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Chapter 1 Introduction 

1.1 Objectives 

              Today’s energy economy is based so much on fossil fuels which has problems like 

being a non-renewable resource and then there is great demand for these resources as 

never before i.e. high demand for oil and these are produced from politically unstable 

countries which compounds to the problem even more. Add to it the carbon dioxide 

produced from these fuels have almost doubled from 1970’s and pose a huge problem to 

climate-change5. 

The solution for these problems has been renewable energy resources which are ecological 

friendly, low-cost and serve for long term. These include solar, wind and the biofuels. 

Battery systems can be used to store this renewable energy. Batteries have lot have 

advantages and are highly important part of the renewable resources plan. The 

performance of the batteries depends mostly on the properties of their materials. New 

material chemistry has already made advances in the energy conversion and storage field. 

Lithium-ion batteries have been replacing lead-acid and nickel-metal hydride batteries for 

the last few years. 

One needs to look at the recent developments in electric-cars and hybrid vehicles to 

understand the relevance of Lithium-ion batteries in the market. These are being used by all 

the major electric car makers and promise customers the reliability and safety of the electric 

cars. The other important market for batteries has been the electronics market such as 

Smartphone’s and robotics which use batteries in them. These technological improvements 

demand for higher energy density and power and not to forget the cyclability of the 

batteries. 
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            Lithium-ion batteries have more than 2500 cycles, can be made into different sizes 

and also require very little maintenance compared to the other battery technologies. 

Different ways are being researched to make Lithium-ion batteries more cost efficient and 

improve its cycling life and last but not the least increase its safety. Additionally, Lithium-ion 

batteries can be employed to buffer green but fluctuating energy sources, such as wind and 

solar energy. The combination of Lithium-ion batteries and green energy will offer reliable 

smart energy source at supply-on-demand model achieving high energy efficiency. Figure 1 

clearly shows the advantages of Lithium-ion batteries as compared to other rechargeable 

batteries. Li-based batteries have higher energy density compared to lead-acid, Nickel-

cadmium and Nickel-metal hydride. 

 

 

 

 

 

 

       

 Figure 1: Comparison of various rechargeable battery technologies in terms of energy 

density1 
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The objectives of this thesis are: 

1. To design new mesostructures based anode material compositions which can exhibit 

higher capacities than that of commercially available carbon anode materials.        

2. To synthesize low-cost and environmentally benign Zn2SnO4 based anode materials and 

fully characterize the materials using state-of-the-art techniques. 

3. To thoroughly investigate their performance in lithium ion batteries by electrochemical 

testing and possibly improve the current set of materials being used for Lithium-ion 

batteries, which are effective but are also expensive and toxic. 

In the next 3 chapters I am going to review the current works in anode and cathode 

materials. Then show the results obtained in our lab for Zn2SnO4-based anode materials. 

Here is an outline of the things in the chapters. 

Chapter 2 deals with literature review of the anode and cathode materials and also with the 

basic ways of working of the batteries and a brief history of the batteries. It also has a 

separate section in which it deals with carbon coating Chapter 3 deals with carbon coating 

of the ZTO based cubic material and its performance in battery testing. Chapter 4 deals with 

Rubik cube-shaped ZTO based anode material and its characterization and electrochemical 

performance. 
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Chapter 2 Literature Review 

 

  2.1 Basic Principles of lithium Ion Batteries 

          Lithium batteries use a reductant as the anode and an oxidant as the cathode. Simply 

put, on discharge the anode supplies Li+ ions to the Li+ electrolyte and electrons to the 

external circuit. Cathode materials take these Li+ ion coming in from the electrolyte and the 

charge is balanced by the external circuit. On charge, reversal of this process occurs, that is 

the Li+ ions go back to the anode through the electrolyte and into the host structure. The 

electronic current delivered by the cell is matched by the ionic current inside the cell. 

      This cell has been called “Rocking-chair” cell as both the anode and cathode act as hosts 

for the reversible insertion or removal of the ion. Another important part of the battery is 

the electrolyte which is a form of a solution of a Li salt, specifically, LiPF6 dissolved in a 

mixture of ethylene carbonate (EC) and diethyl carbonate (DEC), Dimethyl carbonate (DMC), 

or both. It can also be in the form of a gel such as polyvinylidene fluoride (PVDF). Figure 2 

describes a basic Lithium-ion battery diagram showing the Li+ ions passing through the 

electrolyte. 
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Figure 2: Basic Schematic diagram of a Lithium-ion battery with different electrodes and Li 

insertion into them2. 

 

            Batteries have come a long way but present-day battery technologies are being 

outpaced by the ever-increasing power demands from new applications. Batteries today 

have to be not only safe but they also have to integrate the concept of environmental 

sustainability. Hence recent developments have been to incorporate newer and hybrid 

nanomaterials Various nanostructured materials have been developed for Lithium-ion 

batteries  like SnO2 nanotubes6, SnO2 microstructures7 .Certain level of success has been 

achieved in improving the performance of Lithium-ion batteries. However, it is still very 

challenging to prepare nanomaterials with desired structures by a facile method. 
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2.2 Cathode Materials for Lithium Ion batteries 

          Compared to anode, the cathode materials have been researched a lot and some of 

the candidate cathode materials include LiCoO2, Li NiO2, LiNi1-yCoyO2 and three-dimensional 

LiMn2O4 spinel phase. LiCoO2 has dominated the market since it was commercialized by 

Sony Corporation in 1991.Because of the high cost and toxicity of cobalt different cathodes 

has been developed.LiMn2O4 has been extensively studied as it has many advantages like 

less toxic and less cost8. The olivine LiFePO4 have attracted attention recently for its 

structure and performance in lithium batteries9. Chunwen Sun et al10 prepared 

monodisperse porous LiFePO4 microspheres for a high power lithium-ion battery cathode. 

They used solvothermal with high-temperature calcination to synthesize LiFePO4. 

           These materials are generally prepared through high temperature calcination with 

temperature around 800 °C. One of other important factor to be seen in the cathode 

materials is the phase transformation during intercalation process. They are divided into 

two categories i.e. a homogeneous solid phase reaction and a two-phase reaction. 
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Figure 3: Schematic representation of the structure Li2MnSiO4 also showing the Li+ 

migration3. 

Zhe et al3 recently showed the Li2MnSiO4 with carbon as nanocomposites as a high capacity 

cathode material for Lithium-ion battery. These were prepared through the hydrothermal 

method. The electrochemical measurement showed an initial discharge capacity of 

281.5mAh/g. 

There are materials which are doped with other transition metals to improve the 

performance of the cathodes. One such example is of Cr-doped LixMn1.5Ni0.5O4 5-V cathode 

material11. Other researchers have tried to add yttrium content into the cathode material 

resulting in superior rate capability of the electrode12. 
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2.3 Anode Materials for Lithium Ion Batteries 

              Over the years there has been intensive research in improving the overall 

performance of Lithium-ion batteries. The energy density of the Lithium-ion batteries 

depends on the capacities and operating potentials of the respective electrode materials. 

One of the main ways to improve the batteries has been to improve the anode materials as 

the graphite anode currently used in Lithium-ion rechargeable batteries has a theoretical 

capacity of 370mAh/g but the practical capacity that is seen is around 320mAh/g. Thus, 

there is a need to find electrode materials that can yield higher capacities and high energy 

density. 

               Different anode materials like silicon nanorods13, silicon/carbon composites14 and 

germanium/carbon nanostructures15 have been used as anode materials and have given 

great results but there is still room for improving the battery performance. Some of the 

properties of an ideal anode material for Lithium-ion batteries are as follows: (1) It must be 

a compound with low atomic weight, be low density and accommodate fairly large amounts 

of Li per formula unit and be cyclable, to yield large, stable and reversible gravimetric 

(mAh/g) capacities. (2) An ideal anode material should have a potential as close as possible 

to that of the Li metal as possible. (3) The anode material must not be soluble in the 

solvents of the electrolyte and must not be chemically react with the salt or solvents of the 

electrolyte. 
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2.3.1 Carbon based Anode for Lithium Ion Batteries 

              Carbon anodes became a breakthrough in realizing the lithium “rocking chair” 

battery and solved the lithium metal anode safety problem. Carbon attracts lot of interest 

because of its diverse characteristics such as a variety of structures which plays an 

important role. Kanno et al16 reported in 1989 the use of carbon as electrodes and have 

discussed in detail the importance of surface area. Number of people working on it 

increased with Sony marketing its first lithium ion battery in 1991. Graphite as active 

materials has been particularly attractive because of large capacity of lithium intercalation 

and low average voltage. Simon et al had published on the choice of graphite for lithium ion 

batteries17. Other researchers also worked on using graphite oxide and graphene oxide as 

electrodes for lithium ion batteries18. Graphite has been researched thoroughly and now 

research is being to explore the unique properties of the graphene. Jung Ji et al19 recently 

published graphene-encapsulated Silicon as anode. Silicon has been shown great interest 

due to its high theoretical capacity (4200 mAh/g). The graphene encapsulated Si 

nanoparticles were prepared by mixing an aqueous suspension of poly 

(diallyldimethylammonium chloride) (PDDA) modified Si nanoparticles with a graphene 

oxide (G-O) aqueous suspension. 



10 
 

                                          

Figure 4: (a,b) TEM images of graphene encapsulated Si,(b) HRTEM of the Si 

nanoparticles,(c,d) SEM images of the structure(d-inset) cross-sectional view of the 

composite(e,f) EDS mapping of silicon and carbon19. 

 

        Graphene with its two dimensional carbon material has high electrical conductivity, 

superior mechanical flexibility and low density. Xiefei Li et al20 published their research on 

anode made of nitrogen-doped graphene nanosheet. One of the interesting they showed 

was specific capacity increased over number of cycles. The specific capacity of 684 mAh g

− 1 in the 501st cycles and 452 mAh g− 1 in the 100th cycle, which shows higher cycling 

stability and larger specific capacity in comparison to a pristine graphene and a commercial 
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graphite anode. The nitrogen-doped graphene nanosheet was made through thermal 

treatment at 1050°C under nitrogen atmosphere. 

                                                      

Figure 5: TEM image of the graphene nanosheet which was doped with nitrogen later20. 
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2.3.2 Anodes based on Li intercalation –deintercalation reaction  

             Intercalation basically here means insertion of the ion, atom or molecule into a 

crystal lattice of a host compound without destroying the crystal structure. Though these 

don’t destroy the host but they do modify the crystal structure. Three important conditions 

that these compounds should satisfy are4: Firstly, the compound must be crystalline and 

should have empty sites in the host crystal lattice, in the form of isolated vacancies. 

Compounds with 2D and 3D structures are most useful for Li intercalation-deintercalation 

whereas compounds with isolated vacant sites or 1D channel may easily intercalate but not 

easily deintercalate Li ions. Second, the host compound must contain a transition metal or 

rare earth metals which can exhibit one or more stable valency states. This is because 

intercalation of Li ion will reduce the valency state of the host metal ion by one unit. The 

third condition is that if the host compound has an unfavorable crystal structure and 

transition metals in low valency state, Li intercalation may not occur. 

