 

information about the decay of an excited state of a lanthanide with respect to time. Apart from 

decay data, emission spectra have not been reported  for these examples.
14–16

 An emission spectra 

was reported for Tb
3+

/Eu
3+

 heterobimetallic complex 1.4,
17

 but the excitation energy used to 

acquire that emission spectra was of the ligand-sensitized excitation that was of the correct 

energy to simultaneously excite both Tb
3+

 and Eu
3+

; consequently, the complex does not show 

direct evidence of Eu
3+

 emission with direct Tb
3+

 excitation nor was Tb
3+

 luminescence-decay 
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data was presented. While the reported systems mentioned above are discrete, soluble, and hold 

the metals close enough to detect interactions, they do not shield the metal ions from solvent.
14–17

   

The presence of solvent molecules co-ordinated to the complexes poses a problem because the 

vibrations of these molecules provide a route to quenching of excited states and consequently, to 

a decrease in luminescence intensity. 

 Dr. Moore, a former graduate student from Dr. Allen's Lab, published a paper on a di-

Eu
3+

 complex that acted as a concentration-independent pH detection probe.
18

 He observed an 

important feature on this complex that was the close proximity between the two metals and 

volunteered the possibility to make a heterobimetallic Tb
3+

–Eu
3+ 

complex using Tb
3+

 and Eu
3+

 

ions. He carried out preliminary tests on the synthesis of the heterobimetallic complex and 

observed an energy transfer between the two metals in the discrete complex by the excitation of a 

lanthanide (Tb
3+

), ruling out the need to excite the complex with an antenna.
19

  

 Based on the preliminary observations of Dr. Moore,
19

 I began my thesis project by 

replicating his results and completing the control experiments necessary to publish the work. It is 

a difficult task to make a heterobimetallic or multimetallic complex containing lanthanides due to 

the small size differences in the co-ordination behavior across the lanthanides in the periodic 

table.
20

 Considerable effort by Bünzli and co-workers has been shown earlier in making 

heterobimetallic complexes.
21

 I synthesized heterobimetallic Tb
3+

–Eu
3+ 

complex 1.6 by 

controlled addition of Tb
3+

 and Eu
3+

 to the previously reported ligand system (Figure 1.2).
18   

Thus, taking the above stated points related to the complex 1.7, I made complex 1.6 to 

observe energy transfer between Tb
3+ 

and Eu
3+

, using only Tb
3+

-specific excitation. To the best 

of my knowledge, this complex is the first one to exhibit an energy transfer between lanthanides 

in a discrete heterobimetallic complex isolated from environment (solvent) without the use of an 
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antenna. This novel finding for observing an energy transfer between lanthanides using a 

lanthanide excitation without the need of an antenna would be useful and interesting for 

fundamental studies of energy transfer.   

 

 

 Figure 1.2 Chemical structure of the ditopic ligand. 

 
 

 

Figure 1.3 Chemical structures of complexes 1.6–1.10.  

  



5 
 

 

Figure 1.4 The optimized model of 1.6 was obtained using Gaussian-09 software and shows the 

Tb
3+

–Eu
3+

 distance. Red, blue, cyan, magenta, and brown represent oxygen, nitrogen, carbon, 

terbium, and europium, respectively. Hydrogen atoms have been omitted for clarity. The 

computational data was performed by Dr. Cisneros.
22 

  

 I confirmed what Dr. Moore proposed and observed in preliminary experiments,
20

 that 

energy transfer occurs in the mixed metal Tb
3+

–Eu
3+

 complex 1.6, likely because of the short 

distance between the two luminescent centers at 3.62 Å (Figure 1.4)
9,23

 and the optimal energy 

difference 3,100 cm
–1

 between the 
5
D0 state of Eu

3+
 and the 

5
D4 state of Tb

3+
 (Figure 1.5).

