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A flexible approach for testing association in two-way contingency tables is presented. It is simple, does 
not assume a specific form for the association and is applicable to tables with nominal-by-nominal, 
nominal-by-ordinal, and ordinal-by-ordinal classifications. 
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Introduction 
In many social and medical studies a crucial 
question is whether the categorical variables 
forming a contingency table are independent. 
Suppose that a sample of N observations is 
classified with respect to two categorical 
variables, one with r levels and the other with c 
levels. Using the notation in Table 1 for this 
two-dimensional table, ijn  denotes the observed 

frequency for cell (i, j), and .in  and jn.  denote 

the row and column totals, respectively. Also, 

ijP  is estimated by ˆ = ij
ij

n
P

N
. 
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Log-linear models are a general 
approach for the analysis of contingency tables. 
The major advantages of log-linear models are 
that they provide a systematic approach to the 
analysis of complex multidimensional tables and 
estimate the magnitude of effects of interest; 
consequently, they identify the relative 
importance of different effects (Agresti, 2002). 
Let ijm  denote the expected frequencies in a 

two-way contingency table with nominal row 
and column classifications. In addition, let x and 
y represent the row and column variables, 
respectively. In the standard system of 
hierarchical log-linear models, there are two 
possible models. The saturated model 
 

log( )  x y xy
ij i j ijm λ λ λ λ= + + +           (1) 

 

Table 1: Notation for a Two-Way Contingency Table 

Row 
Variable

Column Variable 
Total 

1  j  c 

1 
n11 
p11 

… n1j 
p1j 

… n1c 
p1c 

n1. 
p1. 

i 
ni1 
pi1 

… nij 
pij 

… nic 
pic 

ni. 
pi. 

r 
nr1 
pr1 

… nrj 
prj 

… nrc 
prc 

nr. 
pr. 

Total 
n.1 
p.1 

… n.j 
p.j 

… n.c 
p.c 

N 
1 
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has rc parameters and zero degree of freedom 
(d.f.). Hence, this model describes the data 
perfectly, however, it is not useful because it 
does not provide data reduction. The model only 
serves as a baseline for comparison with the 
independence model. 

The independence model 
 

log( ) x y
ij i jm λ λ λ= + +            (2) 

 
has 1cr −+  parameters and )1c)(1r( −−  d.f. 
for testing lack of fit. Thus, the hypothesis of 
independence can be tested by comparing the 
saturated and independence models. The 
deviation from independence can be measured 
by the likelihood ratio statistic (LR) 


= =











=

r

1i

c

1j ij

ij
ijI m̂

n
logn2D  

 
where ij i . . jm̂ n n / N=  is the estimation of the 

expected frequency in the ith category of the row 
and the jth category of the column variable under 
the hypothesis of independence ( 0H ). If 0H  is 

true, DI has an asymptotic Chi-square 
distribution with (r-1)(c-1) degrees of freedom. 

The log-linear method presented has a 
number of limitations. First, it often has low 
power to detect departures from independence, 
especially when the dimension of the table 
increases (Davis, 1991). Second, it treats all 
classifications as nominal; therefore if the order 
of categories changes for a variable in any way, 
the fit remains the same (Agresti, 2002). Instead, 
if the row and column variables are both ordinal 
with known scores, the Linear-by-Linear 
association model can be used. On the other 
hand, when scoring is used only for one of the 
row or column variables, the row-effect or 
column-effect association model can be used 
(Agresti, 1984). 

In practice it may not be possible to 
choose obvious scores for both the row and 
column categories. One alternative is 
Goodman’s RC model, in which the row and 
column scores are treated as parameters to be 
estimated (Goodman, 1969). Although the RC 
model can be used if the two variables are 
nominal, which does not impose any restriction 

on the type of the variables, calculation of the 
conditional test of independence is complicated 
and the distribution of the test statistic is not 
Chi-square (Agresti, 2002). In all of these 
models the researcher needs to specify the 
functional form for the association and, if the 
association form is chosen incorrectly, then the 
power of the model will decrease. 