                   One way of understanding the Li intercalation process has been to understand 

the key factors that govern Li diffusion in intercalation compounds and illustrate how the 

complexities of Li diffusion mechanisms work. Anton et al21 have concluded that Li diffusion 

coefficient of an intercalation compound is a crucial kinetic parameter that determines how 

rapidly Li can be removed and reinserted into the compound. They use first principles 

statistical mechanics approaches can elucidate the effect of chemistry and crystal structure 

on kinetic properties. 
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2.3.2.1 Binary Oxides 

The most attractive binary oxide has been Titanium dioxide, TiO2, for use as an anode for 

Lithium-ion batteries due to its low cost, ready availability, and ecofriendliness. TiO2 exists in 

several polymorphic modifications: anatase, rutile, brookite, TiO2-B (bronze) etc. All of them 

contain TiO2 octahedra. 

                                      

 Figure 6: Crystallographic representation of rutile, anatase, brookite and bronze (B) TiO2
4. 

TiO2 performance mainly depends upon method of preparation of TiO2, particle size, and 

shape and morphology. Particles with size less than 200nm with higher surface area and 

porous morphology with interconnected particles can give stable and near theoretical 

capacity. Similarly the Vanadium and molybdenum oxides (VO, V2O3, VO2, V2O5) have been 

investigated and have shown to be good anode materials for Lithium-ion batteries. 
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2.3.2.2 Ternary Oxides 

                   Many ternary titanium and niobium oxides possessing 2D-layer or 3D-network 

have been examined in the literature for Li-Cyclability, in particular nanostructured forms, 

have been fabricated and investigated for the applications22. One disadvantage that has 

been found with these is that they have very low electronic conductivity (at 300K, sigma ~ 

10-9 to 10-13 S cm-1). 

     Lithium titanium oxide (Li4Ti5O12) with the cubic spinel structure has been investigated for 

Li storage and cyclability in the form of micro- and nanocrystalline particles and with various 

morphologies and composites. It has a theoretical value of 175 mAh/g and many have been 

able to get close to the value. Zhu et al23 prepared composites of 1 wt% graphene and nano-

LTO, which had a surface area of 170 m2/g, by electro spinning and heat treatment. At 22C, 

the LTO-graphene composite gave a specific capacity of 110mAh/g. 

 Jung et al24 prepared bare and carbon coated LTO by a two-step process involving solid 

state reaction and pitch carbon. The 5 micrometer sized spherical particles are composed of 

100nm sized primary particles, and the nominal 5 wt% C-coated LTO had a uniform 3nm 

thick carbon coating. While the BET surface areas did not vary much before and after C-

coating, the electronic conductivity increased by 6 orders of magnitude in the C-coated LTO. 
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2.3.3 Metal Oxides Based Anode for Lithium Ion batteries 

          Elements like Si, Sb and metals like Sn, In and Cd25 can give rise to Li storage and 

cycling behavior by virtue of alloying-dealloying reactions. An example of the process can be 

explained in first discharge reaction with Li, SnO or SnO2 undergoes crystal structure 

destruction and formation of nano-Sn metal dispersed in amorphous Li2O via a two phase 

reaction. This is followed by alloy formation, Li4.4Sn.  Detailed studies have shown that Li 

alloying-dealloying reactions of Sn,Si,Sb etc. involve large changes in the unit cell volume, as 

high as 300% in some cases, and this is detrimental to the long term Li cyclability since it 

give rise to “electrochemical pulverization” of the active material. This results in loss of 

electrical contact between the particles and current collector. This eventually leads to the 

electrode disintegration and capacity fading upon long-term cycling. 

Four approaches have been used to combat this problem and they are as follows using first 

is the use of nanosize particles of the metals or oxides26 or other compounds, which will 

enable them to absorb some of the volume changes because of the smaller number of 

atoms present in the nanograins and also the large surface area of the nanoparticles adds to 

it26-27. Second method is to incorporate one of the matrix elements, which are 

electrochemically active or inactive toward Li, such as Ca, Co, Al, Ti, and Ni. These help in 

volume changes and improve the electronic conductivity of the composite, and also act as 

catalysts for better Li cycling. Third approach is proper choice of the staring crystal structure 

and morphology. The fourth approach has been the choice of the proper voltage range for Li 

cycling. This is seen more prominent in the Sn oxides and the optimum voltage range is 

0.005-0.8(or 1) V vs Li. 
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2.3.3.1 Binary Tin Oxides 

        Tin monoxide, SnO, adopts a tetragonal structure and is made up of SnO6 octahedra. It 

is available as monocrystalline form but can also be prepared in micro- and nano- by various 

chemical methods. Uchiyama et al28 reported a comparative Li cycling study of SnO of 

different morphologies with that of the commercial available SnO and reported to have 

obtained 760mAh/g for the initial capacities when compared to 525mAh/g for the 

commercially available one. However drastic fading was also reported to be seen in the 

sample.  

Recently chowdaris group29 has studied the nanocomposites SnO(V2O3)x and SnO(VO)0.5 

prepared from SnO and V2O3/VO by high energy ball milling (HEB) and examined the Li 

cycling properties by galvanostatic cycling and cyclic voltammetry. When cycled in the 

voltage range 0.005-0.8 V vs Li at a current of 60mA/g(0.12C) it showed a first charge-

discharge capacity of 435mAh/g and stabilized around 380mAh/g. 

Tin dioxide, SnO2, adopts a tetragonal rutile structure. Guo et al30 showed that a reversible 

and stable capacity of 700mAh/g can be obtained when the system is cycled in the range 

0.005-1.0V up to 60 cycles. Zhu et al studied the Li cycling of SnO2 nanoparticles with size 

ranging from 3 to 62 nm and obtained reversible capacities of 300-800 mAh/g, in the cycling 

range 0-1.0V at a current rate of 0.2mA/cm2.  Other studies include SnO2 with carbon 

nanotubes composites and they exhibit a range of 380 to 720 mAh/g. Zhao et al31 prepared 

graphene nanosheet composites with two different mass ratios. They showed the second 

cycle capacity of 720mAh/g which stabilizes at 650mAh/g in the range 15-50cycles. 
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2.3.3.2 Ternary Tin Oxides 

            The Li cycling mechanism for ternary/quaternary oxides, MxSnOy, during the first 

discharge reaction with Li metal always involves the destruction of the crystal structure or 

amorphization of the lattice. This result in the formation of metal (M) or metal oxides (MOy) 

and formation of nano-Sn-metal dispersed in amorphous Li2O. This is followed by alloy 

formation, Li4.4Sn. 

          The compounds M2SnO4 (M= Mg, Mn, Co, or Zn) adopt a spinel structure with Sn in 

tetrahedral coordination. Li cycling behavior of these oxides is in the range of 0.02-1.5V vs Li 

at low current rates. We were interested in the Zn2SnO4 (ZTO) for its properties and also 

wanted to pursue making new nanostructures. We were successful in getting some new 

unique structures which showed good performance and cyclability. A good review article 

was published by Baruah and Dutta32 where they show different ways ZTO is made and its 

various applications. Then Zhe chen et al33 showed new ZTO flower like nanostructure which 

were used for gas sensing applications.    

Then there are oxides of the type ASnO3 (A= Ca, Sr, Ba, Co, and Mg) which contains SnO6 

octahedra and adopts a pervoskite structure. Chowdari group have shown excellent cycling 

performance of CaSnO3 with a reversible capacity of 380mAh/g stable up to 100 cycles in 

the voltage range 0.005-1.0V at 60mA/g. 
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2.3.3.3Antimony Oxides and Mixed Oxides 

              Antimony has received attention, similar to Sn, due to its high specific capacity via 

alloying-dealloying reaction. But there have been problems of large volume variation which 

have caused problems. Binary oxides are Sb2O3, Sb2O4 and Sb2O5 of which Sb2O3 is the most 

stable. During the discharge cycle, Sb2O3 undergoes structure destruction and formation of 

the elemental Sb and Li2O.  

             Chen34 group studied the Li cycling of Sb2O3 in the range 0-2.0V at a current of 0.2mA 

cm-2 and they found a first charge capacity of 500mAh/g which slowly degraded to 

300mAh/g after 10 cycles. Tarascon35 group reported preliminary Li cycling properties of 

Sb2O3, Sb2O4 and Sb2O5 and found that the latter compound is electrochemically inactive. 

Bryngelsson et al36 prepared Sb/Sb2O3 thin films on Ni-substrates by electrodeposition 

technique, and these exhibited a capacity of 660mAh/g stable for more than 50 cycles when 

they were cycled at a current rate of 0.1C in the range 0-1.5V.  

               Tarascon35 studied the Li cycling of the compounds MSb2O6, M = Co, Ni, and Cu, 

which possess the trirutile structure. They showed that for M=Co and Ni, structure 

destruction occurs during the first discharge with the formation of Co or Ni metal and Sb 

particles at ~ 1.5V vs Li. The compounds with M=Co and Ni showed first-cycle reversible 

capacities of 400-450mAh/g when cycled in the range 0-3.0V at 0.05C. 
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2.4 Zinc Tin oxide 

           Zinc Tin oxide (ZTO) has been the focus of our research for its unique properties in the 

application of Lithium-ion battery. Zinc tin oxide has been considered as a promising 

candidate for transparent electrode, sensor, and photovoltaic devices. We have used high 

temperature calcination to prepare the material from Zinc hydroxystannate. Zhe chen33 et al 

have prepared novel Zn2SnO4 hierarchical nanostructures. The 3-D nanostructures have 

been prepared using a one-step hydrothermal route at 180°C. The morphology of the final 

products was found to depend strongly on the concentrations of EDA and CTAB used. Some 

of the methods used to produce ZTO are as follows. 

 

Different methods of Synthesis of ZTO 

 

Studied by (authors) 

 

Thermal Evaporation 

 

Hanyuan chen et al.37 

 

High-temperature calcination 

 

Jie J et al.38 

 

Sol-gel synthesis 

 

Fu G et al.39 

 

Hydrothermal reaction 

 

Zhang et al.40 

 

Ion-exchange reaction 

 

Kovacheva et al.41 

Table 1:  Literature survey of different methods of synthesis for Zinc Tin oxide. 
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    A.Rong et al42 prepared spinel Zn2SnO4 particles with non uniform cubic shape via a 

hydrothermal process. They show that the conditions of reaction temperature and time are 

an important factor in the formation of the particles. The cube-shaped Zn2SnO4 particles 

with the spinel structure exhibit a large electrochemical capacity of 988 mAh/g and 

relatively good capacity retention as anode materials for Lithium-ion battery. They increase 

the concentration of NaOH steadily and that in turn gets sharper XRD peaks.  

             Hongliang Zhu et al43 synthesized  Zn2SnO4 Nanorods  using hydrothermal synthesis, 

these were of the size of 2-4nm in diameter and around 20nm in length. They used 

hydrazine hydrate as an alkaline mineralizer instead of NaOH. Using the hydrothermal 

method they were able to bring down the ZTO diameters to around sub-5 nm range. 