23 

There are numerous reports that suggest that efficient energy transfer requires the distance 

between the donor and acceptor to be shorter than 10 Å and the difference between the excited 

states of the the donor and acceptor to be less than 5,000 cm
–1

.
23

 The structure of complex 1.6 

was optimized with Gaussian 09 at the PBE0/SDDall level (small core for all atoms) using the 

default convergence criteria by Dr. Cisneros.
22

 Even though I did not have crystallographic 

evidence for the distance between Tb
3+

 and Eu
3+

 ions, the computational data can be considered 

as support for the metal–metal distance of 3.62 Å.  
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Figure 1.5 Simplified Jablonski diagram that shows a, excitation of Tb
3+

 (
7
F6→

5
D4, 

7
F6→

9
D2, 

and 
7
F6→

7
DJ, J = 0 to ∞) with associated wavelengths; b, radiationless decay to the long-lived 

excited state of  Tb
3+ 

(
5
D4);  c, radiative emission of Tb

3+
 (

5
D4 to 

7
F6, 

7
F5, 

7
F4, and 

7
F3) with 

associated wavelengths; d, Excitation of Eu
3+

 (
7
F0→

5
L6); e, radiationless decay to the long-lived 

excited state of Eu
3+ 

(
5
D0); and f, emission of Eu

3+
 (

5
D0 to 

7
F0, 

7
F1, 

7
F2, 

7
F3, and 

7
F4) with 

associated wavelengths. The red dashed line depicts energy transfer from the long-lived excited 

state of Tb
3+

 to the excited state of Eu
3+

 [
5
D4(Tb

3+
)→

5
D0(Eu

3+
)]. States that are irrelevant to this 

study have been omitted for clarity.  
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 Because other reported bimetallic complexes show the energy transfer occurring via 

luminescence-decay studies, I thought of using luminescence-decay studies, to study complex 

1.6. I thought of measuring and comparing the decay rates of the donor Tb
3+ 

ion in complexes 

1.6 and 1.8. Theoretically, the luminescence decay of Tb
3+

 should be faster in 1.6 (Tb
3+ 

and Eu
3+

) 

relative to 1.8 (Tb
3+ 

and Gd
3+

)
 
due to the energy transfer from Tb

3+ 
to Eu

3+
 and not from Tb

3+ 
to 

Gd
3+

. Thus, Dr. Moore's initial findings prompted me to synthesize complexes 1.6 and 1.8 and 

motivated me to further explore the energy transfer studies in 1.6. 
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Figure 1.6 Simplified Jablonski diagram depicting lack of energy transfer between the excited 

states of Tb
3+

 and Gd
3+

. a, Excitation of Tb
3+ 

(
7
F6→

5
D4), with associated wavelengths. b, 

Radiative emission of Tb
3+

 (
5
D4 to 

7
F6, 

7
F5,

 7
F4, and

 7
F3) with associated wavelengths. The red 

crossed dashed line depicts the absence of energy transfer from the long-lived excited state of 

Tb
3+ 

to the excited state of Gd
3+

 [
5
D4(Tb

3+
)→

6
P7/2(Gd

3+
)]. c, Depiction of Gd

3+ 
states (

8
S7/2 and 

6
P7/2). States that are irrelevant to this study have been omitted for clarity. 
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CHAPTER 2: Experimental Procedures for the Synthesis of Homo- and Hetero-bimetallic 

Complexes                                                                    

 Commercially available chemicals were used without purification. Water was purified 

using a PURELAB Ultra Mk2 water purification system (ELGA). After metallation, complexes 

were freeze dried to remove water. High performance liquid chromatography (HPLC) was 

performed using a 250 mm long Pinnacle PPFP column with 4 or 10 mm diameters for analytical 

and preparative HPLC, respectively. Detection of the complexes was achieved using a 

fluorescence detector. High resolution electrospray ionization mass spectra (HRESIMS) were 

obtained on an electrospray time-of-flight high-resolution Waters Micromass LCT Premier XE 

mass spectrometer and were acquired without the use of a column. Metal concentrations were 

determined using Horiba Ultima inductively coupled plasma optical emission spectroscopy (ICP-

OES). Excitation and emission of complexes 1.6–1.10 were measured at ambient temperature 

using a Horiba Jobin Yvon Fluoromax-4 spectrofluorometer equipped with a 400 W xenon lamp 

in fluorescence mode (increment = 1 nm and the excitation and emission slit widths were 5 and 1 

nm, respectively). Decay-rate measurements of complexes 1.6 and 1.8 were acquired on the 

same instrument with excitation and emission wavelengths of 487 and 545 nm, respectively. The 

pH for the samples was measured with pH paper. Settings for the decay-rate measurements 

included excitation and emission slit widths of 5 nm, an initial delay of 0.01 ms, a max delay of 3 

ms, and a delay increment of 0.1 ms. Ligand 1.5 was synthesized following reported 

procedures.
18

 The purity of complexes 1.6–1.10 was determined using a fluorescence detector in 

HPLC-MS. The method for analyzing the purity of complexes 1.6, 1.7, and 1.9 by HPLC-MS 

was followed from Dr. Moore's procedure.
20

 Whereas, the method for analyzing the purity of 

complexes 1.8 and 1.10 by HPLC-MS was my own procedure.  
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2.1 Synthesis of Hetero-bimetallic complexes  

 

Scheme 2.1 Synthesis of hetero-bimetallic complexes using ligand 1.5 and lanthanide triflate 

salts under basic conditions.  