It should be noted that, some methods 
used for testing interaction in two-way ANOVA 
can also be applied to two-way contingency 
tables for testing association (Alin & Kurt, 
2006). For example, Davis (1991) tested 
association in two-way contingency tables based 
on Tukey’s model (Tukey, 1949). Also 
Christensen (1990) tested interaction in log-
linear and logit models for categorical data with 
the logit version of Mandel’s models (Mandel, 
1961). Milliken and Graybill (1970) established 
a two-stage fitting procedure using Tukey’s 
model (Tukey, 1949). Recently, Kharati and 
Sadooghi (2007) have proposed a new method 
for testing interaction in two-way ANOVA.  

In this study, the same method used by 
Kharati and Sadooghi (2007) will be applied for 
testing association in two-way contingency 
tables. It is a flexible approach for testing 
independence that does not assume a special 
form for the association model. The method was 
applied to detect association in tables with 
nominal-by-nominal and nominal-by-ordinal 
data.  
 

Methodology 
Row Effect Model 

If either the row or the column variable 
(but not both of them) is ordinal, then a row-
effect or column-effect model can be fitted 
(Agresti, 1984; Agresti, 2002). The row effects 
model has the form 
 

x y
ij i j i jlog(m ) v .= λ + λ + λ + μ         (4) 

 
This model is appropriate for two-way tables 
with ordered columns, using scores 

c21 v...vv <<< . Because the rows are 

unordered, the model treats them as parameters 
and denotes them by iμ . The iμ ’s are called the 
row effects. This model has r-1 more parameters 
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than the independence model, which is a special 
case where r21 ... μ==μ=μ . 

The LR test of independence requires 
maximum likelihood (ML) estimates ijm̂  of 

expected cell frequencies under model (4). Let 

RD  denote the LR goodness of fit statistic for 

model (4) and let ID  denote the classical test of 
independence given by (2). A (r-1) (c-2) degrees 
of freedom test of r210 ...:H μ==μ=μ  can 

then be based on the LR statistic 

RIRI DDD −= . 

We used the same method proposed by 
Kharati and Sadooghi (2007) for testing 
association in two-way contingency tables. 
Assume a cr ×  contingency table and 
simultaneously 4≥r (so the method excludes 
only 22 × , 23×  and 33×  tables). Divide the 
table according to the rows, into two sub-tables. 
The sub-tables are two contingency tables with 

cr ×1  and cr ×2  dimensions in which 

rrr =+ 21 . In the absence of any association in 
each sub-table, then the independence model 
 

y
j

x
iijmlog λ+λ+λ=                    (5) 

 
can fit both datasets well. Let 1ID  and 2ID  
denote the deviances for the two sub-tables, 
respectively. In generalized linear models if the 
response variables are normally distributed then 
D has a Chi-square distribution exactly. 
However, for responses with a Poisson 
distribution, the sampling distribution of D may 
have an approximate Chi-square distribution 
(Dobson, 2002). Therefore, under the 
independence log-linear model, 1ID  and 2ID  
are independent and have approximate Chi-
square distributions with df1= ( )( )111 −− cr  and 

df2= ( )( )112 −− cr  degrees of freedom, 
respectively. A new statistic for testing 
independence in two-way contingency tables is 
now defined. 

If I1
1

1

D
t

df
=  and I2

2
2

D
t

df
= , then the new 

variable 
2

* 1 2

1

Max(t , t )
F

Min(t , t )
=  has the F distribution 

with d.f. = (df1, df2) where 1 2t t>  or d.f. = (df2, 

df1) where 2 1t t> . In the presence of any 

association, the F* statistic tends to be large, 
thus, the hypothesis of no association if 

( )*
1 2F F df ,dfα>  is rejected when 1 2t t>  or 

( )*
2 1F F df ,dfα>  where 2 1t t> . 

However, in this approach the most 
important question is how a table can be split 
into two separate tables. In some cases, based on 
a priori information, there may be a natural 
division of the table. In the absence of a-priori 
information, drawing a profile plot is suggested. 
Based on such a profile plot those lines which 
are parallel or have the same pattern will be put 
in the same group and the remaining in the other 
group. Additional details are provided in the 
examples and readers are also referred to Kharati 
and Sadooghi (2007) for more information. 
 
