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CHAPTER 1 

INTRODUCTION 

During the 20th century researchers such as Cronbach, Lord, Novick, Nunnally, and 

Spearman contributed to the development of an extensive body of knowledge in psychological 

test theory. Psychological test theory – also known as psychometrics – is the branch of 

psychology dealing with methods for the design, administration, and interpretation of 

quantitative tests to measure psychological constructs such as intelligence or personality traits 

(Anastasi, 1976; Nunnally, 1978; Allen & Yen, 1979; Cronbach, 1990). Test theory is primarily 

concerned with methods for estimating the extent to which error influences measurements in a 

given testing situation and devising methods to overcome or minimize error so that test results 

are accurate and dependable (Crocker & Algina, 1986). As Qualls and Moss (1996) described, 

tests in the behavioral and social sciences “are employed as informational tools in a variety of 

contexts such as educational planning, career development, clinical treatment plans, counseling 

interventions, and a multitude of research investigations” (pp. 209-210). Two examples of tests 

are the Stanford-Binet Intelligence Quotient (IQ) and the Minnesota Multiphasic Personality 

Inventory (MMPI). As the psychometrics field has grown and expanded, researchers have 

developed a plethora of new tests and have sought new ways to think about how test results 

should be used – as well as the importance of test accuracy, reliability and validity. 

According to Allen and Yen (1979), measurement theory is a branch of applied statistics, 

the aims of which are to describe, categorize and evaluate the quality of measurements, and to 

develop methods for constructing new and better measurement instruments. Stevens (1946) 

defined measurement as “the assignment of numerals to objects or events according to rules” (p. 

677). Thye (2000) explained that there are three components in measurement: (1) the object that 
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is measured, such as Joe Brown; (2) the instrument used to assign numerals to the object, such as 

a 20-item IQ examination; and (3) the occasion on which the measurement is taken (p.1279). 

The process of measurement must be structured and carried out according to a set plan in order 

to obtain accurate results. Nunnally (1978) provided the following examples: 

Scientists measuring the surface temperature of planets in our solar system should 
achieve very similar results if they follow the same measurement procedure and 
use the same instruments. If two different examiners administer the same 
intelligence test to the same person at two different times, the test is reliable if it 
results in approximately the same scores on both occasions. (pp. 3-4) 

 
Thus, different individuals using the same measuring instrument (e.g., ruler, thermometer, test) 

and the same measurement protocol should obtain similar results if they are measuring the same 

attribute of objects or persons (e.g., length, temperature, intelligence, aptitude). Nunnally (1978) 

explained why it is critical for measurements from the same measuring devices to yield similar 

results, by stating: “To the extent to which an approach to measurement provides very much the 

same result regardless of opportunities for variations to occur, then it is reliable and one can 

generalize from any particular use of the measurement method to a wide variety of other 

circumstances in which it might be employed” (p. 191). Measurement instruments which are able 

to be used in multiple situations by a variety of researchers are a requirement in scientific 

investigation: without them conclusions based on research would be less useful because it would 

not be possible to ascertain whether the measurements taken were accurate and replicable. 

Researchers in the natural or physical sciences have an advantage over those in the social 

sciences. The former typically work with visible, or directly measureable, variables such as 

weight, concentration or density – most of which have specific, standardized instruments from 

which to obtain a measurement. The latter are many times concerned with latent variables, or 
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traits not directly measurable, that must be indirectly assessed by the process of measuring 

related attributes. Knapp (1977) explained: 

One thing that differentiates measurement in the social sciences from 
measurement in the physical sciences is that most of the instruments used in the 
social sciences consist of “items” which are gathered together to form a “test.” A 
measurement of a person’s height is a single number which can be read off a 
scale, but a measurement of a person’s intelligence is arrived at by combining 
scores obtained on various test items. Therefore, the determination of the 
reliability of a social measurement usually poses quite a different problem than 
the determination of the reliability of a physical measurement… (p. 237) 

 
Whether attempting to measure planetary surface temperature variation or the spatial-

relations aptitude of an individual, a common requirement is present: the need for repeatability, 

or consistency, in measurement. “Inconsistent measurements are a bane to persons engaged in 

research. Scientists have learned to repeat their measures several times when it is important to 

obtain results in which they can be confident. The average of a set of repeated measurements 

provides a more precise estimate of what is being measured than does a single measurement” 

(Traub & Rowley, 1991, p. 171). In most psychological measurement, however, it is difficult to 

obtain multiple measurements from the same subject, as noted by Traub and Rowley (1991), 

“unfortunately, the measuring procedures we use in education usually cannot be repeated as 

easily as can some of the measuring procedures used in the physical sciences” (p. 171). 

Ascertaining and understanding the measurement reliability of tests in the social sciences is 

critical because, as Romano and Kromrey (2009) stated, “Ideally, social science research is 

conducted using measurement instruments that produce valid and reliable information” (p. 404). 

Study Rationale 

Vacha-Haase (1998) proposed the application of meta-analytic techniques similar to 

those used in validity generalization studies to the study of reliability, calling the method 
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Reliability Generalization (RG). The following paragraphs summarize the various facets 

underlying RG, as well as its background; in-depth descriptions of all are provided in Chapter 2. 

Because RG is presented as a meta-analytic technique, it is important to understand the 

basics of meta-analysis. As defined by Egger, Smith and Phillips (1997), meta-analysis “is a 

statistical method of combining data from several studies to more precisely analyze the results 

and explain differences in research conclusions” (p. 1533). Meta-analysis integrates the results of 

several independent research studies which are considered to be “combinable.” Although the 

concept of meta-analysis predated Glass by a half century, he spearheaded its application in the 

social and behavioral sciences in his 1976 Presidential Speech to the American Educational 

Research Association. Rodriguez and Maeda (2006) described his approach: 

Glassian meta-analysis begins with the collection of all relevant studies with 
liberal inclusion criteria. The empirical outcomes of these studies are transformed 
into a common effect size metric. The distribution of these outcomes is described, 
and study level characteristics are used to explain variation in outcomes. Related 
methods start with this general approach, using various modifications. (p. 306) 

 
As conceptualized by Glass, meta-analysis presented an opportunity for psychological 

researchers to avoid conducting new research by synthesizing the data collected in previous 

studies, combining outcomes and drawing conclusions based on examining the collective results. 

Glass (1976) described meta-analysis as “the analysis of analyses…statistical studies of a large 

collection of analysis results from individual studies for the purpose of integrating the findings” 

(p. 3). As explained by Yin and Fan (2000), meta-analysis provides a systematic approach to 

“make sense out of a large amount of seemingly inconsistent findings from many primary 

research studies” (p. 221). Since its introduction, “meta-analysis has experienced an exponential 

growth in its application to disciplines across a wide spectrum of social and behavioral sciences” 

(Yin & Fan, 2000, p. 220). 
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With respect to psychometrics, meta-analytic techniques have recently been employed to 

study validity, which is generally defined as “the appropriateness, meaningfulness, and 

usefulness of the specific inferences from the test” (Sartori & Pasini, 2007, p. 361). It is not an 

instrument itself that is valid or invalid: validity is concerned with establishing evidence that the 

use of a specific instrument is congruent with the intent or purpose of the test. “Thus, when we 

address the issue of validity with respect to a particular test, we are addressing the issue of the 

validity of the scores on that test for a particular purpose, and not the validity of the test or 

instrument per se: A given test might be used for a number of purposes” (Morgan, Gliner & 

Harmon, 2001, p. 731). Validity is a theoretical concept that is not directly measured, it is 

established by drawing inferences; evidence is gathered to support the use of test results for 

making decisions based on the instrument’s intended measurement(s). The use of meta-analysis 

to examine validity is referred to as validity generalization. “Validity generalization studies have 

been conducted to describe the extent to which validity evidence for scores are generalizable 

across research contexts” (Romano & Kromrey, 2009, p. 405).  

In contrast to validity, reliability – at its most basic level – is the extent to which a test 

provides consistent information (Nunnally, 1978; Crocker & Algina, 1986; Anastasi, 1976). 

Feldt and Brennan (1989) described the “essence” of reliability analysis as the “quantification of 

the consistency and inconsistency in examinee performance” (p. 6). Consistency means that all 

parts of a test, or different forms of a test that are intended as interchangeable, actually measure 

the same thing; reliability coefficients quantitatively measure such consistency. Reliability is also 

concerned with stability: that a test measures the same thing at different times, on different 

occasions, or in different situations. Lastly, from a statistical standpoint, reliability is concerned 

with measurement error. Reliability is measured each time a test is administered; it can be 
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determined via several different available techniques depending on how a test is administered 

and the sample of examinees who took the test. 

Vacha-Haase presented the application of meta-analytic techniques to reliability 

coefficients as an appropriate way to characterize “(a) the typical reliability of scores for a given 

test across studies, (b) the amount of variability in reliability coefficients for given measures, and 

(c) the sources of variability in reliability coefficients across studies” (Rodriguez & Maeda, 

2006, p. 306). In presenting this method for analyzing reliability, Vacha-Haase put forth the idea 

that, similar to validity evidence, reliability coefficients are properties of the scores generated by 

a test, as opposed to the instrument itself.  

It is presumed that Vacha-Haase based the idea for RG on the fact that reliability 

coefficients differ from study to study and from one test administration to another; this is 

presumed because (1) the study was based in meta-analytic theory, which seeks to integrate 

“seemingly inconsistent findings” (Yin & Fan, 2000, p. 221), and (2) no historical research is 

provided to explain why reliability coefficients vary between studies using the same test 

(although many reasons were already well known and well documented in the field). 

In the study, the Bem Sex Role Inventory (BSRI) was the test used to illustrate how RG 

studies would work. In the discussion, the author noted that “reliability coefficients were fairly 

variable” (Vacha-Haase, 1998, p. 11), and stated that RG provides a method to help identify the 

sources of variation in score reliability. For example, it was reported that different methods for 

computing reliability coefficients result in different reliability coefficient values and that sample 

size is a predictor for reliability. In addition, it was noted that test form impacted the reliability 

coefficient calculated. Finally, the author stated that RG indicated which study features do not 

predict variations in score reliability, for example, variations in response formats (Vacha-Haase, 
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1998). Most of the findings in the study – for example, different methods for computing 

reliability result in different values – merely confirmed issues with reliability that have long been 

known among psychometricians. 

Based on the findings, however, the author asserted that the study “…illustrates how 

important it may be to recognize that reliability does not inure to tests” (Vacha-Haase, 1998, p. 

12). Interestingly, the initial RG study meta-analyzed reliability coefficients obtained from a test 

administered by different researchers to different samples under different conditions, not the 

scores generated by the test (Sawilowsky, 2000). Also of interest are the facts that no substantive 

argument was provided to bolster this statement, nor was any scientific evidence or theory-based 

rationale presented to illustrate how – or to explain why – the psychometric property of 

reliability would reside within the scores generated by a test and not the instrument itself.  

Since the proposed RG method was published, several researchers have identified a 

variety of problems with the technique. The first to raise substantive questions about RG was 

Sawilowsky (2000), who presented a number of arguments against the method. In addition to a 

historical review, Sawilowsky described issues with RG related to several aspects of reliability 

itself, such as, “statements about the reliability of a certain test must be accompanied by an 

explanation of what type of reliability was estimated, how it was calculated, and under what 

conditions or for which sample characteristics the result was obtained” (p. 159). He also 

explained that Vacha-Haase’s approach focused on the data obtained from a test administration; 

this is in direct opposition to traditional psychometric thinking which focuses analyses on 

instruments themselves. To describe this approach, he coined the term datametrics, meaning that 

in RG, “reliability and other desirable characteristics are considered to be concomitant with the 
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scores or data at hand instead of being a property of the instrument or its use” (Sawilowsky, 

2000, p. 160). 

Research Question 

This study will explain why RG does not provide a proper research method for the study 

of reliability. This research will focus on sampling error; results will illustrate that the reliability 

of a test will vary across test administrations based on the size and composition (random vs. non-

random selection) of the sample. This study will address the following:  

Research Question: Can the fluctuation in estimates of reliability under proper 

experimental conditions be fully explained via classical measurement theory 

without resorting to reliability generalization? 

Human Participants 

Human participants will not be used in this research. This study will employ computer 

generated (i.e., simulated) data. 

Limitations 

Classical Test Theory (CTT) will provide the theoretical basis for reliability as studied in 

this research. Item Response Theory, Cronbach’s Generalizability Theory and other frameworks 

under which reliability may be assessed will not be considered. This study will be restricted to 

test-retest reliability. The measurement error associated with CTT may differ from that 

associated with other theoretical frameworks, and measurement error of test-retest reliability 

does differ from that of other reliability measures. As described by Schumacker and Smith 

(2007), measurement error in classical measurement models used in testing and assessment 

differs based on the type of reliability used. In the models, the source of measurement error and 

the ensuing reliability coefficients will differ on the basis of test design and administration. Test-
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retest reliability specifies error primarily due to changes in subjects over time; whereas other 

forms of reliability attribute error to other causes, for example, internal consistency specifies 

error primarily due to poor item sampling, and alternate form reliability focuses on variations 

between item samples on different test forms (Schumacker & Smith, 2007, p. 394). This study 

will use 2 × 1,000,000 universe subsets (which will be considered to represent a sample from a 

larger universe and referred to as mini-universes) with Nunnally’s domain-sampling approach to 

calculate test-retest reliability between parallel testlets of varying sizes (n = 5, 10, 15, 25, 50, 75, 

87 and 100); results from a population of greater magnitude may provide slightly different 

results. 
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CHAPTER 2 

LITERATURE REVIEW 

Overview 

This review examines relevant literature from research in the social sciences related to 

psychometric theory, test theory and the debate regarding reliability and reliability 

generalization. Measurements, scales, and the psychometric properties reliability and validity are 

discussed, followed by detailed descriptions of the various theories and frameworks upon which 

this research is based and designed. 

Elements of Test Theory 

In order to understand how an instrument’s reliability and validity are assessed and 

interpreted, a basic understanding of how measurements are obtained within the social and 

behavioral sciences is needed. One method by which behavioral scientists strive to measure 

latent (i.e., not directly measureable) variables is via the use of tests, or scales. Scales are 

questionnaires and other measures designed to quantify constructs such as intelligence, aptitude, 

or attitude (Crocker & Algina, 1986). In a 1987 issue of the Journal of Counseling Psychology 

specifically focusing on quantitative foundations, Dawis stated “scales are ubiquitous features of 

counseling psychology research” (p. 481). 

The use of scales in research assumes that their measurements possess adequate 

psychometric properties, that is, that they reliably and validly assess the constructs being studied. 

As Qualls and Moss (1996) described: 

Assuming an alignment exists between developmental purpose and the intended 
contextual application, validity evidence and reliability evidence are by far the 
two most crucial elements that underlie judgments regarding the quality of scores 
derived from instruments. The effect of these two psychometric properties on 
resulting inferential decisions must be understood. (p. 211) 
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Regrettably, misunderstandings persist in the psychological literature related to tests and their 

psychometric properties and confusion exists regarding the differences between reliability and 

validity, what each represents and how each should be considered with respect to a particular 

instrument. 

Reliability and validity – though related – provide distinctly different information about a 

test. Whereas validation is an ongoing process based on the integration of data from many 

sources, reliability is measured at a point in time. Popham (2009) further expressed their 

differences by stating, “as far as validity is concerned, the term doesn’t refer to the accuracy of a 

test. Rather, it refers to the accuracy of score-based inferences about test takers. … In the case of 

reliability, however, it’s the test itself that is or isn’t reliable. That’s a whopping difference.” (p. 

77) This same concept is reiterated by Weller (2001) who stated “valid tests are accurate 

assessments of what is taught or what they purport to measure. Reliable tests yield consistent, 

non-contradictory results” (p. 33) and, as Sartori and Pasini (2007) noted, “from a statistical 

point of view, reliability refers to the extent that measures are relatively free of random error and 

are consistent in the numbers assigned to properties of objects and events. … validity is not only 

a property of measures, but it refers to the truthfulness of the inferences that are drawn from 

measures” (p. 361). Finally, Sijtsma (2009) aptly portrayed the distinct differences by 

summarizing: 

Typically, discussions about reliability are more mathematical than discussions 
about validity. The reason is that reliability formalizes one particular technical 
property of the test score whereas validity involves assessment of what the test 
measures, either by means of exploration or the nomological network or by means 
of theory testing. Unlike reliability estimation, validity research revolves around 
the use of substantive knowledge about the attribute under consideration and 
decision making … Reliability is a much narrower concept… (p. 178) 

 
 
 



12 

 

Test Reliability 
 

Reliability, the focus of this research, is concerned with consistency, stability, and 

measurement error, and its assessment plays a critical role in interpreting quantitative test results. 

This study follows the traditional psychometric approach to the study of reliability which 

considers it to be a metric property of a test itself, as opposed to the “datametric” approach used 

by Vacha-Haase (1998) and described by Sawilowsky (2000). However, it is not possible to 

discuss test reliability without mentioning test scores: it is the scores obtained from various test 

administrations that are used to calculate reliability coefficients. This is not a contradiction. 

Consider the following physical measurement examples from Sawilowsky (2000):  

If three independent measures of an object yield values of 120, 770, and 18, there 
is no point in discussing whether the scale is measuring in pounds or kilograms. 
The values are not even similar to the same power of 10. Because there is no 
consistency, there is no evidence of reliability. Therefore, the question of what the 
scale is measuring, or the purpose for using it, is moot. In contradistinction, 
suppose another scale yields values of 12.99, 13.01, and 13.00. These values are 
more consistent in comparison with the previous scale. The consistency via 
repeated measures is one type of evidence that indicates that the scale is reliable 
in measuring whatever it measures. (p. 197, emphasis added) 

 
Thus, it is not the measurements or scores themselves that are reliable; it is the device or 

instrument used to take the measurements that is reliable. Using a reliable instrument to take the 

same measurement multiple times according to a set protocol should result in consistent scores 

that differ only slightly due to the effect of measurement or sampling error. As Ponterotto and 

Ruckdeschel (2007) explained, “estimates of reliability inform researchers as to what proportion 

of total score variance is due to true variance versus error variance” (p. 997). Measurement error 

diminishes the reliability of a score obtained for an individual from a single administration of a 

test. Revelle and Zinbarg (2009) defined this aspect of reliability as “the fraction of test variance 

that is true score variance” (p. 145); and, as Moss (1994) clarified, “theoretically, reliability is 
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defined as the degree to which test scores are free from errors of measurement” (p. 6). Thus, to 

the extent that measurement error is slight, a measurement may be said to be reliable (Nunnally, 

1978). 

Although the concepts underlying reliability appear simple, in actuality reliability is a 

complex concept fraught with subtle difficulties. Much debate continues among researchers with 

respect to the calculation, interpretation and use of reliability coefficients for tests. Part of the 

confusion stems from the terminology used in the context of reliability, words such as, 

consistency, precision, repeatability and agreement have all been used to describe reliability. 

Weir (2005) commented about this varied jargon, stating that “intuitively, these terms describe 

the same concept, but in practice some are operationalized differently” (p. 231). Revelle and 

Zinbarg (2009) noted, “the problem of how to assess reliability has been with us ever since 

Spearman (1904) introduced the concept of correction for attenuation and that of split half 

reliability” (p. 145). Another facet of the issue with reliability and tests derives from the fact that 

several ways exist to assess reliability, including: test-retest, alternate form, and internal 

consistency. As explained by Gliner, Morgan and Harmon (2001): 

While each method to assess reliability gives some measure of consistency, they 
are not the same. To say that an instrument is reliable has relatively little meaning 
because each statement of reliability should specify the type(s) of reliability, the 
strength of the reliability coefficient, and the types of subjects used. Before using 
an instrument, an investigator should evaluate reliability and how it was 
established. (p. 488) 

 
Each approach to reliability is subject to different sources of error and the choice of which to 

employ is dependent in part on the specific test to be administered, the subjects to whom the test 

will be given, and the testing conditions. Regardless of which approach is used, however, the 

same statistic applies: the correlation coefficient is calculated to determine the reliability 

coefficient for an instrument. The range (−1.00 to +1.00) and interpretation of reliability 
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coefficients mirror those of a typical correlation: the closer to +1.00 the reliability coefficient, the 

more reliable the test. In terms of measurement error, Weller described: “Because error 

contributes to variance in reliability coefficients, the closer reliability coefficients are to +1.00, 

the more the test is free from error variance” (2001, p. 35). 

Reliability Types: Alternate Form, Internal Consistency & Test-Retest 

Alternate form reliability is calculated when two different versions of a test are created by 

writing different – yet comparable – test items, and the two forms are administered twice to the 

same individuals (usually within a two-week time interval). Thus, “alternate-form reliability 

describes the consistency of students’ performances on two different (hopefully equivalent) 

versions of the same test” (Popham, 2009, p. 77). The correlation between observed scores on 

two alternate test forms is usually referred to as the coefficient of equivalence. Developing 

alternate forms of the same test is time-consuming and difficult to achieve. Although this type of 

reliability estimation helps correct for memory and practice effects, errors related to unintended 

differences in content between original and parallel test questions, changes in the trait being 

measured over time, and the difficulty associated with administering a test to the same subjects 

under the same conditions at two different times all represent potential sources of error with 

alternate form reliability. 

Internal consistency estimates were developed as a means of estimating reliability 

without repeated testing. Internal consistency refers to the interrelatedness of a set of test items; 

the degree to which items in a test are associated due to what they share in common. Because it 

requires only one test administration to calculate, it is efficient and practical for many studies. 

Many different approaches to calculating internal consistency reliability are available, examples 

include: Cronbach’s alpha, Spearman-Brown, and Kuder-Richardson 20. Each method uses item 
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scores from one test administration to estimate the reliability of an instrument by calculating 

correlations among test items; the goal is to assess content stability by determining if every item 

on a test correlates with every other item. Popham (2009) explained, internal consistency 

reliability “describes the consistency with which all the separate items on a test measure 

whatever they’re measuring, such as students’ reading comprehension or mathematical ability” 

(p. 77). Similarly, Sireci, Thissen and Wainer stated: 

Internal consistency estimates of reliability are based on a simple extrapolation 
from the (average) correlation among the items on one form (that one has) to the 
(average) correlation between those items and some other forms’ items (that one 
does not have): The extrapolation is that the (average) correlation among the 
items one has is the same as the correlation of those items with the (hypothetical) 
second forms’ items. (1991, pp. 244-245) 

 
Also, as Green, Lissitz, and Mulaik noted: “If a set of items is measuring the same or similar 

properties and the property comprises a single continuum or dimension, the items should all 

covary to some extent. For a fixed number of items, the greater and more consistent the inter-

item correlations the more reliable the composite” (1977, p. 828). The primary sources of error 

with measures of internal consistency are poor test construction and/or test items that do not 

accurately reflect the trait being measured. 

