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CHAPTER 1

INTRODUCTION

Real-time and embedded systems, which span a broad scope of complexity from micro-

controllers to highly complicated and distributed systems, require completion of com-

putation and delivery of service in a timely fashion. The correctness of an operation

depends not only on its logical correctness, but also on the time in which the operation is

performed. Such systems, subject to the time constraints, must guarantee that successful

completion of execution does not exceed its deadline. Thus, in order to obtain deadline

guarantees, the running time of each operation must be carefully calculated. An upper

bound for running timing requirement of each operation is needed. The determination

of the upper bounds on execution times depends on various input data and different

behavior of the processing environment.

In real-time Worst-Case Execution Time (WCET) analysis, an upper bound is cal-

culated, for each job in the system, on the total aggregate amount of execution required

to successfully complete the job. Real-time schedulability analysis has traditionally used

the estimates derived from a WCET analysis to determine whether every job in a system

can be completed by its deadline. Thus, the effectiveness of the resulting schedulability

analysis hinges upon the precision of WCET estimates. Unfortunately, many scheduler

properties that simplify schedulability analysis often introduce pessimism into WCET

analysis. For example, the oft-assumed property that jobs are arbitrarily preemptible

leads to a significant increase in WCET estimates, as the analysis must assume that a

preemption occurs often and the overhead of such preemption (due to context switch

time and cache effects) must be added to the estimate.

Furthermore, most real-time scheduling algorithms and associated schedulability anal-

ysis do not take the heterogeneous “cost” of preemption overhead into account when
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making scheduling decisions. For instance, preemption of a job may cause cache lines

that are needed in subsequent instructions to be invalidated; the memory access pattern

of nearby instructions will greatly influence the cost of the preemption due to such in-

validations. Thus, a better strategy may be to delay the preemption of a job that is

executing instructions with a degree of spatial or temporal locality (in terms of memory

access) until it reaches instructions with a lower level of memory locality.

1.1 Thesis and Contribution

Our thesis is as follows:

The optimal placement of explicit preemption point, which is decided in the code con-

taining conditional operations, can be solved in pseudo-polynomial time in the number of

basic blocks and the duration of the maximum non-preemptive region. The final result is

a fully integrated approach that allows the automatic selection of preemption points for

applications that can be modeled as a flow of basic block code.

Bertogna et al. [6] proposed an approach that explicitly and efficiently determines

(prior to runtime) the optimal choice of Explicit Preemption Points (EPPs) in a job’s

code that minimize the preemption overhead while ensuring that system schedulability is

not affected due to increased non-preemptivity. However, their proposed approach only

deals with linear (non-branching) code and cannot handle jobs with control flow such as

conditional statements (e.g., if-then-else statements) and loops.

1.2 Organization

In Chapter 2, we introduce the notations and formally state the explicit preemption

placement problem. Related work is discussed in Chapter 3. Chapter 4 gives an overview

of graph grammars, a useful approach to recognizing and processing programs based on

their control flowgraphs. Chapter 5 is the core part of this thesis; after giving an example

that shows why the linear method does not work, we propose a dynamic-programming-
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based approach to obtain an optimal EPP placement of a given flowgraph. We first give a

recursive formulation of the EPP placement problem by exploiting the structure defined

by the graph grammar for conditional real-time control flowgraphs. Then, we show a

high-level intuitive overview of the algorithm. Last, we focus on providing more details

on the implementation of our proposed algorithm. Chapter 6 evaluates the performance

of the proposed preemption point placement methods over different kinds of randomly-

generated control flowgraphs by comparing it to straightforward extensions of the linear

method for conditional code. Conclusions and future works are presented in Chapter 6.
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CHAPTER 2

MODEL AND PROBLEM STATEMENT

Typically, a system consists of a central processing unit and some form of memory. Each

unit of work that is scheduled and executed by the system is defined as a job. A set of

related jobs that jointly provide some function form a task. A task system τ consists of n

sporadic tasks [18] that are scheduled on processors. A job j = (re, ex, de) is characterized

by three parameters – a release time re, an execution requirement ex, and a deadline

de – with the interpretation that the job needs to be executed for an amount equal to

its execution requirement between its release time and its deadline. A sporadic task Ti

can be characterized by a three-tuple (exi, dei, pei). The execution time exi denotes an

upper bound execution requirement for each job. The relative deadline dei denotes the

time range between each job’s arrival time and deadline. The period pei denotes the

separation between the arrival times of successive jobs.

The execution of a task is represented by a workflow consist of a set of non-preemptive

Basic Blocks (BBs) which contain a few jobs each. Potential preemptions may occur

between any two consecutive BBs. We select the Effective Preemption Points (EPPs)

from the Potential preemption points (PPPs) to get the optimal (smallest) preemption

overhead. The sequence of basic blocks between any two consecutive EPPs forms a Non-

Preemptive Region (NPR). Critical Sections are assumed to be executed within a BB;

thus, we need not use shared resource protocols to access critical sections.

As stated above, we refer to the problem of determining the optimal choice of EPPs for

a program (i.e., job) as the explicit preemption placement problem. Let V = {δ1, δ2, . . . , δn}

be the set of basic blocks. A control flowgraph GP = (V,E, δs, δz) describes the control

flow of P (program). V is the set of basic blocks; E is the set of edges. A flowgraph

is a directed graph (V,E) with a distinguished start vertex (basic block) δs and an exit
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vertex (basic block) δz such that for δv ∈ V there is a path from δs to δv and a path from

δv to δz. Clearly, each vertex δv ∈ V represents a BB in P . An edge (δu, δv) ∈ E ⊆ V ×V

means that the execution of BB δu immediately precedes the execution of BB δv in some

execution path of P , and that a preemption is permitted between the two BBs, i.e., E

is the set of possible EPPs. A path p is an ordered set of consecutive vertices, such that

each vertex in p has an edge from its predecessor. Let paths(GP , δx, δy) be the set of

possible execution paths between the basic blocks δx and δy in the control flowgraph GP .