Xianghui Hou et al44 synthesized Zn2SnO4 crystals by a solid state reaction using Zn(NO3)2·

6H2O, SnCl4·5H2O, and NaOH as the raw materials. In their XRD analysis they show Inverse 

spinel Zn2SnO4 with trace amounts or rather peak of SnO2. They obtained a cubic like shape 

crystals with smooth boundaries and were in the size range of 100-500nm. 

           Wentao Song et al45 prepared a layered Zn2SnO4/graphene nanohybrid anode which 

showed good performance in battery testing. A Zn2SnO4-nanocrystals/graphene-nanosheet 

nanohybrid has been prepared by a facile in situ hydrothermal route using SnCl4⋅5H2O, 

ZnCl2 and graphite oxide (GO) as the precursors and N2H4⋅H2O as the mineralizer and 

reducing agent. The nanocrystals formed are uniformly anchored on the graphene and help 

in the electrochemical activity. 
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 Figure 7: Cycling performance of Zn2SnO4/G and Zn2SnO4 charged at 50 and 200 mA g−1 and        

discharged at 50 mA g−1, and bare graphene charged–discharged at 50 mA g−1 
  as shown45. 

         X.J Zhu et al46 synthesized Zn2SnO4 by hydrothermal process using NaOH as an alkaline 

mineralizer. In their synthesis they were able to synthesis Zn2SnO4 with trace amounts of 

ZnO and SnO2 which were detected through XRD analysis. Jae-Wook Lee et al47 tried 

synthesizing Zn2SnO4 by using supercritical water in a batch reactor. They used Zinc nitrate 

and tin chloride. NaOH was used to adjust the pH of the solution. The XRD results showed a 

combination of Zn2SnO4, ZnO and SnO2. 

          Jingzhou Yin48 et al have shown controlled growth of the ZnSn(OH)6 which includes 

shapes such as cubes,cuboctahedrons,truncated octahedrons, and octahedrons using a 

solvothermal method in a methylcellulose ethanol/water solution. Adjusting the NaOH 

solution to the system they were able to observe shape evolution. Similarly we have been 

adjusting NaOH solution and were able to obtain cubes and spheres without adding the 

methylcellulose to the ethanol/water solution and then we were able to calcinated and 

through the CVD process obtain a layer of carbon on the cubes. 
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Chapter 3 Carbon Coated Cubic Mesostructure of Zn2SnO4@Sn@C for Reversible Lithium 

Storage 

 

3.1 Introduction 

              The performance of any device depends intimately on the properties of the 

materials of which it is formed and this holds for lithium batteries. We wanted to use 

transition metal oxides as electrode materials for next generation rechargeable lithium-ion 

batteries which have been widely studied. We wanted to improve these by 

nanoarchitecturing the electrodes to our specific needs. We have chosen the Zinc tin oxide 

system for use in the batteries. The main challenges that are seen in these batteries are low 

intrinsic electronic conductivity and severe volume changes during Li insertion/extraction 

processes, leading to poor cycling performance. We tried to overcome these problems by 

using carbon-coatings and using nanoarchitectured electrodes. 

 Zinc stannate (Zn2SnO4) also called Zinc tin oxide (ZTO) is acknowledged for having high 

electron mobility, high electrical conductivity and attractive optical properties that make it 

suitable for a lot of applications. Instead of breaking up the macro-material to 

nanostructures which uses more sophisticated equipment we use simple lab methods to 

make synthesis nanostructures thus making it more viable when viewed commercially.    

            There have been attempts to improve the performance through carbon usage. Sn-C 

composites have been created to improve the performance49. There are other papers that 

used similar approach where they nano-paint a layer of carbon on the nanostructure50. 

Carbon nanotubes (CNT) have also been used extensively to improve the electrode 

performance51 as these have superior electrical conductivity and high activated surface area 
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and structural flexibility. We propose a new structure to which we have used the CVD 

method to nano-paint the microstructure, which is through CVD process. We show that 

anodes comprised of this structure and layering show good discharge rate capabilities and 

have good cycling performance. This can be understood with the following diagram. 

 

 

          

Figure 8: Schematic of preparation of a family of cubic mesostructures with different 

compositions: (a) ZnSn(OH)6, (b)Zn2SnO4&SnO2, (c) hollow SnO2 mesocubes prepared by 

etching  Zn2SnO4&SnO2  mesocubes  with  1M  HCl,  (d)  porous  Zn2SnO4&Sn@C  

mesocubes prepared by CVD Process,(e) porous mesocubes of SnO2@carbon sphere 

aggregations obtained by etching Zn2SnO4&Sn@C mesocubes with dilute HCl. 
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Figure 1 illustrates the processes to prepare a family of mesocubes with different 

compositions. The precursors, ZnSn(OH)6   mesocubes,  were synthesized  through  a 

room  temperature  self- templating co-precipitation method. (Figure 1a) The 

Zn2SnO4&SnO2  mesocubes were prepared by  calcinating  ZnSn(OH)6   mesocubes  at  

800oC  for  1h.  (Figure 1b)  SnO2   mesocubes were prepared by removing Zn2+ from 

Zn2SnO4&SnO2, which was prepared at 650oC for 6h, using 1M HCl solution.  (Figure 1c) 

The Zn2SnO4&Sn@C mesocubes were prepared through a CVD treatment of 

Zn2SnO4&SnO2, which was prepared at 800oC for 1h, with flow of acetylene/argon at 

650oC for 1h. (Figure 1d) Porous mesocubes aggregated by SnO2@carbon Nanospheres 

can be prepared from Zn2SnO4&Sn@C by washing with 2M HCl solution for 2days. (Figure 

1e) 

 

 

 

 

 

 

 

mailto:Zn2SnO4&Sn@C
mailto:Zn2SnO4&Sn@C
mailto:SnO2@carbon
mailto:SnO2@carbon
mailto:Zn2SnO4&Sn@C
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3.2 Experimental 

3.2.1 Preparation and characterization          

a. ZnSn(OH)6 mesocubes: The ZnSn(OH)6 precursor was synthesized through a room- 

temperature self-templating co-precipitation method. In a typical synthesis, 50ml of 

ethanol solution containing SnCl4 (0.025M) and ZnCl2 (0.05M) was prepared. Then 50ml 

of aqueous solution of NaOH (0.32M) was added drop wise into the ethanol solution in 5 

minutes. The mixture was stirred for one hour and the reaction was lasted for another 23h 

without stirring. The resulting white precipitate was collected by centrifugation, washed 

with ethanol and deionized water for several times to remove residual ions in the 

products. The ZnSn(OH)6  precursor was then dried in air at 100°C for 24hr before 

characterization. 

b. Zn2SnO4&SnO2     mesocubes:   The   Zn2SnO4&SnO2     mesocubes   were   prepared   

from ZnSn(OH)6 precursor through a calcination process. To prepare Zn2SnO4&SnO2 

mesocubes with small grain size which are more vulnerable to acid etching, the 

ZnSn(OH)6  powder was placed into a ceramic crucible and heated at 650oC for 6h, with 

ramping rate of 1oC/min in air. To prepare porous Zn2SnO4&SnO2 mesocubes with larger 

grain size which favors the transportation of chemical vapor inside the mesocubes, the 

ZnSn(OH)6  powder was placed into a ceramic crucible and heated in a quartz tube 

furnace at 800oC for 1h, with ramping rate of 20oC/min under Ar flow. 

c. Hollow SnO2 mesocubes: SnO2 mesocubes were prepared by an acid etching process. 

The precursor of SnO2  mesocubes was prepared by calcinating ZnSn(OH)6  in air at 
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650oC for 6h, with ramping rate of 1oC/min. 50mg of Zn2SnO4&SnO2  mesocubes 

prepared at 650oC were dispersed in  40ml of  1.0M  HCl  for  24h  at  room  

temperature  under  stirring. The white product was collected by centrifugation, washed 

with deionized water for several times until the solution became neutral and then  washed 

with ethanol, dried at 60°C. 

d. Zn2SnO4&Sn@Carbon mesocubes: The Zn2SnO4&Sn@Carbon mesocubes were 

prepared through a CVD process. In a typical synthesis, the porous Zn2SnO4&SnO2 

mesocubes prepared at 800oC were placed into a ceramic crucible and heated to 650oC in 

a quartz tube furnace with ramping rate of 20oC/min under Ar flow. The CVD process was 

carried out at 650oC for 1h with a flow of 100sccm of mixture gas (10% acetylene in 

argon). The tube furnace was cooled down with pure argon flow after 1h of CVD process. 

 e. Porous SnO2@C mesocubes: SnO2@C mesocubes were prepared from 

Zn2SnO4&Sn@Carbon mesocubes by acid etching process. In a typical procedure, 25mg of 

Zn2SnO4&Sn@Carbon mesocubes was dispersed into 20ml of 2M HCL for 2 days, the acid 

etched product in black color was collected by centrifugation, washed with deionized water 

for several times until the solution became neutral and then washed with ethanol, dried at 

60°C. 

     

                

 

 

mailto:Zn2SnO4&Sn@Carbon
mailto:Zn2SnO4&Sn@Carbon
mailto:Zn2SnO4&Sn@Carbon
mailto:Zn2SnO4&Sn@Carbon
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3.2.2 Electrochemical measurements 

Electrochemical Measurements: Homogeneous slurry was prepared by mixing 80wt% 

of the as prepared active materials, 10wt% of conductivity enhancer (Super-P carbon 

black, Timcal), and 10wt% of polyvinylidene fluoride (PVDF) binder in N-

methylpyrrolidone (NMP). The slurry was then applied to copper discs as current 

collectors and dried in a vacuum oven at 80oC for 24h. Coin-type cells were assembled 

in an argon-filled glove box using the coated copper disc as the working electrode, 

metallic lithium foil as the counter electrode, 1 M solution of LiPF6 in a mixture of 

ethylene carbonate (EC) and diethyl carbonate (DEC) (1:1, v/v) as the electrolyte,   and   

PP/PE/PP   trilayer   membrane   (Celgard   2320)   as   the   separator.   The 

electrochemical cells were charged and discharged galvanostatically at room 

temperature in the voltage window of 0.005V-3V on a MTI BST8-WA battery tester. 

 

            

                                                      

                                     Figure 9: Battery cells being analyzed by the MTI instrument. 
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3.3 Results  

3.3.1 XRD 

 X-ray powder diffraction (XRD) pattern was recorded using a Regaku X-ray diffractometer 

equipped with graphite monochromatized Cu-Kα radiation with a scanning rate of 4°C min-1. 

From the X-ray analysis using Jade we were able to see that the formed microstructure 

cubes are ZnSn(OH)6. All the diffraction peaks can be assigned to ZnSn(OH)6 according to the 

standard JCPDS no. 20-1455, the following figure shows the XRD spectra. 

