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CHAPTER 1 

INTRODUCTION 

The smart grid has been proposed as an alternative modern power grid system, which is 

an enhancement of the 20th century power grid [1, 2]. With various characteristics of the smart 

grid, the different perspectives of smart grid functions have been highlighted for extending the 

boundaries of the smart grid [3-5]. However, the realization of those functionalities causes 

complicated questions. Especially, as a prerequisite for the initiation of the smart grid, the 

allocation of smart grid components needs to be properly determined with the consideration of 

the actual functions of components in the system.  

As an effort to lead healthy modern power systems, the utility industry across the world 

has tried to overcome the inherent insensibility of existing electricity system [6], which is 

resulted from unidirectional and non-time synchronized characteristics of traditional grid. With 

the need of robust modern electricity grid, the smart grid is expected to achieve the reliability 

and security in power grid system. Phasor Measurement Units (PMUs) are essential power 

system devices that provide time synchronized information about dynamic performance of power 

network [7]. The information derived from measurements are same-time sampled in voltage and 

current waveforms from Global Positioning System Satellites (GPS), which enable PMU data 

from different utilities to be time-synchronized and combined to create a comprehensive view of 

the broader electrical system [8]. Synchronization of sampling of phasor is achieved using a 

common timing signal available locally at the substation. Figure 1-1 shows a diagram which 

illustrates architecture of a general PMU measurement system. [9] 
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Figure 1-1. Hierarchy of the phasor measurement systems 

In Figure 1-1 the PMUs are placed in power grid system substations, and the real-time 

data gathered at each PMU is used for analyzing the state of voltages and currents of buses and 

feeders monitored. Although actions based on the measurements are usually made by 

applications in higher level concentrators, some local application tasks are done by local PMUs, 

in which case necessary data is available locally for such tasks [9]. When these PMUs are 

installed on a power grid system, the both phasor of the bus voltage and of the line currents can 

be measured. Therefore, the voltage phasor of incident buses can be calculated using Kirchhoff‟s 

law and it is unnecessary to install PMUs on every single bus in system [10].  It is an essential 

characteristic of PMU allocation task since it is impossible to install the PMUs on all of the 

buses in power grid systems. So one of the imperative questions in the installation of PMUs is 

about the optimal number of PMUs and their location for covering a given power grid network 

according to decision makers‟ objectives. The main objective of optimal PMU placement 
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problem is to ensure the full measurement over a power grid system while minimizing the 

number of PMUs required [11]. Especially, when the measurement of a substation is possible, it 

is said that a substation, i.e., a bus, is observable by PMU. 

The major purpose of this thesis is the development of models and modeling processes 

for supporting decisions on optimal PMU placement in smart grid context. The investigated 

topics are as follows: 

1) The development of optimal PMU placement models based on the observability rules, 

which are already discovered. This task aims to successfully fulfill two fundamental 

objectives of PMU allocation task, i.e., minimization of the number of PMUs and 

maximization of level of redundancy. The result of this study is an effective model 

that ensures optimal placement of PMUs. 

2) The development of modeling processes that considers the circumstantial factors 

around the phasor measurement systems. It extends the scope of PMU allocation to 

overall system requirement analysis, which considers not only system itself but also 

circumstances in which the functionality of system will be exhibited. 

This thesis is composed of three main chapters including this introduction. The chapters 

are presented in such a way that each of two main objectives presented above is contained in 

each chapter. Then chapter 4 summarizes all the research work of this thesis and recommends 

direction for future study. 
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CHAPTER 2 

PHASOR MEASUREMENT UNIT LOCATION SELECTION 

2.1 Introduction 

The primary purpose of PMU placement problem is to discover the minimum number of 

PMUs and their location, providing perfect observability over all buses, i.e. no bus unobservable, 

in a given electricity system. Through this process, the minimum cost of installation of PMUs is 

found. In addition to pursuing the efficient placement of PMUs, the goal of maximizing the 

observability in the given number of buses also needs to be taken into account, since a decision 

maker wants to maximize the effectiveness of installation of PMUs after finding minimum 

number of them. For representing the level of observability of a bus, the concept of redundancy 

is introduced. The redundancy R is defined as below. 

  = The number of times bus   is observed by PMUs in a given system. 

   ∑   
    
  = total number of times all buses in a given system are observed by 

PMUs. 

The objective of PMU placement problem is to determine the minimum number of PMUs 

to be installed and the set of optimal PMUs‟ location, which make a problem a combinatorial 

optimization solving process. Since the PMU placement problem finding minimum set of PMUs 

is NP-complete with a solution space of    possible sets of combinations for given  -bus power 

system [12], various approaches have been implemented in order to achieve valuable solutions as 

close as possible to global optimal solutions of the objective function below. 
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This chapter is divided into five sections. The first section reviews the previous 

approaches and methods which were used based on various assumptions of researchers. Each 

research work has its own strengths and applications and this thesis has been significantly 

motivated by each work. The second section deals with the concept of observability in PMU 

allocation. Here we introduced how the buses in a given power grid system can be observed by 

PMUs according to three measurement modes which are explained and illustrated. Then the 

concept of overlap prevention rule in PMU allocation is proposed. This rule significantly 

contributed to reduction of number of PMUs required. A deterministic formulation of overlap 

prevention rule and indicator variables is derived in next section. By using an integer 

programming model described in this section, a decision making on optimal PMU placement can 

be supported effectively. A set of numeric formulas for IEEE 30 bus system is exemplified. The 

results and discussion is shown in last section. 

2.2 Review of Previous PMU Allocation Strategy 

The previously proposed research works are categorized into two, depending on the used 

methodology for solving the problem. First, heuristic approaches are used to exploit the benefit 

of meta-heuristic methodologies to overcome the inherent complexity of optimal PMU 

placement problem. Meta-heuristics is a process seeking a way to efficiently explore the search 

space so as to find near optimal solution [13] and incorporating its own mechanisms to avoid 

getting trapped in confined areas of the search space. In optimal PMU placement problem, it 

includes genetic algorithm, tabu search, simulated annealing, particle swarm optimization, ant 

colony optimization, differential evolution, and immune algorithm.  

A genetic algorithms are search algorithms inspired by natural selection and natural 

genetics which insist that nature has capability to evolve living beings well adapted to their 
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environment. Marin et al. [14] used genetic algorithm to solve the optimal PMU placement 

problem. Through the algorithm, each bus and line in the power network was assigned to gene 

for forming the chromosome and a new generation was produced by three operator; selection, 

crossover, mutation, from the old generation. Then, a new generation started again with the 

fitness evaluation process. A tabu search uses the history of the search, both to escape from local 

minima and to implement an explorative strategy. The use of a tabu list prevents from returning 

to recently visited solutions therefor it prevents from endless cycling and forces the search to 

accept even uphill moves [13]. A tabu search algorithm for minimizing the number of PMUs and 

maximizing the redundancy is introduced by Peng et al [28]. with the augmented matrix. This 

research defined the redundancy measurement index as the sum of voltage redundancy and 

current redundancy. By applying heuristic node selection method at following iteration, the 

solution search speed and accuracy improved. A Simulated Annealing is an algorithm which has 

a fundamental idea of allowing moves resulting in worse quality solution than the current 

solution, i.e. uphill moves, in order to escape from local minima. It starts from an initial 

configuration and new ones are proposed through local changes, and accepted according to a 

given probability function. A simulated annealing algorithm was adopted by Nugui et al. [15] to 

solve the communication facility limited optimal PMU placement problem by implementing a 

metropolis algorithm. In this research, the definition of configuration, energy function, and 

penalty of configuration of optimal PMU placement problem is introduced in order to properly 

use simulated annealing. A particle swarm optimization provides a population-based search 

procedure in which individuals, called particles, change their position with time. During the 

movement of particles, each particle changes its own position based on previous position, 

velocity, private thinking, and cooperation with other particles. Each particle updates its best 
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solution by comparing its individual solutions, and the global best is replaced with best 

individual solution, if there is better individual solution than previous global solution. Hajian et 

al. [16] introduced the discrete binary version of particle swarm optimization in which the search 

space is discrete so variables can only take on values of 0 and 1. In this algorithm, each particle 

corresponded to a PMU placement configuration for a power network and the direction of these 

particles was determined by the set of particles neighboring and its history experience. 