 

 The synthesis of heterobimetallic complex 1.6 was first carried out by Dr. Jeremy Moore 

by adding 2 equivalents of europium triflate and 1 equivalent of terbium triflate to 1 equivalent 

of ligand 1.5.
20

 But, this route led to a possibility for the formation of complex 1.9, though 1.9 

(di-Tb
3+

) would not interfere in the emission spectra studies of 1.6, it would certainly interfere in 

the luminescence-decay rate experiment performed with 1.6 because the decay experiment is 

performed with Tb
3+

-specific excitation and emission wavelengths and complex 1.9 contains 

Tb
3+ 

ions. To suppress the formation of complex 1.9, I modified the synthetic route by adding 0.5 

equivalents of terbium triflate instead of 1 equivalent. A similar strategy was adopted for the 

synthesis of the Tb
3+

-Gd
3+

 complex 1.8. 
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Synthesis of Ammonium{1-[europium-(1,4,7,10-tetraazacyclododecanyl-(1,4,7-triacetate)),3-

[terbium-(1,4,7,10-tetraazacyclododecanyl-(1,4,7-triacetate))]propan-2-oxide} complex (1.6):   

To a solution of 1,3-di[1,4,7,10-tetraazacyclododecanyl(1,4,7-triacetate)]propan-2-ol
18 

1.5 (1.00 

mL, 0.0710 mmol, 71.1 mM, 1 equiv) was added NH4OH (1 mL, 5% aqueous solution) dropwise 

until the pH of the solution was 6.5. To the resulting solution was added an aqueous solution of 

europium triflate (1.57 mL, 0.0710 mmol, 45.6 mM, 2 equiv). The resulting solution was stirred 

at ambient temperature for 12 h, while the pH was maintained at 6.5 with the addition of NH4OH 

(0.3 mL, 5% aqueous solution). To the resulting solution was added an aqueous solution of 

terbium triflate (2.51 mL, 0.0710 mmol, 28.2 mM, 0.5 equiv) (Scheme 2.1). The reaction was 

stirred for 12 h, then the pH was increased to 12 with the addition of NH4OH (0.5 mL, 30% 

aqueous solution) to precipitate excess terbium and europium as hydroxides. After stirring for 6 

h, the resulting suspension was filtered using a 0.2 µm syringe filter to remove terbium and 

europium hydroxides. The resulting solution was freeze dried and the solid was analysed using 

HPLC-MS. HRESIMS (m/z): [M+H]
+ 

calcd for EuTbC31H51N8O13, 1053.2028; found, 1053.2015 
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Synthesis of Ammonium{1-[gadoliniumium-(1,4,7,10-tetraazacyclododecanyl-(1,4,7-

triacetate)),3-[terbium-(1,4,7,10-tetraazacyclododecanyl-(1,4,7-triacetate))]propan-2-oxide} 

complex (1.8):   

To a solution of 1,3-di[1,4,7,10-tetraazacyclododecanyl(1,4,7-triacetate)]propan-2-ol
18

 1.5 (0.375 

mL, 0.0710 mmol, 0.0267 mM, 1 equiv) was added NH4OH (1 mL, 5% aqueous solution) 

dropwise until the pH of the solution was 6.5. To the resulting solution was added an aqueous 

solution of gadolinium triflate (1.77 mL, 0.0710 mmol, 30.1 mM, 2 equiv). The resulting 

solution was stirred at ambient temperature for 12 h while the pH was maintained at 6.5 with the 

addition of NH4OH (0.1 mL, 5% aqueous solution). To the resulting solution was added an 

aqueous solution of terbium triflate (0.477 mL, 0.0710 mmol, 28.2 mM, 0.5 equiv) (Scheme 