Test-retest reliability, sometimes referred to as a stability coefficient, is a measure of the 

sustainability of test scores over time. These coefficients refer to the consistency of scores when 

the same test is administered to the same individuals under the same circumstances on two 

different occasions. A test-retest reliability coefficient is estimated by correlating the observed 

scores from two test administrations. This procedure is subject to errors due to carry-over effects 

of memory and/or practice (Dimitrov, 2002, p. 786). Test-retest reliability estimates are most 

appropriate for measuring traits that tend to remain stable across the time period between the two 

test administrations: As Charter (2003) noted, “we expect traits such as intelligence to hold up 



16 

 

well over time and have relatively high [test-]retest coefficients, whereas we expect states such 

as depression to fluctuate over time and have relatively low [test-]retest coefficients” (p. 290). 

Test-retest compares measurement stability across the same subjects at different times thus – 

among the different reliability methods – it is the closest reflection of the proposed reliability 

generalization method, which compares reliability coefficients across different test 

administrations. For this reason, it is the method that will be employed to study test reliability in 

this study. 

Classical Test Theory vs. Item Response Theory 

Proposed by Charles Spearman in 1904, the true-score model – also known as classical 

test theory (CTT) – has been a principal theory guiding reliability estimation. CTT postulates a 

linear model which links an observed test score (X) to the sum of two latent variables, a true (T) 

and an error score (E). This model is represented as X = T + E, and is founded on the proposition 

that measurement error, a latent variable, is a component of observed scores (Traub, 1997). Most 

measurements in social and educational research are subject to error in that repetition of a 

measurement process is unlikely to produce an identical result: it should be noted that error (E) is 

not simply one term, but a combination of different errors that can vary both between subjects 

and within subjects across different test administrations. For example, as Woodhouse, et al. 

(1996), described: 

Most measurements in educational or other social research are subject to error, in 
the sense that a repetition of a measurement process does not produce an identical 
result. For example, measurements of cognitive outcomes in schools such as 
scores on standardized tests can be affected by item inconsistency, by fluctuations 
within individuals and by differences in the administration of the tests and in the 
environment of the schools and classes where the tests take place. Measurements 
of non-cognitive outcomes also, such as children’s behavior, self-concept and 
attitudes to school, can be similarly affected. (p. 201) 
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Three specific insights formed the backbone of the classic and elegant CTT model: “A 

recognition of the presence of errors in measurements, a conception of that error as a random 

variable, and a conception of correlation and how to index it” (Traub, 1997, p. 8). In 1966, 

Novick stated that “the classical test theory is basically a nonparametric estimation model” (p. 5), 

and as Hambleton and Slater (1997) later described: 

The true score of an examinee is defined as the examinee’s expected score across 
infinite replications of parallel-forms of the test of interest. An error score is the 
difference between the construct of interest (i.e., true score) and the observable 
data (i.e., the test score) and every effort is made to minimize factors contributing 
to error such as improper sampling of content, poorly constructed items, guessing, 
cheating, misleading responses (e.g., responses reflecting social desirability), and 
flaws in the administration process such as test speededness. By reducing both 
random and systematic errors in the testing process, test score and true score are 
close and reliability and validity are increased. (pp. 21-22) 

 
Due to the fact that there are two latent variables – T and E – for each examinee, the CTT 

equation is not solvable unless some assumptions are made. “The assumptions in the classical 

test model are that (a) true scores and error scores are uncorrelated, (b) the average error score in 

the population of examinees is zero, and (c) error scores on parallel tests are uncorrelated” 

(Hambleton & Jones, 1993, p. 255). These assumptions, however, are relatively weak and can be 

met fairly easily when using real test data in the model. Benefits to using CTT models to study 

measurement problems include: no large sample size requirement; simpler mathematical 

analyses compared to item response theory (discussed below); conceptually straightforward 

model parameter estimation; and CTT analyses do not require strict goodness-of-fit studies to 

ensure a good fit of model to test data (Hambleton & Jones, 1993). Hambleton and Jones also 

provided a summarization of the primary limitation of CTT: “one main shortcoming is that they 

are sample dependent, and this dependency reduces their utility. They are most useful when the 

examinee sample is similar to the examinee population for whom the test is being developed” 



18 

 

(1993, p. 255). Thus, measurements are partially dependent on the both the test and the examinee 

sample and this dependence may influence the usefulness of CTT models to some degree. 

Along with CTT, other measurement models are used to study the psychometric 

measures of tests. One of these, item response theory (IRT) is a general statistical theory about 

examinee performance on items and tests and how test results relate to the abilities measured by 

the items in a test. IRT suggests that (1) examinee performance on a test relates to a single latent 

ability or trait underlying responses to items on a particular measurement instrument, and (2) that 

the relationship between the examinee’s ability and his/her probability of providing a correct 

answer can be described by a monotonically increasing curve. This s-shaped curve is called an 

item characteristic curve (ICC); an ICC shows the probability of examinees at varying abilities 

answering an item correctly. ICC’s are estimated for each item in a test and it is a person’s 

ability score (denoted θ) that determines the probability of a person to correctly answer any test 

item (Hambleton & Slater, 1997). The underlying assumption is an expectation that individuals 

with greater ability have higher probabilities of providing correct answers to test questions 

compared to those with lower abilities (Dimitrov, 2002). 

Although IRT focuses on the accuracy of ability scores, CTT is based upon the accuracy 

of examinee’s observed scores. IRT models offer some benefits to investigating measurement 

problems such as reliability. Hambleton and Jones (1993) listed the main benefits of IRT as: 

1. Item statistics are independent of the groups from which they were estimated. 

2. Scores describing examinee proficiency are not dependent on test difficulty. 

3. Test models provide a basis for matching test items to ability levels. 

4. Test models do not require strictly parallel tests for assessing reliability. 
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They also stated that “item response theory models tend to be complex and model parameter 

estimation problems tend to arise in practice. Model fit too can be a problem – it is still not 

completely clear how problems of model fit should be addressed, especially problems that 

related to test dimensionality” (Hambleton & Jones, 1993, p. 259). IRT models are also more 

technically demanding compared to classical models. 

With respect to error, neither classical test theory nor item response theory assume that 

error variance is the same for different individuals. As Sitjsma (2009) explained “applications of 

tests constructed by means of classical test theory use one standard measurement error for all 

individuals. Applications of item response theory use a standard deviation of the estimated latent 

variable conditional on the true value, which varies in magnitude across the scale” (p. 184). 

However, Brennan (2001) noted “IRT is primarily an elegant scaling model, not a measurement 

model, because IRT has no explicit role for error of measurement relative to investigator-

specified replications” (pp. 304-305). 

With respect to CTT models, Novick (1966) stated that classical test theory holds a long 

and distinguished history of application to the technology of test construction and test utilization 

(p. 1); although other theories related to testing and measurement have been proposed in recent 

times, Heiser (2006) affirmed, “classical test theory is not obsolete” (p. 458). CTT offers a 

straightforward approach in which reliability can be effectively examined and it has much 

history to support its use in modern measurement problems. Because reliability is in part 

dependent upon measurement error, CTT is the better option for this study as it provides a 

simpler approach for a study of this metric; therefore, CTT will serve as the basis upon which 

test-retest reliability estimates for instruments will be investigated in this study. 
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Test Types: Tau Equivalent, Congeneric Equivalent and Parallel 

Lee, Brennan, and Frisbie (2000) advanced the following definition: “A test is a generic 

characterization of the multiple forms that might be created using the test specifications” (p. 12). 

One example of this is the Stanford-Binet Intelligence Scale, a standardized test that assesses 

intelligence and cognitive abilities in both children and adults. Many different questions are used 

to comprise one individual test form, but by selecting different questions from a large pool of 

potential questions, many forms of the same test could be created, all of which could be used 

interchangeably to measure the same underlying construct: intellectual functioning. This is true 

of many psychological and educational tests: even if only one particular test currently exists, it 

may still be considered one form of the test because other, different but equivalent tests could – 

at least in theory – be designed using the same specifications to measure the same construct 

(questions within a test may be thought of as indicators for constructs). 

Because classical test theory involves measuring latent constructs, the psychometric 

literature characterizes tests in three ways: congeneric, tau-equivalent, and parallel. Congeneric 

tests are measures of the same latent trait, that is, they measure a single underlying construct; 

however, they may have different scale origins and units of measurement and they may vary in 

precision. For congeneric tests, the correlations between true scores will be unity, but the 

variances of the true scores may vary. In a test that is tau-equivalent, the test components all 

measure the same latent trait and it is assumed that true scores have equal variances in the 

population of respondents. Tau-equivalence implies that the correlations between true scores are 

all equal to unity and that the variances and covariances of the true scores on the components of 

the measure are all equal: these tests can be interpreted as measuring a single underlying 

construct (Dimitrov, 2002; Osburn, 2000). Tests are parallel when “the correlations between true 
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scores are all unity and the variance and covariance of the component true scores of the measure 

are all equal. In addition, the components are equally reliable. Parallel components are 

unidimensional with equal factor loadings and equal error variances” (Osburn, 2000, p. 344). 

Parallel measurements within the context of CTT are defined as interchangeable or equivalent 

(Novick, 1966). Although the characteristics of experimental data are seldom precisely known, 

this study uses Monte Carlo methods which will allow tests to be defined as parallel because 

their means and variances can be held constant in the calculation of the reliability coefficients.  

Instrument Reliability Considerations 

A number of elements in combination affect a test’s ability to produce reliable results. 

The nature of reliability – that it is not static – has been studied and described by many different 

researchers in a variety of disciplines during the past century. According to Sawilowsky (2000), 

one of the first to systematically expound on this was Symonds (1928), who defined reliability as 

the correlation between two comparable tests and, in reference to reliability, stated: 

It is customary to group the factors influencing test reliability into: (1) Factors in 
the construction of the tests themselves and (2) factors in the variability of the 
individuals taking the tests. For certain factors this is a clear cut distinction; for 
others both irregularity in test construction and the variability in individuals 
seems to be operative. (pp. 74-75) 

 
Table 1 lists the factors Symonds identified as influencing test reliability. As Sawilowsky 

(2000) noted, “it has been acknowledged throughout the literature that tests’ ‘reliability’ 

estimates are alterable” (p. 198); this is evidenced in Symonds work as well as in the work of 

many other researchers. For example, as Schumaker and Smith (2007) noted, “In CTT, 

the…reliability coefficient is affected by several factors: (a) the number of items, (b) group 

homogeneity, (c) the time limit, (d) reverse scoring, and (e) negative interitem correlation” (p. 

401). Thus, it is necessary to consider the test itself, conditions under which a test is 
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administered, and the sample of individuals taking the test; the interactions among these factors 

influence test reliability.  

 
 

Table 1: Factors Influencing Test Reliability (Symonds, 1928) 

Factors Related to… 

The Test Itself The Individual Taking the Test 

Number of test items Speed required to take the test 

Length of time needed to take a test Accuracy in taking the test 

Range of difficulty of test items Incentive and effort (e.g., motivation) 

Evenness in scaling 
Obtrusion of competing ideas (e.g., previous 

experiences, concentration level, outside 
influences) 

Interdependence of test items (e.g., an answer to 
one item is dependent on a previously 
answered item) 

Distractions (e.g., temperature of the testing room, 
noise, etc.) 

Scoring (i.e., objective vs. subjective scoring) 
Accidents during testing (e.g., breaking a pencil, 

getting a defective test booklet, etc.) 

Scoring inaccuracy (i.e., errors in scoring) 
Illness, worry, excitement of examinee (i.e., 

emotional and physical state) 

Chance in answering  Time interval between test repetitions 

Position of the correct item in a multiple choice list Cheating 

Homogeneity of test material Learning curve 

Common experiences of test subjects required to 
complete the test (e.g., using examples or 
language with which not all students can 
necessarily identify) 

 

Time of year in which a test is administered  

Inclusion of extraneous material in a test (e.g., 
items not covered in class or in the textbook) 

 

Catch questions (i.e., questions that must be 
answered due to sudden insight, not learning) 

 

Emotional tinge of words in test items  

Length of test items  

Choice of words and terms  

Poor sentence structure  

Inadequate or faulty directions  

Test formatting (e.g., printing, spacing, 
paragraphing, margins, font size, etc.) 
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Instrument design. 

With respect to an individual test form, a test with few items will generally yield a lower 

reliability coefficient estimate than a longer test. Reliability coefficients depend on variation 

among individual responses to items and – because a test represents a sample of items – if the 

sample is too small, chance in the selection of items will play a large part in determining the 

scores that examinees obtain (Traub & Rowley, 1991). Increased test reliability obtained from 

increasing test length, however, follows the law of diminishing returns. For example, doubling 

the length of a test with reliability of .60 increases the reliability to .75, tripling the length of the 

same test will increase the reliability to .81, and lengthening the test by five times increases the 

reliability to .88 (Crocker & Algina, 1986). 

When considering item type, objectively scored tests (e.g., multiple-choice tests) tend to 

be more reliable than tests whose scoring process includes some subjectivity (e.g., essay tests). 

Traub and Rowley (1991) explained two reasons for this: “…first, they [objectively-scored tests] 

eliminate scorer inconsistency as a source of measurement error, and, secondly, they are able to 

cover more content, thus reducing the unreliability that can result from luck in the selection of 

questions” (p. 177). Well-written items are also integral to obtaining legitimate reliability 

estimates for a test; items should be crafted using proper language, grammar, vocabulary, and 

structure. If test items are unclear or vague, error will be introduced by the varying 

interpretations placed on the items by examinees. 

Finally, item difficulty plays a role in reliability. When an item is very difficult for the 

examinees being tested, many may leave the item unanswered or simply guess. “Guessing adds 

an element of randomness to scores: some gain a mark through chance; others of equal ability are 

not so rewarded” (Traub & Rowley, 1991, p. 177). Conversely, if an item is so easy that all 
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examinees are able to answer it correctly, it does nothing to enhance test reliability (although it 

does not detract from it either). Items contributing the most to test reliability are those that 

discriminate, that is, items on which examinees who possess the knowledge and/or skills needed 

to answer the question correctly have a better chance of successfully responding compared to 

those who lack the necessary knowledge and/or skills. In order to maximize reliability a test 

should be designed at a level of difficulty that matches the abilities of the examinees; neither too 

easy for the group, nor too difficult (Traub & Rowley, 1991). 

Test administration. 

Test administration refers to the physical conditions under which a test is given. The 

testing environment itself may cause variations in examinee responses due to noise, temperature, 

lighting, seating, or other physical aspects. In addition, the directions provided to examinees for 

responding to questions, any time limits imposed for completing the test and the test 

administrator are all conditions that can impact the reliability of an instrument. To the extent that 

these factors vary from one administration of a test to another, and to the extent that the 

conditions in test environment affect some examinees differently from the way they affect others, 

“test scores will vary for reasons other than differences among the examinees in the knowledge 

and skill being tested” (Traub & Rowley, 1991, p. 177). For example, if a test is timed, one of 

the abilities required by examinees is that of working quickly. Reliability may actually be 

enhanced in this case because timing adds an attribute on which examinees may differ in a 

consistent manner: ability to respond speedily; the difficulty is that this ability may not be an 

intended measurement of the instrument. Also, directions to test-takers are important because 

they help control the effects of guessing among examinees. Instructing examinees to answer 

every question, including those that cannot be correctly answered from knowledge, should have 
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the effect of reducing differences among examinees based on guessing (Schumaker & Smith, 

2007; Traub & Rowley, 1991). 

Sample. 

The range of true differences in abilities within a group of examinees tested influences 

the size of a test’s reliability coefficient. For the same test, a group of examinees having similar 

abilities will yield a lower index of reliability compared to a group in which the ability range is 

more widespread. For example, “a statistics anxiety test given to a group of gifted and talented 

students would yield less variation than among a general group of education students” 

(Schumaker & Smith, 2007, p. 401); Traub and Rowley (1991) further explained: 

We are looking at the capability of the test to make reliable distinctions among the 
group of examinees with respect to the ability measured by the test. If there is a 
great range of ability in a group, a good test should be able to do this very well. 
But if the examinees differ very little from one another, as they will if the test 
covers a limited range of tasks in which all examinees are highly skilled, reliable 
distinctions will be difficult to make, even with a test of high quality. (pp. 177-
178) 

 
In addition, when using a standardized test in the field, a researcher typically administers 

the test to a small, non-random sample of subjects. Test developers, by contrast, “norm” a test by 

administering it to a very large, random, representative sample of subjects for whom the test was 

created. The reliability that is calculated based on this normative sample provides test 

administrators with the “reliability estimate of a test for general purposes” (Sawilowsky, 2000, p. 

170). Morrow and Jackson (1993) stated that “depending on sample size and calculated 

reliability, reported sample reliabilities may deviate greatly from the population parameter” (p. 

353), or normed-estimate. Thus, it should be expected that the reliability calculated for a test 

administered to a small, non-random sample would differ from that provided by the test 

developer; as Traub (1994) explained: 
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The usual reliability experiment provides a sample estimate of the reliability 
coefficient for the population. Had a different sample of persons participated in 
the experiment, the reliability coefficient obtained would almost certainly have 
been a different number. (p. 66) 

 
Measurement Error 
 

Given the vast array of evidence identifying factors which influence test reliability, it 

seems clear that variance in reliability coefficients will be observed between different test 

administrations. Not only is this concept clear, it is explainable by another well-known statistical 

concept: measurement error. The combination of a specific test, its administration, and group of 

examinees impact the reliability of a test by introducing random variation – measurement error – 

into test scores: as stated by Nunnally, “some error is involved in any type of measurement” 

(1978, p. 190). Error must be taken into account when studying the psychometric properties of 

instruments used in research. Two basic types of measurement error are examined with CTT: 

systematic and random.  

Systematic error impacts each observation in the same way each time a measurement is 

recorded (Nunnally, 1978). The temperature of the testing room is one example of systematic 

error; if an examinee is uncomfortably warm or cold every question answered will be influenced 

to some extent by the environment. Thye (2000) referred to these errors as transient, describing 

them as “those factors that impact individual responses the same way within a given 

experimental session, but vary across distinct experimental sessions” (p. 1284). Systematic, or 

transient, errors create variability that cannot be attributed to the independent variable. These 

errors are not reproduced exactly at each test administration; they vary between each testing 

situation (Nunnally, 1978; Thye, 2000). Random errors of measurement, by contrast, affect each 

observation by chance and they vary within each test administration. Random errors “are caused 

by momentary fluctuations in the way people feel about, attend to, or behave toward the 
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experimental treatment” (Thye, 2000, p. 1285). Like systematic errors, random errors are not 

caused by the independent variable, but they affect the dependent variable; thus why they are 

measurement errors. 

Although both types of error are important to consider, random errors are commonly 

considered the more troublesome of the two (Nunnally, 1978; Nunnally & Bernstein, 1994; 

Thye, 2000). As Nunnally (1978) described: 

Systematic biases [errors] contribute to the mean score of all subjects being 
studied…the mean score of all subjects is not very important in studies of 
individual differences and in most psychological experiments. Random errors are 
important in all studies, because to the extent they are present, limits are placed on 
the degree of lawfulness that can be found in nature. (p. 190) 

 
Thye also noted that, “a constant error (e.g., adding 6 units to each score) will not reduce the 

correlation between two measures, [but] random measurement error will always attenuate 

measures of association” (2000, p. 1279). Because reliability is determined using correlation 

coefficients, this attenuation can impact the analyses resulting from the test data. If a test result is 

influenced by a large amount of measurement error, an improper inference may be made with 

respect to the reliability of the instrument (Woodhouse, et al., 1996). Nunnally (1978) related 

measurement error and test reliability in the following manner: 

To the extent to which measurement error is slight, a measure is said to be 
reliable. Reliability concerns the extent to which measurements are repeatable – 
when different persons make the measurements, on different occasions, with 
supposedly alternative instruments for measuring the same thing and when there 
are small variations in circumstances for making measurements that are not 
intended to influence results. In other words, measurements are intended to be 
stable over a variety of conditions in which essentially the same results should be 
obtained. … If the data obtained from experiments are influenced by random 
errors of measurement, then the results are not exactly repeatable. Thus, science is 
limited by the reliability of measuring instruments and/or the reliability with 
which scientists use them. (p. 191, emphasis in original) 
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Classical Test Theory: Reliability and Measurement Error 

In CTT, reliability is defined in terms of variations of an examinee’s responses from his 

or her true score. Stated another way, “in classical reliability theory, the candidate’s ‘true score’ 

is the mean of a hypothetical distribution of scores the candidate would earn over many 

replications of the measurement process” (Livingston, 2004, p. 334). Sijtsma (2009) referred to 

this as an individual’s propensity distribution, explaining that: 

This is an individual’s distribution of test scores that would result from the 
endless administration of the same test under the same circumstances, such that 
different test scores are the result of independent repetitions of the administration 
procedure. The correlation between only two of these repetitions in the population 
of interest is the test-score reliability, ρxx’. The variation in an individual’s 
propensity distribution is interpreted as measurement error variance. (p. 179) 

 
A perfectly reliable instrument would always yield the same score on each administration to a 

particular individual: That score would be the person’s true score for the instrument, a 

theoretically pure representation of a person not influenced by the particulars of any single 

measurement, i.e., measurement error. No measuring instrument is perfect however; variability 

or error is associated with all tests and, on any test occasion, random errors cause a person’s 

observed score to differ from his or her true score. “These random deviations from true score are 

caused by measurement error. The distribution of observed scores around true score defines the 

distribution of measurement error” (Traub & Rowley, 1991, p. 174). Nunnally (1978) described 

measurement error as follows: 

The wider the spread of obtained scores about true scores, the more error there is 
in employing the type of instrument. The standard deviation of the distribution of 
errors for each person would be an index of the amount of error. If the standard 
deviation of errors were much the same for all persons, which usually is assumed 
to be the case, one standard deviation of errors could typify the amount of error to 
be expected. This typical standard deviation of errors is called the standard error 
of measurement, σmeas. The size of σmeas is a direct indication of the amount of 
error involved in using a particular type of instrument. (p. 193, emphasis in 
original) 
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Thus, “reliability (symbolized rkk) is the proportion of total instrument variance that is true score 

variance. This relationship is illustrated by the following equation, 
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The theory of reliability is the theory of random measurement error” (Traub & Rowley, 1991, p. 