We say that δu �p δv, if δu precedes (or equals) δv along path p ∈ paths(GP , δx, δy). The

operator ≺p denotes strict precedence.

For the purposes of quantifying the preemption overhead of selecting an EPP, we

assume that a CRPD function ξ : E 7→ R≥0 is given. If preemption is not permitted

between basic blocks δu, δv ∈ V for edge (δu, δv) ∈ E, we can model this scenario by setting

ξ(δu, δv) equal to ∞. Similarly, the WCET of a BB is given by a function C : V 7→ R≥0.

We assume that there are two “dummy” sentinel basic blocks δ−∞ and δ∞ such that

(δ−∞, δs) and (δz, δ∞) are in E and C(δ−∞) = C(δ∞) = ξ(δ−∞, δs) = ξ(δz, δ∞) = 0.

Edges (δ−∞, δs) and (δz, δ∞) are called sentinel edges. Figure 2 shows a corresponding

example of flowgraph.

Figure 2.1: An example of a control flowgraph.
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2.1 Series-parallel graphs

For this thesis, we will study an important class of control flowgraphs called series-

parallel graphs [26]. That is, GP can be obtained by applying some sequence of the

following three operations:

1. Graph Creation: create a graph with two nodes and a single directed edge between

them.

2. Series Composition: given two series-parallel graphs GX and GY , a new graph is

created by merging the sink node of GX with the source node of GY .

3. Parallel Composition: given two series-parallel graphs GX and GY , a new graph is

created by merging (i) the source nodes of GX and GY , and (ii) the sink nodes of

GX and GY .

Figure 2.2: An example of a series-parallel graph.

Note that previous work on explicit preemption placement [6] handled only graphs

created using the series composition operation.

Series-parallel graphs are appropriate to model many structured programming lan-

guage constructs such as if-then-else statements, switch statements, and loops with

bounded iterations [2] where programs can easily be subdivided into segments with a

single entry point and a single exit point. Wilhelm et al. [25] states that: “real-time
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systems only use a restricted form of programming, which guarantees that programs

always terminate, recursion is not allowed or explicitly bounded, as are the iteration

counts of loops”. Therefore, the adopted task model based on series-parallel graphs can

be efficiently used to model real-time tasks implemented via a structured programming

language. Note that loops may be modeled as series compositions of multiple blocks. A

long loop can then be simply split into the series composition of different sub-loops, each

one mapped to a basic block of smaller granularity. The size of such sub-loops can be

freely decided at design time.

The only limitation of the series-parallel graph model is in the preclusion of goto

statements and early returns. However, Böhm and Jacopini [8] proved that every struc-

tured program can be expressed as a combination of sequential instructions, conditional

branches and loops, without needing goto’s and multiple exit points.

2.2 Problem Statement

Let G be the set of flowgraphs that define programs with conditional control structures

according to the above model. Since the selection of EPPs will create non-preemptible

regions in P , the schedulability of the system is affected by a choice of EPPs. We will

assume that a constant Q is determined which quantifies the maximum duration of any

non-preemptive region in P . This parameter depends on the task set characteristics and

on the adopted scheduling algorithm. Methods to compute Q for EDF and Fixed Priority

scheduled systems are presented in [4] and [7], respectively.

Given the above model, our goal is to find a selection of EPPs that minimizes the

WCET+CRPD of P , without imposing non-preemptive regions that are greater than

the maximum allowed non-preemptive execution Q. More formally, the main problem

addressed in this paper is the following.
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Problem statement:

Given GP ∈ G and associated functions ξ and C, find S ⊆ E that minimizes

Φ(GP , S)
def
= max
p∈paths(GP ,δs,δz)


∑
δu∈p

C(δu) +
∑

δu,δv∈p
(δu,δv)∈S

ξ(δu, δv)

 (2.1)

subject to the constraint that ∀p ∈ paths(GP , δs, δz), δi ∈ p: ∃e1 = (δu, δv), e2 = (δx, δy) ∈
S ::

(δu �p δi �p δy) ∧

ξ(e1) +
∑
δj∈p

δv�pδj�pδx

C(δj) ≤ Q

 . (2.2)

In words, the last constraint means that for each path p in paths and for any basic

block δi ∈ p, there exist two EPPs in S such that the non-preemptive region between

such EPPs contains δi and has a total execution cost no larger than the schedulability

constraint Q. If no such S exists, we say that GP is not feasible for the given Q.

In the above problem statement, the Φ function corresponds to the WCET+CRPD of P

when we have the non-preemptivity constraint of Q.

Figure 2.3: Example of optimal EPP selection.

Figure 2.3 shows a simple control structure including a conditional branch. By a

brute-force approach, we find the optimal selection of EPPs shown as arrows in the

figure. There are two paths in the control structure. The
∑

δu∈pC(δu) of upper path

is the sum of basic block costs, which is C(δA) + C(δB) + C(δC) + C(δD1) + C(δD2) +
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C(δD3) +C(δF ) +C(δG) +C(δH) = 19. The
∑

δu,δv∈p
(δu,δv)∈S

ξ(δu, δv) is the overhead of EPPs,

which is ξ(δB, δC) + ξ(δD2, δD3) + ξ(δF , δG) = 7. The WCET+CRPD of the upper path

is 19 + 7 = 26. The constraint states that the maximum NPR should be less than or

equal to Q. Similarly, the WCET+CRPD of the lower path is 27. Then, we choose

the 27 as the bound on the worst-case execution times of this limited preemptive task.