In addition to meta-heuristic methodologies, various approaches based on the 

deterministic techniques have also been proposed. Deterministic approaches make extensive use 

of integer programming and numerical based methods [17] by exploiting various computational 

solvers. Xu and Abur [18] considered PMU placement problem with consideration on the 

conventional power flows and injections as well as phasor measurements measured by PMUs. In 

this study, the nonlinear constraints were formed based on the network configuration and the 

knowledge about the locations and types of existing measurements. In [19], Chen and Abur 

argued that PMUs will provide increased bad data detection and identification capability, which 

may be useful during contingencies and existence of bad data in low redundancy pockets of the 

system. They utilized integer programming to solve both systems with conventional 

measurements and without them. Dua et al. [20] introduced two indices, bus observability index 

(BOI), which corresponds to the level of redundancy of a bus, and system observability 

redundancy index (SORI), which corresponds to total level of redundancy of a system, to 

calculate the observability redundancy over the system. Also a methodology finding optimal 

multistage scheduling of PMU placement was proposed, which uses the number of incident lines 

of buses as a parameter. Gou [21] proposed a generalized integer linear programming 

formulation for optimal PMU placement under different cases of redundancy PMU placement, 
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full observability and incomplete observability. The author found solutions for depth-of-one 

unobservability and depth-of-two unobservability cases with zero injection measurements. Sodhi 

and Srivastava [22] proposed a two level approach for solving optimal PMU placement problem 

for achieving complete observability of the power system. First, decomposition of the power 

system network was carried out with integer linear programming approach, where objective 

function utilizes the eigenvectors of the spanning tree adjacency matrix. Then, locations of 

PMUs are determined in the sub-networks in order to minimize their cost of installation. In [23], 

Chakrabarti et al. presented an integer quadratic programming approach that minimizes the total 

number of PMU required and maximizes the measurement redundancy at the power grid system. 

They considered the outage of a single transmission line or a single PMU. Aminifar et al. [24] 

assumed that the observability of power network and its outage possibility can be analyzed in a 

probabilistic manner.  The authors define a distinct set of probabilistic indices for individual 

buses and the entire system. Based on this this idea, a mathematical model for the probabilistic 

observability of the PMU placement at the horizontal year was derived. The mixed-integer 

programming was used for the optimization and an efficient linearization technique was 

proposed to convert the nonlinear function representing the probability of observability into a set 

of linear expression. Mahaei and Tarafdar Hagh [25] took into account that the buses that have 

injection measurements may be connected to each other, and animated the consideration on 

suitable unequal constraints for these buses. This work stressed the modeling of zero injection 

buses to consider the topology conditions of power grid network. Enshaee et al. [26] pointed out 

the drawbacks from the previous research works. The main idea of them is that if a bus is 

connected to two or more zero-injection buses, there is no need to the corresponding 

observability variable to appear in all of the inequalities corresponding to those zero injection 
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buses. To overcome this, authors generated many different kinds of variables and formulas. The 

optimization problem was introduced in the form of a binary integer programming, and the 

optimal placement of PMUs was determined in the contingencies of a single PMU loss and a 

single line outage. Gómez and Ríos [27] proposed an integer linear programming approach for 

the optimal multistage placement of PMUs, which finds the number of PMUs and its placement 

in separate stages. It also incorporated the economic constraints at each stage considering the 

financial budget limitation of a decision maker. In addition, a methodology to identify specific 

buses to be observed for dynamic stability monitoring was introduced.  

2.3 Concept of observability in PMU Allocation 

Basically, wide spread installation of PMUs enhances the reliability and security of 

electricity grid, and PMU placement at all substations guarantees the thorough measurements 

over all buses in a given energy network. However, the placement of PMU at each bus is both 

cost-inefficient and structurally unnecessary because of the characteristics of measurement and 

calculation conducted with phasor information. For instance, when a PMU is placed at a bus, 

neighboring buses can be observable depending on the network configuration among buses. 

Hence, it is necessary to introduce some conditions how the electricity performances of buses 

become observable by PMUs and how the connection between buses affects the feasibility of 

measurement over buses. Although there have been various approaches to find the optimal 

location for PMU placement, selection of PMU location is conducted based on the following 

rules [28-30]. The feasibility of measurement is now referred to as „observability‟. 

1) Direct measurement: Installation of a PMU at a given bus makes a bus itself 

observable. 
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2) Pseudo measurement: Installation of a PMU at a given bus makes the buses incident 

to that bus observable. 

3) Zero-injection bus: If all buses are observable but one among a zero-injection bus and 

its entire incident buses, one unobservable bus can be observable by Kirchhoff‟s 

Current Law (KCL) at the zero-injection bus. 

where zero-injection bus means a bus where there is no current injection. So it can be regarded as 

a transshipment bus in the system. Especially direct measurement rule and pseudo measurement 

rule are straightforward rules as network expressions, and Fig. 2 describes those two rules 

concisely, which has a bus network consisting of 11 buses. 

Figure 2-1. Observability decision in PMU allocation 

In addition to rule 1 and 2, by utilizing the characteristics of zero-injection bus, the rule 3 is 

realized so that the number of PMUs in a given system can be reduced. Consider a zero-injection 

bus network as shown in Fig. 2. In this figure, it is assumed that the bus 1, 2, 3 and 4 are 

observable, i.e., their voltage phasors are known, but bus 5 is unobservable in terms of 

observability rule 1 and 2. Since the voltage phasors of bus 1, 2, 3 and 4 are known, current 
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between them (i.e., I2,1, I3,1, and I4,1) can be known either from direct measurement by PMU or 

calculation from the equation (2.1). 

 
jiijij VVyI   (2.1) 

where yij is the line admittance between bus i and j. In addition, bus 5 is also observable by 

calculating the bus voltage by applying KCL at the zero-injection bus as follows:  

JjI
jn

i

ij 


     ,0
1

 (2.2) 





4

2

11515

i

iIzVV  (2.3) 

where nj is the total number of branches with currents towards or away from the node j, and zij is 

the line impedance between bus i and j. Equation (2.2) is formulated according to the situation of 

Figure 2-2. 
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Figure 2-2. Zero-injection bus network modeling 

Based on this relationship between zero-injection node and non-zero-injection nodes, a 

decision maker can have one more opportunity to reduce the minimum number of PMU required 

to fully observe a given energy network system.  

2.4 Concept of overlap prevention rule in PMU allocation 

Although the total number of PMU required making a full observability over a given 

network system is reduced by incorporating the concept of zero-injection node, there is an 

additional possibility (according to [18]) to decrease the number of PMU needed. This additional 

reduction comes from an idea that when a bus is connected to multiple zero-injection buses, it 

doesn‟t need to consider all connections between a bus and zero-injection buses connected to that 

bus. As Figure 2-2 shows, a zero-injection network (bus 1, 2, 3, 4, and 5) includes all buses 

connected with a zero-injection bus, as well as a zero-injection bus itself, and this zero-injection 

(bus 1) has a capability to accord an observability to a currently unobservable bus (bus 5) among 

its zero-injection network. It is plausible to think that there is another zero-injection bus, which 

connects to bus 5. If there is another zero-injection bus connected to bus 5, it means that there is 

another possibility to make bus 5 observable besides bus 1 centered zero-injection network. 

Figure 2-3 describes this occasion with an example. In figure 2-3, there are two zero-injection 

networks, which are formed by zero-injection bus 4 and 6, and Bus 5 is overlapped by two 

different zero-injection networks. According to the zero-injection bus rule, a decision maker can 

have two options to make bus 5 observable. Let the observability of a bus be fi. If a bus i is 

observable, fi =1, and otherwise, fi =0, formulating the equations based on the zero-injection bus 

rule are as follow, 
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6network injection -zeroat  ,4
97652

4,network injection -zeroat  ,4
85431





fffff

fffff
 (2.3) 

For eliminating the redundant application of zero-injection bus rule from both zero-

injection network 4 and 6, which may cause inefficient use of the rule, the overlap prevention 

rule is devised and applied.  Table 2-1 indicates how overlap prevention rule works. 

Figure 2-3. Zero-injection network coverage modeling 

 

 1 2 3 4 5 6 7 8 9 

Zero-injection network by bus 4     g4,5     

Zero-injection network by bus 6     g6,5     

Table 2-1. Zero-injection network coverage matrix 
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Table 2-1 organizes the coverage of zero-injection networks. A new variable gi,j is 

introduced for preventing the overlapped coverage by two different zero-injection networks, as 

well as guaranteeing the observability rule 3. Now a set of inequalities (2.3) is reformulated to 

(2.4).  