174). 

In Classical Test Theory (CTT), the following statements are made with respect to error 

(E in X = T + E): error is assumed to be uncorrelated from one measurement to another, error is 

assumed to be unrelated to a person’s true score, errors have a mean of zero over repeated 

measurements, and it is only scatter around a true score – not bias in the true score itself – that is 

presumed due to errors of measurement (Cronbach, 2004; Knapp, 1977; Lord, 1955; Traub & 

Rowley, 1991). Error can be quantified by a reliability coefficient and, because error can cause 

observed scores to differ from true scores in either direction, 68% of the measurements can be 

expected to fall within one standard error of measurement (± 1 SEM) of a person’s true score and 

95% fall within two SEM (± 2 SEM). The SEM is a determination of the amount of variation or 

spread in the measurement errors for a test, in other words, it is the difference between an 

obtained score and its theoretical true score counterpart (Harvill, 2005). A reliability estimate is 

used in the SEM calculation as follows: 

( )1 ,xySEM s r ′= −  

Where s is the standard deviation of the observed scores and ݎ௫௬′ is the reliability estimate 

(Harvill, 2005). Morrow and Jackson (1993) stated: 

The potential variability of the reliability estimate has a predictable influence on 
the SEM. If the population reliability is .80 and the population standard deviation 
is 10, the SEM would be 4.47 in the population. If one considers the potential 
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variability of the reliability estimate due to sample size, the standard error of 
measurement would also show variability and could be considerably larger than 
reported. For example, if N = 5, the estimated SEM could range from 1.183 to 
9.997 based on a 95% CI with ݎ௫௬′ limits of .986 and .001. (p. 354) 

 
Thus, the SEM quantifies the precision of scores on a test and it is sometimes referred to as 

typical error. The SEM provides an “absolute index of reliability” (Weir, 2005, p. 237). With 

respect to SEM, in 2004 Cronbach stated: “Here we have a direct report on the degree of 

uncertainty about the person’s true level of performance” (p. 410). 

Reliabilty Calculation 

In all cases, the reliability of a test is estimated from the obtained test scores of a group of 

examinees (Harvill, 2005). The statistic used to assess reliability is the correlation; the average 

size of the correlations among items is directly related to the variance of total scores: high 

positive correlations among items make for a large variance among test scores (and vice versa 

for low correlations). Test reliability depends upon positive average correlations among items; in 

addition, a highly reliable test has a larger variance than a less reliable test (Nunnally, 1978). 

Thye (2000) described how, by using indicators (i.e., test questions), the amount of variance 

caused by true score variance – the reliability of a test – may be estimated. He stated:  

When a study is replicated, neither transient nor random response error will 
reproduce in precisely the same way. Yet, true score tendencies of the trait will 
reproduce because the trait is stable. Thus, by correlating the scores from 
[questions within the instrument], the researcher can estimate true score variance 
net of transient and random response error. … The goal here is to assess 
consistency across parallel instances of the same theoretical construct. When 
scores from two different measures are correlated, only the common sources of 
variance add to the correlation coefficient. If these measures are perfectly 
identical in all regards, then the correlation will register 1.0 for the two indicators. 
(p. 1287) 

 
Error contributes to variance in reliability coefficients (correlations), “the closer reliability 

coefficients are to 1.00, the more the test is free from error variance” (Weller, 2001, p. 35); a 
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reliability coefficient of 0.80, indicates that the scores from one form of a test could be expected 

to correlate 0.80 with the scores from another equivalent form of the test. (Note that reliability 

can, in theory, be negative. This does not typically occur, however, because a group of 

examinees is usually working toward a similar goal of obtaining high scores on a test, which 

causes a positive correlated relationship between correct responses to test items and total test 

scores.) The size of the estimated reliability coefficient for a test will depend on the specific 

sources of errors that may potentially affect the test results. Specific error types depend in part on 

the way the test is administered, and in part to which form of reliability estimation is used. “In 

studying the information in test manuals, it is important to note not only the size of the reliability 

coefficients reported, but also the type of estimate reported, the kinds of error that it 

acknowledges, and the population of examinees that was sampled” (Traub & Rowley, 1991, p. 

176). For example, three potential sources of error, which in turn are associated with different 

reliability types are: trait stability over time (test–retest reliability), domain or content sampling 

(alternate form reliability), and item variability or interrelatedness of items (internal consistency 

reliability) (Rodriguez & Maeda, 2006). 

The correlation approach may be employed to study test-retest, parallel or alternate forms 

reliability (situations in which two test administrations are conducted) or internal consistency 

reliability (in which a test is administered only one time). Tzeng and Welch (1999) stated that 

this approach “is also used to index the reliability of a test having multiple (k) items by 

computing intercorrelations among the items of the test” (p. 119). In this study test-retest is the 

reliability method employed, thus, the Pearson Product-Moment Coefficient of Correlation 

(Pearson’s r) will be used to calculate the correlation coefficients for testlets according to its 

formula: 



32 

 

( ) ( )2 22 2
XY

n XY X Y
r

n X X n Y Y

Σ − Σ Σ=
   Σ − Σ Σ − Σ   

 

 
Overview: Reliability Generalization 

In 1998, a method for studying the reliability of a measuring instrument across multiple 

administrations was introduced (Vacha-Haase, 1998). It was coined reliability generalization 

(RG) and was intended to generalize reliability results from different administrations of the same 

test. As noted in Chapter 1, RG was fashioned after a meta-analytical methodology employed to 

study test validity: validity generalization. However, as also described in Chapter 1, validity is a 

completely different concept than reliability. Validity relates neither to an instrument itself nor to 

obtained test results; it is instead concerned with the inferences, conclusions or propositions that 

are made based upon the intended purpose of a test. Validity is not determined by a single 

statistic or study, but by a body of research that demonstrates the relationship between the test 

and its success at measuring the behavior, concept, construct or trait it was intended to measure. 

Reliability, by contrast, estimates the consistency of a measurement – or more simply – the 

degree to which an instrument measures the same way each time it is used under the same 

conditions. Reliability (estimated at a point in time) is concerned with the accuracy of the actual 

measuring instrument or procedure, validity (assessed over time) has to do with the degree to 

which a test accurately reflects whatever the test was designed to measure. Because (1) the same 

instrument (i.e., test) may be used to measure different aspects of the same construct, or (2) 

multiple different instruments may be available to measure the same construct (for example, 

Kramer and Conoley (1992) listed 14 measures of general anxiety and 15 measures of depression 

with high construct validity), meta-analytic generalization of the use of a test – validity – is 

appropriate; the study of reliability, however, is not amenable to such a procedure.  
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RG and reliability: The proposition. 

Vacha-Haase (1998) proposed that reliability generalization (RG) could be used to 

characterize the mean measurement error variance and sources of variability of variances across 

studies. Presumably based on observed variance among reliability coefficients calculated for the 

same test across different studies – in this case the Bem Sex Role Inventory (BSRI) – the author 

asserted that reliability was a metric property of test scores (or measurements resulting from 

using an instrument), not a property of the test (or measuring instrument) itself. It was argued 

that “reliability does not inure to tests, but rather to scores” (Vacha-Haase, 1998, p. 213). The 

support for this assertion, however, is not described as being based on any statistical or 

theoretical underpinning, but instead comes from the editorial policies of the journal Educational 

and Psychological Measurement, in which the editor proscribed contributing authors from 

making statements such as “the reliability of the test” or “the test is reliable” (Thompson, 1991, 

p. 843). This directive was set forth based in part on the variety of ways in which reliability can 

be estimated for an instrument, and also in part due to years of poor reporting practices among 

researchers. 

The Bem Sex Role Inventory RG study. 

According to Vacha-Haase (1998), the BSRI is a widely used instrument in the area of 

gender orientation research; for this reason it was chosen as the example for conducting a RG 

study. Published in 1974 by Bem, the BSRI provides an assessment of gender identity by 

examining how males and females describe themselves and how these self-descriptions fit with 

various attributes that are typically recognized as being masculine or feminine. Vacha-Haase 

(1998) stated, “This popular inventory has been translated into many languages and used with 
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various populations. The measure has been the focus of numerous measurement studies and has 

also been employed in a wide range of substantive studies” (p. 9). 

To conduct the RG study, Vacha-Haase (1998) searched one database (PsycINFO) for 

articles published between 1984 and 1997; the search resulted in 628 relevant articles (p. 10). Of 

these, the majority were not included in the RG research for several reasons: (1) the researchers 

did not report any reliability; (2) reliability was only reported from the testing manual or from 

other studies; and/or (3) because reliability was not reported in a meaningful manner. Only 57 of 

the articles reported reliability coefficients for the data at hand and were included in the RG 

study, however, among these, some articles contained more than one reliability coefficient. “For 

example, several articles provided reliability coefficients separately for the two genders, various 

ethnic backgrounds, ages of participants, or population settings (e.g., clinical vs. non-

institutionalized)” (Vacha-Haase, 1998, p. 10); due to this, 87 pairs of reliability coefficients 

were analyzed in the study. 

The method employed in conducting the RG analysis was to dummy code each of the 

variables, such as reliability coefficient type (e.g., test-retest, Kuder-Richardson, etc.), BSRI test 

form (long or short version), study participant genders, and so on. According to Vacha-Haase, 

“the first task in the reliability generalization meta-analysis was to characterize both typical 

reliability and the variability of M and F score reliability coefficients, each expressed in squared 

metrics” (1998, p. 11). Regression analyses were used to examine how coded study features 

predicted reliability coefficients and results were reported both as beta weights and coefficients. 

In addition, multivariate reliability generalization was also conducted due to the fact that the 

instrument used to exemplify the RG method has two different scales (i.e., test forms). 
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In the discussion, it was reported that different methods for computing reliability 

coefficients result in different reliability coefficient values and that sample size is a predictor for 

reliability. In addition, it was noted that test form – long vs. short version – impacted the 

calculated reliability coefficient. Finally, the author stated that the “results also indicate which 

study features do not predict variations in score reliability. Such features in the present study 

included the origins of the sample (e.g., students or not) and variations in the Likert-type 

response format” (Vacha-Haase, 1998, p. 12). 

Issues with Reliability Generalization 
 

After Vacha-Haase’s article was published, Sawilowsky (2000), and Knapp and 

Sawilowsky (2001) published several articles detailing many different issues – statistical and 

otherwise – with RG studies that were neither acknowledged nor addressed by Vacha-Haase 

(1998). Since Sawilowsky’s first publication in 2000, several other researchers have reiterated 

and commented on the many problems he identified regarding the proposed RG method to study 

reliability. The potential problems with using the RG method to study reliability across studies 

include the: 

• comparison of reliability coefficients that were obtained via different reliability 

calculation methods; 

• failure to account for the different errors associated with each type of reliability; 

• consideration of different test forms and/or formats as the same test and comparing their 

reliabilities; 

• ignoring differences in test administration conditions (including failing to determine if 

proper test protocol was followed); 

• inappropriate coding of groups (confounding independent variables); and 
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• misspecification of samples in the RG analysis. 

In addition, many issues with reliability reporting exist in the literature. As described in the 

following paragraphs, these many problems – both individually and in combination – provide 

evidence that brings the scientific integrity of the proposed RG method into question.  

Comparing different reliabilities. 

Incorporating different types of reliability coefficients in a single RG analysis violates a 

basic meta-analytic principle: studies must be combinable in order to be included in a meta-

analysis. For example, in the BSRI-RG study Vacha-Haase used multiple regression with the 

dependent variable being either test-retest correlation coefficients, Cronbach’s α, or KR-20 

coefficients. As Sawilowsky (2000) clearly pointed out “reliability can be estimated from 

different perspectives…and can be affected by different conditions” (p. 159). Dimitrov (2002) 

followed, explaining why combining reliability coefficients calculated via different methods is 

problematic for RG: 

Cronbach’s α can either underestimate the reliability when the measures are not at 
least essentially tau-equivalent or overestimate the reliability when correlations 
among errors occur. Also, the test-retest correlation coefficient can be a 
reasonable estimate of reliability only if the measures are essentially tau-
equivalent and have equal error variances. Thus, the dependent variable used by 
Vacha-Haase (1998) might be a mixture of apples and oranges, as implied also by 
her own conclusion that “the results…indicate that internal consistency and test-
retest reliability coefficients seem to present considerably different pictures of 
score quality.” (p. 792) 

 
In fact, the problem with comparing different reliability coefficients has been known for a very 

long time. In 1951, Cronbach responded to a criticism that split-half coefficients fail to provide 

the same information as internal consistency coefficients, by stating: 

The two coefficients are measures of different qualities and should not be 
identified by the same unqualified appellation ‘reliability.’ A retest after an 
interval, using the identical test, indicates how stable scores are and therefore can 
be called a coefficient of stability. The correlation between two forms given 



37 

 

virtually at the same time, is a coefficient of equivalence, showing how nearly 
two measures of the same general trait agree. (p. 298, emphasis in original) 

 
More recently, Rodriguez and Maeda (2006) commented that “some meta-analysts may argue 

that a function of meta-analysis is to explain variation in effects, and in the case of reliability 

coefficients, all types of reliability should be included while coding each type of reliability 

uniquely to assess the degree to which type of coefficient explains variation in reliability” (p. 

309). They go on to explain how difficulties arise when combining different reliability 

coefficient types: “for instance, coefficient alpha varies with the number of items used. The 

magnitude of test-retest correlations is largely a function of the time interval between testing and 

relevant intervening experiences. The magnitude of split-half reliability estimates varies as a 

function of the method of splitting the form in half” (Rodriguez & Maeda, 2006, p. 309).  

The various approaches to calculating reliability coefficients provide different types of 

information about a test. This has been discussed repeatedly throughout the literature, 

Sawilowsky (2000) wrote “many authors have noted, reliability paradigms and their coefficients 

are simply not interchangeable” (p. 159), reaffirming Pedhazur and Schmelkin (1991) who 

asserted that “reliability coefficients obtained via one paradigm constitutes different information 

than that from a reliability coefficient obtained via a different paradigm of measurement” 

(Sawilowsky, 2000, p. 161). In 2009, Popham reiterated, saying “because these three 

incarnations of reliability [split-half, alternate form and internal consistency] constitute 

meaningfully different ways of thinking about a test’s consistency…approaches to reliability are 

not interchangeable” (p. 77, emphasis added). 

Different test forms and lengths. 

Another problem with RG results from analyzing tests that have different forms and/or 

lengths. It is known that reliability is related to test length: in general, the shorter the test the 
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lower its reliability. It seems clear that – if a RG study is to be conducted – the researcher should 

only use tests that were exactly the same in the comparisons. However, “in RG studies, it is 

typical to find instruments altered or modified and administered to a wide variety of individuals 

under various conditions. Even after adjusting alpha for the number of items used in a given 

study, changes in content can result in changes in the nature of the construct (independent of the 

number of items altered), making RG less meaningful” (Rodriguez & Maeda, 2006, p. 319). 

Along with length is the issue of test format, for example, Caruso’s (2000) study of the 

NEO Personality Scales revealed that the test has both long and short forms as well as multiple 

versions which contain different questions. Similarly, Vassar and Crosby’s (2008) study of the 

UCLA Loneliness Scale documented three different versions of the test. The BSRI itself has two 

different versions, one long and one short. As Vacha-Haase (1998) described, the long version 

consists of 60 adjectives or short phrases which are split into three sets of 20 items that are 

considered either masculine, feminine or neutral; the short version consists of only 10 items for 

each of the traits. It would seem reasonable then, that although the two versions purport to 

measure the same construct, their reliabilities should be considered separately. Roth and Sackett 

(1991) commented on this issue stating: “Note that if the different tests are perfectly parallel 

measures of the same psychometric construct they are completely interchangeable and no 

problems arise. However, approximately or nominally parallel or congeneric measures are not 

the same as parallel measures and therefore are not interchangeable” (p. 325). As Dimitrov 

(2002) summarized, “using different test forms in a single RG analysis can also cause problems 

because, as indicated by previous research, the reliability depends on factors such as item 

response format, (positively/negatively) wording of stems, and type of scales” (p. 793).  
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Test administration conditions. 

Because reliability concerns measuring the degree of consistency or stability of an 

instrument over repeated administrations, then “it follows that an investigator must be able to 

specify what would constitute a replication of a measurement procedure in order to provide any 

meaningful statement about the degree to which a measurement procedure is reliable” (Brennan, 

2001, pp. 295-296). In other words, to compare reliabilities calculated for the same test on 

different occasions, it is important to ensure that the test was administered in the same manner on 

each occasion. Feldt, Woodruff and Salih (1987) provided an example related to time allotted for 

a verbal fluency test: 

Reliability comparisons…among measures which require different amounts of 
testing time would be reasonable only in those situations in which existing 
standardized instruments are compared. In such circumstances the researcher must 
administer the instruments at the lengths and within the time limits for which the 
norms apply. (p. 99) 

 
Thye (2000) stated “reliability coefficients can be estimated (1) within each condition of an 

experiment, and/or (2) across the same conditions of multiple experiments” (p. 1288). He 

explained that, under such conditions, reliability coefficients are not sensitive to experimental 

manipulation and do exactly what they should; gauge the amount of total variance caused by true 

score variance within a specific experimental treatment. This leads to a very important principle: 

“measurement reliability is only meaningful when calculated within each condition of an 

experiment, or across the same conditions of distinct experiments” (p. 1288). He then went on to 

state that reliability coefficients can be interpreted as the potential for data collected during one 

test administration to correlate with other data collected under “identical conditions” (p. 1296). 

Therefore, if one cannot be certain that the protocol developed by the test developer is followed 

properly within different testing administrations it is not possible to have confidence that the 
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reliabilities calculated from various replications of a test are comparable. Sawilowsky (2000) 

summarized, stating: 

In the absence of considerations of designed experiments, or even in violation of 
the test manufacturer’s standardized administration and scoring procedures, then 
it would not be surprising to find some dispersion of the reliability estimates in 
these studies. (p. 198) 

 
Sample issues. 

Another difficulty with RG across studies results from the inappropriate coding of groups 

(by gender, ethnicity, age, etc.) or, even worse, from biasedness of the instrument on groups 

coded with independent variables. Sawilowsky (2000) explained that using dummy-coded 

regression is appropriate when working with unequal sample sizes; however, this is not the case 

when non-random samples are used. He stated: 

It is a statistical artifact of measures of internal consistency that their correlational 
engine is less stable when the range is restricted. The most commonly cited 
distortion is in terms of traits or characteristics of the sample, which is referred to 
the problem of group homogeneity. (p. 167) 

 
When randomization is violated, reliability may increase or decrease; in addition, Vacha-

Haase’s failure to consider this issue resulted in misspecified dummy coded regression. For 

example, Sawilowsky (2000) noted that Vacha-Haase’s coding design for gender in her 1998 

BSRI study led to the confounding of independent variables because the gender of study 

participants was coded twice. Despite the fact that the misspecification of variables by a meta-

analyst is problematic, there is an even more fundamental issue with RG: reliability statistics are 

sample dependent. As Rodriguez and Maeda (2006) stated “if for no other reason than sampling 

error, study effects will always vary at some level, and meta-analysts should recognize this 

condition” (p. 310). The instrument norming process uses large random samples, but tests used 

in the field are typically administered to small, non-random groups; thus, it seems reasonable to 
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expect that reliability coefficients calculated at each test administration would vary from those 

published by test developers.  

In Vacha-Haase’s (1998) RG-BSRI study, 89% of the studies included in the meta-

analysis for which sampling plans were known used non-random samples (as estimated by 

Sawilowsky, 2000, p. 168), a point which is not stated in the original research. Sawilowsky 

(2000) commented that random sampling violations causes reliabilities calculated on a sample to 

differ from those computed by test developers; he cited a collection of literature supporting this 

and also quoted Wood (1991) who said “‘That is why there is no point in talking about the 

reliability of a test or examination, unless it is in terms of a strictly defined population’” 

(Sawilowsky, 2000, p. 170). Rodriguez and Maeda (2006) explained that various estimates of 

reliability capture specific sources of measurement error, thus resulting in different sampling 

distributions. They summarized the issue as follows: 

Instrument developers should have reported psychometric properties of their 
instrument, including item statistics and an assessment of dimensionality. These 
results can often be found in technical manuals or articles reporting the 
development of the instrument. At the same time, caution is always needed, 
because these statistics are typically sample dependent (as is coefficient alpha) 
and may not hold in all populations or in all samples from any given population, 
particularly when those samples are nonrandom. (p. 308) 

 
Based on the literature, sufficient evidence exists to support the tenet that different estimates of 

reliability should not be combined. 

Reporting issues. 

Although there is much debate regarding reliability reporting practices among 

researchers, the dispute stems not from concerns related to scores vs. test, but instead from 

reporting failures in published research. Many researchers do not report differences between 

specific study sample calculated reliability and that provided by the test developers for the norm-
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group. In addition, many studies fail to report the method used to calculate reliability, which 

makes a difference in terms of the types of errors that are considered in the reliability coefficient. 

Finally, there is a tendency for researchers to fail to report any reliability coefficients at all: It is 

well documented that many studies neither cite norm-group nor sample specific reliability. In 

2000, Sawilowsky stated “in my view, authors ought always to report these reliability 

coefficients from manuals and other sources along with the reliability estimate obtained from, 

and a description of, the researcher’s own sample” (p. 170). Recently, Romano and Kromrey 

(2009) echoed his thought and made a statement that, because reliability can fluctuate across 

studies, it is recommended that researchers evaluate the reliability of their studies and report their 

results (p. 405). However, inconsistencies with respect to reporting reliability coefficients issues 

continue to be prevalent in the literature: Yin and Fan (2000) described the issues when they 

reported: 

Of the articles reviewed for the present study, only 7.5% [90 out of 1,200] of the 
articles reported meaningful reliability coefficients for the data used in the studies. 
The overwhelming majority of the articles (80.1%) reviewed in this study did not 
even mention the reliability issue in their reports, let alone provide reliability 
estimates for their data. (p. 216) 

 
More recently, when conducting a study on the reliability of the Ways of Coping Scale (WOCS), 

Rexrode, Petersen and O’Toole (2008) noted: “of the 661 citations found during the data 

collection process, 92 were usable” (p. 267). Vassar’s (2008) study of the Satisfaction with Life 

Scale (SWLS) discovered similar issues with non-reporting; he stated “of the 196 articles, 62 

(31.6%) reported internal consistency estimates for the data at hand, yielding a total of 77 

reliability coefficients” (2008, p. 49). Similarly, Beretvas, et al. (2008), reported in a study of 

Nowicki and Strickland’s Internality-Externality Scale (NSIE), “a total of 166 articles were 

identified and evaluated, although only 19 (11.45%) of the studies reported estimates for the 
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samples involved” (p. 102). Finally, in their study of the UCLA Loneliness Scale, Vassar and 

Crosby (2008) related: “of the 213 articles remaining, 80 reported internal consistency estimates 

for the data at hand” (p. 602). Such inconsistent practices have, in part, contributed to the 

confusion surrounding psychometric test properties with respect to both their uses and 

interpretations. 