                              

                              Figure 10: XRD pattern of ZnSn(OH)6 prepared by the facile method  
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The obtained ZnSn(OH)6 on calcination gave the mixed phase of Zn2SnO4 /SnO2 , this  could 

be seen from the XRD results for the calcinated sample. All the diffraction peaks can be 

assigned to Zn2SnO4   to the JCPDS no.   and SnO2 according to the standard JCPDS no. 74-

2184, the following figure shows the XRD spectra. 

        

                Figure 11: XRD pattern of Zn2SnO4/SnO2 after calcination of Zinc hydroxystannate 

From the analysis of the XRD by the Jade software we could see that the composition of the 

as obtained products are not exactly phase pure Zn2SnO4 rather it has also has  peaks 

showing SnO2. Specifically speaking we were able to see peaks of SnO2 at 26.3 2theta 

(degrees) and at 38 degrees which are clear. From the existing literature we could see that 

the process of calciantion follows the following reaction and forms a Zn2SnO4/SnO2 

composite. 

                           2ZnSn(OH)6       Zn2SnO4 + SnO2 + 6H2O  at 800°C 
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We further use the CVD process to grow a layer of carbon the microcubes. The layer of 

carbon is around few nanometers and this can be clearly seen in the TEM image. We also 

used XRD to check the changes that have been caused in the phase of the system. All the 

diffraction peaks can be assigned to Zn2SnO4 to the standard JCPDS no. 74-2184. The XRD for 

after 1 hr CVD process of the Zn2SnO4 /SnO2 is as follows. 

                                  

                      Figure 12: XRD pattern of Zn2SnO4/Sn@C Mesocube after the 1hr CVD process. 

 

From the above XRD we could see sharp peaks of the element ‘Sn’ after 30 degrees. Trace 

amount of SnO2 is still observed due to incomplete reduction. 
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We further increase the CVD time to 3hr for the Zn2SnO4/SnO2 cubes and we find the 

following XRD of the obtained material. Here we can clearly see from the previous XRD of 

1hr that the amount of metal ‘Sn’ has increased. 

 

                     Figure 13: XRD pattern after 3 hr CVD process. 
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Figure 14: XRD patterns of samples (a) ZnSn(OH)6 precursor,(b) Zn2SnO4&SnO2 

obtained by calcination at 800oC, and Zn2SnO4&Sn@C obtained by CVD for 1h, 

respectively. 

 

The XRD patterns of precursor, calcinated sample and CVD sample are shown in 

Figure 14. The XRD pattern of precursor prepared through room-temperature self-

templating co- precipitation method can be assigned to primitive cubic ZnSn(OH)6 

(JCPDS card no. 20-1455), as  shown  in  Figure  14a.  No  other  peak  was  observed,  

indicating  the  purity  of  as-prepared materials. The XRD pattern of sample prepared by 

calcinating precursor at 800oC was shown in Figure 2b, which can be assigned to 

Zn2SnO4 with cubic crystal structure (JCPDS card no. 24-1470) and tetragonal rutile SnO2 

(JCPDS card no. 41-1445). After the chemical-vapor deposition (CVD) process in 

mailto:Zn2SnO4&Sn@C
mailto:Zn2SnO4&Sn@C
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acetylene/argon, the composition of the products changed to the mixture of Zn2SnO4 

with cubic crystal structure (JCPDS card no. 24-1470) and tetragonal tin (JCPDS card no. 

01-0926). The distinguishable peak at around 2θ=26° for SnO2 in Figure 14b disappeared 

in Figure 14b, indicating the successful reduction of SnO2 to Sn by acetylene through CVD 

process, which was also reported in other works.52,53,54,55. 
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3.3.2 FESEM and TEM 

          

                     

Figure 15:  ZnSn(OH)6   mesocubes:  (a-c)  FESEM  images  and  (d)  EDS  of cubic  ZnSn(OH)6 

precursor obtained at room temperature with 0.32M NaOH. Inset of (a) is the TEM image of 

cubic ZnSn(OH)6 precursor 

      

           The morphology of as-prepared precursor, ZnSn(OH)6 mesocubes, was revealed by 

the FESEM images at different magnifications in Figure 15a-c. The ZnSn(OH)6 in cube-like 

structure are uniform with sizes about two micrometers, as shown in the low-magnification 

FESEM image(figure 15a). The magnified FESEM image shows the regular cubic like structure 

of as prepared ZnSn(OH)6 precursor, including the very flat surfaces and sharp edges(Figure 
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15b-c). The typical cubic structure and the solid nature of the mesocubes were revealed by 

the TEM image (inset of figure 15a).As compared to the all the products which were 

prepared under high temperature, the ZnSn(OH)6 is more condensed and has a lower 

porosity, as proved by the smooth surface of the cube in FESEM and the very dark area of 

the cube shown in TEM. The EDS of ZnSn(OH)6 was shown in Figure 15d, the atomic ratio of 

Zn:Sn is 1:1, which is in accordance with the XRD pattern in Figure 14a. 

                          

Figure 16. Zn2SnO4&SnO2 mesocubes: (a, b) FESEM and (c, d) TEM images of the 

Zn2SnO4&SnO2 mesocubes obtained by calcinating cubic ZnSn(OH)6   precursor at 

800
o
C in argon 
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The porous Zn2SnO4&SnO2 mesocubes were obtained by calcinating close-compacted 

ZnSn(OH)6 precursor at 800 C for 1h, and the morphology of the Zn2SnO4&SnO2  was 

revealed by FESEM and TEM, as shown in Figure 16.The uniform and the distributed 

mesocubes were observed in Figure 16, the cubic structure was preserved after the high 

temperature annealing process without change in size or shape. More details were 

revealed in magnified FESEM image (Figure 16b). The surface of the Zn2SnO4&SnO2  

mesocubes became coarser than the surface of ZnSn(OH)6   mesocubes,  and  the  

subunits  which  aggregate  to  form  the  mesocubes  can  be observed, due to the 

increase of grain size under high temperature calcination process.56 The TEM image for a 

typical Zn2SnO4&SnO2 mesocube was shown in Figure 16c, the course edges and the 

nano-sized subunits can be observed, and the size of this typical mesocubes was 2.3 μm. 

The magnified TEM image (Figure 16d) shows the subunits in nanoscale. All the 

nanoparticles are less than 100nm in size, the structure became porous as compared to 

the closely compact ZnSn(OH)6 cubes and then there are some void space among those 

nanoparticles aggregations. The Zn2SnO4&SnO2 materials prepared at a high 

temperature of 800oC with porous property were used to prepare Zn2SnO4&Sn@C 

materials through CVD process. The porous structure allows the  diffusion  of  chemical  

vapor  inside  the  cubes  in  micro scale  and  facilitates  the  vapor deposition process 

throughout the mesocubes. The porosity of the structure of Zn2SnO4&SnO2 can also be 

proved by the uniform coating of carbon of Zn2SnO4&Sn@C materials. The EDS result of 

as prepared Zn2SnO4&SnO2 was shown in Figure S1a, with molar ratio of Zn: Sn of 1:1. 

The atomic ratio of O (46.55 At %) was decreased compared to the atomic ratio of O 

in ZnSn(OH)6  (77.26 At %) due to removal of the hydroxyl water during the heating 

mailto:Zn2SnO4&Sn@C
mailto:Zn2SnO4&Sn@C
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process and the conversion of ZnSn(OH)6 to Zn2SnO4.56,57,58,59.   The reaction can be 

ascribed as following equation, which is also proved in the XRD pattern in Figure 14b:59 

                                       2ZnSn(OH)6  Zn2SnO4 + SnO2 + 6H2O 

 

 

                      

Figure 17: Hollow SnO2 mesocubes: (a,b) SEM images and (c,d) TEM images of hollow SnO2  

mesocubes obtained by etching Zn2SnO4&SnO2 mesocubes prepared at 650 C with 1M HCl 

for 1 day. 
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The hollow SnO2 mesocubes were synthesized by etching Zn2SnO4&SnO2 mesocubes, 

which were prepared at 650oC with 1M HCl for 1 day, with 1M HCl solution for 1day 

under stirring. And the morphology of as-prepared hollow SnO2 mesocubes is revealed 

by SEM and TEM, as shown in Figure 17.  The preservation of the cubic structure was 

demonstrated by the low- magnification SEM in Figure 17a. Due to the acid-etching 

effect, the Zn2+ can be removed by the dilute hydrochloride acid. Thus, porous hollow 

SnO2 cubes formed after the acid-etching process.The typical cubic structure was shown 

in Figure 17b, the broken surface was pointed out by the white arrow. Due to the 

dissolvation of part of the solid composites, the size of cubes decreased a little bit from 2.2 

micrometer. Besides, the surface of the cube was depressed and was no longer flat. This 

was possible due to that the void core was generated by the acid-etching process; the void 

core cannot support the outside surface as a solid core did. The hollow cubes were also 

demonstrated by the TEM image in Figure 17c; the void space created was cubic, around 

1.1 micrometers in length. The corner of a typical etched hollow cube was shown in 

magnified TEM image, the thickness of the shell was measured to be 280nm, as shown in 

Figure 17d.  The formation of hollow cubes, rather than the uniform porous cubes might 

be ascribed as following: During the heating process to prepare ZTO&SnO2 from 

ZnSn(OH)6, the heat was transferred from the surface to the core part of the cube. Thus, 

the ZTO&SnO2 formed on the surface was earlier than the core part, and the larger grain 

size will be obtained on the surface due to the more sufficient heat received. Both of the 

factors make it harder to etch the shell than the core part. Also, it is suggested that the 

formation of hollow cubes through acid etching process might due to the loose and even 

porous matter at the core part of the materials in the work of Ma G. et al.60 The removal 
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of Zn2+ is proved by the EDS in Figure S1b, compared to the EDS of Zn2SnO4&SnO2 in 

Figure S1a, the intensity of Zn peak decreased and the intensity of Sn increased. The peak 

of Zn is not distinguishable, which indicates most of the Zn2+ was removed by HCl solution. 

                  

                     

Figure 18: Zn2SnO4&Sn@C mesocubes: (a,b) FESEM and (c,d) TEM images of Zn2SnO4&Sn@C 

mesocubes obtained through CVD treatment of Zn2SnO4&SnO2 mesocubes prepared at 800 

C for 1hr. 
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3.3.3 EDS Elemental Mapping 

 

                  

Figure 19: EDS elemental mapping of confined cubic mesostructure of Zn2SnO4&Sn@C 

obtained after 1hr CVD treatment of Zn2SnO4&SnO2 mesocubes. 