2.1). The reaction was stirred for another 12 h at which point the pH was increased to 12 with the 

addition of NH4OH (0.3 mL, 30% aqueous solution) to precipitate excess of terbium and 

gadolinium as hydroxides. After stirring for 6 h, the resulting suspension was filtered using a 0.2 

µm syringe filter to remove terbium and gadolinium hydroxides. The resulting solution was 

freeze dried and analyzed using HPLC-MS. HPLC-MS analysis indicated that complex 1.8 

contained 6-arm and a small amount of 5-arm metal complexes, both of the species eluting under 

the same retention time at 6.91–9.01 min. It also showed the presence of 1.10. Binary gradient 

method (pump A: water, pump B: acetonitrile; 0→9.8% B for 10 min, 9.8→10% B over 2 min, 

10% over for 4 min, 10→5% B for 4  min, 5→0% for 4 min). HRESIMS (m/z): [M]
– 

calcd for 

GdTbC31H51N8O13, 1055.1960; found, 1055.1945. 
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Figure 2.1 HPLC chromatogram of 1.8 detected using a fluorescence detector (λex = 228 nm and 

λem = 545 nm). The identity of the complex eluted at 6.91–9.01 min was confirmed to be an 

inseparable mixture of 1.8 and 1.10 using mass spectrometry. 
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Figure 2.2 Extracted mass spectrum for metal complex 1.8 at 6.91–9.01 min retention time. The 

five-arm and six-arm complexes are pointed to in the spectrum. 

 

 

 

 

Figure 2.3 Isotopic distribution of the Gd
3+

–Tb
3+

 complex 1.8 at 6.91–9.01 min retention time. 

 

 

980 990 1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 m/z

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Inten. (x100,000)

1059

1080

1077

1000
1029 109710401022 115911351012987 1108 11451118



15 
 

2.2 Synthesis of homo-bimetallic complexes  

 

Scheme 2.2 Synthesis of homo-bimetallic complexes used for the study of energy transfer.  

 

Synthesis of Ammonium{1,3-bis[europium-(1,4,7,10-tetraazacyclododecanyl-(1,4,7-

triacetate))]propan-2-oxide} (NH4) (1.7): 

To a solution of 1,3-di[1,4,7,10-tetraazacyclododecanyl(1,4,7-triacetate)]propan-2-ol
18

 (4.73 mL, 

0.0710 mmol, 71.1 mM, 1 equiv) was added NH4OH (0.5 mL, 5% aqueous solution) dropwise 

until the pH of the solution was 6.5. To the resulting solution was added an aqueous solution of 

europium triflate (1.00 mL, 0.0710 mmol, 45.1 mM, 3 equiv). The resulting solution was stirred 

at ambient temperature for 12 h while the pH was maintained at 6.5 with the addition of NH4OH 
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(1 mL, 5% aqueous solution) (Scheme 2.2). After the reaction was stirred for 12 h, the pH was 

increased to 12 by the addition of NH4OH (0.8 mL, 30% aqueous solution) to precipitate excess 

europium as hydroxides. After stirring for 6 h, the resulting suspension was filtered using a 0.2 

µm syringe filter to remove any europium hydroxides. The resulting solution was freeze dried 

and analyzed using HPLC-MS. HRESIMS (m/z): [M]
– 

calcd for Eu2C31H49N8O13, 1043.1816; 

found, 1043.1830.
 

Synthesis of Ammonium{1,3-bis[terbium-(1,4,7,10-tetraazacyclododecanyl-(1,4,7-

triacetate))]propan-2-oxide} (NH4) (1.9): 

To a solution of 1,3-di[1,4,7,10-tetraazacyclododecanyl(1,4,7-triacetate)]propan-2-ol
18

 (1.5) 

(1.00 mL, 0.0710 mmol, 71.1 mM, 1 equiv) was added NH4OH (0.5 mL, 5% aqueous solution) 

dropwise until the pH of the solution was 6.5. To the resulting solution was added an aqueous 

solution of terbium triflate (1.00 mL, 0.213 mmol, 28.2 mM, 3 equiv). The resulting solution was 

stirred at ambient temperature for 12 h while the pH was maintained at 6.5 with the addition of 

NH4OH (1 mL, 5% aqueous solution) (Scheme 2.2). After the reaction was stirred for 12 h, the 

pH was increased to 12 by the addition of NH4OH (1.4 mL, 30% aqueous solution) to precipitate 

excess terbium as hydroxides. After stirring for 6 h, the resulting suspension was filtered using a 

0.2 µm syringe filter to remove any terbium hydroxides. The resulting solution was freeze dried 

and analyzed using HPLC-MS. HRESIMS (m/z): [M]
– 

calcd for Tb2C31H49N8O13, 1061.2083; 

found, 1061.2072.
 