.f
,

g

 and
,

f
,

g

,
,

g
,

g

, 
,

gfffff

,, 
,

gfffff

5,656

5,454

1
5654

6,network injection -zeroat 
56

3
9765,62

4network injection -zeroat 
54

3
85,4431











 (2.4) 

 Let gi,j variables be overlap indicator variables, because those variables indicate which 

zero-injection network‟s voltage phasor is used to observe the phasor of bus j. If g4,5 is 1, which 

means that if bus 5 is observed by zero-injection network of zero-injection bus 4, then g6,5 

doesn‟t need to be 1, and the first two equations in (4) will be 

6,network injection -zeroat  ,3
9762

and 4,network injection -zeroat  ,4
85431





ffff

fffff
 

which could reduce the right-hand side value of the second equation from 4 to 3, allowing a 

decision maker a better feasible region in terms of a minimization of number of PMUs problem. 

On the other hand, if g6,5 is 1, which means that if bus 5 is observed by zero-injection network of 

zero-injection bus 6, then g4,5 doesn‟t need to be 1, and the first two equations in (4) will be 

6.network injection -zeroat 4
97652

and 4,network injection -zeroat 3
8431

, fffff

, ffff




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 Whichever zero-injection network is to be chosen, that can reduce the right-hand side 

value of constraints for the other zero-injection networks by 1. This relationship provides „lower‟ 

lower bound to this minimization problem, which is not discovered by observation rule 1 and 2. 

Finally, observation rules used in this thesis are listed below. 

1) Rule 1: Installation of a PMU in a given bus makes itself and other buses incident to that 

bus observable. This implies that the voltage phasors of these buses are known. 

2) Rule 2: If only one bus is unobservable among a zero-injection bus and its entire incident 

buses, it can be observable by using the Kirchhoff‟s current law (KCL) at the zero-

injection bus. 

3) Rule 3: If a bus is connected to two or more zero-injection buses, there is no need to the 

bus to be observed by all of the connected zero-injection bus. 

2.5 A Deterministic Approach Using Overlap Prevention Rule and Indicator Variables 

In this section, a deterministic approach is proposed to solve the optimal PMU allocation 

by applying integer programming. Deterministic approach assumes that there is no randomness 

involved in the operations of systems. Although actual smart grid, especially situational 

awareness system including PMU measurement, can have uncertainties on many grounds of 

operations, starting with considerations on deterministic property of PMU measurement system 

operation gives the fundamental inspiration to the decision maker. For maintaining 

determinability in PMU allocation, basic assumptions of modeling are introduced as follows. 

 First, the network configuration in a given bus system is deterministic. In fact, since the 

cost of installation and repair of PMU system is expensive, e.g., EPRI estimated the cost for the 

installation of one unit of PMU as $125,000 [8], the installation of multiple PMUs in a given 

system may take a substantial period of time. So it is plausible that during this period of time, 
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there would be certain changes in the network configuration, i.e., the addition or removal of bus 

or line. In this deterministic approach, it is assumed that a decision maker is only interested in 

the optimal allocation of PMUs for a current fixed network configuration. Second, there is no 

possibility to incorporate another measurement device besides PMUs. Basically, PMU is one of 

the most prominent alternatives for real-time wide-area situational awareness of given electricity 

grid system. However, PMU is not the only one option for measurement, and if different kinds of 

measurement systems would be installed within the period of PMUs installation, a solution, 

which is acquired at the beginning of planning for PMUs‟ installation will not be an optimal 

solution anymore.  Based on these two assumptions, the PMU allocation problem is to be solved 

with deterministic approach. 

 Remarkable advantages of deterministic optimization are that the convergence to a 

solution is much faster and straightforward, compared to the stochastic approach, and the results 

of optimization process are unequivocal [31]. So the mathematical programming expression of 

deterministic optimization in network problem accords the sense of characteristics of a given 

network to a decision maker. Also, the constant results at a given bus system is appropriate to 

present a fundamental understanding on the overall network structure of the system to the 

decision maker in PMU allocation task.  

 The objective function of PMU allocation has two objectives, a minimization of total 

number of PMUs needed for ensuring full observability, and a maximization of total redundancy, 

which maximize the robustness of monitoring over a given power bus network system.  

The first objective and its constraints can be readily formulated, considering the network 

configuration among the buses in a given system. For an Nbus bus system, the PMU allocation 

vector x  has elements xi, which can be defined as (2.5), and the primitive first objective can be 
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formulated as (2.6). As a primary constraint, equation (2.7) is formulated, forcing each bus in the 

bus system to be observed at least once by PMUs. 






                        ,     

,     i

i
x

   otherwise0

i, busat  placed is PMU a f1
 (2.5) 

.Min 
1





busN

i

ixZ  (2.6) 

.     ,

subject to

Ii bAx
 (2.7) 

where A  is a matrix, which has elements indicating connectivity between buses as shown at 

(2.8), and x is a column vector having element of xi. b is a column vector, which has 1 as 

elements. (2.5) – (2.7) are a set of prototype formulation of optimal PMU placement. Those 

expressions are now modified. 
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                                , if     ,1
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In addition, in this thesis an observability indicator variable fi is proposed. fi is a variable, 

which indicates whether a bus i is observable or not. As shown at (2.9), if a bus i is observable, fi 

is 1, otherwise 0. 






                         otherwise     ,0

        ,observable is  bus if     ,1 i
fi

 (2.9) 
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 For making the relationship between xi variable and fi variable, Let us consider the 

implication that needs to be modeled. Logically, if there is a PMU either at bus i or at incident 

buses of bus i, the bus i will become observable according to the rule 1 or 2. This implication is 

described as (2.10). 

1  1 


i

Cj

jij fxa
i

 (2.10) 

where Ci is the set of buses which contains bus i itself and buses incident to bus i. The derivation 

for modeling the constraints based on the implication (2.11) is as follows. 
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for making it always true, increase the coefficient of fi by the upper bound of ∑          
. 
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 This constraint successfully leads fi to become 1 if bus i is observable. However, it is 

possible that fi will have 1 as a value, even if bus is unobservable, i.e., ∑          
  . This 

dissatisfaction is removed by eliminating this case, by adding left-hand side value. (2.13) is only 
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required for the buses not in zero-injection network, since the buses, which are in zero-injection 

network, always satisfy  ∑          
  . 

zn

Cj

ijij Iifxa
i




     ,0  (2.13) 

 This constraint ensures that fi = 1 if and only if ∑          
         , where     is a 

set of buses belonged in any zero-injection networks. 

 In addition to indicator variable for observability, there is another possibility to 

reformulate the constraints of     . Since   is a column vector of which elements are 1, it 

implies that at least one PMU is necessary either at the bus i or at the buses incident to bus i in 

order to make bus i observable. But when the concept of zero-injection bus is considered, which 

is dealt with in section 2.3, the buses within zero-injection network don‟t need to be observable 

by direct or pseudo measurement. It means that one bus can be observable, even if there is no 

PMU around that bus. Consequentially,      is necessary only for buses which are in non-

zero-injection network.  , a connectivity matrix, is divided into two parts,     for buses in non-

zero-injection network, and     for buses in zero-injection network, and (2.7) is applied only to 

   . 

nnnnnn bxA   (2.14) 

where bnn is a column vector, which only has element of buses not linked to zero-injection buses, 

and the values of elements are all 1. 

 On the other hand, regarding buses in zero-injection networks, the total number of 

observability within a zero-injection network has to be at least greater than equal to the number 

of buses in the corresponding zero-injection network minus 1, so that the observation rule 2 can 
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be applied. Unlike with previous constraints, this constraint is formulated for each zero-injection 

bus as follows. 

zb

Cj

ij

Cj

jij Iiafa
ii




     ,1  (2.15) 

 Just as the definition of observation rule 2, this formulation clearly shows that if only one 

bus is unobservable among a zero-injection bus and its entire incident buses, it can be observable 

by using the Kirchhoff‟s current law (KCL) at the zero-injection bus. 

Now consider observability rule 3, the overlap prevention rule. This rule is only targeting 

the buses which are overlapped by more than two different zero-injection networks. As shown in 

Figure 2-3, the buses, which are overlapped by multiple zero-injection networks, can bring 

additional opportunity to reduce the total number of PMUs needed in a given power grid system. 

So when a zero-injection network is considered, if there is no bus overlapped with another zero-

injection network, observability rule 3 makes no claim. For modeling overlap prevention rule, 

another variable gi,j acts as an indicator, which shows whether bus j is observed by a zero-

injection network of zero-injection bus i. 