 

            Zn2SnO4&Sn@C mesocubes were prepared through 1h CVD process from 

Zn2SnO4&SnO2, which was prepared at 800oC. The existence of Sn was proved by XRD in 
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Figure 14c, which can be attributed to the reduction of SnO2 to Sn by acetylene gas. The 

morphology of the Zn2SnO4&Sn@C mesocubes was revealed by FESEM and TEM images in 

Figure 18.The uniform cubic structure was preserved after the CVD process, as shown in 

figure 18a. Two typical Zn2SnO4&Sn@C mesocubes are shown in magnified FESEM images in 

Figure 18b.The surface is smoother compared to the surface of Zn2SnO4&SnO2 mesocubes 

due to the carbon coating formed during the CVD process. One broken carbon sphere can 

be observed on the surface of Zn2SnO4&Sn@C mesocubes, which also demonstrate the 

deposition of carbon on the cube. The TEM image for a typical Zn2SnO4&Sn@C mesocube 

was shown in Figure 18c. The size of Zn2SnO4&Sn@C mesocube is 2.3 μm, which is the 

same as the size of Zn2SnO4&SnO2 mesocubes. The Zn2SnO4&Sn@C mesocubes are 

aggregated by nanosize subunits, the details of the subunits are shown in Figure 18d.   The 

nanoparticles which aggregate to form Zn2SnO4&Sn@C mesocubes are about 25nm in size, 

and are coated with a layer of carbon. The carbon uniformly covered all the nanoparticles 

and had a thickness of ~5nm. The EDS result and the elemental mapping of Zn2SnO4&Sn@C 

mesocubes were shown in Figure 19. The uniform distribution of all the elements, including 

C, O, Sn and Zn, on mesocubes was revealed by color of red, green, blue and yellow, 

respectively. The uniform distribution of carbon indicates that the carbon formed 

throughout the whole cubes, not just on the surface of it, which was further proved by the 

acid-etched products, SnO2@C cubes in Figure 20. It demonstrates that the Zn2SnO4&SnO2 

materials which used as precursor in CVD process were porous, because the mesocubes are 

permeable to the chemical vapor and allow the carbon deposition at the core part of 

mesocubes. The atomic ratio of carbon is about 30%, as shown in EDS spectrum. 
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Figure 20. Porous SnO2@C mesocubes: (a, b) SEM  images and (c, d) TEM images ( e-h) 

EDS elemental mapping of porous mesocubes of SnO2@carbon sphere aggregations 

obtained by etching Zn2SnO4&Sn@C mesocubes with dilute HCl. 

mailto:SnO2@C
mailto:SnO2@C
mailto:SnO2@carbon
mailto:SnO2@carbon
mailto:Zn2SnO4&Sn@C
mailto:Zn2SnO4&Sn@C
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           The mesocubes of SnO2@C nanosphere aggregations was obtained by etching 

Zn2SnO4&Sn@C mesocubes with dilute HCl solution. The uniform cubic structure with size 

about 2μm can be preserved after the acid etching step, as shown in the low magnification 

FESEM image (Figure 20a). The magnified FESEM shows more details about the nanosphere 

subunits at the corner of mesocubes (in the area marked by red dash) in Figure 20b. As 

compared to its precursor, Zn2SnO4&Sn@C mesocubes, SnO2@C mesocubes have coarse 

surfaces, which is due to the removal of Zn2SnO4 and Sn. The typical porous mesocube 

aggregated by hollow nanospheres was revealed by TEM images in Figure 20c. As compared 

to all the solid mesocubes before acid etching step, such as ZnSn(OH)6, Zn2SnO4&SnO2,   

Zn2SnO4&Sn@C, the acid- treated SnO2@C mesocubes are highly porous and some hollow 

carbon spheres can be observed, which can be attributed to the removal Zn2SnO4  and Sn. 

A magnified TEM image in Figure 20d shows the details about the SnO2@C nanosphere 

subunits. The mesocubes were aggregated by SnO2@C nanospheres in size of <100 nm and 

small amount of hollow nanospheres can be observed on outside surface of the mesocube. 

The EDS result in Figure S1c shows that the carbon is the dominant composition with atomic 

ratio of 90.26%, while small amount (3.72 at%) of Sn element  and O(6.03 at%) exist in the 

mesocubes. The EDS mapping of SnO2@C mesocubes in Figure 20(e-h) demonstrates the 

uniformity of carbon, oxygen and tin on the mesocubes by red, green and yellow colors, 

respectively. Also, the mapping of carbon element, combined with the TEM images, proves 

the uniformly coating of carbon on all the nanosized subunits of mesocubes, not just on the 

surface of mesocubes. The removal of Zn and Sn was studies through time-dependent 

experiment. The EDS results of samples treated with 2M HCl were shown in figure 20.The 

removal of both Zn and Sn was demonstrated by the lasting increased content from 1h to 

4h.With reaction increase from 1h to 4h, the contents of both Zn and Sn decreased from  
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20% to 3% after the acid treatment. Similar to the dissolvation of ZnSnO3 reported,61,62 the 

dissolvation of Zn2SnO4 might be ascribed by following equations: 

Zn2SnO4 + 4H+  
 2Zn2+ + H4SnO4 

H4SnO4 + 6HCl  H2 [SnCl6] + 4H2O  

Even though H4SnO4 can be considered as the hydrous form of SnO2, which is hard to 

dissolve in water, it is not stable and can react with hydrochloride acid. Thus both Zn and Sn 

elements were removed by HCl solution. 
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3.3.4 Battery testing 

    We used the Zn2SnO4/SnO2 in the battery as an anode material and where able to plot 

charge-discharge curves for it and also the capacity versus number of cycles plot.  

                                      

                       Figure 21: Discharge-charge curves for the Zn2SnO4/SnO2 electrode. 

As you can see from the plot the first three charge and discharge cycles for the battery has 

been drawn. Similarly we can plot capacity versus number of cycles as follows. 

                                  

                    Figure 22: Cyclic life of the electrodes of the as-prepared Zn2SnO4/SnO2. 
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We then plot the same way for Zn2SnO4/SnO2 after the CVD process i.e. for the 

Zn2SnO4/SnO2 which has a layer of carbon on it. And as above we have the first three charge 

and discharge cycles and the capacity versus number of cycles plot shown below. 

                                          

Figure 23: Discharge-charge curves for the Zn2SnO4/SnO2 electrode after carbon coating. 

Then similarly the capacity versus number of cycles plot for Zn2SnO4/SnO2 after the CVD 

process. 

                                        

Figure 24: Cyclic life of the electrodes of the as-prepared Zn2SnO4/SnO2 with a layer of 
carbon. 
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3.4 Discussion 

           From XRD results it is clear that the product obtained from the synthesis is a pure 

phase of ZnSn(OH)6. All the peaks can be assigned to a single phase material having a pure 

cubic pervoskite ZnSn(OH)6.The sharpness of the peaks implies the high crystalline quality of 

the as prepared sample. We then calcinated it at 800°C to convert the Zinc tin hydroxide to 

Zinc tin oxide. From the FESEM images it can be seen that the structure is intact after the 

conversion showing the stability of the structure. From literature we know that adding 

carbon improves the electronic conductivity of the system and hence we use CVD process to 

coat a layer of carbon on the microstructure.  

              From the FESEM images of the sample it can be seen that ZTO/SnO2 are composed 

of uniform particles with an average size of 1µm particles. This is also true after the particles 

are treated in CVD process as the particles size still remains same to 1µm.Then we can see 

from the TEM images that the layer of carbon layer on the particles is around 10nm.We 

further analyze the particles using EDS elemental mapping as to prove the existence of 

carbon on the particles. From the figure it is clear that there is carbon on the particle as 

carbon can be seen throughout the image. We can also see the other elements like oxygen, 

zinc and tin from the analysis. 
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Figure 25. First two cycles charge-discharge profiles of (a) Zn2SnO4&SnO2 mesocubes and 

(c) Zn2SnO4&Sn@C mesocubes prepared through 1 hour CVD process, and differential 

capacity profiles (dQ/dV) of (b) Zn2SnO4&SnO2     and (d) Zn2SnO4&Sn@C, respectively. 

(e) Cycling performances of Zn2SnO4&SnO2 and Zn2SnO4&Sn@C 

         To investigate its lithium storage performance, the discharge–charge behaviors, the 

differential capacity (dQ/dV) characteristics, and the cycling performance of as-prepared 

Zn2SnO4&SnO2 mecocubes and Zn2SnO4&Sn@C mecocubes were measured at a 

mailto:Zn2SnO4&Sn@C
mailto:Zn2SnO4&Sn@C
mailto:Zn2SnO4&Sn@C
mailto:Zn2SnO4&Sn@C
mailto:Zn2SnO4&Sn@C
mailto:Zn2SnO4&Sn@C
mailto:Zn2SnO4&Sn@C
mailto:Zn2SnO4&Sn@C
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current density of 50 mA g−1 for 20 cycles and at 50 mA g−1 for the rest cycles at and 

room temperature in a potential ranging from 0.05 to 3.0 V (vs. Li/Li+), as shown in 

Figure25. 

          The electrochemical performance of ZTO cubes was evaluated by galvanostatic 

charge/discharge cycling at a current density of 50mA/g for the first 20 cycles and then 

increased to 100mA/g for the next 20 cycles. We also follow the same process for the 

testing of the particles coated with carbon by the CVD process. The first discharge step in 

both of them shows a long plateau at around 0.5V this can be basically ascribed to the 

settling of the ZTO reacting with lithium and forming a lithium matrix. The first discharge 

and charge capacities are 1690 and 1060 mAh/g for ZTO, and 1000 and 780 mAh/g for 

carbon coated microcubes of ZTO. 

 On the basis of lithium storage mechanism of ZnO and SnO2, the mechanism of ZTO 

particles can be occurring by the following mechanism 42 

4Li+   +   Zn2SnO4 + 4e    Sn + 2Li2O + 2ZnO 

8Li+   +   Zn2SnO4 + 8e  Sn + 4Li2O + 2ZnO 

These are the partly reversible reactions involved in the system and the reversible reactions 

are as below which are attributed to the formation and deformation of LixSn and LiyZn 

alloys. 

   xLi+ + Sn + xe-   LixSn, x < or = 4.4 

  yLi+ + Zn + ye-   LiyZn, y < or = 1 
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In the initial discharge-charge curves of Zn2SnO4&SnO2 (Figure 25a) and 

Zn2SnO4&Sn@C mecocubes (Figure 25c), a wide steady discharging plateau around 0.45 

V (vs Li/Li+) was observed, which can be attributed to the lithium insertion into Zn2SnO4, 

and subsequent formation of alloy with Zn or Sn. The initial irreversible capacity loss for 

the first cycle was observed for samples, 39.6% for Zn2SnO4&SnO2 and 24.9% for 

Zn2SnO4&Sn@C sample. This can be attributed to the formation of amorphous Li2O. 