Simulation Study 

The programming for the Monte Carlo 
simulation was written in SAS version 9.1. The 
RANTBL function was used for generating and 
simulating contingency tables in SAS (Fan, 
Felsovalyi, Sivo & Keenan, 2002). Contingency 
table data may result from one of several 
possible sampling models. The test of 
independence discussed in this study is based on 
sampling in which a single random sample of 
size N is classified with respect to two 
characteristics simultaneously (Dobson, 2002). 
In the resulting contingency table, both sets of 
marginal total frequencies are random variables. 
The empirical power of each test was 
determined by simulating contingency tables 
under the dependence structure, and computing 
the proportion of times the independence 
hypothesis was rejected at a given significance 
level α . Under the dependence structure, ijP  is 

estimated by ˆ = ij
ij

n
P

N
 (Table 1). 
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For each studied situation, 5,000 
contingency tables were generated in which cell 
frequencies were drawn under the dependent 
structure. The influence of the total sample size 
(N) on the statistical properties of all tests was 
also evaluated. The choice of the proper total 
sample size for simulation depends on 
dimensions of the table. The power of the RID  

and F statistics for testing independence in two-
way contingency tables (nominal-by-ordinal) 
were investigated and compared. In order to find 
the maximum F in each simulated table, all 
combinations of rows and columns to classify 
each table into two subtables were considered. 
The power of the ID  and F statistics for testing 
independence in two-way contingency tables 
(nominal-by- nominal) were also computed and 
compared. 
 
Example 1: The Location of Prehistoric Artifact 

This example is based on the data 
provided in Simonoff (2003). As a result of 
archaeological excavations in Ruby Valley, 
Nevada, various prehistoric artifacts were 
discovered. Archaeologists were interested in 
the relationship between the type of artifacts 
found and the distance to permanent water, 
because the type of artifact discovered describes 
the type of site used by prehistoric hunters 
(Table 2). It was presumed that some tools were 
more difficult to move place to place and would 
thus be more likely to be discovered near 
permanent water. The following table is based 
on a subset of the artifacts discovered in Nevada 
(Simonoff, 2003). 

In this example the row variable is 
nominal and the column variable is ordinal. 
Using the row-effect model (4), =RD 14.85, 

=ID 16.26 and RIRI DDD −= =1.40. With 

respect to the asymptotic Chi-square 

distribution, 2
3χ =7.815, there is no evidence of 

departure from independence. A similar result 
was obtained based on the F statistic. In the 
profile plot for these data (shown in Figure 1), 
the lines corresponding to rows 2, 4 are parallel. 
Thus, these rows were placed in the first sub-
table and the remaining rows in the second sub-
table. In this situation, F (3, 3) = 14.94 and P = 

.002 which is significant at the nominal level of 
0.05. The result of our simulation showed that 
the F statistic is considerably more powerful 
than the row-effect model. The power of the F 
and DI|R are 0.43 and 0.15 respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Frequencies for Artifact Type and Distance 
from Permanent Water 

 

Artifact 
Type 

Distance from Permanent Water 

Immediate 
Vicinity 

Within 
0.25 

Miles 

0.25-
0.50 

Miles 

0.50-
1 

Miles 

Drills 2 10 4 2 

Pots 3 8 4 6 

Grinding 
Stones 

13 5 3 9 

Point 
Fragments

20 36 19 20 

Figure 1: Profile Plot of Data in Example 1 
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Example 2.1: Malignant Melanoma 
For the data in Table 3 the question of 

interest is whether there is any association 
between tumor type and site. These data are 
from a cross-sectional study of patients with a 
form of skin cancer called malignant melanoma 
(Dobson, 2002). For a sample of N=400 patients 
the site of the tumor and its histological type 
were recorded. 