Please notice that, for a single path considered in isolation, the selection of EPPs might

not be optimal for that specific path; however, a selection of EPPs that are not optimal

for each individual path can still be globally optimal overall paths if they minimize the

WCET+CRPD. The details of how to minimize the maximum WCET+CRPD of GP are

presented in Chapter 5.

One note about solutions for the above problem: we seek optimal solutions under the

assumption that a preemption will occur at each EPP (i.e., the worst case will occur).

Clearly, if the system scheduler is lightly loaded and can tolerate non-preemptively ex-

ecuting a task for more than Q time units, some other selection of preemption points

may result in lower overhead at runtime. However, since we are interested in knowing at

design-time the WCET+CRPD and minimizing the contribution of preemptions to the

WCET+CRPD, this notion of optimality seems the most natural and appropriate.
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CHAPTER 3

RELATED WORK

Preemptive scheduling model provides a flexible frame compared to the models with

non-preemptive scheduling algorithms [20]. The flexible frame reflects the fact that a

operating system stop the running service then allocate the processor to the incoming

urgent service. However, papers ( [11], [14], [17], [19], [23], [21]) have shown that arbitrary

preemption cause complicated system design and analysis. Grenier and Navet [15] states

that preemption in I/O scheduling is prohibitively expensive or even impossible. Lim-

ited preemptive algorithms arise as alternative scheduling schemes between preemptive

scheduling algorithms and non-preemptive scheduling algorithms.

The research on limited preemptive scheduling algorithms has recently received sig-

nificant attention due to performance benefits in terms of reduced preemption overhead

and increased predictability. Wang and Saksena [24] proposed a approach that the task

won’t be preempt until the incoming task’s priority is larger than the priority threshold

of the running task. According to this scheduling model, each task is divided into a set

of non-preemptive regions so that preemptions can take place only at a subset of points.

Depending on the location of such non-preemptive regions, limited preemptive schedulers

are divided into two sub-categories: fixed and floating preemption point models.

The fixed preemption point model has been introduced by Burns [10]. According

to this model, tasks are divided into statically defined non-preemptive chunks of fixed

length, so that preemptions are allowed only at chunk’s boundaries. Since tasks cooperate

in order to offer suitable preemption points to decrease the context switch overhead, such

a model is also called Cooperative Scheduling.

A tight schedulability analysis for the fixed preemption point model has been pre-

sented by Bril et al. [9].
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In the floating preemption point model, instead, the size and location of the non-

preemptive regions are not known before run-time, but are determined during task exe-

cution. Only an upper bound is given on the maximum allowed non-preemptive region Q

of a task. The floating model has been adopted by Baruah et al. [3,4] for EDF scheduled

systems, and by Yao et al. [27] for Fixed Priority scheduled systems. In both works,

upper bounds are provided on the largest non-preemptive region Q that can be enforced

in each task without causing any deadline miss.

The problem of computing the optimal Q in the fixed preemption point model has

been addressed by Bertogna et al. [7] for fixed priority systems, showing that inserting a

non-preemptive region at the end of a task might increase the schedulability of the system

with respect to fully preemptive or non-preemptive scheduling. In the same paper, an

algorithm is shown to compute the largest non-preemptive region Q for each task in

order to maximize the schedulability of the system. Davis et al. later adapted this

method [13], showing an optimal priority assignment to be used in combination with the

fixed preemption point model.

When preemption overhead is included in the analysis, the derived bounds on the

largest non-preemptive region Q of each task can be exploited to reduce the preemption

overhead as much as possible without compromising feasibility. The fixed preemption

point model can be adopted to insert preemption points at suitable locations, such that

the length of each non-preemptive region does not exceed Q. Bertogna et al. [5] pre-

sented an optimal preemption point placement method with linear complexity under

the assumption that the preemption overhead is constant throughout the code of each

task. Bertogna et al. [6] have relaxed this assumption, considering a variable preemp-

tion overhead and selecting the optimal subset of preemption points that maximizes

the schedulability of the task system. The preemption point placement algorithm has

pseudo-polynomial complexity, proportional to Q and to the number of potential pre-
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emption points. In both papers, a linear task structure is considered, so that each task is

composed of a linear sequence of basic blocks, and if-then-else constructs are entirely con-

tained inside a BB. An survey [12] is available on comparing different limited preemptive

scheduling techniques.
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CHAPTER 4

FLOWGRAPHS FOR REAL-TIME

CONDITIONAL CODE

The definition of control flowgraph is broad enough to permit a wide variety of pro-

grammatic structures. In this paper, we are focused on analyzing programs that have

conditional control structures such as if-then-else or switch constructs. To be pre-

cise, we need to be specific about the types of control flowgraphs that we will address

in this paper. Typically, a programming language designer defines a context-free gram-

mar to specify the set of strings that are considered valid programs in the programming

language. However, in this paper, our input is a control flowgraph GP ; thus, we need to

specify the subset of control flowgraphs for which our approach applies. For this purpose,

we create a flowgraph grammar [16] over control flowgraphs to specify the set of graphs

(i.e., programs) that we consider valid conditional real-time control flowgraphs. In this

chapter, we first give a brief background on graph grammars in Chapter 4.1. Then, we

give the formal specification of the graph grammar for the real-time conditional code

considered in Chapter 4.2.

4.1 Graph Grammars

In the late 1970s and early 1980s, an effort was made in the programming languages

community to understand the structure of control flowgraphs resulting from program

structure. The concept of graph grammars was introduced as an attempt to formalize

the identification of different programmatic structures and develop analysis tools for the

purpose of code optimization [16].