In 2002, Baugh commented that “unfortunately, disregard for the central role of 

measurement in empirical investigations has been and remains widespread in the social sciences” 

(p. 256). His statement relates to the poor reporting practices noted above, and reflects the 

opinions of many social scientists with respect to psychometrics. He goes on to state: “because 

so few researchers report reliability [for their own data], and even fewer interpret effects in light 

of reliability, the practical impact of this affect attenuation is largely unknown” (Baugh, 2002, p. 

260). Sijtsma recently reiterated “test construction and test practice are plagued by bad 

habits…and [are] in need of more direction” (2009, p. 169). These are not novel observations, in 

2000, Sawilowsky argued: “statements about the reliability of a certain test must be accompanied 

by an explanation of what type of reliability was estimated, how it was calculated, and under 

what conditions or for which sample characteristics the result was obtained” (p. 159). According 

to Vacha-Haase (1998), this non-reporting issue provides a strong argument for RG. It is, 

however, a completely separate and distinct matter from that of variation among reliability 

coefficients. Although measurement integrity is crucial to scientific research and tests that yield 

consistent results are of paramount importance to social scientists, it is important to address the 

non-reporting issues plaguing social and behavioral research; this issue however fails to provide 

a basis for RG. 
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Measurement Error 

Since Vacha-Haase (1998), several researchers have conducted and published studies that 

purported to examine reliability generalization. However, they tended to interpret RG study 

results by indicating conditions under which instruments yield scores with greater or lesser 

measurement error. A typical example of an RG interpretation was provided by Capraro, Capraro 

and Henson (2001): “in sum, measurement error [emphasis added] in MARS [Mathematics 

Anxiety Rating Scale] scores appears to increase in adult samples and perhaps in other 

homogenous age groups” (p. 384). Vacha-Haase’s 1998 article title itself Reliability 

generalization: Exploring variance in measurement error affecting score reliability across 

studies, suggests that the criterion of interest was actually measurement error, as opposed to test 

reliability.  

In their critique, Rodriguez and Maeda (2006) presented various examples of RG studies 

and concurred that: “the titles and interpretations suggest the value of interest is measurement 

error; however, the values studied are reliability coefficients” (p. 319). It would seem that 

analyzing sources of variation is a more reasonable approach to study differences in reliability 

coefficients between different test administrations, because error contributes to the magnitude of 

the reliability coefficient calculated. As Sawilowsky (2000) pointed out by quoting Nunnally and 

Bernstein (1994), “it is meaningful to think of a test as having a number of different reliability 

coefficients, depending on which sources of measurement error are considered” (p. 170). 

Dimitrov (2002) further described:  

The accuracy of measurement for a study relates to information about the study-
specific population reliability and its sample estimates. Within the classical 
framework, such information is provided, for example, by confidence intervals for 
alphas or reliability for congeneric measures but not by reliability box-plots in RG 
across studies. (p. 795) 
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Additionally, he argued that RG across studies does not provide adequate information about the 

accuracy of measurement with a specific study. Such information is instead provided by the 

standard error of measurement (SEM) and the reliability coefficients for the study sample and 

their population parameter estimates (Dimitrov, 2002). Hence, it may be stated that reliability 

coefficients do not reflect variations in measurement error – instead, measurement error 

contributes to differences between the reliability calculated based on a norm-group and the 

reliability a researcher calculates from a small, non-random sample of examinees. 

RG Proponents and Studies 

Since Vacha-Haase (1998), other researchers have conducted RG studies to determine 

why calculated reliability coefficients may vary for the same test when it is administered to 

different samples. Following the same procedure and method described by Vacha-Haase, RG has 

been conducted on several tests including the: Beck Depression Inventory (Yin & Fan, 2000); 

Ways of Coping Scale (Rexrode, Petersen & O’Toole, 2008); Internality-Externality Scales 

(Beretvas, et al., 2008); Minnesota Multiphasic Personality Inventory (Vacha-Haase, et al., 

2001); UCLA Lonliness Scale (Vassar & Crosby, 2008); Big Five Factors Personality 

Assessment (Viswesvaran & Ones, 2000); NEO Personality Scales (Caruso, 2000); and 

MacAndrew Alcoholism Scale (Hakim & Viswesvaran, 2002).  

Throughout these various studies several common themes are evident: lack of reliability 

reporting by researchers in general, inconsistent reliability methods, test variations, and 

differences in examinee samples. As documented herein, many problems with RG exist, not the 

least of which is that RG studies published to date rely on one article as the basis for employing 

the method: this is disconcerting because, as previously noted, other than stating a conviction 

that reliability is a metric property of scores, no supporting scientific theory or evidence is put 
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forth to give credence to the statements made. Also as described here, several aspects among RG 

studies have been examined and nearly all have been shown to be incompatible to studying in 

combination (e.g., it is inappropriate to compare reliability coefficients calculated using different 

reliability methods). 

A few investigators have put forth an effort to expand upon RG as it was originally 

proposed. Baugh (2002) proposed a method for correcting effect sizes for reliability. Baugh’s 

study was based upon the notion that reliability is a property of test scores and that score 

reliability tends to attenuate effect size estimates. Baugh did not provide any background for his 

assertion that reliability inures to scores; discussions in the article simply state this as fact. He 

introduced a technique to correct for study “artifacts” (p. 258), and stated that these artifacts may 

be systematic or unsystematic; it seems clear that the artifacts to which he referred are 

measurement error because he went on to state: 

The majority of systematic artifacts attenuate the population correlation ρ. 
Specific artifacts attenuate ρ differently, and knowledge of the artifact allows for 
the quantification of influence on the effect estimate. For example, reliability 
coefficients for scores on dependent variables provide an estimation of the 
amount of random measurement error present in the dependent variable scores. 
(2002, p. 259) 

 
Baugh presented formulas to correct for the reduction in effect size that may be caused by score 

unreliability, and concluded that greater measurement error leads to smaller values in reliability 

coefficients which in turn reduces effect size (p. 259). He ends with a caution that researchers 

should report both reliability and effect size for their data because reporting both acknowledges 

“the presence of measurement error in all analyses and calls attention to its impact” (p. 260). As 

noted with respect to Vacha-Haase (1998), it would seem that the metric of interest in Baugh’s 

study was measurement error, not reliability. 
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Charter (2003) wrote an article discussing formulas for combining different types of 

reliability coefficients (test-retest, alternate forms, split-half, coefficient alpha, etc.) from several 

samples to “produce the exact reliability one would compute if one had raw data from the 

samples” (p. 643). The formulas, which require sample means, standard deviations, sample sizes 

and reliability coefficients, were proposed to be used specifically with meta-analytic RG studies 

as described by Vacha-Haase (1998). Charter stated that use of the formulas “would allow the 

research to examine the average shrinkage of sample coefficients relative to the best-guess 

population coefficient generated from these formulas. The investigator would then point out that 

the population coefficient is most likely higher” (p. 644). Citing Thompson (2002) Charter 

concluded “reliability generalization studies appear to be limited by two things, (a) the creativity 

and insightfulness of the researchers and (b) the information reported in the prior studies 

examined in the reliability-generalization meta-analysis…these formulae should provide creative 

opportunities for researchers” (p. 646). Unfortunately, Charter failed to address known problems 

with RG, to further explicate the reasons why different reliability coefficients should not be 

combined, or to explain the effect of non-random sampling on reliability estimates. 

Henson (2004) followed Charter’s formulas to “characterize the reliability of a scale’s 

scores across studies” (p. 818). He stated “too few researchers realize that reliability is a function 

of the obtained scores from a scale and is not a property of the scale itself (see Thompson & 

Vacha-Haase, 2000; Henson, 2002). Reliability can and does fluctuate from sample to sample 

when using the same measure” (p. 818). He explained that, because it varies from sample to 

sample, reliability generalization can be employed to examine the amount of variability in 

reliability estimates. Henson asserted that combining reliability estimates “provides a more 

accurate estimate of the population reliability parameter” and that it gives insight into the 
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precision of the estimate (p. 819). He used fourteen studies of the Coopersmith Self-esteem 

Inventory – all of which reported Cronbach’s alpha – to calculate a combined reliability estimate 

and confidence interval (CI); the combined reliability coefficient was computed to be 0.90 with a 

CI (.893, .901). From this data he concluded that the combined coefficient was greater than any 

individual reliability estimate “due to increased variability of the combined data” and that “the 

CI width generally decreases as the obtained reliability and sample size increase” (p. 819). 

Interestingly, among the fourteen studies, all had reliability coefficients between .78 (CI: .716, 

.835) and .89 (CI: .838, .932) with one exception, a study that used only 29 participants reported 

reliability as .68 (CI: .488, .826). These findings are very similar to what Sawilowsky (2000) 

identified in Vacha-Haase’s (1998) study: that descriptive statistics for the BSRI showed 

remarkably narrow confidence intervals for applied research (p. 169). This leads once again to 

the question of what scientific evidence is driving the notion that reliability is a metric property 

of scores as opposed to tests when it seems clear that it is the proper and systematic use of an 

instrument that affords consistency to measurements. 

Fan and Yin (2003) published an empirical study on examinee characteristics and 

reliability. Citing Thompson and Vacha-Haase (2000) and Yin and Fan (2000), they asserted that 

“it is generally recognized that measurement reliability should be considered as the characteristic 

of test scores rather than the test itself” (p. 357). The study they reported was designed to assess 

the extent to which group heterogeneity and group performance levels affect reliability, 

specifically Cronbach’s alpha. Fan and Yin used data from two tests one criterion-referenced test 

used in Texas high schools, the Texas Assessment of Academic Skills (TAAS), and one norm-

referenced test, the Iowa Test of Basic Skills (ITBS). They tested for the effect of group 

heterogeneity by drawing random samples from a large pool (TAAS, n = 50,000; ITBS, n = 
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10,000) of test scores and systematically restricting the range of scores on which reliability was 

calculated. They first drew random samples (TAAS, n = 500; ITBS, n = 100) from the entire 

pool, then ordered the data and drew random samples from only the middle 90%, 80% and 50%, 

thus restricting the range and lowering the variance with each successive sampling. To examine 

the effect of group performance on reliability, they drew the same sized random samples for both 

tests but for this metric they drew first from only the upper and lower 75% and then from only 

the upper and lower 50% of the data. 

Fan and Yin noted that the range restrictions were implemented symmetrically from the 

tails, thus all samples had similar mean scores (performance levels) but different variances; 

however, because the overall test score distributions were negatively skewed, the variability in 

scores was not held constant as performance level varied. To address the group heterogeneity 

question, they calculated alpha for each sample pool (e.g., middle 90%) and compared this 

reliability coefficient to that of the smaller samples used. Their results suggest that “when 

performance levels are comparable, the assumption of invariant measurement error is empirically 

tenable” and “measurement reliability largely depends on group variability, as the classical 

reliability theory predicts” (p. 364). 

With respect to group performance, they followed a similar procedure but, due to the 

skewed distribution, group performance and group variability were confounded so they could not 

effectively assess the effect of performance on reliability because “the difference in reliability 

estimates between the high- and low-performance groups may be due to group variability 

differences, or to performance differences, or to the combination of the two” (p. 365). To help 

correct for the differences in standard deviations, they adjusted the group variability to conduct 

their analyses, this resulted in a reported finding that the low-performance group tended to have 
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more measurement error. Based on results, they concluded that measurement reliability will be 

reduced by group variability restriction and that it will also be affected by group performance. 

The authors mentioned two limitations to the study. First, the use of knowledge-based data 

(correct vs. incorrect scores) may have provided different results compared to typical-

performance measurement data (attitude or interest scores); second, the lack of experimental 

control with respect to controlling the effects of different score characteristics. Interestingly, they 

suggested that a Monte Carlo study be conducted using simulated data with defined 

characteristics to prevent confounding of variables. 

RG Counter Arguments 

Sawilowsky (2000) was the first to issue a retort providing many substantial arguments 

against the RG method and refuting the proposition that reliability inures to test scores. He 

framed the context of the issue by explaining that it is not appropriate to make definitive 

statements, such as, “the reliability of test X is .90” (p. 158), because there are several ways to 

estimate reliability and the various methods account for measurement error in different ways. He 

argued that “statements about the reliability of a certain test must be accompanied by an 

explanation of what type of reliability was estimated, how it was calculated, and under what 

conditions or for which sample characteristics the result was obtained” (Sawilowsky, 2000, p. 

159). Researchers must provide context when reporting reliability coefficients; a given test may 

have several different reliability estimates depending on how much the above mentioned 

variables (e.g., sample composition, physical conditions, reliability type, etc.) differ among test 

administrations. Sawilowsky (2000) described the manner in which reliability was presented in 

63 different educational and psychological measurement and/or evaluation textbooks between 

the years 1986-2000. He showed, by quoting a variety of sources, that reliability is considered to 
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be a property of a test or measuring instrument itself among researchers, but that it is agreed its 

estimation will vary – it is not an unchanging constant (p.110). 

In addition, Sawilowsky (2000) reiterated the long known reality that test scores – in fact, 

measurements in general – are not static; they fluctuate based on a number of different factors 

which affect their consistency. He explained: 

Because even the person taking a test may affect its reliability, social and 
behavioral science scales are not entirely analogous to the weight scale from the 
physical sciences. Factors such as temperature, air pressure, humidity, spring 
tension, battery condition and the levelness of the floor may affect the weight 
scale, but are readily discernable and compensated. There are, however, an 
infinite number of disconcerting factors that may arise in measuring 
straightforward variables such as achievement and how much more so for 
complex educational and psychological constructs such as aptitude. Even those 
that are known cannot be easily compensated for, potentially mitigating the 
consistency evidence. (pp. 197-198) 

 
These issues have long been known and studied as previously evidenced by the various impacts 

to reliability which Symonds (1928) identified more than 80 years ago. 

Rejoinder to the RG counter arguments. 

In a retort to Sawilowsky (2000), Thompson and Vacha-Haase (2000) declared that they 

would not address the issues brought forth by Sawilowsky (2000), they stated: 

In this response to Sawilowsky’s comments our primary focus will not be 
defending ourselves or our editorial policies and our analytic proposals from all 
criticisms or critics. Instead as in our original work, here our clear and present 
purpose remains moving the field toward more reflective practices as regards 
measurement. 
 
Therefore, we focus on those criticisms of Professor Sawilowsky that we believe 
are immediately relevant to our determined (albeit ambitious) focus. We 
especially hope that our major emphases will not be lost within a litany of minor 
concerns; we avoid this possibility by addressing here only the issues most 
relevant to our objectives, and demur from commenting otherwise. (Thompson & 
Vacha-Haase, 2000, p. 124) 
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As such, the article redirected the context of the argument away from the many problems with 

RG. It instead focused on the semantics of the word reliability and the interpretation of reliability 

coefficients as they relate to scores, not tests. Regrettably, Thompson and Vacha-Haase failed to 

present any substantive arguments or scientific evidence to support either the use of the RG 

method or the assertion that reliability inures to scores. They also neglected to address specific 

issues with respect to sampling error, measurement error, differences in reliability estimations 

based on reliability type calculated, testing conditions, reporting practices that cause reliability 

coefficients to vary between different examinee samples and/or testing administrations or any of 

the many other reasons provided to explain how and why reliability coefficients for the same 

instrument will vary across test administrations. 

Study Rationale 

This study will illustrate how the same instrument, administered under varying 

conditions, can result in different reliability coefficients due to sampling error, thus obviating the 

concept of RG. Showing that reliability is a psychometric property of a test is critical; since 

Vacha-Haase (1998) and Thompson and Vacha-Haase (2000) published their articles, the use 

and reporting of reliability has been confounded for researchers in many fields. The need to 

address the issue was evidenced when Thomas and Truax (2008) wrote a book chapter in the text 

Handbook of Research Methods in Abnormal and Clinical Psychology entitled Assessment and 

Analysis of Clinically Significant Change. In the chapter they stated: 

There is some controversy over the terms “score reliability” and “test reliability” 
with one faction insisting that the concept of reliability only applies to scores 
(Thompson and Vacha-Haase, 2003) and another holding that reliability is a 
property of a test under particular conditions (Sawilowsky, 2003a, 2003b). Since 
both factions wish to control word usage, it is not possible to employ the term or 
the usage in a way that satisfies both. We have not yet decided if this is an 
important distinction or just sophistry and will probably violate the standards of 
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both factions in this brief exposition. In general, we lean toward the Sawilowsky 
position. (pp. 232-233) 
 

Because test or instrument reliability is fundamental to research in behavioral, educational, 

clinical and many other scientific disciplines, it is critically important to clarify this question and 

to support its answer with sound, scientific evidence. The following paragraphs describe the 

background and components on which the methodology was based and designed.  

Methodological Components 

Various potential methodological problems with proposed RG studies, the confusion 

surrounding the reliability of tests and the notion that RG studies are concerned with 

measurement error, not test reliability have been highlighted. In order to study the reliability of a 

test, to illustrate that it is a stable metric of the instrument itself (not the test scores generated by 

examinees), and to show how reliability indices will vary, but only within the expected limits of 

standard errors of measurement, Monte Carlo methods will be used with the domain-sampling 

model as described by Nunnally (1978) to study the test-retest reliability of a matrix of correlated 

tests. 

Domain sampling model. 

In order to design and conduct a study regarding the reliability of a test, a sample of test 

items is needed. Nunnally (1978) provided a description of such a model: “the most useful model 

for the discussion of measurement error is that which considers any particular measure as being 

composed of a random sample of items from a hypothetical domain of items” (p. 193, emphasis 

in original). What Nunnally described is a test composed of randomly sampled items from an 

infinite number of potential items that could be chosen, this is called the domain. The more 

homogeneous the correlations in the domain, the more precise estimates of correlations will be 

with true scores. The domain-sampling model was designed to estimate the measurement that 
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would be obtained if all the items in a domain were tested by using samples of items from a large 

representative group of items. The reliability coefficient for the entire group of items is 

calculated, resulting in an estimate of reliability for an entire “domain” of items. This theoretical 

framework for sampling test items has been employed by psychometricians throughout the years. 

In 1951, Lee Cronbach provided the following description of a domain of items:  

There is no practical testing problem where the items in the test and only these 
items constitute the trait under examination. We may be unable to compose more 
items because of our limited skill as testmakers but any group of items in a test of 
intelligence or knowledge or emotionality is regarded as a sample of items. If 
there weren’t “plenty more where these came from,” performance on the test 
would not represent performance on any more significant variable. (p. 308) 

 
Lee, Brennan and Frisbie clarified: “In the strict statistical sense, this means that these items can 

be viewed as a simple random sample from an indefinitely large domain of items” (2000, p. 12). 

Thus, any particular set of items used to create a test represents samples of items from an infinite 

hypothetical domain; these item samples can be used to study the psychometric properties of a 

test. As Nunnally explained, “the domain-sampling model can be developed without 

consideration of the number of items sampled for particular measures. Each sample could 

contain many items, or at the lower extreme, only one item. Also, the model can be developed 

without concern for the type of item employed or the factorial composition of items” (Nunnally, 

1978, p. 194).  

The domain sampling model relates to CTT by considering that reliability is concerned 

with stability and repeatability of measurement; the theoretical basis underlying the domain-

sampling approach is to estimate the test score that an examinee would obtain if all the items in 

the domain were incorporated into a test. The score that a test-taker would obtain over the entire 

domain is their true score (X = T + ε + c1 + c2 + … cn, where X = true score, ε = random error 

and cx = systematic errors, such as test-wiseness). The consistency of measurement between 
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random samples of items with other such samples from the same domain constitutes a measure 

of test reliability (Nunnally, 1978; Cronbach, 2004). Nunnally (1978) described the logic behind 

the model by conceptualizing an infinitely large correlation matrix showing all correlations 

among items in a particular domain: 

The average correlation in the matrix rkk would indicate the extent to which some 
common core existed in the items. The dispersion of correlations about the 
average would indicate the extent to which items varied in sharing the common 
core. If the assumption is made that all items have an equal amount of the 
common core, the average correlation in each column of the hypothetical matrix 
would be the same, which would be the same as the average correlation in the 
whole matrix. (p. 195) 

 
Using the above assumption, Nunnally showed how it is possible to directly compute – not 

simply estimate – the correlation of any particular item, or group of items (i.e., in this study a 

testlet), with the sum of all items in the domain. Thus, the domain-sampling model considers any 

particular measure as being composed of a random sample of items from a hypothetical domain 

and – to the extent that correlations among items vary in the domain – there is random error 

associated with the average correlation in any particular sampling of items. Precision of the 

estimates is measured in terms of the standard error of item correlations which, in turn, is a 

function of the variance of the item correlations. 

Domain-sampling model assumptions. 

The following assumptions underlie the use of the domain-sampling model as described 

by Nunnally for investigating the reliability of tests: 

• Observed scores differ from true scores on a random basis; 

• The wider the spread of observed scores about true scores, the more error there is in 

employing the instrument; 
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• One standard deviation of errors typifies the amount of error to be expected in calculated 

reliability coefficients; 

• Typical standard deviation of errors equates to the standard error of measurement (σmeas); 

• The size of σmeas is a direct indication of the amount of error involved in using a 

particular type of instrument; 

• The variance of the sum of k sets of standard scores equals the sum of all the elements in 

the correlation matrix for those scores; 

• All items in the domain are unidimensional, that is, they measure the same underlying 

construct or attribute;  

• Correlations among items in the domain are normally distributed and statistically 

independent of one another; and 

• The average correlation of each item with the all others is the same and is also the same 

as the average correlation in the matrix (Nunnally, 1978, pp. 193-196). 

Nunnally (1978) noted that the domain-sampling model assumes correlations are 

normally distributed about the average value and are statistically independent of one another, but 

he also stated, “both assumptions are known to be slightly incorrect” (p. 207). Nunnally 

explained that, if an average correlation is positive, then the random distribution of correlations 

around the average tends to be negatively skewed and they are not completely independent of 

each other. However, he went on to say that these assumptions are violated only slightly, 

consequently the domain-sampling model will hold well in practice. This issue will not impact 

this research because the data will be computer-generated. 
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Testlets. 
 