 

 



17 
 

Synthesis of Ammonium{1,3-bis[gadolinium-(1,4,7,10-tetraazacyclododecanyl-(1,4,7-

triacetate))]propan-2-oxide} (NH4) (1.10): 

To a solution of 1,3-di[1,4,7,10-tetraazacyclododecanyl(1,4,7-triacetate)]propan-2-ol
18

 (1.00 mL, 

0.0710 mmol, 71.1 mM, 1 equiv) was added NH4OH (0.5 mL, 5% aqueous solution) dropwise 

until the pH of the solution was 6.5. To the resulting solution was added an aqueous solution of 

terbium triflate (1.00 mL, 0.213 mmol, 28.2 mM, 3 equiv). The resulting solution was stirred at 

ambient temperature for 12 h while the pH was maintained at 6.5 with the addition of NH4OH (1 

mL, 5% aqueous solution) (Scheme 2.2). After the reaction was stirred for 12 h, the pH was 

increased to 12 by the addition of NH4OH (1.4 mL, 30% aqueous solution) to precipitate excess 

of terbium as hydroxides. After stirring for 6 h, the resulting suspension was filtered using a 0.2 

µm syringe filter to remove any terbium hydroxides. The resulting solution was freeze dried and 

analyzed using HPLC-MS. HPLC-MS analysis indicated that complex 1.10 contained 6-arm and 

a small amount of 5-arm metal complexes, both of the species eluting under the same retention 

time at 12.53 min. HPLC method: Binary gradient method (pump A: water, pump B: acetonitrile; 

0→9.8% B for 10 min, 9.8→10% B over 2 min, 10% over for 4 min, 10→0% B for 4  min).  

HRESIMS (m/z): [M]
– 
calcd for Gd2C31H49N8O13, 1051.1872; found, 1051.1881. 
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Figure 2.4 HPLC chromatogram of 1.10 detected using a fluorescence detector (λex = 273 nm, 

and λem = 613 nm). The identity of the complex eluted at 12.53 min was confirmed to be 1.10 

using mass spectrometry. 

 

 

Figure 2.5 Extracted mass spectrum for metal complex 1.10 at 12.53 min retention time.  
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Figure 2.6 Isotopic distribution of the Gd
3+

 complex 1.10 at 12.53 min retention time. 
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CHAPTER 3: Energy Transfer Studies in a Eu
3+

-Tb
3+

 Heterobimetallic Complex 

 Samples taken from complexes 1.6–1.10 (Figure 3.1) were prepared by dissolving solids 

(4 mg) in water (300 µL) and transferring an aliquot (250 μL) of the resulting solutions to a 2 × 2 

× 32 mm
3
 quartz cuvette.

19
 The concentrations of all complexes used for measurements were 

13.2 mM. The pH values for all samples measured were 8.0.  

  

 

Figure 3.1 Structure of homo-bimetallic complexes 1.6 and 1.8 and hetero-bimetallic complexes 

1.7, 1.9, and 1.10 used for the steady-state emission and luminescence-decay studies. 

 

 

3.1 Steady-state spectra  

 Energy transfer between Tb
3+

 and Eu
3+

 was demonstrated with the emission spectrum of 

1.6, with a Tb
3+

-specific
 
excitation wavelength of 487 nm. The emission spectra for complex 1.6 

displayed the expected Tb
3+

 transition at 545 nm (
5
D4→

7
F6) and a set of peaks at 579, 592, 612, 

653, and 701 nm corresponding to 
5
D0→

7
F0,1,2,3,4 that indicate Eu

3+
 emission (solid line in 

Figure 3.2). However, Tb
3+

-specific emissions were not observed when Eu
3+

-specific excitation 

wavelength 394 nm was used. These observations suggest that energy transfer occurs from Tb
3+ 
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to Eu
3+

 and not from Eu
3+ 

to Tb
 3+

. These observations are reasonable because the excited state of 

Eu
3+

 has a lower energy than that of the Tb
3+

 ion (Figure 1.5).  