In this thesis, we utilize the concept of graph grammars for two reasons: 1) graph

grammars provide a formalism for automatically describing and recognizing the set of
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control flowgraphs that satisfy our task model; and 2) they permit an elegant means of

expressing an algorithm to solve the EPP problem for real-time conditional code.

A graph grammar is the means of specifying the “syntax” of proper control flowgraphs.

Like a textual program, a control flowgraph contains tokens; however, instead tokens

being strings of number, letters, or symbols, as in a textual program, the set of tokens

in a control flowgraphs are vertices and edges. The graph grammar is the set of rules

specifying how these “tokens” may be combined to form a valid control flowgraph. Each

rule in a graph grammar is called a production (or also referred to as a graph-rewriting

rule in the graph grammar literature). A production rule has a left-hand side and a

right-hand side. The left-hand side of a production contains a non-terminal node; the

non-terminal node is an abstract representation of some collection of vertices and edges

in the control flowgraph. The right-hand side of the production contains non-terminal

node(s) and/or terminal node(s). The collection of these nodes may be connected by

edges also specified in the right-hand side of the production rule. Each terminal node is

a vertex in the control flowgraph and, in our setting, it represents a BB. The production

specifies that the non-terminal node on the left-hand side of the production may be

substituted (or rewritten) with the nodes on the right-hand side of the production; this

process of substituting is called a derivation. A graph grammar G is a set of production

rules which defines a specific graph language L(G) generated by graph grammar G. A

graph G is in the language L(G), if there exists a sequence of derivations, starting from a

specified starting non-terminal node, that uses productions of G and results in graph G.

A graph grammar is called context-free if each production has only non-terminal nodes on

the left-hand side of the production. A graph grammar is called unambiguous if for each

G ∈ L(G) there exists a unique sequence of derivations for G. In the next subchapter,

we give the production rules for our control flowgraph grammar of real-time conditional

code.
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<Blocks> →   <SB> 
 | <CB>

<Blocks>

ei

(a) 〈Blocks〉 → (〈SB〉|〈CB〉), ei, 〈Blocks〉

<Blocks> →   <SB> 
| <CB>

(b) 〈Blocks〉 → (〈SB〉|〈CB〉)

<SB> → δ i

(c) 〈SB〉 → δi

<CB> → δ i

<Blocks>

ei1

<Blocks>+

ei2+

δ j

ej1 ej2+

(d) 〈CB〉 →

δi,[ei1,〈Blocks〉,ej1],
(
[ei2,〈Blocks〉,ej2]

)
+,δj

Figure 4.1: Production rules for control flowgraph grammar G.

4.1.1 High-Level Overview of Approach

The basic idea behind our approach is that we can compute the optimal EPPs for

subgraphs in the program’s flowgraph and utilize the subgraph solutions to determine the

overall optimal EPP solution for the entire flowgraph. At a high level, we will begin by

determining the EPP for innermost conditional blocks first and then work our way to the

outermost flowgraph structures. For instance, in the example flowgraph in Figures 4.2

and 5.1, the optimal choice of EPPs for the conditional block beginning at basic block

C and ending at basic block F will be determined prior to calculating the EPPs for the

overall flowgraph. Unfortunately, it is not sufficient to calculate a single EPP solution

for a substructure due to the dependence on EPP placement with EPP selected by the

larger structure; for instance, the optimal choice of EPPs for the conditional block in
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Figure 4.2 depends upon the last preemption that occurs before basic block C (e.g., is

(A,B) or (B,C) the last preemption before C?) and the first preemption selected after

basic block F (e.g., is (F,G) or (G,H) the first preemption after F?). The reason for this

dependence is that the choice of preemptions within the nested structure must satisfy

the constraint in the larger structure that EPPs are no further than Q units apart (i.e.,

the constraint of Equation 2.2).

A natural question at this point is: how do we compute the optimal EPPs for inner

substructures first when the preemption placement is dependent upon the EPP selection

in outermost structures? The answer is to compute and store the optimal EPP selec-

tion/cost for all possible preemption values before and after each substructure. In other

words, assuming for any substructure GA
P of the input flowgraph that (i) the last preemp-

tion before substructure GA
P occurs ζ1 time before the first basic block of GA

P , and (ii) the

earliest preemption after GA
P occurs ζ2 time units after the last basic block of GA

P . Then,

a set SA(ζ1, ζ2) and cost-matrix cost(GA
P , ζ1, ζ2) will be computed for all possible values of

ζ1 and ζ2. The set SA(ζ1, ζ2) represents the optimal EPP selection (w.r.t. Equations 2.1

and 2.2) for substructure GA
P given the preemptions’ times before and after GA

P are ζ1

and ζ2. The cost-matrix cost(GA
P , ζ1, ζ2) represents the corresponding WCET+CRPD

cost for substructure GA
P with EPP selection SA(ζ1, ζ2). For instance, in the example of

Figure 5.1, when GA
P represents the conditional block staring at C and ending at F , the

set SA(3, 3) equals {(D2, D3), (E1, E2)} and cost(GA
P , 3, 3) equals 8.

Given the above approach, the reader may also wonder: how many subproblems for

each substructure need to be solved? By the constraint of Equation 2.2, the largest

value for preemptions before or after any substructure (i.e., upper bounds for values

of ζ1 and ζ2) is Q time units. Furthermore, if we assume that due to the clock tick

granularity of the system preemption times must be integers, then there are at most

Q×Q = Q2 combinations of ζ1 and ζ2; thus, there are at most Q2 subproblems we must
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compute for each substructure. In the next subsection, we obtain a recursive formulation

which computes the optimal EPP selection for any substructure based on the optimal

solutions to the subsubproblems. This is a classic dynamic programming approach. After

obtaining the recursive formulation, Subchapter 5.2 will describe a more efficient bottom-

up implementation.