In o r d e r  t o  i n v e s t i g a t e  the electrochemical reaction involved during the 

charge/discharge processes, the   differential   capacity profiles (dQ/dV) were plotted 

(Figure 25b and 25d). For both samples, the cathodic peak at about 0.45V and 0.14V for 

the first discharge process can be attributed to equations (1) (2) and equations (3) (4), 

respectively. The anodic peaks at 0.6V and 1.34V for the first charge process can be 

attributed to the equations (3) (4) and equations (1) (2), respectively. For the second cycle, 

the cathodic peak at 0.45V which was observed for the first cycle disappeared and is 

replaced by peak at ~1V, which can be attributed to equations (1) (2)   

The peak for SnO2    was shown in Figure 25b for Zn2SnO4&SnO2 materials. A 

stronger cathodic peak for SnO2 at about 0.85V was observed, which can be attributed to 

the reaction of SnO2 with lithium ions and the formation of Sn and Li2O. Another peak 

at ~0.45V is related to the formation of LixSn. The peaks for Sn were shown in Figure 

25d for Zn2SnO4&Sn@C materials. A stronger cathodic peak at about 0.45V for metallic 

tin was observed, which can be attributed to the alloy of Li and Sn and the formation of 

LixSn. In the anodic scan, three peaks at 0.59,  0.73,  and  0.79  V  correspond  to  the  

dealloying  process  from  different  phases. 

mailto:Zn2SnO4&Sn@C
mailto:Zn2SnO4&Sn@C
mailto:Zn2SnO4&Sn@C
mailto:Zn2SnO4&Sn@C
mailto:Zn2SnO4&Sn@C
mailto:Zn2SnO4&Sn@C
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The comparison of the cycling performance between Zn2SnO4&SnO2 and 

Zn2SnO4&Sn@C mesocubes were carried out and the results is shown in figure 25e. The 

reversible capacities of Zn2SnO4&SnO2 and Zn2SnO4&Sn@C mesocubes retained 250mAh/g 

and 370mAh/g after 35 cycles of charging/discharging. It is shown that the Zn2SnO4&Sn@C 

which has carbon coatings on the cubic structures has an enhanced cycling performance, 

as compared to Zn2SnO4&SnO2 mesocubes, which may due to the improved conductivity, 

buffered volume variation and less inner stress brought in by the uniform carbon coating. 

 

                                                       

     Figure 26: Optical image to show the differences of tapping density among (a) 

Zn2SnO4&SnO2 mesocubes, (b) Zn2SnO4&Sn@C mesocubes, and (c) commercial TiO2 

nanoparticles (Sigma- Aldrich, P25). The tapped density is 1.14, 0.98 and 0.13 g/cm3 for 

(a), (b) and (c) respectively. 

mailto:Zn2SnO4&Sn@C
mailto:Zn2SnO4&Sn@C
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The volume density of Zn2SnO4&SnO4 and Zn2SnO4&Sn@C as compared to commercial TiO2 

(AEROXIDE TiO2 P25) were measured and the result was shown in Figure 26. Zn2SnO4&SnO2 

and Zn2SnO4&Sn@C have tapped densities of 1.14 and 0.98 g/cm3, respectively, which are 

much higher than the tapped density of 0.13 g/cm3 of the commercial available TiO2.This 

result shows the potential of both Zn2SnO4&SnO2 and Zn2SnO4&Sn@C to be applied as high 

capacity/energy density anode materials for LIBs. The much higher tapped densities of both 

Zn2SnO4&SnO2 and Zn2Sn@C mesocubes can be attributed to: (1) High molar mass of tin-

based oxides and (2) close-compact of cubic structures. The capacity densities were 

calculated based on the specific capacities and the tapped densities. The specific capacity of 

TiO2 used here is the theoretical capacity based on the reaction: TiO2 + 0.5 Li+   Li0.5TiO2. 

Thus, the capacity density of 285,363 and 21.84 mAh cm-3 were calculated based on the 

specific capacities of 250,370, 168 mAh/g, for Zn2SnO4&SnO2 mesocubes, Zn2SnO4&Sn@C 

mesocubes and TiO2 respectively. The capacity densities of Zn2SnO4&SnO2 mesocubes and 

Zn2SnO4&Sn@C mesocubes are more than 10 times higher than that of theoretical 

capacity density of TiO2. It is very promising to apply Zn2SnO4&SnO2 and Zn2SnO4&Sn@C 

materials with cubic structure as high capacity density anode materials for LIBs. 

Moreover, the theoretical capacity of Zn2SnO4 of 1231 mAh/g was not reached yet, which 

makes it possible to further improve it. Theoretically, the capacity density can be further 

improved by a factor of at least three, and reaches around 1400mAh cm-3
   with tapped 

density of 1.14g cm-3. 
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Chapter 4 Rubik-cube-like Zn2SnO4 for Reversible Lithium Storage 

4.1 Introduction 

          In this chapter we further show how we nanoarchitechted a new Rubik-cube-shaped 

microstructure of Zinc-tin oxide. We used basic DOE principles to improve the system and 

were able to get a new micro shaped oxide. We realized early on from literature that NaOH 

is an important shape controller. We further tried to improve upon the system by making 

changes to the other ingredients at a specific NaOH concentration. Realizing control over 

the shape of nanocrystals or microcrystal is one of the important research subjects. There 

are reports of improved battery performance because of the shape of the crystals. There 

have been shapes of cubes and spheres of ZTO. However there hardly any reports of a 

Rubik-cube shaped unique structure as the one we show here. This is a new nanostructure 

not discussed in the literature. 

     In this study we were able to control and produce the Rubik-cube-shaped structure with 

high amount of reproducibility. These were of the sizes of the range of 1 micrometer and 

were uniform in its structure. 
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4.2 Experiments 

 4.2.1 Preparation and characterization 

                      Further continuing from the previous chapter we tried to run more experiments 

changing concentrations of other materials while keeping the concentration of NaOH at 

0.32M. After trying different concentrations we were able to get a new Rubik-cube or bow 

like microstructure at 0.025M of ZnCl2 and 0.025M of SnCl4. 

                      In a typical experiment, 0.025M of SnCl4 was added to 50ml of ethanol and 

stirred until all of it was completely dissolved. Then 0.025M of ZnCl2 was added to the same 

solution until it was completely dissolved. Then we added 0.32M of NaOH to 50ml of 

deionized water until it completely dissolved in the system. We add the NaOH solution to 

the SnCl4 and ZnCl2 solution drop wise in 5 minutes and then let it stir for one hour. Then 

we leave the flask for reaction for 24hr.Then after reaction the precipitates were collected 

by centrifugation, washed with ethanol and deionized water for several times to remove 

residual ions in the products. The final products were then dried in air at 100°C for 24hr 

before characterization. The obtained samples were white in color after the drying process. 

The entire sample in this process had a good amount of the precipitate. 

 

      The obtained ZnSn(OH) 6 Rubik-cube or bow formed are then calcinated at 800°C. This is 

done with the help of the calcination apparatus and the hydroxide is placed at the center of 

the tube in a crucible. Argon gas is let through the equipment for a period of 30mins before 

the start of the experiment to clean out the reaction chamber of the remaining oxygen and 

then the temperature is slowly increased to 800 C and maintained at this temperature for 
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1hr and then is left to cool down. After the furnace had slowly cooled to room temperature, 

the substrates were removed from the furnace tube. The sample now turned into a slight 

yellowish color. 

All the reagents used were of analytic grade from Sigma Aldrich (USA) and used as received 

without purification. Deionized water was used throughout these experiments. 

      Characterization was done using X-ray power diffraction (XRD) on a Regaku X-ray 

diffractometer with a Cu K-alpha radiation with 40KV beam voltage and 30mA beam 

current. The data were collected in the ranges of 10-80 range 2theta. FESEM and TEM 

images were taken with the help of JEM -2100 transmission electron microscopes 

 

4.2.2 Electrochemical measurements 

             To evaluate the electrochemical performances, the working electrode was 

constructed by mixing the active material, acetylene black carbon (AB) powder and 

polyvinylidene fluoride powder. All the ingredients were mixed and pressed well onto small 

Cu foil which was made before hand. The working electrodes were dried at 80 C for 24hr in 

vacuum. A Li metal foil was used as the counter and reference electrode. The electrolyte 

was 1M LiPF6 in a mixture of ethylene carbonate (EC).The cells were assembled in an 

atmosphere of high-purity argon in a glove box. Galvanostatic measurements of the cells 

were carried out with the potential range of 0.05-3.0V using a MTI instrument. 
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4.3 Results 

4.3.1 XRD  

X-ray powder diffraction (XRD) pattern was recorded using a Regaku X-ray diffractometer 

equipped with graphite monochromatized Cu-Kα radiation with a scanning rate of 4°C min-1. 

From the X-ray analysis using Jade we were able to see that the formed microstructure 

cubes are ZnSn(OH)6 .The following figure shows the XRD spectra 

 

                              

                                                              Figure 27: XRD pattern of ZnSn(OH)6 

 

It can be clearly seen from that the XRD of the cube and the Rubik-cube like shape have the 

same phase even though the shape or morphology looks different. 
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We further calcinated the ZnSn(OH)6 which gave a mixed phase of Zn2SnO4 /SnO2 , but the 

peaks for SnO2  not as clear as they were in the previous chapter experiments. The following 

figure shows the XRD after calcination 

                

                                             Figure 28: XRD pattern of Zn2SnO4/SnO2 

 

The mixed phase seen above has fairly clear peaks at theta 33.From the software analysis of 

the above XRD it is clear that it has Zn2SnO4 peaks. Further experiments with other 

concentration can help understand the amount of Sn present in it when the material 

undergoes CVD process as seen in the case of the cubic Zn2SnO4. 
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4.3.2 FESEM 

We further used FESEM to get higher magnification images of the product sample which has 

the same process as before and we get images which are approximately the same size as in 

the before chapter i.e. around 500-600 nm.Following are the images of Rubik-cube like 

structured ZnSn(OH)6 microcubes. 

 

                

                                             Figure 29: FESEM images of ZnSn(OH)6 

 

From the images it clear that the structures are unique in its nature and understanding its 

formation is going to be intresting.We used these to make batteries as it is a good structure 

as it has higher surface area which facilitates for faster reaction kinetics at the electrode 

surface. 
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4.3.3 TEM 

We use TEM to see if the microparticles are hollow and also to know the size of the whole 

particles. The following shows the Rubik-cube images for the particles. 

 

                           

                                               Figure 30: TEM images of Zn2SnO4 /SnO2 

 

 

From the TEM images above it clear that the structures are not hollow structures and have 

relatively clear and sharp edges. Since the particles are uniform at all places in the sample it 

can be expected to have higher capacities as the surface area of the structure has more 

surface area compared to the cubic structure. 
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4.3.4 Battery Testing 

We finally use the Rubik-cube-shape microparticle in the battery as an anode material and 

we get charge-discharge curves for it and we plot the capacity versus number of cycles plot. 

This can be seen from the following plots. 

 

                    

                                Figure 31: Discharge-charge curves of the electrode Zn2SnO4 /SnO2. 

 

 

The first cycle has discharge of around 1200mAh/g which is pretty good for the Zn2SnO4 

structure but the subsequent drop is pretty rapid as the second cycle shows the discharge to 

be around 700mAh/g. 
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The plot for the cycles versus capacity is a lot similar to the previous chapter capacity versus 

cycles plot. The shape of the particles has some effect on the capacity and is as follows. 