The HPLC data for Eu
3+

-Tb
3+

 containing-complex 1.6 showed that it contained a mixture 

of 1.6 and di-Eu
3+

 containing complex 1.7. To provide evidence that complex 1.7 does not 

interfere with the energy transfer occurring in 1.6, I performed control experiments by exciting 

1.7 with Eu
3+

- and Tb
3+

-specific wavelengths. For the excitation of complex 1.7 with Tb
3+

-

specific wavelength, no emission was observed, as was expected for a complex containing only 

Eu
3+

 (dotted line in Figure 3.2). But, when complex 1.7 was excited with Eu
3+

–specific 

wavelength, a set of Eu
3+

 peaks were observed corresponds to transitions of 
5
D0→

7
F0,1,2,3, and 4 at 

579, 592, 612, 653, and 701 nm, respectively (Figure 3.3). Based on the observations of the 

excitation of di-Eu
3+

-containing complex 1.7 with Eu
3+

- and Tb
3+

-specific wavelength indicated 

that the 1.7 was not playing a role in the energy transfer with complex 1.6 even though it was 

present as a mixture with 1.6, as observed by HPLC-MS 

 Although, no evidence for di-Tb
3+

-containing complex 1.9 was observed in the 

HRESIMS and HPLC-MS of 1.6, complex 1.9 could be present in 1.6 because the absence of a 

peak in mass spectrometry does not mean the complex is not present. Thus, to confirm that 

complex 1.9 does not interfere with energy transfer in 1.6, I ran a control experiment with 1.9 by 

exciting it using a Tb
3+

-specific wavelength. The outcome of the control experiment was that 

when 1.9 was excited with Tb
3+

-specific wavelength (487 nm), the emission spectra displayed a 

set of only Tb
3+

-related peaks corresponding to
 
transitions at 

5
D4→

7
F6, 5, and 4 at 545, 586, and 622 

nm, respectively. Thus, by interpreting the emission spectra (Figure 3.4) for complex 1.9 at 487 

nm excitation, I infered that the presence of 1.9 in 1.6 would not interfere with the energy 

transfer from Tb
3+

 to Eu
3+

.  
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Figure 3.2 Emission spectra of complex 1.6 (–––) and complex 1.7 (……). Excitation was 

performed at a wavelength specific to Tb
3+

 (487 nm), and assignments correspond to transitions 

listed in Figure 1.5. No emission was observed with di-Eu
3+

 complex 1.7. Emissions specific to 

both Tb
3+

 and Eu
3+

 were observed for the mixed metal system 1.6 indicating energy transfer.  
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Figure 3.3 Complex 1.6 (–––). Excitation was performed at a wavelength specific to Eu
3+

 (394 

nm), and assignments correspond to transitions listed in Figure 1.5 No emission was observed 

related to Tb
3+

.  

 

 

Figure 3.4 Emission spectra of the di-Tb
3+

 complex 1.9 that displayed only Tb
3+

 specific 

emissions when excited using a Tb
3+

 specific wavelength. No Eu
3+

 emissions were observed 

explaining the non-involvement of 1.9 in 1.6 for energy transfer studies.  
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3.2 Luminescence-decay data 

 Luminescence decay measures the mean lifetime of an excited state of a luminescent 

probe (which could be an ion or a fluorescent compound). Luminescence-decay data has been 

used to calculate the inner-sphere water co-ordination number (q) in MRI contrast agents or to 

show the existence of the energy transfer in a system by measuring the lifetime of the excited 

state of the donor ion or fluorescent compound for energy transfer.
 24

 

 In the previously reported complexes,
14–17 

energy transfer was demonstrated by 

luminescence-decay data. Based on this orthogonal way to demonstrate energy transfer, I 

designed an experiment (Figure 3.5) using luminescence-decay data to show that energy transfer 

is occurring in Eu
3+

-Tb
3+

 containing-complex 1.6 and not in Gd
3+

-Tb
3+

 containing-complex 1.8. 

The luminescence decay-data was measured for both heterobimetallic complexes at Tb
3+

-specific 

excitation and emission wavelength of 487 and 545 nm, respectively.  