4.2 Real-time Conditional Flowgraph Grammar Spec-

ification

Figure 4.1 gives the production rules for graph grammar G for control flowgraphs

that satisfy our task model. A boxed node represents a non-terminal node; a circle node

represents a basic block (i.e., a terminal node). We can also represent the graph grammar

by a traditional text-based grammar. The text-based equivalent production is given along

with the graph grammar production. We use Extended Backus-Naur Form (EBNF) to

describe both the graph grammar G and its equivalent text-based representation. A

term in angle brackets (e.g., 〈Blocks〉) indicates that this is a non-terminal node. The

x | y operator means that either the term x or y may be used in the production. The

expression x+ indicates that one or more successive occurrences of the expression x may

be used in the substitution. Any programming languages textbook will contain more

complete and formal descriptions of EBNF and the terminology of Chapter 4.1 (as it

applies to textual grammars). For a good textbook on programming languages and their

grammars, we refer the reader to Scott [22].

Figure 4.1(a) shows that a set of blocks (represented by 〈Blocks〉) consists of either

a single block (〈SB〉) or a conditional block (〈CB〉), connected by edge ei to another set of

blocks. Figure 4.1(b) indicates that a set of blocks could just comprise a single sequential

or conditional block without any subsequent blocks. Figure 4.1(c) shows that a single

block is a simple BB δi. Finally, Figure 4.1(d) gives the production for conditional blocks:
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A B C

D1 D2 D3

E1 E2 E3

F G H

〈SB〉〈SB〉

〈SB〉

〈Blocks〉

〈Blocks〉

〈Blocks〉

〈CB〉

〈SB〉

〈Blocks〉

〈Blocks〉

〈Blocks〉

〈Blocks〉
〈Blocks〉

〈Blocks〉

〈SB〉〈SB〉〈SB〉
〈Blocks〉

〈SB〉 〈SB〉 〈SB〉

〈Blocks〉
〈SB〉

Figure 4.2: A derivation using the production rules of Figure 4.1 over an example control
flowgraph.

a conditional block has a forking BB δi with two or more outgoing edges and a joining

BB δj with an equivalent number of incoming edges. If there are k paths from δi to

δj in the conditional block, then for any path p` (1 ≤ ` ≤ k) a collection of blocks

is contained on the path between δi and δj and connected to these BBs by edges ei`

and ej` , respectively. Clearly, this grammar permits multiple nested levels of conditional

blocks, as the blocks within each path may consist of additional conditional blocks. Note

that a conditional block with two paths can represent an if-then-else construct in a

program; a conditional block with two or more paths can represent a switch construct.

It can easily be seen that G represents an unambiguous context-free grammar. Figure 4.2

shows the application of the production rules given in Figure 4.1.
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CHAPTER 5

DYNAMIC-PROGRAMMING ALGORITHM

As mentioned in Chapter 3, an optimal preemption point placement method has been

presented in [6] for linear task structures, i.e., without any conditional block. One might

wonder whether an optimal solution can be obtained by applying the method in [6] to the

worst-case path of a conditional task structure. Or, alternatively, by repeatedly applying

it to each possible path in a conditional task structure. Unfortunately, this is not the case,

since the “globally” optimal solution (i.e., the EPP placement resulting in the smallest

possible WCET+CRPD) might differ from the combination of the optimal solutions of

each path. Consider the example in Figure 5.1, where a simple task structure including a

conditional branch is depicted. The WCET of each BB and the preemption cost at each

edge are specified above each node and each edge, respectively. The maximum allowed

non-preemptive section is assumed to be Q = 8.

A B C

D1 D2 D3

E1 E2 E3

F G H

3
1

4
3

1 5

7

2
5

1
1

2

6
1

3
3

1
2

1
1

1
6

3

5

Figure 5.1: Example of EPP selection using the linear method in [6] for each path (dashed
arrows) w.r.t. the optimal EPP selection (solid arrows).

If the linear method in [6] is applied to the upper branch, three EPPs are placed: one

between nodes B and C, one between D2 and D3, and the last one between G and H.

When the same method is applied to the lower branch, one EPP is placed between nodes

A and B, one between E1 and E2, and another one between F and G. Altogether, six

different EPPs are placed in the graph, leading to an overall preemption overhead of 9

time-units in each of the paths, and a total WCET+CRPD of 28 time-units. However, a
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smarter placement of EPPs is able to reach a smaller WCET+CRPD by taking a “global”

view of the task structure. A WCET+CRPD of 26 can be obtained selecting four EPPs:

one between nodes B and C, one between D2 and D3, one between E1 and E2, and

the last one between F and G, with a total preemption cost of 8 time-units in each of

the paths. Note that the selected placement does not coincide with any of the two linear

selections.

In this chapter, we describe a dynamic-programming-based approach for obtaining an

optimal solution to the EPP placement problem. Our returned solution S∗ ⊆ E is optimal

in the sense that any other S ′ ⊆ E must result in a higher or equal WCET+CRPD for

P ; in other words, Φ(GP , S
∗) ≤ Φ(GP , S

′) where Φ is the objective function defined in

Equation (2.1) of our problem statement. In the previous chapter, each non-terminal

node (i.e., 〈SB〉, 〈CB〉, and 〈Blocks〉 consists of a collection of basic blocks and other non-

terminal nodes. Thus, there is a well-defined structure that we may potentially exploit

to determine the optimal placement of EPPs within program P .