 

                                    

                                  Figure 32: Cyclic life of the electrodes of the as-prepared Zn2SnO4 /SnO2. 

 

 

 

From the above cycles graph it is clear that the rate of drop of capacity is a bit on the high 

side but with further improvements in the structure size and shape there can be significant 

improvement in the number of cycles provided by the microstructure. Further improvement 

with coating of carbon on the microstructure can result to higher capacities and also 

increase in the number of cycles for the microstructure. 
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4.4 Discussion  

       From the XRD data it is clear that the pattern shown can be indexed to a cubic structure 

ZnSn(OH)6. This on calcination converts itself in to the oxide Zinc tin oxide/SnO2 which is a 

mixed phase. From the FESEM images it is clear that the microstructure has unique 

structure and would alloy with lithium more easily as it has more surface area compared to 

the cube. From the image we can also see that the sample is composed of uniform particles 

with average size being 1µm in length. From the TEM images it is clear that the particles 

have a clear and sharp structure and are not hollow. 

The electrochemical performance of ZTO/SnO2 Rubik-cubes was evaluated by galvanostatic 

charge/discharge cycling at a current density of 50mA/g for the first 20 cycles. The first 

discharge and charge capacities are 1200 and 700mAh/g. A large irreversible capacity 

between the discharge and charge in the initial cycle might be contributed by the formation 

of LiO2. It shows a discharge of 390mAh/g after 20 cycles at 50mA/g. 

 

 

 

 

 

 

 



63 
 

Chapter 5 Conclusions and Future Work 

5.1 Conclusions 

                In summary we have shown that Zn2SnO4/SnO2 cubes and the rubik-cube-shaped 

microstructures synthesized by high temperature calcination has a good starting capacity of 

around 1000mAh/g. It retains a capacity of 500mAh/g after 20 cycles for Zn2SnO4/SnO2 

cubes and has a capacity of 600mAh/g after 20 cycles for the sample with a layer of carbon 

on cubes. The capacity fading of the battery occurs due to the destruction of the 

microstructures.  

             Then one interesting that can be seen is that we were able to see SnO2 converting to 

metal Sn after the CVD process of 1hour.We could completely convert the SnO2 to metallic 

Sn by running the process to a 3hr CVD process. 

We also found that NaOH plays an important role in the morphology of the so obtained 

cubes. This has been the case in the literature except there have been other materials like 

CTAB or methylcellulose also being added with NaOH. Here we change only NaOH to get the 

cubes. 

         We further changed the concentration of ZnCl2 to obtain the Rubik-cube-shaped 

microstructure. Here the Rubik-cube shaped XRD shows Zn2SnO4/SnO2 which gave an 

electrochemical performance showed an initial discharge of 1200mAh/g .After 20 cycles the 

electrochemical performance reduces to around 400mAh/g. 
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5.2 Future Directions 

                   Future work in this research would be in performing more experiments using 

Design of Experiments (DOE) as the basis and also including software tools to design 

experiments like Minitab would help in the research analysis a long way this would help in 

finding new nanostructures at other concentrations of ZnCl2 keeping NaOH at 

0.32M.Further we can try to change the concentration of SnCl4 keeping other constant. 

The other direction that can be taken in the research is trying to grow carbon nanotubes on 

the surface of the microstructures to help improve the capacities of the particles. There 

would also be no need of adding the carbon in the process. 

Then it would also be interesting to understand the chemistry behind why a cube changes to 

a Rubik-cube-like structure. Further we can also try to put a layer of carbon on the Rubik-

cube using the CVD process and checking its electrochemical performance. 
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APPENDIX 

 

              

Figure S1. EDS of (a) Zn2SnO4&SnO2, (b) hollow SnO2 mesocubes, and (c) porous 

mesocubes of SnO2@carbon sphere aggregations. 
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Figure S2. EDS of Zn2SnO4&Sn@C treated with 2M HCL for Different times: (a) 1h (b) 2h and 

(c) 4h to compare the content of Sn and Zn. 

 

 

 



67 
 

 REFERENCES 

1. Tarascon, J.-M.; Armand, M., Issues and challenges facing rechargeable lithium 
batteries. Nature 2001, 414 (6861), 359-367. 
2. Jiang, C.; Hosono, E.; Zhou, H., Nanomaterials for lithium ion batteries. Nano Today 
2006, 1 (4), 28-33. 
3. Hu, Z.; Zhang, K.; Gao, H.; Duan, W.; Cheng, F.; Liang, J.; Chen, J., Li2MnSiO4@C 
nanocomposite as a high-capacity cathode material for Li-ion batteries. Journal of Materials 
Chemistry A 2013, 1 (40), 12650-12656. 
4. Reddy, M.; Subba Rao, G.; Chowdari, B., Metal Oxides and Oxysalts as Anode 
Materials for Li Ion Batteries. Chemical reviews 2013. 
5. Scrosati, B.; Garche, J., Lithium batteries: Status, prospects and future. Journal of 
Power Sources 2010, 195 (9), 2419-2430. 
6. Wang, Y.; Lee, J. Y.; Zeng, H. C., Polycrystalline SnO2 Nanotubes Prepared via 
Infiltration Casting of Nanocrystallites and Their Electrochemical Application. Chemistry of 
Materials 2005, 17 (15), 3899-3903. 
7. Jiang, L.-Y.; Wu, X.-L.; Guo, Y.-G.; Wan, L.-J., SnO2-Based Hierarchical 
Nanomicrostructures: Facile Synthesis and Their Applications in Gas Sensors and Lithium-Ion 
Batteries. The Journal of Physical Chemistry C 2009, 113 (32), 14213-14219. 
8. Lee, K.-M.; Choi, H.-J.; Lee, J.-G., Combustion synthesis of spinel LiMn2O4 cathode 
materials for lithium secondary batteries. Journal of Materials Science Letters 2001, 20 (14), 
1309-1311. 
9. Lim, S.; Yoon, C. S.; Cho, J., Synthesis of Nanowire and Hollow LiFePO4 Cathodes for 
High-Performance Lithium Batteries. Chemistry of Materials 2008, 20 (14), 4560-4564. 
10. Sun, C.; Rajasekhara, S.; Goodenough, J. B.; Zhou, F., Monodisperse Porous LiFePO4 
Microspheres for a High Power Li-Ion Battery Cathode. Journal of the American Chemical 
Society 2011, 133 (7), 2132-2135. 
11. Zhu, W.; Liu, D.; Trottier, J.; Gagnon, C.; Mauger, A.; Julien, C. M.; Zaghib, K., In-situ 
X-ray diffraction study of the phase evolution in undoped and Cr-doped LixMn1.5Ni0.5O4 
(0.1 ≤ x ≤ 1.0) 5-V cathode materials. Journal of Power Sources 2013, 242 (0), 236-243. 
12. Li, N.; An, R.; Su, Y.; Wu, F.; Bao, L.; Chen, L.; Zheng, Y.; Shou, H.; Chen, S., The role of 
yttrium content in improving electrochemical performance of layered lithium-rich cathode 
materials for Li-ion batteries. Journal of Materials Chemistry A 2013, 1 (34), 9760-9767. 
13. Nguyen, S. H.; Lim, J. C.; Lee, J. K., Electrochemical characteristics of bundle-type 
silicon nanorods as an anode material for lithium ion batteries. Electrochimica Acta 2012, 74 
(0), 53-58. 
14. Zhou, X.-y.; Tang, J.-j.; Yang, J.; Xie, J.; Ma, L.-l., Silicon@carbon hollow core–shell 
heterostructures novel anode materials for lithium ion batteries. Electrochimica Acta 2013, 
87 (0), 663-668. 
15. Seng, K. H.; Park, M.-H.; Guo, Z. P.; Liu, H. K.; Cho, J., Self-Assembled 
Germanium/Carbon Nanostructures as High-Power Anode Material for the Lithium-Ion 
Battery. Angewandte Chemie International Edition 2012, 51 (23), 5657-5661. 
16. Kanno, R.; Takeda, Y.; Ichikawa, T.; Nakanishi, K.; Yamamoto, O., Carbon as negative 
electrodes in lithium secondary cells. Journal of Power Sources 1989, 26 (3–4), 535-543. 



68 
 

17. Simon, B.; Flandrois, S.; Guerin, K.; Fevrier-Bouvier, A.; Teulat, I.; Biensan, P., On the 
choice of graphite for lithium ion batteries. Journal of Power Sources 1999, 81–82 (0), 312-
316. 
18. Channu, V. S.; Bobba, R.; Holze, R., Graphite and graphene oxide electrodes for 
lithium ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects 
2013, 436 (0), 245-251. 
19. Ji, J.; Ji, H.; Zhang, L. L.; Zhao, X.; Bai, X.; Fan, X.; Zhang, F.; Ruoff, R. S., Graphene-
Encapsulated Si on Ultrathin-Graphite Foam as Anode for High Capacity Lithium-Ion 
Batteries. Advanced Materials 2013, 25 (33), 4673-4677. 
20. Li, X.; Geng, D.; Zhang, Y.; Meng, X.; Li, R.; Sun, X., Superior cycle stability of nitrogen-
doped graphene nanosheets as anodes for lithium ion batteries. Electrochemistry 
Communications 2011, 13 (8), 822-825. 
21. Van der Ven, A.; Bhattacharya, J.; Belak, A. A., Understanding Li Diffusion in Li-
Intercalation Compounds. Accounts of Chemical Research 2012, 46 (5), 1216-1225. 
22. Yang, Z.; Choi, D.; Kerisit, S.; Rosso, K. M.; Wang, D.; Zhang, J.; Graff, G.; Liu, J., 
Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium 
oxides: A review. Journal of Power Sources 2009, 192 (2), 588-598. 
23. Zhu, N.; Liu, W.; Xue, M.; Xie, Z.; Zhao, D.; Zhang, M.; Chen, J.; Cao, T., Graphene as a 
conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for 
lithium-ion batteries. Electrochimica Acta 2010, 55 (20), 5813-5818. 
24. Jung, H.-G.; Kim, J.; Scrosati, B.; Sun, Y.-K., Micron-sized, carbon-coated Li4Ti5O12 as 
high power anode material for advanced lithium batteries. Journal of Power Sources 2011, 
196 (18), 7763-7766. 
25. Park, C.-M.; Kim, J.-H.; Kim, H.; Sohn, H.-J., Li-alloy based anode materials for Li 
secondary batteries. Chemical Society Reviews 2010, 39 (8), 3115-3141. 
26. Tarascon, J. M.; Guyomard, D., The Li1+xMn2O4/C rocking-chair system: a review. 
Electrochimica Acta 1993, 38 (9), 1221-1231. 
27. Abraham, K. M., Directions in secondary lithium battery research and development. 
Electrochimica Acta 1993, 38 (9), 1233-1248. 
28. Uchiyama, H.; Hosono, E.; Honma, I.; Zhou, H.; Imai, H., A nanoscale meshed 
electrode of single-crystalline SnO for lithium-ion rechargeable batteries. Electrochemistry 
Communications 2008, 10 (1), 52-55. 
29. Reddy, M.; Rao, G. S.; Chowdari, B., Nano-(V1/2Sb1/2Sn) O4: a high capacity, high 
rate anode material for Li-ion batteries. Journal of Materials Chemistry 2011, 21 (27), 10003-
10011. 
30. Guo, Z. P.; Du, G. D.; Nuli, Y.; Hassan, M. F.; Liu, H. K., Ultra-fine porous SnO2 
nanopowder prepared via a molten salt process: a highly efficient anode material for 
lithium-ion batteries. Journal of Materials Chemistry 2009, 19 (20), 3253-3257. 
31. Zhao, B.; Zhang, G.; Song, J.; Jiang, Y.; Zhuang, H.; Liu, P.; Fang, T., Bivalent tin ion 
assisted reduction for preparing graphene/SnO2 composite with good cyclic performance 
and lithium storage capacity. Electrochimica Acta 2011, 56 (21), 7340-7346. 
32. Baruah, S.; Dutta, J., Zinc stannate nanostructures: hydrothermal synthesis. Science 
and Technology of Advanced Materials 2011, 12 (1), 013004. 
33. Chen, Z.; Cao, M.; Hu, C., Novel Zn2SnO4 Hierarchical Nanostructures and Their Gas 
Sensing Properties toward Ethanol. The Journal of Physical Chemistry C 2011, 115 (13), 
5522-5529. 