                                                                                                    otherwise     ,0

    , businjection -zero ofnetwork injection -zeroby  observed is  bus if     ,1
,

ij
g ji

 (2.16) 

 Since overlap prevention rule is based on the situation that a bus is overlapped by 

multiple zero-injection networks, g variables always exist as a pair, which has same j and 

different is. In order to achieve the additional reduction of number of PMUs to be installed, 

(2.15) has to be modified as below. 
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where Z
i
 is set of buses in zero-injection network, which is formed by zero-injection bus i. Z

i
O is 

set of buses that are overlapped by another zero-injection networks. On the other hand, Z
i
NO is set 

of buses that are not overlapped by another zero-injection networks, meaning that bus i is the 

only one zero-injection bus that makes bus j to be included in zero-injection network. So, 

Z
i
O Z

i
NO = Z

i
 and Z

i
O Z

i
NO =  . In order to consider the buses overlapped by multiple zero-

injection networks, a term of ∑         
  is added. Moreover, observability variables fj are also 

divided into two different types of variables, fj and fi,j , so that overlapped buses look obvious in 

the formulation. Each fi,j variable corresponds to each gi,j variable. If any fi,j variable for j is 

observable, i.e., fi,j=1, fj corresponding that j will become 1. This relationship can be written as 

(2.18). Moreover, g variables for one bus overlapped by multiple zero-injection networks don‟t 

need to be 1 for all g variables. This is a key concept of overlap prevention rule, and this 

condition is included in inequality (2.19). 
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where O
j
zn is a set of zero-injection buses at which bus j is overlapped multiple times. Lastly, if 

and only if g variable for certain jth bus is 1, f variable, an observability variable, can become 1. 

However, gi,j=1 doesn‟t necessarily mean fj=1. This relationship is formulated as (2.20) 
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j

znjiji ZjOifg   ,     ,,,  (2.20) 
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 As a whole, the mathematical programming used in this thesis is the integer 

programming, and solves problem by categorizing the buses into two types of buses, non-zero-

injection bus and zero-injection bus. The set of formulas of this integer programming designed 

for solving optimal PMU allocation is summarized as below table. 

 

rules Constraints 

Rule 1 and 2 
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Table 2-2. Constraints categorization according to observation rules 

The solving process applying devised integer programming is presented from this 

paragraph. After IEEE 30 bus system is exemplified, results for other IEEE power bus system is 

also to be introduced. Figure 2-4 shows the IEEE 30 bus system. A bus, which doesn‟t have any 

AC source and demand (arrow), is regarded as zero-injection bus, while a bus, which has either 
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AC source or injection, or both of them, is regarded as non-zero-injection bus. Therefore, it is 

clear that there are six zero-injection buses within IEE 30 bus system, which are bus 6, 9, 22, 25, 

27, and 28. 

Figure 2-4. IEEE 30 bus system 

Also, buses in IEEE 30 bus system can be categorized in accordance with the integer 

programming used in this thesis as a deterministic approach.   

Category Lists of buses 

Zero-injection buses 6, 9, 22, 25, 27, 28 

Non-zero-injection 

buses 

1, 2, 3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 

21, 23, 24, 26, 29, 30 

Table 2-3. Non-zero-injection buses and zero-injection buses in IEEE 30 bus system 
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Based on the connections between buses in a given power grid diagram, aij is defined, 

and connectivity matrix A can be created. After this, the matrix can be divided into two parts, 

which are Ann for buses not in zero-injection networks and Azn for buses in zero-injection 

networks. 

Figure 2-5. Connectivity matrix A of IEEE 30 bus system 
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Figure 2-6. Non-zero-injection network connectivity matrix Ann of IEEE 30 bus system 

Figure 2-7. Zero-injection network connectivity matrix Azn of IEEE 30 bus system  

Category Lists of buses 

Buses in zero-injection networks 2, 4, 6, 7, 8, 9, 10, 11, 21, 22, 24, 25, 26, 27, 28, 29, 30 

Buses not in zero-injection networks 1, 3, 5, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23 

Table 2-4. Categorization of buses according to the networks buses belong to 
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Some elements in Azn are required to be more stressed than the others, since before using 

Azn for realizing observation rule 1, 2, and 3 for solving PMU allocation, buses overlapped by 

multiple zero-injection networks should be identified. Figure 2-8 explicitly represent which 

buses are overlapped by zero-injection networks, and integer programming model should reflect 

them in solving task. 

Table 2-5. Colored zero-injection network connectivity matrix Azn of IEEE 30 bus system 

As it was stated at the beginning of chapter 2, there are two objectives in this PMU 

allocation. The first objective is to minimize the number of PMUs placed and the second 

objective is to maximize the total redundancy over a given bus system. In this thesis, total 

redundancy is calculated as a sum of two types of redundancy. First type of redundancy comes 

from observation rule 1, which means that PMUs‟ direct or pseudo measurement can increase the 

level of redundancy of buses. The second redundancy comes from zero-injection measurement, 

and it‟s more complicated than the first redundancy due to the structural complexity of zero-

injection measurement. However it can be simplified when the definition of observation from 

zero-injection network is modified. Assuming that this integer programming model guarantees 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

6

9

22

25

27

28

Azn= 

Bus j in a zero-injection network generated by zero-injection bus i, which 

is not overlapped by another zero-injection network 

Bus j in a zero-injection network generated by zero-injection bus i, which 

is overlapped by another zero-injection network 

Lines recognizing overlapped buses 
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the perfect observability over a given system, it is plausible to redefine the second redundancy by 

zero-injection network that if redundancy value from observation rule 1 (redundancy 1) is 0 for 

bus i, redundancy value from observation rule 2 (redundancy 2) is 1. Observation rule 3 is not 

involved in redundancy calculation. For the redundancy 1, total number of redundancy 1 can be 

calculated by (2. 21). 

IixAR i
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     , 
1

1  (2.21) 

Redundancy 2 is then simply defined as (2.22). This simple expression is possible since 

(2.5) – (2.20) ensures complete observability over a power grid system. 
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     ,
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where | | is total number of buses in a given system. If we have IEEE-30 bus system, | | = 30. 

By applying (2.5) – (2.20) to this network structure of IEEE 30 bus system, a set of 

integer programming is generated. Table 2-4 shows the constraints corresponding to observation 

rule 1. 

 Bus in zero-injection 

network 

Bus not in zero-injection 

network 
Observability indication 

Bus 1  x1+x2+x3 ≥ 1 x1+x2+x3‒3f1 ≤ 0 

Bus 2 x1+x2+x4+x5+x6‒f2 ≥ 0  x1+x2+x4+x5+x6‒5f2 ≤ 0 

Bus 3  x1+x3+x4 ≥ 1 x1+x3+x4‒3f3 ≤ 0 

Bus 4 x2+x3+x4+x6+x12‒f4 ≥ 0  x2+x3+x4+x6+x12‒5f4 ≤ 0 

Bus 5  x2+x5+x7 ≥ 1 x2+x5+x7‒3f5 ≤ 0 

Bus 6 
x2+x4+x6+x7+x8+x9+x10+ 

x28‒f6 ≥ 0 
 

x2+x4+x6+x7+x8+x9+x10+ 

x28‒8f6 ≤ 0 

Bus 7 x5+x6+x7‒f7 ≥ 0  x5+x6+x7‒3f7 ≤ 0 
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Bus 8 x6+x8+x28‒f8 ≥ 0  x6+x8+x28‒3f8 ≤ 0 

Bus 9 x6+x9+x10+x11‒f9 ≥ 0  x6+x9+x10+x11‒4f9 ≤ 0 

Bus 10 
x6+x9+x10+x17+x20+x21+ 

x22‒f10 ≥ 0 
 

x6+x9+x10+x17+x20+x21+ 

x22‒7f10 ≤ 0 

Bus 11 x9+x11‒f11 ≥ 0  x9+x11‒2f11 ≤ 0 

Bus 12  
x4+x12+x13+x14+x15+x16 ≥ 

1 

x4+x12+x13+x14+x15+x16‒

6f12 ≤ 0 

Bus 13  x12+x13 ≥ 1 x12+x13‒2f13 ≤ 0 

Bus 14  x12+x14+x15 ≥ 1 x12+x14+x15‒3f14 ≤ 0 

Bus 15  x12+x14+x15+x18+x23 ≥ 1 
x12+x14+x15+x18+x23‒5f15 ≤ 

0 

Bus 16  x12+x16+x17 ≥ 1 x12+x16+x17‒3f16 ≤ 0 

Bus 17  x10+x16+x17 ≥ 1 x10+x16+x17‒3f17 ≤ 0 

Bus 18  x15+x18+x19 ≥ 1 x15+x18+x19‒3f18 ≤ 0 

Bus 19  x18+x19+x20 ≥ 1 x18+x19+x20‒3f19 ≤ 0 

Bus 20  x10+x19+x20 ≥ 1 x10+x19+x20‒3f20 ≤ 0 

Bus 21 x10+x21+x22‒f21 ≥ 0  x10+x21+x22‒3f21 ≤ 0 

Bus 22 x10+x21+x22+x24‒f22 ≥ 0  x10+x21+x22+x24‒4f22 ≤ 0 

Bus 23  x15+x23+x24 ≥ 1 x15+x23+x24‒3f23 ≤ 0 

Bus 24 x22+x23+x24+x25‒f24 ≥ 0  x22+x23+x24+x25‒4f24 ≤ 0 

Bus 25 x24+x25+x26+x27‒f25 ≥ 0  x24+x25+x26+x27‒4f25 ≤ 0 

Bus 26 x25+x26‒f26 ≥ 0  x25+x26‒2f26 ≤ 0 

Bus 27 
x25+x27+x28+x29+x30‒f27 ≥ 

0 
 

x25+x27+x28+x29+x30‒5f27 ≤ 

0 

Bus 28 x6+x8+x27+x28‒f28 ≥ 0  x6+x8+x27+x28‒4f28 ≤ 0 

Bus 29 x27+x29+x30‒f29 ≥ 0  x27+x29+x30‒3f29 ≤ 0 

Bus 30 x27+x29+x30‒f30 ≥ 0  x27+x29+x30‒3f30 ≤ 0 

Table 2-6. Constraints for observability of buses based on observation rule 1 
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In addition to those constraints, constraints, which express observation rule 2 and 3, can 

also be formulated as Table 2-5. 