In the next Chapter 5.1, we give a recursive formulation of the EPP placement problem

by exploiting the structure defined (in Chapter 4) by the graph grammar for conditional

real-time control flowgraphs.

5.1 Optimal Substructure & Recursive Formulation

A derivation of G on an input graph GP is a sequence of production rules applied

to the input graph. During the derivation, the underlying basic blocks are assigned to

the non-terminal nodes (see Figure 4.2 for an example). Let A be any production in the

derivation for GP . Let GA
P denote the subgraph induced by production A in GP derivation

over grammar G. In other words, GA
P = (V A, EA) is the collection of basic blocks and

edges represented by the non-terminal block on the left-hand side of production A.

The graphs that can be obtained using the productions rules of grammar G specified

in Chapter 4.2 are also called “series-parallel graphs”. For this kind of graph, it may be
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shown [26] that for any production A, there exists for GA
P exactly one node (i.e., basic

block) with in-degree equal to zero and exactly one node with out-degree equal to zero.

Let InBlock(GA
P) denote the node of GA

P with in-degree equal to zero and OutBlock(GA
P)

as the node with out-degree equal to zero.

We now define a modified version of GA
P called GA

P(ζ1, ζ2) = (V A(ζ1, ζ2), EA(ζ1, ζ2))

where

V A(ζ1, ζ2)
def
= V A ∪ {δAs , δAz } (5.1)

and

EA(ζ1, ζ2)
def
= EA ∪

 eAs
def
= (δAs , InBlock(GA

P)),

eAz
def
= (OutBlock(GA

P), δAz )

 . (5.2)

Furthermore, C(δAs ) = ζ1, C(δAz ) = ζ2, and ξ(eAs ) = ξ(eAz ) =∞. Intuitively, GA
P(ζ1, ζ2) is

an augmentation of GA
P by adding non-preemptible BBs δAs and δAz with size ζ1 and ζ2 to

the beginning and end (respectively) of GA
P . Let SA(ζ1, ζ2) ⊆ EA(ζ1, ζ2) be the optimal

set of EPPs for GA
P according to the objective function of Equation (2.1) respecting the

constraints of Equation (2.2). We will next show that we can obtain an optimal solution

to the EPP placement problem for GP by first optimally solving the EPP placement

problem for GA
P(ζ1, ζ2) for all productions A in a derivation for GP and for all values of

ζi ∈ {0, 1, . . . , Q− 1} (where i = 1, 2).

We first consider production (a):

〈Blocks〉 → (〈SB〉 | 〈CB〉), ei, 〈Blocks〉.

In a general application of production (a), we let GA
P denote the non-terminal block on

the left-hand side of the rule, and GB
P and GC

P denote the first and second non-terminal

blocks, respectively, on the right-hand side of the rule:

GA
P → GB

P , ei, G
C
P ,

where ei = (OutBlock(GB
P), InBlock(GC

P)).
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Theorem 1. When applying production (a) over feasible GP and Q, an optimal set

SA(ζ1, ζ2) of EPPs for GA
P(ζ1, ζ2) (where ζ1, ζ2 ∈ {0, 1, . . . , Q− 1}) is equal to

SB(ζ1, 0) ∪ {ei} ∪ SC(ξ(ei), ζ2), (5.3)

or one of the following for x ∈ {1, . . . , Q− 1}:

SB(ζ1, x) ∪ SC(Q− x, ζ2). (5.4)

Proof. The proof is by contradiction. There are two cases dependent upon whether

ei ∈ SA(ζ1, ζ2) is true. Let us first consider the case where ei is in the set SA(ζ1, ζ2).

Case 1. [ei ∈ SA(ζ1, ζ2)]

Assume there exist S ′ ⊆ EB(ζ1, 0) and S ′′ ⊆ EC(ξ(ei), ζ2), such that SA(ζ1, ζ2) equals

S ′∪{ei}∪S ′′, and Φ
(
GA
P(ζ1, ζ2), S ′ ∪ {ei} ∪ S ′′

)
< Φ

(
GA
P(ζ1, ζ2), SB(ζ1, 0) ∪ {ei} ∪ SC(ξ(ei), ζ2)

)
.

In words, SB(ζ1, 0) and SC(ξ(ei), ζ2) are optimal sets of EPPs for graphs GB
P(ζ1, 0) and

GC
P(ξ(ei), ζ2), respectively, but SB(ζ1, 0) ∪ {ei} ∪ SC(ξ(ei), ζ2) is not an optimal set of

EPPs for GA
P(ζ1, ζ2).

We will show that the following properties are satisfied:

P1: S ′ and S ′′ satisfy the constraints of Equation (2.2) for GB
P(ζ1, 0) and GC

P(ξ(ei), ζ2),

respectively.

P2: At least one of the following strict inequalities holds:

Φ(GB
P(ζ1, 0), S ′) < Φ(GB

P(ζ1, 0), SB(ζ1, 0)), or

Φ(GC
P(ξ(ei), ζ2), S ′′)<Φ(GC

P(ξ(ei), ζ2), SC(ξ(ei), ζ2)).

Property 1 implies that S ′ and S ′′ are feasible solutions to the EPP placement problem

for GB
P(ζ1, 0) and GC

P(ξ(ei), ζ2), respectively. Property 2 implies that at least one between

SB(ζ1, 0) and SC(ξ(ei), ζ2) cannot be an optimal solution for GB
P(ζ1, 0) and GC

P(ξ(ei), ζ2),
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respectively, reaching a contradiction.