The concept of a testlet was introduced in 1987 by Wainer and Kelly as: “a group of 

items related to a single content area that is developed as a unit” (Wainer & Lewis, 1990, p. 1). 

Testlets have also been described as small tests; or as tests small enough to manipulate, but large 

enough to carry their own context as analysis units (Wainer & Kiely, 1987; Wainer & Lewis, 

1990). As defined by Lee, Brennan and Frisbie, a testlet is “a subset of the items in a test form 

that is treated as a measurement unit in test construction, administration, and/or scoring” (Lee, 

2002, p. 149). 

Test reliability: minimum levels. 

As previously noted, the correlation is the statistic used to assess reliability. Whereas the 

interpretation of this statistic is clear, the required magnitude for reliability coefficients is a 

source of debate. Over the years, a number of researchers have proposed minimum levels of 

reliability depending on both the context of the measurement instrument and its purpose (e.g., 

clinical, diagnostic, screening). As Cortina (1993) pointed out: 

The level of reliability that is adequate depends on the decision that is made with 
the scale. The finer the distinction that needs to be made, the better the reliability 
must be. For example, the reliability of the Scholastic Aptitude Test is quite 
adequate for distinguishing between a 750 scorer and a 450 scorer. Its reliability is 
not adequate for distinctions between scores of 749 and 750. Thus, any judgment 
of adequacy, even in research, needs to consider context. (p. 101) 

 
In 1927 Kelly asserted that a reliability coefficient of 0.94 was needed to evaluate levels 

of individual accomplishment. More recently, Gregory (1999), Guilford and Fruchter (1978), 

Hopkins, Stanley, and Hopkins (1990), and Salvia and Ysseldyke (1988) suggested a reliability 

of 0.90 for accurate measurement in practical use. In addition to following the recommendation 

of Nunnally and Bernstein, who in 1994 advised that – for most research purposes – a reliability 

of 0.80 is adequate (p. 265), this study will also examine reliabilities of 0.70 and 0.90. 
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Monte Carlo methods. 
 

Data simulation involves using computer models to emulate real life or to make 

predictions. Monte Carlo simulation is a computerized mathematical technique used to evaluate 

complex models by employing sets of random numbers as inputs; the simulation results in a 

range of possible outcomes and the probabilities of their occurrence. The technique was first 

used by scientists working on the atom bomb during World War II; it was named for Monte 

Carlo, the Monaco resort town renowned for its casinos. Since its introduction, Monte Carlo 

simulation has been used to model a wide variety of physical and conceptual systems 

(Metropolis, 1987). 

As Harwell (1992) described, Monte Carlo studies have many beneficial attributes 

compared to other types of research: 

MC studies do not appear to suffer from the range or magnitude of definitional 
difficulties that often plague meta-analyses of empirical studies in education and 
psychology-for example, heterogeneity of measured constructs, studies of widely 
varying methodological quality, study selection bias, and dependencies among 
EMs [effect magnitudes]. This is due to the small number of simulation factors 
usually employed in MC studies, their nature, and the control that is exercised 
over the data generation process. These factors bolster the credibility of a 
carefully conducted summary of MC results. (p. 302) 

 
In addition, as Headrick and Sawilowsky (1999) noted, “Monte Carlo simulations requiring 

correlated data from normal and nonnormal populations are frequently used to investigate the 

small sample properties of competing statistics, or the comparison of estimation techniques” (p. 

25). Monte Carlo simulation methods were selected for this research because they can provide 

insight into what would happen to reliability if the same test, measuring the same underlying 

factor, were to be administered many times to different random and non-random samples. As 

Sawilowsky and Fahoome (2003) noted “Monte Carlo refers to repeated sampling from a 

probability distribution to determine the long run average of some parameter or characteristic” 
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(p. 46), in this case, the long run average of reliability coefficients for various sized testlets 

sampled randomly and non-randomly. In addition, Sawilowsky (2003) listed the characteristics 

of a high quality Monte Carlo simulation: 

• the pseudo-random number generator has certain characteristics (e. g., a long “period” 

before repeating values); 

• the pseudo-random number generator produces values that pass tests for randomness; 

• the number of repetitions of the experiment is sufficiently large to ensure accuracy of 

results; 

• the proper sampling technique is used; 

• the algorithm used is valid for what is being modeled; and 

• the study simulates the phenomenon in question. 
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CHAPTER 3 

METHODOLOGY 
 

Vacha-Haase (1998) noticed differences among reliability coefficient values calculated 

for different administrations of the same test. The obvious, but overlooked, explanation for this 

phenomenon – beyond the already known fact that different types of reliability will yield slightly 

different values – could be summarized as follows: Sampling error occurs even under pristine 

randomized procedures and it increases in practical administrations when implementing a test, 

particularly if standard process protocol is violated. 

 Rather than examining sampling error, Vacha-Haase invoked a concept similar to validity 

generalization. As discussed earlier, validity generalization is possible because the same 

instrument can be used for a variety of different purposes, or conversely, several different 

instruments can be valid for a particular purpose (for example, The Mental Measurement 

Yearbook for any given year lists several different measures with high validity that can be used 

to diagnose anxiety, depression, etc.). In any case, disparity across administrations related to 

validity evidence is not due to sampling error; hence, validity evidence is amenable to the meta-

analytic procedure of synthesizing different literature. 

 Ignoring classical definitions of reliability and validity is the source of the mistake with 

reliability generalization. Classically, reliability is a property of a test; test scores are known to 

fluctuate due to sampling error or deviations from proper test administration protocol. Validity 

relates to the usage of a test for a particular purpose: it is a proposition, inference or conclusion 

that is valid or invalid. The scores (or measurements) generated by a test do not themselves 

provide information regarding the type or strength of the validity associated with the use of the 
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instrument. Test scores (or measurements) do not have validity; it is only appropriate to state that 

a score or measurement leads to valid conclusions or enables valid inferences to be made. 

 Vacha-Haase’s concerns with variation in reliability estimates, therefore, are addressed 

with theoretical data by computing the reliabilities of various sized testlets sampled randomly 

and non-randomly from a domain of data correlated to a known value and comparing the average 

reliabilities of the various sized testlets to the known reliability of the universe. This study was 

designed to illustrate how the same instrument, administered repeatedly, can result in different 

reliability coefficients and to show that variation in reliability coefficients is due to sampling 

error. The following questions encompass the study’s rationale:  

Statistical Question 1: Can the xyr , where (x, y) = 5, 10, 15, 25, 50, 75, 87 and 100, equal 

XYr , where (X, Y) = 1,000,000, within the sampling error of SEM as predicted by 

classical measurement theory, eliminating the notion of reliability generalization? 

Statistical Question 2: Does the, xyr  where (x, y) = 5, 10, 15, 25, 50, 75, 87 and 100, 

equal XYr , where (X, Y) = 1,000,000, when administration protocols (i.e., lack of 

randomization) are violated as predicted by classical measurement theory, 

eliminating the notion of reliability generalization? 

Data Creation 

 It is assumed that a matrix of pseudo-random numbers generated from a known data 

distribution represents a random sample of items from a hypothetical infinite domain of items. It 

is also assumed that pseudo random number generators are able to populate such a domain. 

Based on statistical tests of randomness (e.g., Chi-squared, Kolmogorov-Smirnov) and 

sufficiently long periods (cycles), randomly selecting pseudo-random numbers will result in 

representative samples of the larger domain, or universe; these will be called mini-universes. 
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Because most social and behavioral science instruments are composed of a yet smaller number of 

items taken together, called a scale or test, multiple items from the mini-universes will be used to 

calculate reliability per Nunnally (1978) and Lee (2002). They described how an infinitely large 

matrix of correlated items can be divided into groups composed of h items and how the sum of 

scores for each group of items may be considered as constituting a test. These are called testlets 

(Lee, 2002), and are the measurement units for analysis. The purpose of using correlated data 

and testlets is to estimate a subject’s True Score (T in X = T + E), the score that the individual 

would obtain if they were to retake the same test an infinite number of times. 

If items within the mini-universes are randomly sampled to create the testlets, then the 

testlets created will be randomly parallel. Means, standard deviations and estimates of 

correlations with true scores among the randomly parallel testlets will differ only by chance. The 

expectation is that – for random samples of parallel testlets correlated to a known value, 0.70, 

0.80 or 0.90 – any variation in the calculated reliability coefficient between a testlet and its entire 

mini-universe will be due to sampling error. Thus, the metric of interest is the size of the 

correlation, as Morrow and Jackson (1993) stated: “The magnitude of the reliability coefficient is 

the issue, not statistical significance” (p. 354). For this reason, significance testing of the 

calculated coefficients will not be necessary; instead the difference between each testlet’s 

average reliability and the overall average reliability of the testlet samples will be used to 

determine the extent to which differs from that of its mini-universe. Also, the standard deviation 

and SEM will serve to gauge how much, on average, the testlet reliabilities differ from the 

known reliability of the mini-universe. 
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Study Protocol 

A program was written in Essential Lahey Fortran 90 (ELF90) to study the reliability of 

tests. 

Part 1: Simulated data with random selection. 

Algorithms for creating correlated data based on the Fleishman (1978) procedure as 

described by Headrick and Sawilowsky (2000) and presented by Sawilowsky and Fahoome 

(2003) were used to populate 2 × 1,000,000 matrices of correlated data for five different 

distributions: normal, Chi-squared (df = 1), Exponential, Double Exponential and t (df = 3). This 

procedure creates X and Y variables set to a specified correlation from the different distributions 

and at the same time preserves the underlying distribution shapes (skew and kurtosis).  

First, using a Texas Instruments TI-83 graphing calculator, the constants a, b and d from 

Table 2 for each distribution were employed to solve for r in the equation: 

 
2 2 2 2 2 2 4( 6 9 2 6 ),xyr r b bd d a r d r= + + + +                                         (1.1) 

where rxy = 0.70, 0.80 or 0.90. After r was calculated from (1.1), it was used to produce standard 

normal variates, which are intermediate values. The intermediate values (xi and yi) were obtained 

using FORTRAN subroutines Rangen 2.0 and normb1.f90 (Sawilowsky & Fahoome, 2003) to 

randomly select three standard normal z-scores (z1, z2 and z3) and placing these values into the 

following equations: 

2
1 2( 1  )( )ix rz r z= + −                                                         (1.2) 

2
1 3( 1  )( )iy rz r z= + −                                                         (1.3) 

The intermediate xi and yi values generated from (1.2) and (1.3) were then applied to produce the 

ith scores that were substituted in the Fleishman equations 
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( ) 2 2 i i i iX a bx a x dx= + + − +                                                   (1.4) 

( ) 2 2 i i i iY a by a y dy= + + − +                                                   (1.5) 

 
to create the correlated data pairs (Xi, Yi). The intermediate r values calculated in equation (1.1) 

ensure that the correlated scores generated in equations (1.2) – (1.5) maintain the properties of 

the distribution from which they were sampled. Thus, in addition to knowing the correlation of 

each data pair, the Fleishman procedure retains the shape of the underlying distribution, therefore 

controlling both skew (γ1) and kurtosis (γ2). The algorithm also produces data distributed with μ 

= 0 and σ = 1; as a result, computed correlated values are standardized to this mean and standard 

deviation. Using the Fleishman method to generate data with a known correlation, ݎ௑௒, sets the 

extent to which test items (Xi, Yi) are unidimensional, that is, the extent to which they measure 

the same underlying concept or construct. In addition, this ݎ௑௒ – which is the reliability of the 

mini-universe – is the reliability coefficient of a norm group to which testlet (samples) 

reliabilities were compared. 
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Table 2: Study Distribution Statistical Properties and Solutions to the Fleishman Equation: 
Intermediate r Values by Distribution and Correlation 

Distribution rxy 
ଵ* 

(Skew) 
ଶ* 

(Kurtosis) 
a* b* d* 

Intermediate
r Value 

Normal 
.70 

0 0 
0 1 0 .83670 

.80 0 1 0 .89443 

.90 0 1 0 .94868 

Chi-square (df = 1) 
.70 

2.828 12 
−.5207 .6146 .02007 .88909 

.80 −.5207 .6146 .02007 .92960 

.90 −.5207 .6146 .02007 .96633 

Exponential 
.70 

2 6 
−.3137 .8263 .02271 .85998 

.80 −.3137 .8263 .02271 .91319 

.90 −.3137 .8263 .02271 .95973 

Double Exponential 
.70 

0 3 
0 .7824 .0679 .84248 

.80 0 .7824 .0679 .89877 

.90 0 .7824 .0679 .95110 

t (df = 3) 
.70 

0 17 
0 .3938 .1713 .86665 

.80 0 .3938 .1713 .91814 

.90 0 .3938 .1713 .96118 
*Source: Sawilowsky & Fahoome (2003) from Headrick & Sawilowsky (2000, p. 427) 

 

As equations (1.2) – (1.5) were solved and data was generated, the correlated data was 

placed into a 2 × 1,000,000 matrix, which is called a mini-universe (mini represents the fact that 

many more values could be calculated, but for practical purposes defined data sets were used). 

Thus, all data pairs in the matrix were calculated such that each Xi correlates to a Yi from a 

particular distribution at a specified level of correlation. This process was performed fifteen 

times so that each of the five distributions had three 2 × 1,000,000 matrices of data correlated at 

0.70, 0.80 and 0.90. Thus, each of the fifteen mini-universes holds 1 million pairs of correlated 

data simulating 2 million test scores where the data pairs (Xi, Yi) represent paired test items, with 

the Xi’s representing results from a first test administration and Yi’s representing results from a 

second administration; this mirrors a test-retest administration procedure.  
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After the mini-universes were generated, pairs of correlated data (Xi, Yi) were randomly 

sampled from the 2 × 1,000,000 mini-universes into 2 x n testlets, where n = 5, 10, 15, 25, 50, 

75, 87 and 100. Because a random number generator was used to simulate the (Xi, Yi) pairs, the 

data was randomized within the mini-universe as it was produced by the program. This allowed 

testlets to be sampled randomly by simply taking sequential sets for all specified testlet sizes (2 x 

n), until each entire 2 × 1,000,000 million matrix was exhausted of (Xi, Yi) pairs. The (Xi, Yi) 

pairs represent parallel testlets of varying sample sizes (e.g., 2 x 5, 2 x 10, etc.). For example, 

using testlets sized n = 5 and the mini-universe for the normal distribution correlated at rxy = 

0.70, 200,000 testlets were randomly sampled. (See Table 3.) The mean, standard deviation, 

Pearson’s Coefficient of Correlation xyr  (i.e., the reliability coefficient) and the standard error of 

measurement were calculated for all testlets. The testlet correlations represent reliability 

coefficients as calculated via test-retest method for a test administered multiple times to different 

sized groups of test subjects. 

After the correlation coefficients were calculated and stored in the database, the upper 

bound, lower bound, mean, standard deviation and standard error of measurement was recorded 

for the correlations according to the formulas: 

Upper Bound Correlation MAX = highest correlation value (2) 
Lower Bound Correlation MIN = lowest correlation value (3) 

Mean Reliability Coefficient 
xy

xy
r

r
x

n
=   (4) 

Standard Deviation of the 
Correlations 

( )22

1
xy xyr r

s
n

−
=

−
 

 (5) 

Standard Error of Measurement 
of the Reliability Coefficient ( )1

xyrSEM s x= −  (7) 
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where X = correlation coefficients and xyr  is the average correlation coefficient for all 1 million 

testlets. 

The precision with which reliability is estimated for a testlet is a direct function of the 

accuracy with which the correlation of items in a test estimates the correlation of all items in the 

domain (Nunnally, 1978, p. 210). It is expected that correlations calculated for each testlet will 

have very small standard deviations and SEMs and will nearly approximate the known 

correlation of the entire mini-universe. 

Part 2: Simulated data with non-random selection. 

The procedures in Part 1, as described above, were replicated with one change: 

randomization was violated to simulate practical conditions of administering a test to smaller 

non-randomly sampled groups of examinees. To create the non-random samples, the correlations 

in the mini-universes were ordered from low to high by adding the absolute values of the (Xi, Yi) 

pairs and sorting the sums in ascending order from X1Y1 to X1,000,000Y1,000,000. After the data was 

ordered, multiple 2 x n testlets were again sampled, however, they were not sampled randomly – 

they were first sampled only from within the lowest 25% of the values (bottom 250,000) and 

then only from within the highest 25% of the values (top 250,000). (See Tables 4 and 5.) The 

expectation being that reliability coefficients observed for testlets would differ to a much greater 

extent from the known reliability of the mini-universe due to sampling error introduced by the 

use of non-random samples. 
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Table 3: Monte Carlo Simulation Variations, Random 
Distribution Correlation Testlet Size (n) # Parallel Testlets 

Randomized Simulation, 0.70: 25 total 

Normal 

Chi-squared (df=1) 

Exponential 

Double Exponential 

t (df=3) 

rxy=0.70 

5 200,000 
10 100,000 
15 66,667 
25 40,000 
50 20,000 
75 13,333 
87 11,494 
100 10,000 

Randomized Simulation 0.80: 25 total 

Normal 

Chi-squared (df=1) 

Exponential 

Double Exponential 

t (df=3) 

rxy=0.80 

5 200,000 
10 100,000 
15 66,667 
25 40,000 
50 20,000 
75 13,333 
87 11,494 
100 10,000 

Randomized Simulation 0.90: 25 total 

Normal 

Chi-squared (df=1) 

Exponential 

Double Exponential 

t (df=3) 

rxy=0.90 

5 200,000 
10 100,000 
15 66,667 
25 40,000 
50 20,000 
75 13,333 
87 11,494 
100 10,000 
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Table 4: Monte Carlo Simulation Variations, Non-Random Low* 
Distribution Correlation Testlet Size (n) # Parallel Testlets 

Non-Randomized Simulations – Low: 25 total 

Normal 

Chi-squared (df=1) 

Exponential 

Double Exponential 

t (df=3) 

rxy=0.70 

5 50,000 
10 25,000 
15 16,667 
25 10,000 
50 5,000 
75 3,333 
87 2,873 
100 2,500 

Non-Randomized Simulations – Low: 25 total 

Normal 

Chi-squared (df=1) 

Exponential 

Double Exponential 

t (df=3) 

rxy=0.80 

5 50,000 
10 25,000 
15 16,667 
25 10,000 
50 5,000 
75 3,333 
87 2,873 
100 2,500 

Non-Randomized Simulations – Low: 25 total 

Normal 

Chi-squared (df=1) 

Exponential 

Double Exponential 

t (df=3) 

rxy=0.90 

5 50,000 
10 25,000 
15 16,667 
25 10,000 
50 5,000 
75 3,333 
87 2,873 
100 2,500 

*Correlates sorted in ascending order based on sum of absolute value of (Xi, Yi) pairs; only the lowest 
250,000 data pairs selected for non-random simulation 
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Table 5: Monte Carlo Simulation Variations, Non-Random High* 
Distribution Correlation Testlet Size (n) # Parallel Testlets 

Non-Randomized Simulations – High: 25 total 

Normal 

Chi-squared (df=1) 

Exponential 

Double Exponential 

t (df=3) 

rxy=0.70 

5 50,000 
10 25,000 
15 16,667 
25 10,000 
50 5,000 
75 3,333 
87 2,873 
100 2,500 

Non-Randomized Simulations – High: 25 total 

Normal 

Chi-squared (df=1) 

Exponential 

Double Exponential 

t (df=3) 

rxy=0.80 

5 50,000 
10 25,000 
15 16,667 
25 10,000 
50 5,000 
75 3,333 
87 2,873 
100 2,500 

Non-Randomized Simulations – High: 25 total 

Normal 

Chi-squared (df=1) 

Exponential 

Double Exponential 

t (df=3) 

rxy=0.90 

5 50,000 
10 25,000 
15 16,667 
25 10,000 
50 5,000 
75 3,333 
87 2,873 
100 2,500 

*Correlates sorted in ascending order based on sum of absolute value of (Xi, Yi) pairs; only the 
highest 250,000 data pairs selected for non-random simulation 
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CHAPTER 4 

RESULTS 
 

Monte Carlo simulations were used to create fifteen 2 × 1,000,000 mini-universes of data 

pairs correlated to a set level (0.70, 0.80 or 0.90) for five different distributions: normal, Chi-

squared (df=1), exponential, double exponential and t (df=3). Table 6 shows the actual 

reliabilities for the mini-universes ( XYr ); these are the values to which sample testlet reliabilities 

were compared. Differences between the set and actual correlations are due to random sampling 

error from selecting the three z-scores used in the Fleishman equations that create the correlates; 

as Thye (2000) noted “random measurement errors affect each observation randomly, causing a 

degree of unreliability” (p. 1279). The correlations of the mini-universes vary little from the set 

value in all cases.  

 

Table 6: Mini-Universe Reliabilities ( XYr )* 

Distribution 

Mini-Universe Reliability ( XYr ) 

0.70 0.80 0.90 

Normal 0.700330 0.800238 0.900144 

Chi-Squared (df=1) 0.688895 0.792115 0.895831 

Exponential 0.690861 0.798917 0.902728 

Double Exponential 0.706736 0.805540 0.903367 

t (df=3) 0.698982 0.806113 0.904287 

*Actual correlations of 2 × 1,000,000 pairs of correlated data as generated by Fleishman 
equations 

 

Tables 7-21 show the summary statistics resulting from randomly and non-randomly 

sampling various sized testlets from the mini-universes. For each size testlet studied (5, 10, 15, 

25, 50, 75, 87, 100), the tables present the average correlation – i.e., average reliability 
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coefficient (
xyrx ) – and the average standard deviations and standard errors of measurement. In 

addition, the upper and lower bound of the correlations from the entire group of testlets are also 

shown. Note that when working with correlations, a value of zero indicates a complete lack of 

relationship between variables studied whereas correlations near −1.00 or +1.00 indicate very 

strong relationships; for this reason the terms upper and lower bound are used to describe the 

range of values among observed correlations. Tables 22-26 show the differences between 

average reliabilities for each size testlet (
xyrx ) and the reliability of the mini-universes ( XYr ). 