For zero-injection 

networks  
Constraints based on (2-17) 

Bus 6 f2+f4+f6,6+f7+f6,8+f6,9+f6,10+f6,28 ≥ 2+g6,6+g6,8+g6,9+g6,10+g6,28 

Bus 9 f9,6+f9,9+f9,10+f11 ≥ g9,6+g9,9+g9,10 

Bus 22 f22,10+f21+f22+f22,24 ≥ 1+g22,10+g22,24 

Bus 25 f25,24+f25,25+f26+f25,27 ≥ g25,24+g25,25+g25,27 

Bus 27 f27,25+f27,27+f27,28+f29+f30 ≥ 1+g27,25+g27,27+g27,28 

Bus 28 f28,6+f28,8+f28,27+f28,28 ≥ g28,6+g28,8+g28,27+g28,28‒1 

Table 2-7. Constraints based on observation rule 2 and 3 

For zero injection 

networks  
Constraints based on (2-18) Constraints based on (2-19) 

Bus 6 f6,6+f9,6+f28,6‒3f6 ≤ 0 g66+g96+g286 ≥ 1 

Bus 8 f6,8+f28,8‒2f8 ≤ 0 g68+g288 ≥ 1 

Bus 9 f6,9+f9,9‒2f9 ≤ 0 g69+g99 ≥ 1 

Bus 10 f6,10+f9,10+f22,10‒3f10 ≤ 0 g610+g910+g2210 ≥ 1 

Bus 24 f22,24+f25,24‒2f24 ≤ 0 g2224+g2524 ≥ 1 

Bus 25 f25,25+f27,25‒2f25 ≤ 0 g2525+g2725 ≥ 1 

Bus 27 f25,27+f27,27+f28,27‒3f27 ≤ 0 g2527+g2727+g2827 ≥ 1 

Bus 28 f6,28+f27,28+f28,28‒3f28 ≤ 0 g628+g2728+g2828 ≥ 1 

Table 2-8. Constraints for indicator variable fj and gi 

For (i, j) pair Constraints based on (2-19) 

(6, 6) g66‒f66 ≥ 0 

(6, 8) g68‒f68 ≥ 0 

(6, 9) g69‒f69 ≥ 0 

(6, 10) g610‒f610 ≥ 0 

(6, 28) g628‒f628 ≥ 0 
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(9, 6) g96‒f96 ≥ 0 

(9, 9) g99‒f99 ≥ 0 

(9, 10) g910‒f910 ≥ 0 

(22, 10) g2210‒f2210 ≥ 0 

(22, 24) g2224‒f2224 ≥ 0 

(25, 24) g2524‒f2524 ≥ 0 

(25, 25) g2525‒f2525 ≥ 0 

(25, 27) g2527‒f2527 ≥ 0 

(27, 25) g2725‒f2725 ≥ 0 

(27, 27) g2727‒f2727 ≥ 0 

(27, 28) g2728‒f2728 ≥ 0 

(28, 6) g286‒f286 ≥ 0 

(28, 8) g288‒f288 ≥ 0 

(28, 27) g2827‒f2827 ≥ 0 

(28, 28) g2828‒f2828 ≥ 0 

Table 2-9. Constraints for relationship between fi and gi variables 

Finally, formulation on the redundancy calculation for IEEE 30 bus system can be made 

as Table 2-8.  

 Equations based on (2-21) and (2-22) 

Redundancy 1 

r1=3x1+5x2+3x3+5x4+3x5+8x6+3x7+3x8+4x9+7x10+2x11+6x12+2x13+3x14+5x1

5+3x16+3x17+3x18+3x19+3x20+3x21+4x22+3x23+4x24+4x25+2x26+5x27+4x28+3x

29+3x30 

Redundancy 2 
r2=30 – ( f1+f2+f3+f4+f5+f6+f7+f8+f9+f10+f11+f12+f13+f14+f15+f16+f17+f18+f19+ 

f20+f21+ f22+f23+f24+f25+f26+f27+f28+f29+f30) 

Table 2-10. Equations for redundancy calculation 

All those constraints and equations are solved with an objective function,  
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where w1 and w2 are weights, which are given to redundancy 1 and 2, respectively according to 

decision maker‟s intention for finding optimal answer. These weight factors will be emphasized 

in chapter 3. 

2.6 Results and Discussion 

In this section, the results based on an optimal PMU placement model introduced in 

section 2.5 are shown. In this study, GAMS (General Algebraic Modeling System) software and 

a solver, BARON (Branch-And-Reduced Optimization Navigator) are used to solve this 

optimization problem. Figure 2-8 indicates the optimal PMU allocation point when the designed 

model is solved. 
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Figure 2-8. Optimal PMU location at IEEE 30 bus system 

This result comes with a set of information regarding observability and redundancy for 

this power grid system. First, the 7 buses are chosen as a place that PMUs have to be located, 

which are bus 2, 4, 10, 12, 15, 19, and 27. In addition to this, total redundancy value is found as 

41, 36 of them from redundancy 1 and 5 from redundancy 2. The outcome from IEEE 30 bus 

system is summarized in Table 2-9. 

 

 



33 

 

 

IEEE 30 Buses 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Sum 

PMU placement 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 7 

Redundancy 1 1 2 1 3 1 3 0 0 1 1 0 3 1 2 2 1 1 2 1 1 1 1 1 0 1 0 1 1 1 1 36 

Redundancy 2 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 5 

Total Redundancy 1 2 1 3 1 3 1 1 1 1 1 3 1 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 41 

Table 2-11. Optimal solution of IEEE 30 bus system 

Since the number of PMUs is 7 and total number of buses is 30, percentage of buses 

occupied by PMUs is 23.3%, which is successfully fall into the range of 1/5 to 1/4 that is stated 

in [56]. This solving procedure can be applied to another power grid system. In this study, the 

optimal PMU location selection for IEEE 14, 30, 39, 57, 108 bus systems is executed. By 

applying proposed model, results of Table 2-10 are achieved. 

IEEE 

system 

# of 

PMU 
Location of PMU 

Percentage of buses 

occupied by PMUs 
Redundancy 

14 bus 3 2, 6, 9 21.4% 16 

30 bus 7 2, 4, 10, 12, 15, 18, 27 23.3% 41 

39 bus 8 8, 10, 16, 18, 20, 23, 25, 29 20.5% 43 

57 bus 11 
1, 4, 13, 19, 25, 29, 32, 38, 

41, 51, 54 
19.3% 61 

118 bus 28 

3, 8, 11, 12, 17, 21, 27, 31, 

32, 34, 37, 40, 45, 49, 53, 

56, 62, 72, 75, 77, 80, 85, 

86, 90, 94, 101, 105, 110 

23.7% 156 

Table 2-12. Optimal solutions for IEEE bus systems 

There have been many different kinds of approaches to solve optimal PMU placement 

problem. As stated in section 2.4, the authors utilized a broad spectrum of the fashion of the 
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moment algorithms and methods. At the same time the variety in those approaches has also 

brought out the variety in optimal values for problems. So, comparing the solutions generated by 

proposed methodology from this study with other approaches represents a good sense in terms of 

effectiveness of the algorithm. Table 2-11 and 2-12 clearly show the comparison between results 

of PMU allocation strategies from unique approaches. 