Proof of P1. To prove Property 1, note that S ′ ≡ SA(ζ1, ζ2)∩GB
P(ζ1, 0). Since SA(ζ1, ζ2)

satisfies the EPP constraint for the graph GA
P(ζ1, ζ2), and the portion of GA

P(ζ1, ζ2) before

ei coincides with GB
P(ζ1, 0) (an exit node of length zero can be simply ignored), then also

S ′ satisfies the EPP constraint of Equation (2.2) for GB
P(ζ1, 0).

Some more steps are needed to prove the same property for S ′′ and GC
P(ξ(ei), ζ2).

Note that S ′′ ≡ SA(ζ1, ζ2) ∩ GC
P(ξ(ei), ζ2). For each path p entering GC

P(ξ(ei), ζ2), let

epfirst = (δpx, δ
p
y) be the first EPP of S ′′ in p. Since SA(ζ1, ζ2) satisfies the EPP constraint

for GA
P(ζ1, ζ2), and the portion of GA

P(ζ1, ζ2) after δpx coincides with that of GC
P(ξ(ei), ζ2),

all basic blocks of V C(ξ(ei), ζ2) that come after δpx in path p continue to satisfy the EPP

constraint of Equation (2.2) for S ′′ in GC
P(ξ(ei), ζ2). Thus, we just need to prove that the

remaining basic blocks (δj ∈ V C(ξ(ei), ζ2) : δj �p δpx) also satisfy the EPP constraint for

S ′′ in GC
P(ξ(ei), ζ2):

ξ((δ−∞, δ
C
s )) +

∑
δj∈p

δCs �pδj�pδ
p
x

C(δj) ≤ Q. (5.5)

By convention for the sentinel edges, ξ((δ−∞, δ
C
s )) equals zero. Since S ′′ ∪ {ei} satisfies

the EPP constraint for GA
P(ζ1, ζ2), it must be that

ξ(ei) +
∑
δj∈p

InBlock(GCP )�pδj�pδpx

C(δj) ≤ Q. (5.6)

However, observe that C(δCs ) equals ξ(ei) by definition of GC
P(ξ(ei), ζ2), and the remain-

ing blocks are δj ∈ p : InBlock(GC
P) �p δj �p δx. Thus, Equation (5.6) implies that

Equation (5.5) is true. Hence, Property 1 holds also for S ′′ and GC
P(ξ(ei), ζ2).

Proof of P2. To prove Property 2, remember that we assumed: Φ
(
GA
P(ζ1, ζ2), S ′ ∪ {ei} ∪ S ′′

)
<

Φ
(
GA
P(ζ1, ζ2), SB(ζ1, 0) ∪ {ei} ∪ SC(ξ(ei), ζ2)

)
.

The considered graph might have multiple paths, all of which pass through ei. Since
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GB
P and GC

P are disjoint sets, the smaller Φ function obtained using S ′∪{ei}∪S ′′ instead of

SB(ζ1, 0)∪{ei}∪SC(ξ(ei), ζ2) is due to a better EPP selection in S ′ than in SB(ζ1, 0), or in

S ′′ than in SC(ξ(ei), ζ2). In the first case, since the portion ofGA
P(ζ1, ζ2) before ei coincides

with GB
P(ζ1, 0) (ignoring the exit node of length zero), it follows that Φ(GB

P(ζ1, 0), S ′) <

Φ(GB
P(ζ1, 0), SB(ζ1, 0)), proving the first inequality of Property 2. In the second case,

since the portion of GA
P(ζ1, ζ2) after ei coincides with the portion of GC

P(ξ(ei), ζ2) after δCs ,

and C(δCs ) = ξ(ei), it must be that Φ(GC
P(ξ(ei), ζ2), S ′′) < Φ(GB

P(ξ(ei), ζ2), SB(ξ(ei), ζ2)),

proving the second inequality of Property 2.

The case where ei is in the set SA(ζ1, ζ2) stands proved. It remains to prove the other

case.

Case 2. [ei /∈ SA(ζ1, ζ2)]

The proof is similar to the above case. Assume there exist S ′ ⊆ EB(ζ1, x) and

S ′′ ⊆ EC(Q − x, ζ2), such that SA(ζ1, ζ2) equals S ′ ∪ S ′′, and Φ
(
GA
P(ζ1, ζ2), S ′ ∪ S ′′

)
<

Φ
(
GA
P(ζ1, ζ2), SB(ζ1, x) ∪ SC(Q− x, ζ2)

)
. In words, SB(ζ1, x) and SC(Q− x, ζ2) are op-

timal sets of EPPs for graphs GB
P(ζ1, x) and GC

P(Q− x, ζ2), respectively, but SB(ζ1, x) ∪

SC(Q− x, ζ2) is not an optimal set of EPPs for GA
P(ζ1, ζ2).

It is easy to see that the corresponding versions of properties P1 and P2 of Case 1

also hold in this case:

P1: S ′ and S ′′ satisfy the constraints of Equation (2.2) for GB
P(ζ1, x) and GC

P(Q− x, ζ2),

respectively.

P2: At least one of the following strict inequalities holds:

Φ(GB
P(ζ1, x), S ′) < Φ(GB

P(ζ1, x), SB(ζ1, x)), or

Φ(GC
P(Q− x, ζ2), S ′′)<Φ(GC

P(Q− x, ζ2), SC(Q− x, ζ2)).

Since, by P1, S ′ and S ′′ are feasible solutions to the EPP placement problem for

GB
P(ζ1, 0) and GC

P(ξ(ei), ζ2), respectively, and, by P2, at least one between SB(ζ1, 0) and
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SC(ξ(ei), ζ2) cannot be an optimal solution for GB
P(ζ1, 0) and GC

P(ξ(ei), ζ2), respectively,

a contradiction is reached, proving also Case 2.

Having proved that in both considered cases one among Equations (5.3) and (5.4)

holds, the Theorem stands proved.