Finally, Tables 27-29 summarize the results for testlets size n = 87. This data is tabled separately 

in order to highlight the statistics related to the same size group of tests that Vacha-Haase (1998) 

used in the reliability generalization study with the Bem Sex Role Inventory. 
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Table 7: Correlation Simulation Results for Normal Distribution, XYr  = 0.70 

Testlet Size 
(n) 

xyrx

(Reliability) 

Standard 
Deviation 

SEM Upper Bound Lower Bound 

RANDOM: All 1,000,000 (X, Y) Score Pairs 

5 0.648266 0.336244 0.199417 0.999898 -0.998839 
10 0.678807 0.195213 0.110635 0.990772 -0.784411 
15 0.686831 0.149353 0.083580 0.972348 -0.444311 
25 0.692453 0.110018 0.061013 0.942147 -0.012465 
50 0.696548 0.074702 0.041151 0.891257 0.321947 
75 0.697971 0.059938 0.032940 0.881489 0.399607 
87 0.698261 0.055614 0.030549 0.869163 0.438630 
100 0.698476 0.051954 0.028529 0.859660 0.461481 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

5 0.046198 0.434856 0.424692 1.000000 -1.000000 
10 0.047852 0.232120 0.226498 0.990044 -0.968003 
15 0.047259 0.173525 0.169375 0.719866 -0.676390 
25 0.047078 0.126793 0.123772 0.490121 -0.464661 
50 0.046547 0.088548 0.086463 0.394986 -0.238392 
75 0.046779 0.073557 0.071816 0.298490 -0.189026 
87 0.046531 0.069188 0.067559 0.274246 -0.198798 
100 0.046549 0.064468 0.062949 0.269850 -0.169655 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

5 0.751809 0.473096 0.235690 0.999987 -1.000000 
10 0.839778 0.152595 0.061080 0.997202 -1.000000 
15 0.840701 0.110665 0.044169 0.993445 -1.000000 
25 0.838213 0.097925 0.039388 0.988383 0.377802 
50 0.835971 0.089252 0.036148 0.983180 0.485573 
75 0.835125 0.086444 0.035100 0.983279 0.568150 
87 0.834948 0.085649 0.034796 0.981230 0.559541 
100 0.834642 0.085133 0.034619 0.979346 0.553004 
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Table 8: Correlation Simulation Results for Normal Distribution, XYr  = 0.80 

Testlet Size 
(n) 

xyrx  

(Reliability) 

Standard 
Deviation 

SEM Upper Bound Lower Bound 

RANDOM: All 1,000,000 (X, Y) Score Pairs 

5 0.754190 0.269254 0.133494 0.999957 -0.995279 
10 0.782099 0.145694 0.068010 0.994145 -0.638367 
15 0.789046 0.108939 0.050036 0.983339 -0.259832 
25 0.793804 0.079072 0.035906 0.964311 0.183494 
50 0.797165 0.053190 0.023955 0.933423 0.504464 
75 0.798331 0.042537 0.019102 0.924510 0.574481 
87 0.798549 0.039494 0.017726 0.916329 0.606996 
100 0.798740 0.036850 0.016532 0.909426 0.620531 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

5 0.065593 0.436693 0.422129 1.000000 -1.000000 
10 0.067836 0.233976 0.225901 0.921188 -0.999881 
15 0.067597 0.175220 0.169194 0.792544 -0.772006 
25 0.066721 0.130811 0.126372 0.612490 -0.454470 
50 0.066165 0.094919 0.091725 0.479109 -0.260983 
75 0.066045 0.081040 0.078318 0.367343 -0.187623 
87 0.065567 0.077421 0.074839 0.371189 -0.202954 
100 0.065906 0.073736 0.071265 0.323894 -0.216848 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

5 0.807223 0.475725 0.208874 0.999970 -1.000000 
10 0.909173 0.111247 0.033527 0.997343 -1.000000 
15 0.911257 0.056840 0.016933 0.995821 -1.000000 
25 0.909363 0.048480 0.014596 0.994195 0.631623 
50 0.907833 0.043983 0.013353 0.989849 0.743409 
75 0.907264 0.042372 0.012903 0.989214 0.713123 
87 0.907041 0.041914 0.012779 0.987120 0.746294 
100 0.906970 0.041596 0.012687 0.987637 0.759218 
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Table 9: Correlation Simulation Results for Normal Distribution, XYr  = 0.90 

Testlet Size 
(n) 

xyrx  

(Reliability) 

Standard 
Deviation 

SEM Upper Bound Lower Bound 

RANDOM: All 1,000,000 (X, Y) Score Pairs 

5 0.868924 0.173854 0.062943 0.999968 -0.985296 
10 0.888731 0.083147 0.027735 0.997155 -0.363735 
15 0.893277 0.059949 0.019584 0.992391 0.096182 
25 0.896271 0.042632 0.013731 0.983286 0.500806 
50 0.898309 0.028339 0.009037 0.969543 0.729307 
75 0.899011 0.022577 0.007175 0.963705 0.782618 
87 0.899131 0.020983 0.006664 0.959613 0.791521 
100 0.899254 0.019550 0.006205 0.955850 0.798688 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

5 0.108589 0.443863 0.419071 1.000000 -1.000000 
10 0.114835 0.242690 0.228331 0.962486 -0.961953 
15 0.114506 0.188188 0.177086 0.834822 -0.803851 
25 0.113364 0.145043 0.136574 0.687799 -0.427953 
50 0.112307 0.112915 0.106386 0.512017 -0.246519 
75 0.111620 0.101592 0.095755 0.424637 -0.179846 
87 0.111789 0.098187 0.092536 0.413281 -0.145094 
100 0.111785 0.095554 0.090055 0.398565 -0.166750 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

5 0.847437 0.471799 0.184282 0.999991 -1.000000 
10 0.955611 0.090441 0.019055 0.999473 -1.000000 
15 0.958201 0.024848 0.005080 0.998831 0.646015 
25 0.957248 0.021838 0.004515 0.997064 0.841458 
50 0.956484 0.019704 0.004110 0.994973 0.877120 
75 0.956219 0.018958 0.003967 0.994119 0.874562 
87 0.956154 0.018753 0.003927 0.993684 0.883418 
100 0.956104 0.018603 0.003898 0.994167 0.882716 
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Table 10: Correlation Simulation Results for Chi-Squared (df=1) Distribution, XYr  = 0.69 

Testlet Size 
(n) 

xyrx  

(Reliability) 

Standard 
Deviation 

SEM Upper Bound Lower Bound 

RANDOM: All 1,000,000 (X, Y) Score Pairs 

5 0.578244 0.424615 0.275756 0.999992 -0.996677 
10 0.631987 0.279223 0.169388 0.999421 -0.736336 
15 0.650152 0.223653 0.132286 0.997298 -0.465799 
25 0.664332 0.171386 0.099296 0.984629 -0.277864 
50 0.675827 0.121412 0.069127 0.958771 0.107786 
75 0.680089 0.099654 0.056365 0.940450 0.165121 
87 0.681311 0.092823 0.052401 0.928377 0.135081 
100 0.682199 0.086662 0.048855 0.923595 0.216394 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

5 -0.134091 0.521090 0.554928 1.000000 -1.000000 
10 -0.095193 0.311340 0.325822 0.991465 -1.000000 
15 -0.081184 0.236128 0.245526 0.663107 -1.000000 
25 -0.072298 0.171661 0.177758 0.461480 -0.915003 
50 -0.066434 0.119993 0.123914 0.304612 -0.666995 
75 -0.064527 0.099646 0.102811 0.228908 -0.553689 
87 -0.064112 0.093552 0.096505 0.183379 -0.615839 
100 -0.063754 0.089738 0.092555 0.161117 -0.548462 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

5 -0.732711 0.591735 0.778916 1.000000 -1.000000 
10 -0.611498 0.679322 0.862363 1.000000 -1.000000 
15 -0.541692 0.713028 0.885330 1.000000 -1.000000 
25 -0.485729 0.721425 0.879349 1.000000 -1.000000 
50 -0.473536 0.694947 0.843591 0.999983 -1.000000 
75 -0.477071 0.682817 0.829860 0.984213 -0.999999 
87 -0.479379 0.677985 0.824632 0.976572 -0.999999 
100 -0.479383 0.676331 0.822621 0.899244 -0.999999 
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Table 11: Correlation Simulation Results for Chi-Squared (df=1) Distribution, XYr  = 0.81 

Testlet Size 
(n) 

xyrx  

(Reliability) 

Standard 
Deviation 

SEM Upper Bound Lower Bound 

RANDOM: All 1,000,000 (X, Y) Score Pairs 

5 0.692427 0.359106 0.199158 0.999994 -0.998025 
10 0.743291 0.221001 0.111973 0.999512 -0.678000 
15 0.759299 0.172488 0.084625 0.998235 -0.337154 
25 0.771740 0.128814 0.061543 0.989584 -0.125798 
50 0.781376 0.089518 0.041856 0.973650 0.281638 
75 0.784936 0.072826 0.033773 0.961050 0.361304 
87 0.785849 0.067909 0.031426 0.954118 0.325845 
100 0.786615 0.063183 0.029187 0.951861 0.403211 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

5 -0.062570 0.510123 0.525841 1.000000 -1.000000 
10 -0.027156 0.293765 0.297727 1.000000 -1.000000 
15 -0.015856 0.215929 0.217634 0.699971 -1.000000 
25 -0.009824 0.154467 0.155223 0.538468 -0.865845 
50 -0.005572 0.104092 0.104381 0.353917 -0.643846 
75 -0.004180 0.084050 0.084226 0.341446 -0.318820 
87 -0.003948 0.078240 0.078395 0.315674 -0.342294 
100 -0.003551 0.072652 0.072781 0.214754 -0.373369 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

5 -0.777367 0.585524 0.780609 1.000000 -1.000000 
10 -0.641824 0.709474 0.909075 1.000000 -1.000000 
15 -0.557654 0.761325 0.950179 1.000000 -1.000000 
25 -0.464938 0.799596 0.967788 1.000000 -1.000000 
50 -0.406994 0.800810 0.949896 1.000000 -1.000000 
75 -0.402788 0.788880 0.934344 1.000000 -1.000000 
87 -0.404829 0.785364 0.930856 0.999616 -1.000000 
100 -0.405026 0.782814 0.927899 0.999918 -0.999999 
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Table 12: Correlation Simulation Results for Chi-Squared (df=1) Distribution, XYr  = 0.90 

Testlet Size 
(n) 

xyrx  

(Reliability) 

Standard 
Deviation 

SEM Upper Bound Lower Bound 

RANDOM: All 1,000,000 (X, Y) Score Pairs 

5 0.826034 0.251336 0.104830 0.999996 -0.980836 
10 0.864316 0.136272 0.050196 0.999704 -0.466942 
15 0.875128 0.101735 0.035950 0.998944 -0.202013 
25 0.883306 0.073115 0.024976 0.995442 0.203398 
50 0.889351 0.049431 0.016443 0.987085 0.565133 
75 0.891534 0.039756 0.013093 0.981154 0.638914 
87 0.892032 0.037115 0.012196 0.977841 0.611253 
100 0.892523 0.034370 0.011268 0.976557 0.665759 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

5 0.045126 0.502563 0.491093 1.000000 -1.000000 
10 0.080316 0.280146 0.268661 0.913167 -1.000000 
15 0.086353 0.210598 0.201300 0.822164 -1.000000 
25 0.090216 0.157517 0.150244 0.705517 -0.731018 
50 0.091861 0.116973 0.111471 0.501320 -0.315190 
75 0.092267 0.101971 0.097153 0.416850 -0.194245 
87 0.092241 0.099649 0.094942 0.455258 -0.189479 
100 0.092667 0.095883 0.091333 0.400145 -0.202196 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

5 -0.862054 0.501079 0.683758 1.000000 -1.000000 
10 -0.753072 0.648658 0.858847 1.000000 -1.000000 
15 -0.667958 0.731785 0.945097 1.000000 -1.000000 
25 -0.551014 0.816234 1.016540 1.000000 -1.000000 
50 -0.411054 0.881503 1.047120 1.000000 -1.000000 
75 -0.366618 0.891810 1.042550 1.000000 -1.000000 
87 -0.360526 0.891725 1.040120 0.999998 -1.000000 
100 -0.353697 0.891156 1.036850 0.999995 -1.000000 
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Table 13: Correlation Simulation Results for Exponential Distribution, XYr  = 0.69 

Testlet Size 
(n) 

xyrx  

(Reliability) 

Standard 
Deviation 

SEM Upper Bound Lower Bound 

RANDOM: All 1,000,000 (X, Y) Score Pairs 

5 0.634620 0.367176 0.221946 0.999991 -0.995957 
10 0.665239 0.234885 0.135901 0.998409 -0.716823 
15 0.674201 0.186898 0.106679 0.991818 -0.368423 
25 0.680697 0.143386 0.081023 0.983465 -0.148920 
50 0.685639 0.101079 0.056673 0.939688 0.237231 
75 0.687359 0.083355 0.046607 0.908906 0.317897 
87 0.687899 0.077317 0.043194 0.896931 0.284520 
100 0.688268 0.072233 0.040330 0.895871 0.359762 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

5 -0.024895 0.481736 0.487696 1.000000 -1.000000 
10 -0.002733 0.264632 0.264994 0.948046 -1.000000 
15 0.002983 0.194359 0.194069 0.719872 -0.994021 
25 0.006769 0.139992 0.139517 0.463452 -0.627443 
50 0.008481 0.093655 0.093257 0.370334 -0.366490 
75 0.009055 0.074944 0.074604 0.263032 -0.311203 
87 0.009225 0.068417 0.068101 0.220837 -0.283320 
100 0.009293 0.063923 0.063625 0.234001 -0.254494 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

5 -0.660248 0.696148 0.896991 1.000000 -1.000000 
10 -0.503512 0.783875 0.961170 1.000000 -1.000000 
15 -0.437448 0.799476 0.958521 1.000000 -1.000000 
25 -0.385978 0.796799 0.938052 1.000000 -1.000000 
50 -0.380432 0.775087 0.910664 0.999900 -1.000000 
75 -0.382407 0.768214 0.903233 0.987718 -1.000000 
87 -0.383959 0.765221 0.900220 0.951908 -1.000000 
100 -0.384412 0.763333 0.898146 0.976636 -0.999999 
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Table 14: Correlation Simulation Results for Exponential Distribution, XYr  = 0.80 

Testlet Size 
(n) 

xyrx  

(Reliability) 

Standard 
Deviation 

SEM Upper Bound Lower Bound 

RANDOM: All 1,000,000 (X, Y) Score Pairs 

5 0.746638 0.294890 0.148433 0.999994 -0.994496 
10 0.775754 0.177353 0.083985 0.998934 -0.721202 
15 0.784004 0.137929 0.064103 0.995575 -0.132289 
25 0.789959 0.103911 0.047623 0.990293 0.066454 
50 0.794342 0.072327 0.032800 0.963562 0.435149 
75 0.795853 0.059454 0.026863 0.941621 0.500931 
87 0.796282 0.055152 0.024893 0.937008 0.477813 
100 0.796611 0.051414 0.023187 0.937644 0.531078 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

5 0.017849 0.475969 0.471702 1.000000 -1.000000 
10 0.040324 0.260955 0.255639 0.943797 -1.000000 
15 0.044076 0.194058 0.189733 0.763568 -1.000000 
25 0.046092 0.142154 0.138840 0.680202 -0.614279 
50 0.047537 0.099326 0.096937 0.368721 -0.320435 
75 0.047985 0.081803 0.079817 0.354589 -0.242866 
87 0.048004 0.077678 0.075791 0.310528 -0.264214 
100 0.048035 0.073330 0.071547 0.289611 -0.226492 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

5 -0.731452 0.663787 0.873441 1.000000 -1.000000 
10 -0.568270 0.793088 0.993188 1.000000 -1.000000 
15 -0.473458 0.840918 1.020760 1.000000 -1.000000 
25 -0.380641 0.869136 1.021240 1.000000 -1.000000 
50 -0.338473 0.864122 0.999724 0.999983 -1.000000 
75 -0.338399 0.856936 0.991382 0.999963 -1.000000 
87 -0.339000 0.854823 0.989160 0.999387 -1.000000 
100 -0.339119 0.852774 0.986833 0.999677 -1.000000 
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Table 15: Correlation Simulation Results for Exponential Distribution, XYr  = 0.90 

Testlet Size 
(n) 

xyrx  

(Reliability) 

Standard 
Deviation 

SEM Upper Bound Lower Bound 

RANDOM: All 1,000,000 (X, Y) Score Pairs 

5 0.866287 0.190097 0.069512 0.999999 -0.989303 
10 0.887542 0.101821 0.034146 0.999436 -0.186904 
15 0.893135 0.076306 0.024945 0.998323 0.101354 
25 0.897082 0.055967 0.017955 0.995559 0.443504 
50 0.899889 0.038269 0.012109 0.983227 0.685447 
75 0.900831 0.031292 0.009854 0.972829 0.723638 
87 0.901075 0.029046 0.009136 0.971867 0.724805 
100 0.901284 0.026994 0.008481 0.971417 0.748726 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

5 0.097450 0.479610 0.455642 1.000000 -1.000000 
10 0.122302 0.266891 0.250039 1.000000 -1.000000 
15 0.124563 0.206078 0.192816 0.877943 -0.965629 
25 0.124953 0.159655 0.149348 0.722197 -0.478932 
50 0.124059 0.125570 0.117523 0.514049 -0.229497 
75 0.123963 0.114373 0.107049 0.504205 -0.180203 
87 0.123992 0.111270 0.104143 0.496912 -0.185403 
100 0.123774 0.108545 0.101605 0.470081 -0.188443 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

5 -0.814573 0.578475 0.779242 1.000000 -1.000000 
10 -0.679793 0.729886 0.945982 1.000000 -1.000000 
15 -0.583194 0.806849 1.015220 1.000000 -1.000000 
25 -0.458648 0.879215 1.061870 1.000000 -1.000000 
50 -0.344228 0.922000 1.068970 1.000000 -1.000000 
75 -0.317839 0.926758 1.063890 1.000000 -1.000000 
87 -0.320015 0.924339 1.061990 0.999992 -1.000000 
100 -0.313881 0.925641 1.061010 1.000000 -1.000000 
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Table 16: Correlation Simulation Results for Double Exponential Distribution, XYr  = 0.71 

Testlet Size 
(n) 

xyrx  

(Reliability) 

Standard 
Deviation 

SEM Upper Bound Lower Bound 

RANDOM: All 1,000,000 (X, Y) Score Pairs 

5 0.656802 0.332067 0.194535 0.999952 -0.994667 
10 0.686255 0.193686 0.108489 0.993468 -0.784625 
15 0.693887 0.148830 0.082344 0.976458 -0.435905 
25 0.699208 0.110267 0.060475 0.944224 0.003641 
50 0.703125 0.075302 0.041029 0.901741 0.315973 
75 0.704457 0.060712 0.033005 0.888952 0.409576 
87 0.704757 0.056345 0.030616 0.875635 0.444187 
100 0.704972 0.052678 0.028613 0.857856 0.458344 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

5 0.045252 0.435398 0.425433 1.000000 -1.000000 
10 0.047900 0.232701 0.227059 0.964293 -0.949413 
15 0.047574 0.173105 0.168937 0.772539 -0.781319 
25 0.047225 0.126912 0.123879 0.552132 -0.481813 
50 0.047112 0.087315 0.085234 0.343171 -0.292022 
75 0.046647 0.074470 0.072712 0.318446 -0.192458 
87 0.046762 0.069796 0.068145 0.299137 -0.180351 
100 0.046718 0.064873 0.063339 0.264353 -0.194300 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

5 0.544434 0.706743 0.477020 0.999910 -1.000000 
10 0.674942 0.508997 0.290199 0.996180 -1.000000 
15 0.698341 0.455984 0.250442 0.989690 -1.000000 
25 0.710757 0.419601 0.225667 0.980792 -1.000000 
50 0.723049 0.379274 0.199598 0.941392 -1.000000 
75 0.725590 0.369024 0.193310 0.933462 -0.999998 
87 0.727451 0.361926 0.188948 0.930583 -0.999996 
100 0.729178 0.354702 0.184589 0.932354 -0.999992 
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Table 17: Correlation Simulation Results for Double Exponential Distribution, XYr  = 0.81 

Testlet Size 
(n) 

xyrx  

(Reliability) 

Standard 
Deviation 

SEM Upper Bound Lower Bound 

RANDOM: All 1,000,000 (X, Y) Score Pairs 

5 0.761492 0.264444 0.129147 0.999940 -0.996050 
10 0.788279 0.143827 0.066179 0.995885 -0.617093 
15 0.794871 0.108077 0.048949 0.985160 -0.236937 
25 0.799385 0.078928 0.035352 0.967164 0.188722 
50 0.802595 0.053421 0.023735 0.941677 0.514369 
75 0.803689 0.042965 0.019037 0.929458 0.593579 
87 0.803914 0.039904 0.017670 0.920717 0.604201 
100 0.804101 0.037260 0.016491 0.908962 0.625244 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

5 0.065084 0.439749 0.425198 1.000000 -1.000000 
10 0.069949 0.236133 0.227725 0.929529 -1.000000 
15 0.068080 0.177921 0.171758 0.780209 -0.690744 
25 0.067326 0.132301 0.127770 0.563912 -0.478871 
50 0.066597 0.095085 0.091865 0.414681 -0.218338 
75 0.066444 0.080841 0.078109 0.377798 -0.182981 
87 0.066340 0.077924 0.075295 0.386326 -0.230243 
100 0.066348 0.073932 0.071438 0.332187 -0.162065 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

5 0.590215 0.730474 0.467609 0.999976 -1.000000 
10 0.734688 0.539045 0.277654 0.997244 -1.000000 
15 0.760967 0.488590 0.238876 0.992107 -1.000000 
25 0.777099 0.452362 0.213571 0.984782 -1.000000 
50 0.792519 0.411342 0.187367 0.970206 -0.999998 
75 0.798496 0.393694 0.176726 0.961731 -0.999995 
87 0.800544 0.386527 0.172625 0.955075 -0.999993 
100 0.802072 0.380828 0.169427 0.960057 -0.999993 
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Table 18: Correlation Simulation Results for Double Exponential Distribution, XYr  = 0.90 

Testlet Size 
(n) 

xyrx  

(Reliability) 

Standard 
Deviation 

SEM Upper Bound Lower Bound 

RANDOM: All 1,000,000 (X, Y) Score Pairs 

5 0.873671 0.169362 0.060196 0.999994 -0.987802 
10 0.892528 0.081529 0.026728 0.998001 -0.323797 
15 0.896825 0.059118 0.018989 0.992788 0.140884 
25 0.899667 0.042324 0.013406 0.985344 0.491519 
50 0.901609 0.028319 0.008883 0.973995 0.734891 
75 0.902266 0.022709 0.007099 0.966124 0.791652 
87 0.902388 0.021116 0.006597 0.961807 0.789092 
100 0.902507 0.019685 0.006146 0.956051 0.807806 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