Ref. # Methods 14bus 30bus 39bus 57bus 118bus 

 
Proposed method (ILP) 3 7 8 11 28 

[32] Simulated annealing 3 - 8 - 29 

[28] Tabu search 3 - 10 13 - 

[33] Genetic algorithm 3 7 - 12 29 

[16] Particle swarm optimization 3 7 - 11 28 

[21] Generalized integer programming 3 7 - 11 - 

[29] Immunity genetic algorithm 3 7 - 11 28 

[34] Binary search algorithm 3 7 8 - - 

[18] Integer non-linear programming 3 - - 12 29 

[20] ILP by Dua et al. 3 - - 14 29 

[30] ILP by Aminifar et al. 3 7 8 11 28 

[26] ILP by Enshaee et al. 3 7 8 11 28 

[35] Imperialistic competition algorithm 3 7 - 11 28 

[36] Chemical reaction optimization 3 7 - 14 29 

[37] Three stage heuristic method 3 7 8 11 28 

Table 2-13. Comparison in terms of minimizing the number of PMUs 
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Since each strategy has used its unique algorithms and methods, it is difficult to judge the 

superiority between those approaches. Although each approach has its own originality, the 

effectiveness of them, in this study, is measured exclusively based on the number of PMUs 

found and level of redundancy which is achieved from that set of PMUs. Table 2-11 represents 

the level of redundancy of some strategies, which are comparatively better than others in terms 

of effectiveness, i.e., minimum number of PMUs. Especially [16] using particle swarm 

optimization, [29] using immunity genetic algorithm, [34] using binary search algorithm, [30] 

and [26] using integer linear programming, [35] using imperialistic competition algorithm, [37] 

using three stages of heuristic method, and the integer programming approach proposed in this 

study are selected as most effective strategies in terms of PMU allocation efficiency. Table 2-22 

shows the total redundancy levels of those selected effective strategies. 

Ref. # Methods 14bus 30bus 39bus 57bus 118bus 

 
Proposed method (ILP) 16 41 43 61 156 

[16] Particle swarm optimization 16 37 - 60 147 

[29] Immunity genetic algorithm 16 33 - 60 148 

[34] Binary search algorithm 16 39 43 - - 

[30] ILP by Aminifar et al. 16 34 43 59 148 

[26] ILP by Enshaee et al. 16 41 43 59 156 

[35] Imperialistic competition algorithm 16 41 - 59 156 

[37] Three stage heuristic method 16 36 43 60 148 

Table 2-14. Comparison in terms of maximizing the level of redundancy 
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Table 2-12 clearly indicates that a strategy proposed in this study finds best answers with 

regard to effectiveness of solutions, i.e., minimization of number of PMUs and maximization of 

level of redundancy at each IEEE system.  

 Based on the fact that the proposed strategy is effective in finding both minimum number 

of PMUs and maximum level of redundancy, a practical assumption can be incorporated in this 

problem that can give a decision maker more choices on determining the location of PMUs. 

Previous results are only focused on optimum answers for overall power grid systems. However, 

it is possible that a decision maker wants to put more weight on a particular bus than other buses 

[38]. This can happen when a decision maker thinks that a particular bus is more important than 

other buses and that bus should have higher level of redundancy than other buses. A new set of 

experiments can conducted, which reflects this idea and in this study, a constraint that a level of 

redundancy at a particular bus should be greater than or equal to 3 in IEEE 30 bus setting. Table 

2-13 shows the results of a set of experiments for this consideration. 

Bus PMU placement No. R Efficiency (R/PMU) 

Normal case 2, 4, 10, 12, 15, 19, 27 7 41 5.86 

R 3 at bus 1 1, 2, 3, 10, 12, 15, 18, 27 8 42 5.25 

2 2, 4, 6, 10, 12, 15, 18, 29 8 46 5.75 

3 1, 2, 3, 4, 10, 12, 15, 18, 26 9 47 5.22 

4 2, 4, 10, 12, 15, 19, 27 7 41 5.86 

5 2, 4, 10, 12, 15, 18, 27 7 41 5.86 

6 2, 4, 5, 7, 10, 12, 15, 18, 27 9 46 5.11 

7 2, 4, 10, 12, 15, 20, 27 7 40 5.71 

8 1, 5, 6, 7, 10, 12, 15, 18, 27 9 46 5.11 
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9 2, 4, 6, 8, 10, 12, 15, 18, 27, 28 10 54 5.40 

10 2, 4, 6, 9, 10, 12, 15, 18, 27 9 50 5.56 

11 (2) 2, 4, 6, 10, 12, 15, 20, 27 8 46 5.75 

12 2, 4, 9, 10, 11, 12, 18, 24, 27 9 44 4.89 

13 (2) 2, 4, 10, 12, 15, 20, 27 7 40 5.71 

14 3, 7, 10, 12, 13, 15, 18, 27 8 39 4.88 

15 2, 4, 10, 12, 14, 15, 20, 27 8 43 5.38 

16 2, 4, 10, 12, 15, 18, 27 7 41 5.86 

17 1, 7, 12, 16, 17, 19, 24, 30 8 34 4.25 

18 3, 5, 10, 13, 15, 16, 17, 20, 29 9 37 4.11 

19 2, 4, 10, 12, 15, 18, 19, 27 8 44 5.50 

20 1, 5, 10, 12, 18, 19, 20, 24, 27 9 40 4.44 

21 1, 5, 10, 12, 18, 19, 20, 24, 27 9 40 4.44 

22 2, 4, 10, 12, 15, 18, 21, 22, 27 9 47 5.22 

23 2, 4, 10, 12, 19, 22, 24, 27 8 42 5.25 

24 2, 4, 10, 12, 15, 19, 23, 24, 27 9 46 5.11 

25 1, 7, 10, 12, 18, 22, 24, 25, 27 9 41 4.56 

26 (2) 2, 4, 10, 12, 19, 24, 25, 27 8 41 5.13 

27 2, 4, 10, 12, 15, 18, 25, 26, 27 9 51 5.67 

28 2, 4, 10, 12, 18, 24, 25, 27, 28 9 45 5.00 

29 2, 4, 6, 10, 12, 15, 18, 27, 28 9 51 5.67 

30 2, 4,10, 12, 15, 18, 27, 29, 30 9 47 5.22 

Table 2-15. Additional experiments considering emphasis on a particular bus 
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CHAPTER 3 

HARMONIZED DECISION MODEL FOR PMU ALLOCATION IN SMART GRID 

CONTEXT 

3.1 Introduction 

A primary role of the decision models for smart grid systems should be able to maximize 

the effectiveness of investment, by minimizing the cost for the optimal resource allocation in a 

given system. Based on the importance of the economic feasibility, there have been various 

topics of decision making for the optimal component allocation in the smart grid industry; 

however, there is a limited effort to realize the decision making framework, which can 

harmonize the physical and operational aspects of smart grid components. Due to the ruinous 

complexity of an exhaustive approach, each model has been designed separately based on its 

own assumptions without enough reflection of their functions. Although the functions of the 

smart grid significantly vary based on the definition of the smart grid systems and the scope of 

the investigation, several key functions that have higher priority and importance in the 

deployment of smart grid technologies are introduced – refereeing the reports from National 

Institute of Standard and Technology (NIST) [39] and Electrical Power Research Institute 

(EPRI) [8, 40]. 

This chapter extends the scope of PMU allocation task to overall system requirement 

analysis task and presents a harmonized decision modeling process that can be employed to 

realize a decision support system for the smart grid system analysis. This work is based on an 

idea that the component allocation strategy in smart grid systems should reflect the operational 

circumstances and should maintain the model hospitable for achieving a practical decision 

considering the functionality of smart grid systems. In this research, a new PMU allocation 
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modeling process is used to describe the proposed modeling framework and the IEEE bus 

systems are used to validate the work. In the next section, the exiting literature related to the 

decision making for the smart grid resource is presented. In Section 3, the harmonized decision 

modeling process is described. In Section 4, a component allocation is modeled and solved by 

using the harmonized decision model. 

3.2 Review of Decision Making in Smart Grid 

For this literature review, four key functional areas (i.e., demand response, real-time 

wide-area situational awareness, distributed electric units, and distribution grid management) are 

selected based on the discussion in [8, 39-41]. 

Demand response is a management strategy, which encourages energy consumption to 

control energy use in response to supply condition. This function also enables less expensive 

management to intelligently influence a load than the establishment of a new utility facility [42]. 

Bakker et al. [43] try to design the optimization methodology, which can incorporate 

communication between different technologies to reshape the energy demand profile. Due to 

much computational power required, their planning and control methodology is organized in a 

tree structure applying three steps of optimization levels. Mohsenian-Rad and Leon-Garcia [44] 

point out problems in utilization of the potential benefits of real-time pricing tariffs. They 

propose an optimal and automatic residential energy consumption scheduling framework for 

achieving a desired trade-off between minimizing the electricity payment and minimizing the 

waiting time for the operation of each appliance in household. 