In testing the null hypothesis that tumor 
type and tumor site are independent, DI = 51.79  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and P < .001, which indicate that the association 
between type and site of tumor is highly 
significant. A similar result was obtained based 
on the proposed F statistic. In the profile plot for 
these data in Figure 2, the lines corresponding to 
rows 3 and 4 are nearly parallel which suggests 
that these rows can be placed in the one sub-
table and the remaining rows in the other sub-
table. The F statistic value for this division is 
statistically significant, F (2, 2) = 43.41, p = .02. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Frequencies for Tumor Type and Site 
 

Tumor Type 
Site 

Head and Neck Trunk Extremities 

Hutchinson’s Melanotic Freckle 22 2 10 

Superficial Spreading Melanoma 16 54 115 

Nodular 19 33 73 

Indeterminate 11 17 28 

 
 

Figure 2: Profile Plot of Data in Malignant Melanoma Example 2.1 
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Example 2.2: Malignant Melanoma 
Next, substitute the frequencies 2, 16, 

115, 73 and 28 in the cells (1, 2), (2, 1), (2, 3), 
(3, 3) and (4, 3) by 18, 45, 60, 38 and 20, 
respectively. In this situation, the null hypothesis 
is tested again. The new results, based on the 
likelihood ratio statistic, show that there is no 
significant association between tumor site and 
tumor type, DI = 11.80, P = .067. However, a 
different result was obtained based on the F 
statistic at the α=0.05 level. In the profile plot 
for these data (Figure 3), the lines corresponding 
to rows 3, 4 are nearly parallel and close to each 
other. Therefore, these rows were placed in one 
table and the remaining rows in another table. 
The value of the F statistic for this division is 
highly significant, F (2, 2) = 108.42, p < .01. 
 
Simulation Results 
The results of the simulations showed that the 
power of the F and LR statistics in Malignant 
Melanoma Example 2.1 are 0.653 and 1,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

respectively, and in Malignant Melanoma 
Example 2.2 are 0.425 and 0.736, respectively. 

This study also evaluated the influence 
of the total sample size (N) on the statistical 
properties for the above two examples. Table 4 
shows the results of the estimation of power of 
the proposed F statistic and row-effect model 
(DI|R) based on 5,000 simulated tables for the 
nominal-by-ordinal association model in 
Example 1. Table 5 shows these results for the 
proposed F statistic and the likelihood ratio 
statistic (DI) based on 5,000 simulated tables for 
the nominal-by-nominal association model in 
Examples 2.1 and 2.2. 

Table 4 shows that, for N ≤ 800, 
especially when N ≤ 500, the estimated power 
for the F statistic is considerably higher 
compared to the row-effect model ( I RD ). 

However for N > 900 the power of the row-
effect model is dramatically higher than the F 
statistic. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Profile Plot of Data in Malignant Melanoma 2.2 Example 
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Regarding Example 2.1, Table 5 shows 
that, for all N, the likelihood ratio statistic is 
considerably more powerful compared with the 
F statistic. When N increases, the power of the F 
statistic steadily increases, but the power of the 
likelihood ratio statistic converges to 1 for N > 
400. Conversely, in Example 2.2, although the 
power of the likelihood ratio statistic is higher 
than the power of the F statistic, the rate of 
power increase is lower compared to Example 
2.1. 
 

Conclusion 
A new statistic is proposed for testing 
independence in two-way contingency tables by 
dividing a table into two sub-tables. This method 
has been constructed based on the independence 
model so there is no need to specify any 
functional form for the association terms. 
Therefore, it could be applicable to any type of 
contingency tables, including nominal-by-
nominal, nominal-by-ordinal and ordinal-by-
ordinal. 

The idea of partitioning contingency 
tables was first introduced by Kullback, et al. 
(1962) and Lancaster (1951). They showed that 
the overall Chi-square statistic for a contingency 
table can always be partitioned into as many 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
components as the table’s degrees of freedom. 
The Chi-square value of each component 
corresponds to a particular 2×2 table arising 
from the original table, and each component is 
independent of the others. Consequently a 
detailed examination of departures from 
independence can be made, thus enabling 
identification of those categories responsible for 
a significant overall Chi-square value. However, 
in this article the same technique was used for 
partitioning contingency tables that was applied 
to two-way ANOVA by Kharati and Sadooghi 
(2007). In the present work, this method was 
used for analyzing nominal-by-nominal and 
nominal-by-ordinal data. 