5 0.114360 0.445719 0.419459 1.000000 -1.000000 
10 0.119697 0.245263 0.230116 0.938774 -0.978319 
15 0.118283 0.189663 0.178094 0.780296 -0.634929 
25 0.117200 0.147994 0.139052 0.745307 -0.491547 
50 0.115518 0.115792 0.108899 0.549299 -0.273044 
75 0.115415 0.104302 0.098098 0.474291 -0.188625 
87 0.115041 0.101157 0.095161 0.474798 -0.187096 
100 0.115156 0.098462 0.092619 0.424134 -0.183523 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

5 0.623496 0.743849 0.456425 0.999991 -1.000000 
10 0.777263 0.559111 0.263873 0.999617 -1.000000 
15 0.806952 0.509442 0.223835 0.998451 -1.000000 
25 0.827120 0.470482 0.195621 0.991661 -1.000000 
50 0.843738 0.433124 0.171214 0.985225 -0.999998 
75 0.849864 0.417342 0.161709 0.983464 -0.999991 
87 0.850807 0.414677 0.160171 0.982620 -0.999984 
100 0.852060 0.411006 0.158085 0.981320 -0.999981 
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Table 19: Correlation Simulation Results for t (df=3) Distribution, XYr  = 0.70 

Testlet Size 
(n) 

xyrx  

(Reliability) 

Standard 
Deviation 

SEM Upper Bound Lower Bound 

RANDOM: All 1,000,000 (X, Y) Score Pairs 

5 0.638410 0.368369 0.221509 0.999987 -0.996657 
10 0.671196 0.235403 0.134984 0.998672 -0.775982 
15 0.680893 0.187075 0.105678 0.992736 -0.344606 
25 0.687960 0.143345 0.080073 0.984247 -0.174018 
50 0.693301 0.101028 0.055950 0.945010 0.239317 
75 0.695167 0.083320 0.046002 0.915033 0.325373 
87 0.695747 0.077290 0.042632 0.904212 0.283526 
100 0.696151 0.072188 0.039792 0.903241 0.357231 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

5 -0.067917 0.495553 0.512105 1.000000 -1.000000 
10 -0.038055 0.282323 0.287645 0.948219 -1.000000 
15 -0.029626 0.207835 0.210891 0.795783 -0.979547 
25 -0.024563 0.150812 0.152653 0.623350 -0.811768 
50 -0.021235 0.102219 0.103299 0.300116 -0.524966 
75 -0.020559 0.082225 0.083066 0.271324 -0.373250 
87 -0.020282 0.076944 0.077720 0.214242 -0.342450 
100 -0.019820 0.071771 0.072479 0.212188 -0.311002 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

5 -0.986952 0.051418 0.072478 0.968705 -1.000000 
10 -0.981680 0.040323 0.056763 0.340329 -1.000000 
15 -0.978852 0.039873 0.056090 -0.186233 -1.000000 
25 -0.976412 0.038755 0.054483 -0.231862 -1.000000 
50 -0.974366 0.037899 0.053252 -0.306706 -1.000000 
75 -0.973605 0.037769 0.053060 -0.324579 -1.000000 
87 -0.973407 0.038120 0.053551 -0.295313 -1.000000 
100 -0.973192 0.038225 0.053695 -0.298611 -1.000000 
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Table 20: Correlation Simulation Results for t (df=3) Distribution, XYr  = 0.81 

Testlet Size 
(n) 

xyrx  

(Reliability) 

Standard 
Deviation 

SEM Upper Bound Lower Bound 

RANDOM: All 1,000,000 (X, Y) Score Pairs 

5 0.750764 0.294909 0.147229 0.999998 -0.996548 
10 0.781469 0.176705 0.082605 0.998894 -0.792781 
15 0.790244 0.137030 0.062759 0.996371 -0.151190 
25 0.796594 0.102970 0.046440 0.990721 0.049281 
50 0.801243 0.071587 0.031915 0.967008 0.436529 
75 0.802849 0.058816 0.026115 0.946234 0.502929 
87 0.803302 0.054567 0.024201 0.941774 0.481709 
100 0.803654 0.050847 0.022531 0.942410 0.532727 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

5 -0.007394 0.482665 0.484446 1.000000 -1.000000 
10 0.016482 0.266464 0.264259 0.945731 -1.000000 
15 0.021847 0.195461 0.193314 0.736110 -0.994147 
25 0.024736 0.142877 0.141099 0.604358 -0.655086 
50 0.027130 0.097709 0.096374 0.353821 -0.365411 
75 0.027640 0.080358 0.079240 0.293948 -0.226840 
87 0.027748 0.073804 0.072773 0.278026 -0.241765 
100 0.028056 0.070089 0.069099 0.274772 -0.251767 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

5 -0.996616 0.024472 0.034580 0.930882 -1.000000 
10 -0.994341 0.024317 0.034341 0.512765 -1.000000 
15 -0.993015 0.025460 0.035943 0.418291 -1.000000 
25 -0.991607 0.024308 0.034305 -0.080461 -1.000000 
50 -0.990340 0.024820 0.035016 -0.068406 -1.000000 
75 -0.989757 0.026096 0.036811 -0.038915 -1.000000 
87 -0.989564 0.026934 0.037990 -0.015805 -1.000000 
100 -0.989444 0.027457 0.038727 -0.034741 -1.000000 
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Table 21: Correlation Simulation Results for t (df=3) Distribution, XYr  = 0.90 

Testlet Size 
(n) 

xyrx  

(Reliability) 

Standard 
Deviation 

SEM Upper Bound Lower Bound 

RANDOM: All 1,000,000 (X, Y) Score Pairs 

5 0.865651 0.193293 0.070849 0.999998 -0.991327 
10 0.888125 0.103191 0.034515 0.999351 -0.244896 
15 0.894074 0.077108 0.025096 0.998511 0.061238 
25 0.898279 0.056395 0.017987 0.995614 0.422539 
50 0.901261 0.038506 0.012100 0.984420 0.677815 
75 0.902265 0.031457 0.009834 0.974393 0.720595 
87 0.902525 0.029203 0.009117 0.973110 0.722330 
100 0.902749 0.027128 0.008460 0.972884 0.745517 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

5 0.082972 0.479012 0.458710 1.000000 -1.000000 
10 0.104419 0.265566 0.251319 0.926029 -1.000000 
15 0.106623 0.202959 0.191834 0.797181 -0.927650 
25 0.107236 0.157279 0.148607 0.659667 -0.619620 
50 0.107199 0.122312 0.115570 0.582237 -0.282734 
75 0.107486 0.109689 0.103627 0.480817 -0.230149 
87 0.107164 0.106067 0.100223 0.486779 -0.183296 
100 0.107548 0.103286 0.097574 0.428170 -0.171230 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

5 -0.999897 0.008323 0.011771 0.814213 -1.000000 
10 -0.999772 0.011218 0.015863 0.723064 -1.000000 
15 -0.999672 0.012899 0.018240 0.617836 -1.000000 
25 -0.999532 0.013450 0.019019 0.289146 -1.000000 
50 -0.999274 0.018551 0.026230 0.284233 -1.000000 
75 -0.999080 0.023399 0.033083 0.336396 -1.000000 
87 -0.998986 0.024319 0.034383 0.286400 -1.000000 
100 -0.998890 0.025824 0.036510 0.273592 -1.000000 
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Table 22: Correlation Simulation Result Comparison between Mini-Universe Reliability 
( XYr ) and Average Reliability (

xyrx ) for Normal Distribution 

 Testlet Size (n =) 

 5 10 15 25 50 75 87 100 

XYr  = 0.700330

RANDOM: All 1,000,000 (X, Y) Score Pairs 

xyrx  0.648266 0.678807 0.686831 0.692453 0.696548 0.697971 0.698261 0.698476 

XYr  − 
xyrx  0.052064 0.021523 0.013499 0.007877 0.003782 0.002359 0.002069 0.001854 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

xyrx  0.046198 0.047852 0.047259 0.047078 0.046547 0.046779 0.046531 0.046549 

XYr  − 
xyrx  0.654133 0.652478 0.653071 0.653252 0.653783 0.653552 0.653799 0.653781 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

xyrx  0.751809 0.839778 0.840701 0.838213 0.835971 0.835125 0.834948 0.834642 

XYr  − 
xyrx  -0.051479 -0.139448 -0.140371 -0.137883 -0.135641 -0.134795 -0.134618 -0.134312 

XYr  = 0.800238

RANDOM: All 1,000,000 (X, Y) Score Pairs 

xyrx  0.754190 0.782099 0.789046 0.793804 0.797165 0.798331 0.798549 0.798740 

XYr  − 
xyrx  0.046048 0.018139 0.011192 0.006434 0.003073 0.001907 0.001689 0.001498 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

xyrx  0.065593 0.067836 0.067597 0.066721 0.066165 0.066045 0.065567 0.065906 

XYr  − 
xyrx  0.734646 0.732402 0.732641 0.733517 0.734073 0.734193 0.734672 0.734332 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

xyrx  0.807223 0.909173 0.911257 0.909363 0.907833 0.907264 0.907041 0.906970 

XYr  − 
xyrx  -0.006985 -0.108935 -0.111019 -0.109125 -0.107595 -0.107026 -0.106803 -0.106732 

XYr  = 0.900144

RANDOM: All 1,000,000 (X, Y) Score Pairs 

xyrx  0.868924 0.888731 0.893277 0.896271 0.898309 0.899011 0.899131 0.899254 

XYr  − 
xyrx  0.031220 0.011413 0.006867 0.003873 0.001835 0.001133 0.001013 0.000890 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

xyrx  0.108589 0.114835 0.114506 0.113364 0.112307 0.111620 0.111789 0.111785 

XYr  − 
xyrx  0.791555 0.785309 0.785638 0.786780 0.787837 0.788524 0.788355 0.788359 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

xyrx  0.847437 0.955611 0.958201 0.957248 0.956484 0.956219 0.956154 0.956104 

XYr  − 
xyrx  0.052707 -0.055467 -0.058057 -0.057104 -0.056340 -0.056075 -0.056010 -0.055960 
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Table 23: Correlation Simulation Result Comparison between Mini-Universe Reliability 
( XYr ) and Average Reliability (

xyrx ) for Chi-Squared (df=1) Distribution 

 Testlet Size (n =) 

 5 10 15 25 50 75 87 100 

XYr  = 0.688895

RANDOM: All 1,000,000 (X, Y) Score Pairs 

xyrx  0.578244 0.631987 0.650152 0.664332 0.675827 0.680089 0.681311 0.682199 

XYr  − 
xyrx  0.110651 0.056908 0.038743 0.024563 0.013068 0.008806 0.007584 0.006696 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

xyrx  -0.134091 -0.095193 -0.081184 -0.072298 -0.066434 -0.064527 -0.064112 -0.063754 

XYr  − 
xyrx  0.822986 0.784088 0.770079 0.761193 0.755329 0.753422 0.753007 0.752649 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

xyrx  -0.732711 -0.611498 -0.541692 -0.485729 -0.473536 -0.477071 -0.479379 -0.479383 

XYr  − 
xyrx  1.421606 1.300393 1.230587 1.174624 1.162431 1.165966 1.168274 1.168278 

XYr  = 0.792115

RANDOM: All 1,000,000 (X, Y) Score Pairs 

xyrx  0.692427 0.743291 0.759299 0.771740 0.781376 0.784936 0.785849 0.786615 

XYr  − 
xyrx  0.099688 0.048824 0.032816 0.020375 0.010739 0.007179 0.006266 0.005500 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

xyrx  -0.062570 -0.027156 -0.015856 -0.009824 -0.005572 -0.004180 -0.003948 -0.003551 

XYr  − 
xyrx  0.854685 0.819271 0.807971 0.801939 0.797687 0.796295 0.796063 0.795666 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

xyrx  -0.777367 -0.641824 -0.557654 -0.464938 -0.406994 -0.402788 -0.404829 -0.405026 

XYr  − 
xyrx  1.569482 1.433939 1.349769 1.257053 1.199109 1.194903 1.196944 1.197141 

XYr  = 0.895831

RANDOM: All 1,000,000 (X, Y) Score Pairs 

xyrx  0.826034 0.864316 0.875128 0.883306 0.889351 0.891534 0.892032 0.892523 

XYr  − 
xyrx  0.069797 0.031515 0.020703 0.012525 0.006480 0.004297 0.003799 0.003308 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

xyrx  0.045126 0.080316 0.086353 0.090216 0.091861 0.092267 0.092241 0.092667 

XYr  − 
xyrx  -0.940957 -0.976147 -0.982184 -0.986047 -0.987692 -0.988098 -0.988072 -0.988498 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

xyrx  -0.862054 -0.753072 -0.667958 -0.551014 -0.411054 -0.366618 -0.360526 -0.353697 

XYr  − 
xyrx  1.757885 1.648903 1.563789 1.446845 1.306885 1.262449 1.256357 1.249528 
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Table 24: Correlation Simulation Result Comparison between Mini-Universe Reliability 
( XYr ) and Average Reliability (

xyrx ) for Exponential Distribution 

 Testlet Size (n =) 

 5 10 15 25 50 75 87 100 

XYr  = 0.690861

RANDOM: All 1,000,000 (X, Y) Score Pairs 

xyrx  0.634620 0.665239 0.674201 0.680697 0.685639 0.687359 0.687899 0.688268 

XYr  − 
xyrx  0.056241 0.025622 0.016660 0.010164 0.005222 0.003502 0.002962 0.002593 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

xyrx  -0.024895 -0.002733 0.002983 0.006769 0.008481 0.009055 0.009225 0.009293 

XYr  − 
xyrx  0.715756 0.693594 0.687878 0.684092 0.682380 0.681806 0.681636 0.681568 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

xyrx  -0.660248 -0.503512 -0.437448 -0.385978 -0.380432 -0.382407 -0.383959 -0.384412 

XYr  − 
xyrx  1.351109 1.194373 1.128309 1.076839 1.071293 1.073268 1.074820 1.075273 

XYr  = 0.798917

RANDOM: All 1,000,000 (X, Y) Score Pairs 

xyrx  0.746638 0.775754 0.784004 0.789959 0.794342 0.795853 0.796282 0.796611 

XYr  − 
xyrx  0.052279 0.023163 0.014913 0.008958 0.004575 0.003064 0.002635 0.002306 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

xyrx  0.017849 0.040324 0.044076 0.046092 0.047537 0.047985 0.048004 0.048035 

XYr  − 
xyrx  0.781069 0.758593 0.754841 0.752825 0.751380 0.750932 0.750913 0.750882 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

xyrx  -0.731452 -0.568270 -0.473458 -0.380641 -0.338473 -0.338399 -0.339000 -0.339119 

XYr  − 
xyrx  1.530369 1.367187 1.272375 1.179558 1.137390 1.137316 1.137917 1.138036 

XYr  = 0.902728

RANDOM: All 1,000,000 (X, Y) Score Pairs 

xyrx  0.866287 0.887542 0.893135 0.897082 0.899889 0.900831 0.901075 0.901284 

XYr  − 
xyrx  0.036441 0.015186 0.009593 0.005646 0.002839 0.001897 0.001653 0.001444 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

xyrx  0.097450 0.122302 0.124563 0.124953 0.124059 0.123963 0.123992 0.123774 

XYr  − 
xyrx  0.805278 0.780426 0.778165 0.777775 0.778669 0.778765 0.778736 0.778954 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

xyrx  -0.814573 -0.679793 -0.583194 -0.458648 -0.344228 -0.317839 -0.320015 -0.313881 

XYr  − 
xyrx  1.717301 1.582521 1.485922 1.361376 1.246956 1.220567 1.222743 1.216609 
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Table 25: Correlation Simulation Result Comparison between Mini-Universe Reliability 
( XYr ) and Average Reliability (

xyrx ) for Double Exponential Distribution 

 Testlet Size (n =) 

 5 10 15 25 50 75 87 100 

XYr  = 0.706736

RANDOM: All 1,000,000 (X, Y) Score Pairs 

xyrx  0.656802 0.686255 0.693887 0.699208 0.703125 0.704457 0.704757 0.704972 

XYr  − 
xyrx  0.049934 0.020481 0.012849 0.007528 0.003611 0.002279 0.001979 0.001764 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

xyrx  0.045252 0.047900 0.047574 0.047225 0.047112 0.046647 0.046762 0.046718 

XYr  − 
xyrx  0.661484 0.658836 0.659163 0.659511 0.659624 0.660089 0.659974 0.660018 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

xyrx  0.544434 0.674942 0.698341 0.710757 0.723049 0.725590 0.727451 0.729178 

XYr  − 
xyrx  0.162302 0.031794 0.008395 -0.004021 -0.016313 -0.018854 -0.020715 -0.022442 

XYr  = 0.805540

RANDOM: All 1,000,000 (X, Y) Score Pairs 

xyrx  0.761492 0.788279 0.794871 0.799385 0.802595 0.803689 0.803914 0.804101 

XYr  − 
xyrx  0.044048 0.017261 0.010669 0.006155 0.002945 0.001851 0.001626 0.001439 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

xyrx  0.065084 0.069949 0.068080 0.067326 0.066597 0.066444 0.066340 0.066348 

XYr  − 
xyrx  0.740456 0.735591 0.737460 0.738214 0.738943 0.739096 0.739200 0.739193 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

xyrx  0.590215 0.734688 0.760967 0.777099 0.792519 0.798496 0.800544 0.802072 

XYr  − 
xyrx  0.215325 0.070852 0.044573 0.028441 0.013021 0.007044 0.004996 0.003468 

XYr  = 0.903367

RANDOM: All 1,000,000 (X, Y) Score Pairs 

xyrx  0.866287 0.887542 0.893135 0.897082 0.899889 0.900831 0.901075 0.901284 

XYr  − 
xyrx  0.036441 0.015186 0.009593 0.005646 0.002839 0.001897 0.001653 0.001444 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

xyrx  0.097450 0.122302 0.124563 0.124953 0.124059 0.123963 0.123992 0.123774 

XYr  − 
xyrx  0.805278 0.780426 0.778165 0.777775 0.778669 0.778765 0.778736 0.778954 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

xyrx  -0.814573 -0.679793 -0.583194 -0.458648 -0.344228 -0.317839 -0.320015 -0.313881 

XYr  − 
xyrx  1.717301 1.582521 1.485922 1.361376 1.246956 1.220567 1.222743 1.216609 
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Table 26: Correlation Simulation Result Comparison between Mini-Universe Reliability 
( XYr ) and Average Reliability (

xyrx ) for t (df=3) Distribution 

 Testlet Size (n =) 

 5 10 15 25 50 75 87 100 

XYr  = 0.698982

RANDOM: All 1,000,000 (X, Y) Score Pairs 

xyrx  0.638410 0.671196 0.680893 0.687960 0.693301 0.695167 0.695747 0.696151 

XYr  − 
xyrx  0.060572 0.027786 0.018089 0.011022 0.005681 0.003815 0.003235 0.002831 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

xyrx  -0.067917 -0.038055 -0.029626 -0.024563 -0.021235 -0.020559 -0.020282 -0.019820 

XYr  − 
xyrx  0.766899 0.737037 0.728608 0.723545 0.720217 0.719541 0.719264 0.718802 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

xyrx  -0.986952 -0.981680 -0.978852 -0.976412 -0.974366 -0.973605 -0.973407 -0.973192 

XYr  − 
xyrx  1.685934 1.680662 1.677834 1.675394 1.673348 1.672587 1.672389 1.672174 

XYr  = 0.806113

RANDOM: All 1,000,000 (X, Y) Score Pairs 

xyrx  0.750764 0.781469 0.790244 0.796594 0.801243 0.802849 0.803302 0.803654 

XYr  − 
xyrx  0.055349 0.024644 0.015869 0.009519 0.004870 0.003264 0.002811 0.002459 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

xyrx  -0.007394 0.016482 0.021847 0.024736 0.027130 0.027640 0.027748 0.028056 

XYr  − 
xyrx  0.813507 0.789631 0.784266 0.781377 0.778983 0.778473 0.778365 0.778057 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

xyrx  -0.996616 -0.994341 -0.993015 -0.991607 -0.990340 -0.989757 -0.989564 -0.989444 

XYr  − 
xyrx  1.802729 1.800454 1.799128 1.797720 1.796453 1.795870 1.795677 1.795557 

XYr  = 0.904287

RANDOM: All 1,000,000 (X, Y) Score Pairs 

xyrx  0.865651 0.888125 0.894074 0.898279 0.901261 0.902265 0.902525 0.902749 

XYr  − 
xyrx  0.038636 0.016162 0.010213 0.006008 0.003026 0.002022 0.001762 0.001538 

NON-RANDOM ASCENDING: Lowest 250,000 (X, Y) Score Pairs 

xyrx  0.082972 0.104419 0.106623 0.107236 0.107199 0.107486 0.107164 0.107548 

XYr  − 
xyrx  0.821315 0.799868 0.797664 0.797051 0.797088 0.796801 0.797123 0.796739 

NON-RANDOM DESCENDING: Highest 250,000 (X, Y) Score Pairs 

xyrx  -0.999897 -0.999772 -0.999672 -0.999532 -0.999274 -0.999080 -0.998986 -0.998890 

XYr  − 
xyrx  1.904184 1.904059 1.903959 1.903819 1.903561 1.903367 1.903273 1.903177 
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Table 27: Correlation Simulation Results for All Distributions n = 87, Set r = 0.70 

Distribution 
Sampling 
Method xyrx * Standard 

Deviation 
SEM 

Upper 
Bound 

Lower 
Bound 

Normal 

Random 0.698261 0.055614 0.030549 0.869163 0.438630 

Non-Random 
Ascending 

0.046531 0.069188 0.067559 0.274246 -0.198798

Non-Random 
Descending 

0.834948 0.085649 0.034796 0.981230 0.559541 

Chi-Squared 
(df=1) 