Real-time wide-area situational awareness plays a crucial role in smart grid as a measure 

for grid protection and control by providing time-synchronized data of power system operating 

states [45]. The information that system operators have influences on how effective a grid 
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system‟s reaction will be against the contingencies. Zhu and Abur [46] describe the need for 

phasor measurements to overcome the limitation of conventional measurements. Authors show 

that by including redundant phasor information, errors in the parameters can be correctly 

identified. Aminifar et al. [30] present a model for the optimal placement of phasor measurement 

units (PMUs) considering contingency conditions (i.e., line outages and loss of measurements). 

Their work shows that integer programming can find the global optimality of PMU allocation 

problem with reasonable computational complexity. 

The emergence of smart grid has stimulated the electric units to be distributed from one 

centralized spot [6]. This involves distributed generation unit, electricity storage, electric 

vehicles, and the qualitative improvement in demand side management. Bu et al. [47] present a 

distributed stochastic power generation unit commitment scheme by using hidden Markov 

models and a Markov-modulated Poisson process for modeling renewable energy resources and 

the power demand load, respectively. The effectiveness of their scheme is evaluated in terms of 

the cost of energy and pollutant emission through the simulation. Jia et al. [48] introduce the 

optimization process of the sizing and siting of electric vehicle charging stations. Their approach 

defines variables to represent the charging demand, and formulates the problem with a mixed 

integer quadratic programming with a graph theory. 

Distribution grid management focuses on maximizing performance of electrical 

components of networked distribution systems and integrating them with transmission systems 

and customer operations [39]. Oshiro et al. [49] aims to perform voltage control in distribution 

system by the cooperative control between the interfaced inverter with distributed generation and 

the existing voltage control devices. In their work, a one-day schedule of voltage references for 

the control devices is determined by the optimization calculation. In [50], Soma et al. develop a 
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model of Information and Communication Technology (ICT) system that considers the position 

of ICT infrastructure, and then propose a decision making process for finding the optimal 

allocation of WiMAX antennas with an active distribution network planning algorithm. In 

addition, Galli et al. [51] point that there was not enough efforts to give quantitative guidelines 

on how to choose one communication technology over the other in the design of smart grid. 

They analyzed the role of power-line communications, and conducted electrical and topological 

analysis of the power distribution network. 

3.3 Harmonized Decision Modeling Process 

Since the purpose of the traditional decision making has been the minimization of the 

amount of financial investment while ensuring the normal and stable operations of a given 

system, the traditional processes have mainly stressed the aspect of economic feasibility rather 

than the considerations on the substantive operational aspects. However, the more suitable 

decision model process has to animate the model by incorporating the operational aspect of 

system. Specifically, the decision model should include the considerations on the functionality of 

component for enhancing the utility of solution, as well as the economic feasibility by 

minimizing cost. Feasibility of the model needs to be reinforced and confirmed by a decision 

maker for embracing the variability in operation of system. 

Due to the complexity of smart grid system, it is neither an extemporary nor a simple task 

to find a generalized methodology that can define the model structure applied in smart grid 

context. In this article, we propose a general decision modeling process for smart grid component 

allocation as shown in Figure 3-1. 

 



42 

 

 

Figure 3-1. Harmonized decision modeling process 

When applying this decision modeling process in the smart grid context, a decision maker 

needs to identify the functions, which are expected as results of the installation and operation of 

the component in a given grid system. Since the complexity in function identification (e.g., an 

entanglement between functionalities over multiple domains) is frequently arisen, this step 

encourages a decision maker to conduct the exhaustive review on the functional effects of the 

component. 

While the step of function identification is for sketching a rough outline of decision to be 

made, the requirement detection process requires the decision maker to study the problem with 

various angles and depths for defining important points to be handled through the model. The 

requirements discovered in this process are the requirements of system, which is directly related 
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to the realization of elemental operation, and also the decision requirements, which should 

involve the circumstantial consideration. 

The problem structuring is the next step, and a focused way of thinking [52] for solving 

the problem given by the function and the system requirement. Problem structuring can be 

conducted with identification of several parts of a problem, such as goals, variables, parameters, 

constraints, and possible uncertainties [53]. The model building is very dynamic process 

interacting with the problem structuring [54]. Particularly, the feasibility of model must be 

considered in this process. In contrast with the prior processes that specialize the decision model 

based on the functions and requirements discovered, the model building process must accord 

flexibility to the model, so that it can tolerate the inherent complexity of the problem and the 

variability in the operational application. After the solving process according to the harmonized 

decision modeling, the results need to be evaluated by the stakeholder. 

3.4 Harmonized Decision Model Structure and Formulation for PMU Allocation 

Although there has been a noticeable research works dealing with the PMU allocation 

[55] as stated in chapter 2, those research works have mainly focuses on the minimization of 

number of PMUs to be placed in a given system. As a result, PMU allocation has been apt to 

simply reduce the number of PMU, rather than to consider the harmonization of model with the 

environment of the region where PMUs will function and with the variability of system 

operation. Based on the proposed sequence of decision modeling methodology, PMU placement 

problem can be restructured.  

The primary function that a decision maker or stakeholder in a business of PMU 

operation could anticipate is the electrical state measurement for determining the health of the 

electricity grid system. Based on this primary function, several derived functions can also be 
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discovered (e.g., prevention of power outage, load control including the load shedding, increase 

in power quality, system interconnection, generator and line modeling, renewable source 

integration, congested area control requiring online monitoring and so on). The examination 

considering the subsidiary functionalities of the component encourages a decision maker to 

expand the boundary of idea on requirement detection. As stated above, three concrete functions 

can be taken into account, that are prevention of power outage, load control including load 

shedding, and the increase in power quality. First, real-time monitoring can detect the fault in the 

energy grid system, and suppress the wide spread of power outage. Since the impact of power 

outage varies depending on the situation where it occurs, it is important to consider the factor 

that could affect the significance of impact. The power outage impact can be determined by 

considering the population that will be affected by a fault of a certain substation or lines linked to 

the substation, the significance of electrical facilities operated by substations, and the presence of 

interregional area in each region. For instance, the region that has more population would have 

greater importance than other regions in terms of the importance of prevention of power outage. 

And the region that has a governmental agency highly relies on the computer systems utilizing 

critical data would have to receive more significant attention than other regions. If a region is 

acting as an interregional gate where connects two different regions, more considerations need to 

be located on that region. Also, a load control is a noticeable function that would be performed 

by the utilization of PMU. When the load control function is considered, the amount of 

electricity consumed in a specific region will come into the spotlight due to the high possibility 

of the high demand region to be in need of the load control. As the last additional function, the 

increase in power quality is expected to be dealt with in the PMU allocation. This function 

attracts the entity that is sensitive to the quality of electricity. For example, to manufacturers 
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producing subminiature devices (e.g., semiconductor chips), even a minimal change in electrical 

performance can seriously affect their productivity and the quality of products. The requirements 

listed here are particularly meaningful in the demand side aspect, while other aspects also exist: 

that are system interconnection, generator and line modeling, renewable integration, and 

congested area requiring online monitoring. However, this paper focuses on the five selected 

requirements preferentially. The other requirements will be considered in future research. 

In the problem structuring, the requirements are entered in the model as objectives. To 

earn the technical margin of modeling for further applicable operations, the design of model 

focuses on efficient solving process. Although the determination of the significance of each 

factor through the systematic calculation is required, this calculation is beyond the scope of this 

research. Thus, in this paper it is assumed that the valid calculation for each factor of each region 

is done by a statistical decision support tool. 

As a whole, there are six objectives in this PMU allocation considering smart grid system 

context: 1) minimization of the number of PMUs to be installed; 2) maximization of population, 

which is supplied by substations observed by PMUs; 3) maximization of significance of facilities 

in regions, which are supplied by substations observed by PMUs; 4) maximization of level of 

observation for interregional area; 5) maximization of amount of electricity demand of regions, 

which are supplied by substations observed by PMUs; and 6) maximization of the number of 

facility sensitive to the quality of electricity in regions observed by PMUs. Based on them, a 

multi-objective problem having six objectives can be: 

Sx

xFxFxFxFxFxF

i

iiiiii

 subject to

 ),( max ),( max ),( max ),( max ),( max ),( min 654321
 (3.1) 
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where S is the set of feasible solutions in which xi = 1, if a PMU is placed at bus i, otherwise xi = 

0, for all i ∈{1, 2, …, n}, and n is the  number of buses in a given system. 