Table 4: Nominal-by-Ordinal Association: 
Estimation of Power for the F Statistic and 

the Row-Effect Model (DI|R) Based on 5,000 
Simulations in Example 1 

 

N F DI|R 

200 0.440 0.172 

300 0.488 0.242 

400 0.514 0.311 

500 0.553 0.372 

600 0.575 0.442 

700 0.576 0.499 

800 0.606 0.564 

900 0.617 0.616 

1,000 0.620 0.671 

2,000 0.731 0.937 

Table 5: Nominal-by-Nominal 
Association: Estimation of Power and for 
the F Statistic and the Likelihood Ratio 

Statistics (DI) Based on 5,000 Simulations 
 

Example 2.1 

N F DI

200 0.532 0.976 
300 0.602 0.999 
400 0.641 1.000 
500 0.669 1.000 
600 0.697 1.000 
700 0.716 1.000 
800 0.736 1.000 
900 0.759 1.000 

1,000 0.769 1.000 
2,000 0.872 1.000 

   

Example 2.2 

N F DI

200 0.343 0.474 
300 0.387 0.649 
400 0.455 0.806 
500 0.490 0.903 
600 0.525 0.947 
700 0.564 0.979 
800 0.583 0.988 
900 0.610 0.996 

1,000 0.629 0.998 
2,000 0.772 1.000 
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It is notable that in a two-way ANOVA 
data are assumed to be normally distributed and 
the proposed F for testing interaction has an 
exact F distribution which leads to a two-sided 
test for equality of variances. In this study the 
response variable had Poisson distribution, so 
the proposed one-sided test has an asymptotic F 
distribution. Profile plots were also used as a 
preliminary tool to divide one table into two 
separate tables, which was the first step before 
applying the proposed method. However, there 
are other graphical methods such as 
corresponding analysis (Blasius & Greenarce, 
2006), mosaic (Friendly, 1998) and z-plot 
(Choulakian & Allard, 1998), all of which can 
be helpful to visualizing and screening 
contingency tables before conducting any formal 
statistical analysis. 

The power of the F statistic was 
compared with DI and RID . In Example 1, in 

which the row and column were nominal and 
ordinal respectively, it was believed that the 
row-effect model would be the best method for 
testing the association between row and column. 
Surprisingly, the proposed F statistic worked 
much better than expected. The results showed 
that while RID  could not find any association 

between rows and columns; the proposed F was 
strongly significant. In this case the power 
simulation showed that the F statistic is more 
powerful than RID  (0.43 vs. 0.15). Also the 

simulation results in Table 4 showed that for N ≤ 
500 the power of the F statistic was considerably 
higher than RID . In this example, the results of 

the proposed F demonstrated that, despite the 
simplicity of its computations, it is more 
powerful than the row-effect model. These 
findings may encourage researchers to use the 
proposed F statistic for testing association in 
contingency tables. 

In the Malignant Melanoma Example 
2.1 when the row and column were nominal and 
there was a significant association between 
them, the simulation results showed that the DI 
statistic was more powerful than F. In contrast, 
in the Malignant Melanoma Example 2.2, 
although DI could not find any association 
between row and column, the proposed F was 

strongly significant. However, simulation 
showed that DI was more powerful than F (0.76 
vs. 0.44). In this case it should be noted that 
although the F statistic was often less powerful 
than the DI, it was able to detect some special 
types of departures from the null hypothesis 
which could not be detected by DI. 

In conclusion, it is suggested that the F 
statistic serves as an alternative method for 
testing association in two-way contingency 
tables, in particular, if one variable is in ordinal 
scale. It is easy to use because it does not need 
any functional form for the association term. It is 
simple to compute and has good power. In 
addition to simplicity and flexibility, this test 
could be helpful in detecting the part of a table 
which contributes the association between row 
and column. It seems that, in some cases, this 
method enables us to detect an association in 
contingency tables that cannot be found by a 
row-effect model or likelihood ratio statistics. 
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