Random 0.681311 0.092823 0.052401 0.928377 0.135081 

Non-Random 
Ascending 

-0.064112 0.093552 0.096505 0.183379 -0.615839

Non-Random 
Descending 

-0.479379 0.677985 0.824632 0.976572 -0.999999

Exponential 

Random 0.687899 0.077317 0.043194 0.896931 0.284520 

Non-Random 
Ascending 

0.009225 0.068417 0.068101 0.220837 -0.283320

Non-Random 
Descending 

-0.383959 0.765221 0.900220 0.951908 -1.000000

Double 
Exponential 

Random 0.704757 0.056345 0.030616 0.875635 0.444187 

Non-Random 
Ascending 

0.046762 0.069796 0.068145 0.299137 -0.180351

Non-Random 
Descending 

0.727451 0.361926 0.188948 0.930583 -0.999996

t (df=3) 

Random 0.695747 0.077290 0.042632 0.904212 0.283526 

Non-Random 
Ascending 

-0.020282 0.076944 0.077720 0.214242 -0.342450

Non-Random 
Descending 

-0.973407 0.038120 0.053551 -0.295313 -1.000000

*Average reliability for n = 87 
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Table 28: Correlation Simulation Results for All Distributions n = 87, Set r = 0.80 

Distribution 
Sampling 
Method xyrx * Standard 

Deviation 
SEM 

Upper 
Bound 

Lower 
Bound 

Normal 

Random 0.798549 0.039494 0.017726 0.916329 0.606996 

Non-Random 
Ascending 

0.065567 0.077421 0.074839 0.371189 -0.202954

Non-Random 
Descending 

0.907041 0.041914 0.012779 0.987120 0.746294 

Chi-Squared 
(df=1) 

Random 0.785849 0.067909 0.031426 0.954118 0.325845 

Non-Random 
Ascending 

-0.003948 0.078240 0.078395 0.315674 -0.342294

Non-Random 
Descending 

-0.404829 0.785364 0.930856 0.999616 -1.000000

Exponential 

Random 0.796282 0.055152 0.024893 0.937008 0.477813 

Non-Random 
Ascending 

0.048004 0.077678 0.075791 0.310528 -0.264214

Non-Random 
Descending 

-0.339000 0.854823 0.989160 0.999387 -1.000000

Double 
Exponential 

Random 0.803914 0.039904 0.017670 0.920717 0.604201 

Non-Random 
Ascending 

0.066340 0.077924 0.075295 0.386326 -0.230243

Non-Random 
Descending 

0.800544 0.386527 0.172625 0.955075 -0.999993

t (df=3) 

Random 0.803302 0.054567 0.024201 0.941774 0.481709 

Non-Random 
Ascending 

0.027748 0.073804 0.072773 0.278026 -0.241765

Non-Random 
Descending 

-0.989564 0.026934 0.037990 -0.015805 -1.000000

*Average reliability for n = 87 
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Table 29: Correlation Simulation Results for All Distributions n = 87, Set r = 0.90 

Distribution 
Sampling 
Method xyrx * Standard 

Deviation 
SEM 

Upper 
Bound 

Lower 
Bound 

Normal 

Random 0.899131 0.020983 0.006664 0.959613 0.791521 

Non-Random 
Ascending 

0.111789 0.098187 0.092536 0.413281 -0.145094

Non-Random 
Descending 

0.956154 0.018753 0.003927 0.993684 0.883418 

Chi-Squared 
(df=1) 

Random 0.892032 0.037115 0.012196 0.977841 0.611253 

Non-Random 
Ascending 

0.092241 0.099649 0.094942 0.455258 -0.189479

Non-Random 
Descending 

-0.360526 0.891725 1.040120 0.999998 -1.000000

Exponential 

Random 0.901075 0.029046 0.009136 0.971867 0.724805 

Non-Random 
Ascending 

0.123992 0.111270 0.104143 0.496912 -0.185403

Non-Random 
Descending 

-0.320015 0.924339 1.061990 0.999992 -1.000000

Double 
Exponential 

Random 0.902388 0.021116 0.006597 0.961807 0.789092 

Non-Random 
Ascending 

0.115041 0.101157 0.095161 0.474798 -0.187096

Non-Random 
Descending 

0.850807 0.414677 0.160171 0.982620 -0.999984

t (df=3) 

Random 0.902525 0.029203 0.009117 0.973110 0.722330 

Non-Random 
Ascending 

0.107164 0.106067 0.100223 0.486779 -0.183296

Non-Random 
Descending 

-0.998986 0.024319 0.034383 0.286400 -1.000000

*Average reliability for n = 87 
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CHAPTER 5 

DISCUSSION 
 

The Pearson product-moment correlation coefficient (Pearson’s r) is used to specify the 

degree of linear relationship between two variables expressed in the form of standard scores 

(Nunnally, 1978). The correlation coefficient represents the extent to which individuals exhibit 

the same score from one set of measures to the next; therefore, casting reliability in terms of the 

correlation between parallel tests is another way of describing precision of measurement. When 

the coefficient is close to zero, it indicates that an individual’s scores over some number of 

parallel tests show a great deal of variation, meaning the instrument (i.e., test) provides unstable 

or inconsistent measurements; by contrast, when the coefficient is close to +1.00 it means the 

individual’s scores are very nearly the same indicating that the instrument provides stable, 

consistent measurements.  

Creating the mini-universes and setting the degree of relationship (correlation) between 

the (X, Y) correlates (0.70, 0.80, 0.90) sets the degree to which systematic error is present from 

test to test. It is then possible to attribute differences between the known correlation of the mini-

universe and the calculated correlations (i.e., the reliability coefficients) of testlets sampled from 

the mini-universe to random (non-systematic) error, or sampling error, that would be expected 

across different test administrations. Creating the mini-universes mirrors the norming process for 

a test and simulations using random sampling result in a range of reliabilities for various size 

testlets. These coefficients should be close to the known reliability of the mini-universe and have 

small standard deviations and standard errors of measurement because sampling error is very low 

when randomization is not violated. When randomness is removed by ordering the correlations 

in the mini-universe from low to high (or vice versa), sample range is restricted and sampling 
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error is introduced – this mirrors typical test administrations to small, non-random groups of 

examinees – the reliability of the testlets sampled from these non-random pools should differ 

from that of the known mini-universe reliability and greater standard deviations and standard 

errors of measurement should be observed. 

The purpose of this study was to determine if the fluctuation in estimates of reliability 

under proper experimental conditions can be fully explained via classical measurement theory 

without resorting to reliability generalization. To answer this research question, two statistical 

questions were posed: 

(1) Can the xyr , where (x, y) = 5, 10, 15, 25, 50, 75, 87 and 100, equal XYr , where (X, Y) = 

1,000,000, within the sampling error of SEM as predicted by classical measurement 

theory, eliminating the notion of reliability generalization? 

(2) Does the xyr , where (x, y) = 5, 10, 15, 25, 50, 75, 87 and 100, equal XYr , where (X, Y) = 

1,000,000, when administration protocols (i.e., lack of randomization) are violated as 

predicted by classical measurement theory, eliminating the notion of reliability 

generalization? 

The answer to the research question based on results for the statistical questions is yes; the 

fluctuation in reliability estimates can be fully explained via classical measurement theory under 

proper experimental conditions without resorting to reliability generalization. 

Random Samples 

With respect to statistical question (1), results for randomly sampled testlets show that, in 

general, as the testlet size increases, the reliability of the testlets converges to that of the known 

reliability of the mini-universe. This is a well-known phenomenon in psychometrics – that as test 

length increases reliability also tends to increase. As stated by Ponterotto and Ruckdeschel 
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(2007) “to the extent that increasing sample size promotes larger variance in construct 

measurement, then larger samples will lead to greater reliability in measurement” (p. 1001). 

Nunnally (1978) also stated “the reliability of scores obtained on a sample of items from a 

domain increases with the number of items sampled” (p. 209). This convergence trend is 

observed in random simulations for all five distributions when ݎ௑௒ approximates 0.70, 0.80 and 

0.90. In addition, for all distributions, both the standard deviation and the standard error of 

measurement for all randomly sampled testlets decreased as testlet size increased. 

The average reliabilities for n = 87 randomly sampled testlets are compiled in Table 30. 

Average reliability for all testlet sizes varies little from that of the known reliability of the mini-

universes and in all cases standard deviations and standard error of measurement are very small. 

Recall that classical test theory is based on the notion that observed scores (X) are composites of 

true scores (T) and measurement error (E) (Nunnally, 1978; Lord & Novick, 1968) in the 

relationship expressed as X = T + E. In this expression, T is theoretically pure, meaning that this 

value would not change if the same person was given perfectly parallel versions of a test an 

infinite number of times; thus, T is not influenced by measurement error. In practice, it is only 

possible to know X, the observed score, because error is always present to some degree, and 

“these random deviations from true score are caused by measurement error” (Thye, 2000, p. 

1280). 

That average results would be very close to the known reliability of the mini-universes 

was expected; that is, administering the same test over and over to random groups should result 

in an average reliability that is very close to that of the mini-universe or known reliability. 

However, sampling error – which influences even randomly selected groups to some degree – 

can cause reliabilities for individual test administrations to differ from that of the norm group 
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and from that of the same test given to a different group of test takers. In this study, testlets size n 

= 87 sampled from the normal distribution produced reliability coefficients as low as 0.44 (lower 

bound) and as high as 0.87 (upper bound) from a mini-universe with a known reliability   ( XYr ) 

of 0.70 and low and high values (lower and upper bounds) of 0.61 and 0.92 for XYr =0.80, and 

0.79 and 0.96 for XYr =0.90 (see Table 27). Similar results are observed for all five distributions 

at all three levels of correlation. This shows that even under pristine conditions when systematic 

error is held constant random error influences the reliability of a test. Thus, it is not surprising 

that a test administrator would find some difference between the reliability calculated for a small 

group of examinees compared to the reliability of the norm group, however, if random sampling 

is employed to select the group of examines, that difference should be small. 

 

Table 30: Random Correlation Simulation Results for All Distributions n = 87 

Distribution xyrx * Standard 
Deviation 

SEM XYr ** 
XYr  − 

xyrx  

Normal 0.698261 0.055614 0.030549 0.700330 0.002069 
Chi-Squared (df=1) 0.681311 0.092823 0.052401 0.688895 0.007584 
Exponential 0.687899 0.077317 0.043194 0.690861 0.002962 
Double Exponential 0.704757 0.056345 0.030616 0.706736 0.001979 
t (df=3) 0.695747 0.077290 0.042632 0.698982 0.003235 

Normal 0.798549 0.039494 0.017726 0.800238 0.001689 
Chi-Squared (df=1) 0.785849 0.067909 0.031426 0.792115 0.006266 
Exponential 0.796282 0.055152 0.024893 0.798917 0.002635 
Double Exponential 0.803914 0.039904 0.017670 0.805540 0.001626 
t (df=3) 0.803302 0.054567 0.024201 0.806113 0.002811 

Normal 0.899131 0.020983 0.006664 0.900144 0.001013 
Chi-Squared (df=1) 0.892032 0.037115 0.012196 0.895831 0.003799 
Exponential 0.901075 0.029046 0.009136 0.902728 0.001653 
Double Exponential 0.902388 0.021116 0.006597 0.903367 0.000979 
t (df=3) 0.902525 0.029203 0.009117 0.904287 0.001762 
*Average reliability for n = 87; **Mini-universe actual reliability 
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Non-Random Samples 

To remove randomization from the testlets to answer statistical question (2), correlates in 

the mini-universes were ordered from low to high by adding the absolute value of the (X, Y) pairs 

and sorting based on the sum. After ordering the data, testlets were sampled from within the 

lowest 250,000 correlates and then from within the highest 250,000 correlates, resulting in severe 

sampling range restriction. Other methods exist for removing randomization from the data, but 

this particular method provides a way to isolate the smallest and largest scores which, when 

testlets are sampled from these groups, simulate the worst case scenarios for test administration. 

Sampling from only the lowest correlates simulates administering a test to a very low performing 

group of examinees and sampling from the highest correlates simulates administering a test to a 

very high performing group of examinees. 

When sampling error is introduced, the average correlations for most of the testlets, 

regardless of size, change drastically and fail to properly estimate the known correlation of the 

mini-universe. Tables 31-32 show the average reliabilities for n = 87 non-randomly sampled 

testlets. For example, looking at the normal distribution with a known mini-universe reliability of 

0.70 and non-randomly selecting testlets from only the lowest 250,000 correlates, the average 

reliability for testlets size n = 87 drops to 0.05; likewise, when selecting from only the 250,000 

highest correlates the average reliability increases to 0.84. Compared to a reliability of 0.70 when 

the n = 87 testlets are randomly sampled, neither of these values is an accurate reflection of the 

known reliability that they should be estimating. Similar results are observed across all 

distributions for all testlet sizes at all three levels (0.70, 0.80 and 0.90). This shows that 

reliability of a test will differ depending on the characteristics of the group of examinees taking 

the test; this was described by Harvill (1991) as follows: 
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The reliability of a test is not a fixed value. It will vary among different methods 
for determining reliability using a single group of examinees and among different 
groups of examinees using a single method for estimating reliability. The manual 
for a standardized test may report many reliability coefficients obtained for that 
test using different methods and different groups of examinees. (p. 182) 

 

 

Table 31: Non-Random Ascending Correlation Simulation Results,  
All Distributions n = 87 

Distribution xyrx * Standard 
Deviation 

SEM XYr ** 
XYr  − 

xyrx  

Normal 0.046531 0.069188 0.067559 0.700330 0.653799 
Chi-Squared (df=1) -0.064112 0.093552 0.096505 0.688895 0.753007 
Exponential 0.009225 0.068417 0.068101 0.690861 0.681636 
Double Exponential 0.046762 0.069796 0.068145 0.706736 0.659974 
t (df=3) -0.020282 0.076944 0.077720 0.698982 0.719264 

Normal 0.065567 0.077421 0.074839 0.800238 0.734671 
Chi-Squared (df=1) -0.003948 0.078240 0.078395 0.792115 0.796063 
Exponential 0.048004 0.077678 0.075791 0.798917 0.750913 
Double Exponential 0.066340 0.077924 0.075295 0.805540 0.739200 
t (df=3) 0.027748 0.073804 0.072773 0.806113 0.778365 

Normal 0.111789 0.098187 0.092536 0.900144 0.788355 
Chi-Squared (df=1) 0.092241 0.099649 0.094942 0.895831 -0.988072 
Exponential 0.123992 0.111270 0.104143 0.902728 0.778736 
Double Exponential 0.115041 0.101157 0.095161 0.903367 0.788326 
t (df=3) 0.107164 0.106067 0.100223 0.904287 0.797123 
*Average reliability for n = 87; **Mini-universe actual reliability 
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Table 32: Non-Random Descending Correlation Simulation Results, 
All Distributions n = 87 

Distribution xyrx * Standard 
Deviation 

SEM XYr ** 
XYr  − 

xyrx  

Normal 0.834948 0.085649 0.034796 0.700330 -0.134618 
Chi-Squared (df=1) -0.479379 0.677985 0.824632 0.688895 1.168274 
Exponential -0.383959 0.765221 0.900220 0.690861 1.074820 
Double Exponential 0.727451 0.361926 0.188948 0.706736 -0.020715 
t (df=3) -0.973407 0.038120 0.053551 0.698982 1.672389 

Normal 0.907041 0.041914 0.012779 0.800238 -0.106803 
Chi-Squared (df=1) -0.404829 0.785364 0.930856 0.792115 1.196944 
Exponential -0.339000 0.854823 0.989160 0.798917 1.137917 
Double Exponential 0.800544 0.386527 0.172625 0.805540 0.004996 
t (df=3) -0.989564 0.026934 0.037990 0.806113 1.795677 

Normal 0.956154 0.018753 0.003927 0.900144 -0.05601 
Chi-Squared (df=1) -0.360526 0.891725 1.040120 0.895831 1.256357 
Exponential -0.320015 0.924339 1.061990 0.902728 1.222743 
Double Exponential 0.850807 0.414677 0.160171 0.903367 0.052560 
t (df=3) -0.998986 0.024319 0.034383 0.904287 1.903273 
*Average reliability for n = 87; **Mini-universe actual reliability 

 
 

Summary 

The proposal of the reliability generalization (RG) method in 1998 spawned a cottage 

industry and created a split in the psychometric community; this is disquieting given the fact that 

RG essentially ignores decades of work in psychometric theory and application. As discussed 

earlier, several issues pertinent to the method have been put forth since its introduction. Problems 

identified with using RG to examine reliability coefficients across studies (or across test 

administrations) are not limited to, but include: 

• Comparing reliability coefficients obtained via different calculation methods (e.g., test-

retest, Cronbach’s α, KR-20, etc.) which are known to differ, even when calculated for 

the same group and test administration; 
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• Failing to consider different errors associated with different types of reliability; 

• Not considering different test forms or formats and how reliability can differ depending 

on the form used; 

• Neglecting to account for errors associated with test administration conditions, including 

not confirming that test administration protocols were followed properly; 

• Failure to take into consideration the composition of test groups (sample) and sampling 

error. 

As discussed in Chapter 3, extensive arguments describing how and why these issues are 

problematic in RG studies have been put forth by several researchers. In addition, researchers 

such as Symonds (1928), Sawilowsky (2000) and Schumaker and Smith (2007) documented a 

variety of other factors that influence test reliability, these include: the test itself, conditions 

under which a test is administered, the individuals taking the test and interactions among these 

factors. (See Table 1.) Each issue on its own gives cause to question the RG method, but taken 

together they form a strong basis to argue that RG is not a suitable method for the study of 

reliability. Additional support for this argument may also be found somewhat unexpectedly 

among RG studies that have been conducted since the method’s introduction. 

Reviewing research carried out over the years, a number of issues with the RG method 

are found within RG studies themselves. For example, some of the studies purport to examine 

reliability, but upon closer inspection actually appear to focus on measurement error (e.g., 

Vacha-Haase, 1998; Baugh, 2002) and most fail to describe or even acknowledge known issues 

regarding combining reliability coefficients (e.g., Charter, 2003). Others report finding very 

narrow confidence bands in reliability coefficients across studies for different groups using the 

same test (e.g., Henson, 2004) and some simply restate already known aspects of reliability, such 
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as the fact that sampling group variability influences reliability (e.g., Fan & Yin, 2003). Thus, 

those who have employed RG have done little to illustrate benefits to using the method to study 

reliability or to instill confidence in RG results. In addition to the above, one other issue with 

reliability that is acknowledged among both proponents and opponents of RG is that of failures 

in study result reporting.  

Not surprisingly, Vacha-Hasse (1998) observed differences among reliability coefficient 

values calculated from different administrations of the same test. In order to address these 

differences, the RG method was proposed, seemingly without consideration of the various 

factors which are known to influence reliability. For example, it was noted previously that it is 

inappropriate to definitively assert that the reliability of a test is a specific value (Sawilowsky, 

2000): This is due to the fact that reliability coefficients can be calculated using several different 

approaches and each will provide a somewhat different estimate of reliability - even for the same 

administration to a group of examinees - because each accounts for different types of errors. This 

study employed test-retest reliability to specifically examine the impact of one factor on 

reliability coefficients: random versus non-random sampling. Interestingly, Vacha-Haase (1998) 

addressed this by quoting Dawis (1987) who said “because reliability is a function of sample as 

well as of instrument, it should be evaluated on a sample from the intended target population, an 

obvious but sometimes overlooked point” (p. 839). It has been shown in this research that this is 

indeed the case: Reliability coefficients calculated for the same test but with different samples of 

examinees will differ from the reliability calculated for the norm group. The size of the 

difference depends upon how much sampling error is present, which is in part due to the 

sampling procedure used (random vs. non-random) to select the group of examinees to whom the 

test is administered. In short: reliability is sample dependent. Using Monte Carlo simulations to 
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illustrate how reliability coefficients vary considering just one aspect of measurement error, it 

can be said that reliability generalization is an unnecessary and potentially misleading practice. 

As Nunnally (1978) aptly stated: 

…it is meaningful to think of a test as having a number of different coefficients of 
reliability, depending on the major sources of measurement error that are 
considered. In practice, however, it is useful to speak of a reliability coefficient 
for a test which summarizes the amount of measurement error expected from 
using the instrument. This striving for simplicity is understandable, but at least 
two types of reliability coefficients should be computed and reported for any test 
that will be employed widely.  

To the extent that different approaches to obtaining the reliability coefficient 
produce somewhat different results, the coefficient that should be used in gauging 
the stability of traits and in making statistical corrections depends on the way in 
which the measurement method will be employed. (p. 237) 

 
Implications for Future Research 
 

This study employed Monte Carlo methods to simulate data from five different 

distributions. The five distributions selected represent the various characteristics commonly 

present in data collected in social and behavioral research. Yuan and Bentler (2002) commented 

on this, when they stated that “the asymptotic distribution for each of the [reliability] coefficient 

estimates, obtained based on a normal sampling distribution, is still valid within a large class of 

non-normal distributions. Therefore…can still be used even with skewed and kurtotic data such 

as are typical in the social and behavioral sciences” (p. 251). Simulated data was employed in 

this research in order to isolate random sampling error to show its effects on reliability 

coefficients. Future research could utilize real data from either a norm group or other research 

studies to populate a correlation matrix and calculate reliability coefficients using a similar 

sampling technique. Conducting a similar study using real data – as opposed to simulated test 

results – will provide additional evidence for statements regarding the reliability of tests. 
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Conclusion 
 

This research demonstrates that calculated reliability can and will differ between test 

administrations due to sampling, and that these differences in calculated coefficients are 

predictable and can be explained mathematically. Along with this, results from this work 

illustrate how critical it is that investigators describe the sample and sampling method used in a 

study. It is thus recommended that workers would be wise to forgo reliability generalization and 

instead focus on developing practices to encourage researchers to report any reliability 

coefficients noted in test manuals (e.g., that for the norm group) along with the reliability 

coefficient(s) calculated for tests administered in their own studies, the type(s) of reliability 

calculated, sampling plan, sample characteristics and test administration conditions. The results 

of this Monte Carlo study demonstrate that the concept, nomenclature and burgeoning cottage 

industry of reliability generalization are merely lapsus linguae. 
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This study examines the proposed Reliability Generalization (RG) method for studying 

reliability. RG employs the application of meta-analytic techniques similar to those used in 

validity generalization studies to examine reliability coefficients. This study explains why RG 

does not provide a proper research method for the study of reliability, including describing how 

reliability is not a singular metric but a family of coefficients that are not interchangeable, along 

with other issues, such as sample and test administration. This research used Monte Carlo 

simulations designed to illustrate how the same instrument, administered repeatedly, can result in 

different reliability coefficients and to show that variation in reliability coefficients is due to 

sampling error; results illustrate that the reliability of a test will vary across test administrations 

based on the size and composition of the sample and how the sample was selected (randomly 

versus non-randomly). 
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