Apparently, this is a complex problem, which involves six different objectives, and it 

would be very hard for these objectives to harmonize each other. In other words, these multi-

objectives would be excessively competitive each other, which could lead to the invalid solution. 

It means that the best PMU allocation for the one objective may not be the best for the other 

objectives. Also, when it is recalled that the original PMU allocation has been a large-scale 

combinatorial optimization problem [28], to solve a hexa-objective combinatorial problem 

having two factors, number of PMU (NPMU) and placement set S(NPMU), becomes a formidable 

task. 

As a way to allow the model to keep computational tolerance for solving the problem, the 

objectives of (3.1) need to be restructured. In this study, the minimization of number of PMUs to 

be installed (i.e., min F1(xi)) is regarded as a primary objective of PMU allocation and the other 

five objectives in (3.1), which are related to the requirement of harmonized modeling, are 

expressed as a function of redundancy. Equation (3.2) describes how six different objectives are 

standardized as a function of number of PMUs and level of redundancy. There are two 

distinctive features in this formulation. It uses the weighted sum method, which utilizes a priori 

articulation of preferences, one of the main methods solving multi-objective optimization, and it 

integrates all different parameters into the model as a function of redundancy, so that the model 

can be used in various applicable circumstances of operation and also can retain the 

computational margin in solving process. 
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where, pi = population of regions where bus i supplies electricity, si = significance of 

facilities in regions where bus i supplies electricity, ti = index of interregional area, di = electrical 

demand of regions where bus i supplies electricity, ei = level of sensitivity of facilities in regions, 

where bus i supplies electricity, and w1, w2, w3, w4 and w5= weights for pi, si, ti, di, and ei, 

respectively. Each parameter in the objective function of redundancy is normalized by dividing it 

by sum of parameters of all buses. Weight function wi implies the level of importance which a 

decision maker attributes. 

Equations (2.5) to (2.20) in Chapter 2 are used without any change, which formulate the 

relationship between buses in a power grid system. Since the model generated from this 

harmonized decision modeling process for PMU allocation should calculate the level of 

redundancy of each bus, (2.11) and (2.12) cannot be used as it is, and they should be modified. 

For calculating level of redundancy of each individual bus, new equations (3.3) – (3.6) are 

designed. 
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3.5 Results and Discussion 

 As case studies, IEEE 30 bus system and 50 bus system are chosen and solved by using a 

mathematical model devised from harmonized decision modeling process. Artificially made data 

sets are also utilized in this problem. The population, and electrical demand are randomly 

generated integral values within pi(people)∈[5,000, 500,000], and di(kWh)=piu where u(kWh)∈

[25, 50]. The ranges of three integral indices are presupposed as si∈[0, 5], ti∈[0, 2], and ei∈[0, 

2], respectively. Figure 3-2 shows the different optimal PMU allocations based on the different 

modeling approaches.  
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Figure 3-2. Changes in PMU location according to modeling approach 

First diagram indicates the optimal PMU allocation point when this problem is dealt with 

as a mere location selection problem based on the network configuration, and bus 2, 4, 10, 12, 

15, 18, and 27 are chosen to have PMUs. Second diagram show the optimal PMU allocation, 

which are solved by the harmonized decision model. The different circumstantial factors affect 

the component allocation layout with 27% disparity in PMUs allocation. This result explicitly 

describes that real world component allocation problem should incorporate the considerations on 

the operation condition of component according to the functionality in smart grid context. The 

following three tables validate that harmonized modeling process can make difference in optimal 

PMU placement plan. Two indices are used to show the disparity between the solutions of 

original model and harmonized model. Changes in PMU location of PMUs are calculated by 

equation (3.6) and improvement in redundancy is calculated by equation (3.7) 
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where xi
H 

 is PMU placement variable of harmonized decision model and its meaning is same 

with (2.5). RH is the total redundancy achieved by a solution found from the harmonized model 

and RT is the total redundancy achieved by a solution found from the original model. To reflect 

decision maker‟s intention, weight values are applied to a model. Those weights indicate how 

much of importance a decision maker put on each factor. In other words, the harmonized 

decision model solves the problem based on decision maker‟s subjective intention as well as the 

objective parameters quantifying circumstantial factors. 

Table 3-1. Comparison of decisions in IEEE 30 bus system 

Table 3-2. Comparison of decisions in IEEE 57 bus system 
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Table 3-3. Comparison of decisions in IEEE 118 bus system 

The results show that harmonized decision model makes differences in the location of 

PMUs to be installed and the total redundancy in given power grid systems. The variation is also 

observed in comparison between different weighting values within a single parameter set. For 

example, even though same parameter values are generated and used for IEEE 118 bus system, 

there are significant changes in PMU location according to weighting values. When (5/2/1/1/1) is 

applied as weights for each factor, the 7 PMUs‟ locations are changed, while (2/2/2/2/2) changes 

only 1 PMU‟s location. Improvement in redundancy is expressed as percentiles to avoid the 

biased interpretation. The results show that harmonized model enhances the observability over a 

power grid system by changing the location of PMUs based on the values of both parameters and 

weights. 
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CHAPTER 4 

DISCUSSION AND CONCLUSION 

This thesis has presented an effective modeling strategy for optimal PMU placement 

associated with efficient allocation of resources and harmonized decision making process. The 

main objectives of the research are as follows: 

1. The development of optimal PMU placement models based on the observability rules. 

The model tries to find the optimal allocation of PMUs by minimizing the number of 

PMUs required and maximizing the overall level of redundancy. 

2. The development of modeling processes that incorporates the circumstantial factors 

around the operation of phasor measurement systems. This approach extends the 

boundary of PMU allocation from a network optimization problem to the system 

requirement analysis. 

The introduction of redundancy prevention rule and indicator variable formulating 

redundancy prevention rule is one of the fundamental contributions of this thesis. The objective 

of this approach is to reduce the required number of PMUs by rigorously manipulating the 

network characteristics of PMU measurement. By using indicator variables, the number of 

variables and formulas was reduced and it enabled model to solve the problem more efficiently, 

finding better answers than other approaches. The model was tested on IEEE test systems. The 

results showed that PMU placement with proposed integer programming yields minimized 

number of PMUs among research works. Also, the model succeeded in maximizing the level of 

total redundancy compared to other research works. It is expected that this results can convince a 

decision maker of the reliability of this model and can be used as a basic structure of optimal 

PMU placement model.  One of the future research topics that can be derived from this research 
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is a multi-stage scheduling of PMU placement. In real world situation of PMU installation, it is 

hard to install all of the PMUs at once due to the limitation in budget, and they are usually 

installed step by step according to a plan made by a utility or government. So the decision 

support system coming up with a solution for multi-stage installation scheduling is promising. 

The development of harmonized modeling process was introduced and demonstrated. As 

a main contribution of this thesis, this modeling process contains the consideration on 

operational circumstance of systems and reflects the outcomes of system analysis in modeling 

process. The system analysis in this study has placed emphasis on function identification and 

requirement detection of PMU system, a component of smart grid systems. Since each smart grid 

component has its own functionalities and requirements, the modeling process of the resource 

allocation should deals with different factors in its decision making process.  The harmonized 

modeling process tried to standardize this circumstantial aspect of resource allocation in smart 

grid context. It incorporated circumstantial factors as coefficients of redundancy variables into 

decision model to reduce computational burden. Also, the addition of weights was introduced. In 

conclusion, it turned out that the harmonized decision model can solve the optimal PMU 

placement problem from a different point of view, and the model can suggest a decision 

considering not only component network characteristics but also operational circumstance 

around the system and decision makers‟ own intention. The results made in IEEE bus systems 

indicated that harmonized decision model suggests an even better solution than original solution 

according to factors included in modeling process. In the future research, a decision model for 

different types of components or requirements can be discovered depending on component‟s own 

functionalities. Although that will require a decision modeler to build a decision model with a 
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different structure, this harmonized decision modeling process can serve as a guideline of 

establishment of a decision support system. 
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 As a key technology for enhancing the smart grid system, Phasor Measurement Unit 

(PMU) provides synchronized phasor measurements of voltages and currents of wide-area 

electric power grid. With various benefits from its application, one of the critical issues in 

utilizing PMUs is the optimal site selection of units.  

  The main aim of this research is to develop a decision support system, which can be used 

in resource allocation task for smart grid system analysis. As an effort to suggest a robust 

decision model and standardize the decision modeling process, a harmonized modeling 

framework, which considers operational circumstances of component, is proposed in connection 

with a deterministic approach utilizing integer programming. With the results obtained from the 

optimal PMU placement problem, the advantages and potential that the harmonized modeling 

process possesses are assessed and discussed. 
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