 To support the observance of energy transfer in 1.6, luminescence decay was measured 

for both 1.6 and 1.8, and a comparison of their decay rates was done. The luminescence-decay 

measurements were taken 5–10 minutes after the preparation of the samples for complexes 1.6 

and 1.8 in water. The luminescence-decay rate (τH2O/ms
–1

) of Tb
3+ 

in complex 1.6 was measured 

to be 0.344 ms
–1

, and in complex 1.8, it was 0.296 ms
–1

 (Figure 3.6).
 
This difference could be 

because the excited state of Gd
3+ 

is higher than Tb
3+ 

by 10,000 cm
–1

 based on the energy level 

diagram (Figure 1.6). The decrease of luminescence lifetime of Tb
3+ 

(
5
D4)

 
in complex 1.6 is 

likely due to quenching of the Tb
3+ 

excited state by non-radiative transfer of energy (Decay 

pathway 1) from Tb
3+

 to Eu
3+

, to the radiative emission of Tb
3+

 (Decay pathway 2), (Figure 3.5) 

and to other pathways of non-radiative decay including outer-sphere–OH vibronic coupling due 

to the solvent water.  
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Figure 3.5 Proposed pathways for the decay of the Tb
3+ 

excited state in complexes 1.6 and 1.8. 

 

 In Tb
3+

-Gd
3+

-containing complex 1.8, based on the luminescence decay plot (Figure 3.6), 

the luminescence lifetime of Tb
3+

 in 1.8 is shorter compared to 1.6 because of the non-

occurrence of transfer energy from Tb
3+

 to Gd
3+

 (Decay pathway 1), even though the decay 

occurs by radiative emission of Tb
3+

 (Decay pathway 2) (Figure 3.5) and by other non-radiative 

pathways. When taking the luminescence-decay rate for complex 1.8 into consideration, complex 

1.8 had a possibility to contain a mixture of 1.8, 1.9, and 1.10. Through HPLC-MS, I found out 

that complex 1.8 was a mixture of 1.8 and 1.10. But theoretically, di-Gd
3+

-containing complex 

1.10 should not interfere with 1.8 in the luminescence decay of 1.8 because the luminescence 

decay is carried out at Tb
3+

-specific excitation and emission and complex 1.10 does not contain 

Tb
3+

 ions. So, I ran the luminescence-decay measurements for complex 1.10 at Tb
3+

-specific 
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excitation and emission (487 and 545 nm, respectively), and I observed that there was no 

exponential decay (Figure 3.7). This provided evidence that the presence of 1.10 in 1.8 doesn't 

interfere in the decay experiment performed on 1.8. The presence of complex 1.9 in 1.8 would 

affect the decay-rate studies, because the decay studies are carried out with Tb
3+

-specific 

excitation and emission wavelengths and because 1.9 contained Tb
3+ 

ions that would interfere in 

the luminescence decay-rate carried on 1.10. Thus, to prevent the formation of 1.9, I added a 

small amount of terbium triflate (0.5 equivalents) during the metallation step for the synthesis of 

the heterobimetallic complex 1.8. When taking the luminescence-decay rate for complex 1.8 into 

consideration, complex 1.6 had a possibility to contain a mixture of 1.6, 1.7, and 1.9. It is fine to 

have complex 1.7 in the mixture because it contains only Eu
3+

 ions, but because complex 1.9 has 

Tb
3+ 

ions, I suppressed its formation by adding a small amount of terbium triflate (0.5 

equivalents) during the metallation of complex 1.6.
 

 

 

Figure 3.6 Natural log intensity plot of the decay curves for 1.6 () and 1.8 () in water, after 

excitation at a Tb
3+

-specific wavelength
 
(487 nm) with emission monitored at 545 nm. 
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Figure 3.7 The absence of exponential decay curve for 1.10 () suggests the non-interference of 

1.10 with 1.8 under an excitation at Tb
3+

-specific wavelength
 
487 nm with corresponding 

emission at 545 nm. 