69 
 

34. Li, H.; Huang, X.; Chen, L., Anodes based on oxide materials for lithium rechargeable 
batteries. Solid State Ionics 1999, 123 (1–4), 189-197. 
35. Larcher, D.; Prakash, A.; Laffont, L.; Womes, M.; Jumas, J.-C.; Olivier-Fourcade, J.; 
Hedge, M.; Tarascon, J.-M., Reactivity of antimony oxides and MSb2O6 (M= Cu, Ni, Co), 
trirutile-type phases with metallic lithium. Journal of the Electrochemical Society 2006, 153 
(9), A1778-A1787. 
36. Bryngelsson, H.; Eskhult, J.; Nyholm, L.; Herranen, M.; Alm, O.; Edström, K., 
Electrodeposited Sb and Sb/Sb2O3 nanoparticle coatings as anode materials for Li-ion 
batteries. Chemistry of materials 2007, 19 (5), 1170-1180. 
37. Chen, H.; Wang, J.; Yu, H.; Yang, H.; Xie, S.; Li, J., Transmission Electron Microscopy 
Study of Pseudoperiodically Twinned Zn2SnO4 Nanowires. The Journal of Physical Chemistry 
B 2005, 109 (7), 2573-2577. 
38. Jie; WangWang; Han; Fang; Yu; Liao, Y.; Xu, B.; WangWang; Hou, J. G., Growth of 
Ternary Oxide Nanowires by Gold-Catalyzed Vapor-Phase Evaporation. The Journal of 
Physical Chemistry B 2004, 108 (24), 8249-8253. 
39. Fu, G.; Chen, H.; Chen, Z.; Zhang, J.; Kohler, H., Humidity sensitive characteristics of 
Zn2SnO4–LiZnVO4 thick films prepared by the sol–gel method. Sensors and Actuators B: 
Chemical 2002, 81 (2–3), 308-312. 
40. Zhang, Y.; Guo, M.; Zhang, M.; Yang, C.; Ma, T.; Wang, X., Hydrothermal synthesis 
and characterization of single-crystalline zinc hydroxystannate microcubes. Journal of 
Crystal Growth 2007, 308 (1), 99-104. 
41. Kovacheva, D.; Petrov, K., Preparation of crystalline ZnSnO3 from Li2SnO3 by low-
temperature ion exchange. Solid State Ionics 1998, 109 (3–4), 327-332. 
42. Rong, A.; Gao, X. P.; Li, G. R.; Yan, T. Y.; Zhu, H. Y.; Qu, J. Q.; Song, D. Y., Hydrothermal 
Synthesis of Zn2SnO4 as Anode Materials for Li-Ion Battery. The Journal of Physical 
Chemistry B 2006, 110 (30), 14754-14760. 
43. Zhu, H.; Yang, D.; Yu, G.; Zhang, H.; Jin, D.; Yao, K., Hydrothermal Synthesis of 
Zn2SnO4 Nanorods in the Diameter Regime of Sub-5 nm and Their Properties. The Journal of 
Physical Chemistry B 2006, 110 (15), 7631-7634. 
44. Hou, X.; Cheng, Q.; Bai, Y.; Zhang, W. F., Preparation and electrochemical 
characterization of Zn2SnO4 as anode materials for lithium ion batteries. Solid State Ionics 
2010, 181 (13–14), 631-634. 
45. Song, W.; Xie, J.; Hu, W.; Liu, S.; Cao, G.; Zhu, T.; Zhao, X., Facile synthesis of layered 
Zn2SnO4/graphene nanohybrid by a one-pot route and its application as high-performance 
anode for Li-ion batteries. Journal of Power Sources 2013, 229 (0), 6-11. 
46. Zhu, X. J.; Geng, L. M.; Zhang, F. Q.; Liu, Y. X.; Cheng, L. B., Synthesis and performance 
of Zn2SnO4 as anode materials for lithium ion batteries by hydrothermal method. Journal of 
Power Sources 2009, 189 (1), 828-831. 
47. Lee, J.-W.; Lee, C.-H., Synthesis of Zn2SnO4 anode material by using supercritical 
water in a batch reactor. The Journal of Supercritical Fluids 2010, 55 (1), 252-258. 
48. Yin, J.; Gao, F.; Wei, C.; Lu, Q., Controlled Growth and Applications of Complex Metal 
Oxide ZnSn (OH) 6 Polyhedra. Inorganic Chemistry 2012, 51 (20), 10990-10995. 
49. Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B., Nanostructured Sn–C Composite as 
an Advanced Anode Material in High-Performance Lithium-Ion Batteries. Advanced 
Materials 2007, 19 (17), 2336-2340. 



70 
 

50. Lou, X. W.; Li, C. M.; Archer, L. A., Designed Synthesis of Coaxial SnO2@carbon 
Hollow Nanospheres for Highly Reversible Lithium Storage. Advanced Materials 2009, 21 
(24), 2536-2539. 
51. Wang, G.; Liu, Z. Y.; Liu, P., Co2SnO4–multiwalled carbon nanotubes composite as a 
highly reversible anode material for lithium-ion batteries. Electrochimica Acta 2011, 56 (25), 
9515-9519. 
52. Lee, S. H.; Mathews, M.; Toghiani, H.; Wipf, D. O.; Pittman, J. C. U., Fabrication of 
Carbon-Encapsulated Mono- and Bimetallic (Sn and Sn/Sb Alloy) Nanorods. Potential 
Lithium-Ion Battery Anode Materials. Chemistry of Materials 2009, 21 (11), 2306-2314. 
53. Deng, D.; Kim, M. G.; Lee, J. Y.; Cho, J., Green energy storage materials: 
Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy & 
Environmental Science 2009, 2 (8), 818-837. 
54. Deng, D.; Lee, J. Y., Direct fabrication of double-rough chestnut-like multifunctional 
Sn@C composites on copper foil: lotus effect and lithium ion storage properties. Journal of 
Materials Chemistry 2010, 20 (37), 8045-8049. 
55. Deng, D.; Lee, J. Y., A Family of Aligned C-Curved Nanoarches. ACS Nano 2009, 3 (7), 
1723-1728. 
56. Cun, W.; Xinming, W.; Jincai, Z.; Bixian, M.; Guoying, S.; Ping'an, P.; Jiamo, F., 
Synthesis, characterization and photocatalytic property of nano-sized Zn2SnO4. Journal of 
Materials Science 2002, 37 (14), 2989-2996. 
57. Jena, H.; Kutty, K. V. G.; Kutty, T. R. N., Ionic transport and structural investigations 
on MSn(OH)6 (M = Ba, Ca, Mg, Co, Zn, Fe, Mn) hydroxide perovskites synthesized by wet 
sonochemical methods. Materials Chemistry and Physics 2004, 88 (1), 167-179. 
58. Stambolova, I.; Toneva, A.; Blaskov, V.; Radev, D.; Tsvetanova, Y.; Vassilev, S.; 
Peshev, P., Preparation of nanosized spinel stannate, Zn2SnO4, from a hydroxide precursor. 
Journal of Alloys and Compounds 2005, 391 (1–2), L1-L4. 
59. Liu, R.; Du, W.; Chen, Q.; Gao, F.; Wei, C.; Sun, J.; Lu, Q., Fabrication of 
Zn2SnO4/SnO2 hollow spheres and their application in dye-sensitized solar cells. RSC 
Advances 2013, 3 (9), 2893-2896. 
60. Ma, G.; Zou, R.; Jiang, L.; Zhang, Z.; Xue, Y.; Yu, L.; Song, G.; Li, W.; Hu, J., Phase-
controlled synthesis and gas-sensing properties of zinc stannate (ZnSnO3 and Zn2SnO4) 
faceted solid and hollow microcrystals. CrystEngComm 2012, 14 (6), 2172-2179. 
61. Xu, J.; Zhang, C.; Qu, H.; Tian, C., Zinc hydroxystannate and zinc stannate as flame-
retardant agents for flexible poly(vinyl chloride). Journal of Applied Polymer Science 2005, 
98 (3), 1469-1475. 
62. Rajesh, P.; Silambarasan, A.; Ramasamy, P., Effect of crystal violet dye on the optical, 
dielectric, thermal and mechanical properties of &lt;0&#xa0;0&#xa0;1&gt; directed KDP 
single crystal. Materials Research Bulletin 2014, 49 (0), 640-644. 

 

 

 



71 
 

ABSTRACT 

Facile Fabrication of Mesostructured Zn2SnO4 Based Anode Materials for 
Reversible Lithium Ion Storage 

By 

SAI KARTHIK ADDU 

May 2014 

Advisor: Dr. Da Deng 

Major: Chemical Engineering 

Degree: Master of Science 

 

       Increase in all electric and hybrid car sales from Electric drive transportation association 

show that Lithium-ion batteries stands as a promising option for these vehicles. Hence 

improving these batteries is the objective of this thesis. We try to improve the electrode 

material by using unique structures and coating carbon layers on the material. 

    We chose Zinc tin oxide (ZTO) as it has been shown in literature to be a good oxide for 

batteries. We tried improving it by making new Rubik-cube like microstructure of it and 

more interestingly coating a layer of carbon on it. We could show from our experiments that 

the carbon layer is around 10nm and has an effect on the battery performance. 

    The ZTO/SnO2 has a capacity of 400mAh/g after 20 cycles and the same material after 

carbon coating layer has around 550mAh/g after 20 cycles which shows a clear 

improvement in the one with carbon coating. Then we were able to discover a unique 

structure of ZTO which to our knowledge has been produced first time. This has a capacity 

of around 400mAh/g after 20 cycles. 
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