 Although, the decay rate values (τH2O/ms
–1

) of Tb
3+

 in the reported complexes 1.1, 1.3, and 

1.4 are 2.0, 1.8, and 1.4, the decay rate values of complexes 1.6 and 1.8 cannot be compared with 

those of the reported complexes.
14–16

  The reason is due to the presence of five-arm complex 

along with the six-arm complexes as observed in the HPLC chromatogram (Figure 2.2). The 

presence of five-arm complexes as impurities in 1.6 and 1.8 will lead to inaccurate decay rate 

values because the five-arm complexes will contain inner-sphere water that will quench 

luminescence. The presence of five arm was likely due to the coupling of DO2A 1.11 and DO3A 

1.12 during the route to synthesize the ligand 1.5. This problem could be resolved by using an 

alternate synthetic route for 1.12, to prevent the mixture of 1.11 and 1.12.  
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Figure 3.8 Chemical structure of DO2A 1.11 (di-tert-butyl 1,4,7,10- tetraazacyclododecane-1,7-

diacetate) and DO3A 1.12 (tri-tert-butyl 1,4,7,10- tetraazacyclododecane-1,4,7-triacetate).  

  

Therefore the emission spectra (Figure 3.2), luminescence-decay plots (Figure 3.5), and the 

distance between the Tb
3+ 

and Eu
3+ 

in the computational optimized structure
22

 (Figure 1.4) are 

the evidence indicative of energy transfer in 1.6. The proposed Jablonski diagram and the 

computational optimized structure are in good agreement with experimental observations in 

emission spectra and luminescence-decay studies. The comparison of the luminescence-decay 

rates of the reported complexes with that of the hetero Tb
3+

-Eu
3+ 

and Tb
3+

-Gd
3+  

complexes relate 

the importance of minimizing the inner-sphere co-ordination environment in a discrete complex 

for the energy transfer. 

Hence, from the steady-state emission spectra, I report an interesting feature of complex 

1.6 showing intra-molecular energy transfer from Tb
3+

 to Eu
3+

, where Tb
3+ 

can sensitize the 

luminescence of Eu
3+ 

without the use of the excitation of antenna. Another noteworthy feature of 

the study is the luminescence-decay data of 1.6 that shows energy transfer by faster decay rate of 

the Tb
3+ 

ion in the complex 1.6 than in complex 1.10. The studies that remain include the 

quantum yield of the Eu
3+ 

ion and measurement of the efficiency of the Tb
3+ 

ion in complex 1.6, 
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and the preparation of prepare DO3A using a new synthetic route to avoid the formation of five-

arm complexes. I expect the unique way of observing energy transfer in a discrete, soluble 

complex in this thesis to be useful for understanding fundamental concepts relevant to energy 

transfer in heterobimetallic complexes.  
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CHAPTER 4: Conclusions and Future Directions 

 I synthesized complexes 1.6–1.10 and have shown that energy transfer occurs in complex 

1.6 using emission spectra and luminescence-decay studies. I expect my studies to be useful for 

the fundamental study of energy transfer. Therefore, after investigating the emission spectra and 

luminescence-decay data, I confirmed the occurrence of energy transfer in the heterobimetallic 

complex 1.6. 

 For future plans, measuring the quantum efficiency for the Eu
3+ 

emission in complex 1.6 

is needed for publication. The quantum yield for complex 1.6 can be measured using cresyl 

violet as a reference.
25

 The quantum yield for 1.6 can be calculated relative to the quantum yield 

of the fluorophor using the following formula: 

Qx = Qs  
  

  
  

  

  
  

  

  
 2 

 In the formula, Qx and Qs are the quantum yield for the complex and the fluorophor, Ax 

and As are the absorbance for the complex and the fluorophor, and  x and  s are the refractive 

indices of the solvents used for complex and the fluorophor.  

 To confirm the structure of the homo-bimetallic complexes, crystallographic data should 

be obtained. But, the most interesting study, in my opinion, would be an order of addition study 

of the ligand (Figure 1.2) which would define the boundaries of selectivity of the ligand over the 

wide range of lanthanide ions.  
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Abstract 

ENERGY TRANSFER IN A DISCRETE, SOLUBLE, HETEROBIMETALLIC 

COMPLEX CONTAINING Tb
3+

 AND Eu
3+

. 
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Degree: Master of Science  

 A discrete, heterobimetallic Tb
3+

–Eu
3+

 -containing complex has been synthesized, and 

energy transfer was observed in the complex without using an antenna. This result represents a 

new way of observing lanthanide emission using lanthanide excitation in discrete, soluble 

complex. The occurrence of energy transfer in the mixed heterobimetallic Tb
3+

–Eu
3+

 complex 

was characterized using steady state luminescence spectroscopy and luminescence-decay studies. 

These findings are likely to be useful for fundamental mechanistic studies of energy transfer in 

lanthanide-containing systems.  
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