We have just shown that optimal substructure exists for determining the optimal EPP

placement for any subgraph that corresponds to a single block production in a derivation

of GP . We can exploit this optimal substructure to obtain a recursive formulation for

quantifying the optimal value of Φ for the subgraph. We first define some notation.

Let µa(expr) return a if expr is true and one if false. Moreover, let the function

cost(A, ζ1, ζ2) be

Φ(GA
P(ζ1, ζ2), SA(ζ1, ζ2))− ζ1 − ζ2,

when GA
P(ζ1, ζ2) is feasible for Q; otherwise, let cost(A, ζ1, ζ2) =∞.

Intuitively, the cost function represents the objective function of the considered sub-

graph, with artificial weights removed. The artificial weights (ζ1, ζ2) are used to model

constraints due to non-preemptive regions overlapping with the start or the end of the

considered subgraph, i.e., they represent the non-preemptive carry-in and carry-out of

the considered subgraph. When computing the WCET+CRPD of a subgraph in our

dynamic programming formulation, such artificial weights will therefore be subtracted.

In the following, we show how to compute the cost function for all valid productions

in our grammar G. For each rule, we will provide a cost matrix spanning all meaningful

artificial weights: ζ1, ζ2 ∈ {0, 1, . . . , Q− 1}.

For a production (a), the cost matrix can be computing using the following corollary

to Theorem 1.

Corollary 1. When applying production (a) over feasible GP and Q, the cost matrix for

the optimal SA(ζ1, ζ2) of EPPs for GA
P(ζ1, ζ2) (where ζ1, ζ2 ∈ {0, 1, . . . , Q − 1}) can be
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constructed by the following recursive computation:

cost
([
GAP → GBP , ei, G

C
P
]
, ζ1, ζ2

) def
= min


cost(GBP , ζ1, 0) + ξ(ei) + cost(GCP , ξ(ei), ζ2),
Q−1

min
x=1

{
cost(GBP , ζ1, x) + cost(GCP , Q− x, ζ2)

}
 .

(5.7)

For a production (b) deriving either a conditional or a single block (〈Blocks〉 →
〈SB〉|〈CB〉), the cost function is

cost
([
GAP →

(
GseqP | GconP

)]
, ζ1, ζ2

) def
= cost((GseqP | GconP ), ζ1, ζ2). (5.8)

For a production (c), instantiating a single basic block (〈SB〉 → δi), the cost function

is

cost ([〈SB〉 → δi], ζ1, ζ2)
def
= µ∞ (ζ1 + ζ2 + C(δi) > Q) · C(δi). (5.9)

The following theorem and corollary pertain to the application of production (d), for

a conditional block structure 〈CB〉:

〈CB〉 → δi, [ei1 , 〈Blocks〉, ej1 ], ([ei2 , 〈Blocks〉, ej2 ]) +, δj.

In a general application of production (d), we let GA
P denote the conditional block on the

left-hand side of the rule, and GB1
P , . . . , G

Bk
P denote the parallel non-terminal blocks on

the right-hand side of the rule:

GA
P → δi, [ei1 , G

B1
P , ej1 ], . . . , [eik , G

Bk
P , ejk ], δj.

where ei` = (δi, InBlock(B`)), and ej` = (OutBlock(B`), δj) for ` = 1, . . . , k. Moreover, we

let GT`
P denote the subgraph composed of GB`

P , and basic blocks δi and δj as the first and

last block, respectively.



27

Theorem 2. When applying production (d) over feasible GP and Q, an optimal set

SA(ζ1, ζ2) of EPPs for GA
P(ζ1, ζ2) (where ζ1, ζ2 ∈ {0, 1, . . . , Q− 1}) is equal to

k⋃
`=1

ST`(ζ1, ζ2), (5.10)

where for each ` ∈ {1, . . . , k}, the optimal EPP set ST`(ζ1, ζ2) equals one of the following

sets:

SB`(ζ1 + C(δi), ζ2 + C(δj)), (5.11)

SB`(ξ(ei`), ζ2 + C(δj)) ∪ {ei`}, (5.12)

SB`(ζ1 + C(δi), 0) ∪ {ej`}, (5.13)

SB`(ξ(ei`), 0) ∪ {ei` , ej`}. (5.14)

Proof. The same technique adopted in Case 1 and Case 2 of Theorem 1 is here applied

to each parallel subgraph GT`
P (ζ1, ζ2), for ` ∈ {1, . . . , k}. For each such subgraph, four

different cases are considered:

• e`i /∈ SA(ζ1, ζ2), e`j /∈ SA(ζ1, ζ2), leading to Eq. (5.11);

• e`i ∈ SA(ζ1, ζ2), e`j /∈ SA(ζ1, ζ2), leading to Eq. (5.12);

• e`i /∈ SA(ζ1, ζ2), e`j ∈ SA(ζ1, ζ2), leading to Eq. (5.13);

• e`i ∈ SA(ζ1, ζ2), e`j ∈ SA(ζ1, ζ2), leading to Eq. (5.14).

The optimal set SA(ζ1, ζ2) is simply the union of all subgraphs solutions.

In the following, we will prove the first and fourth cases since the proofs of the second

and third cases are very similar. We prove the theorem by contradiction. That is, assume

that we can obtain a better for GA
P(ζ1, ζ2) by not using the optimal sub-solution for some

branch `. We now consider (case-by-case) whether e`i an e`j are part of the optimal

solution for GA
P(ζ1, ζ2) and show that this leads to a contradiction in each case.
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eli elj

δx δy δu δv

efirst elast

δBs δBz

Figure 5.2: Notations of each path p in production(d).

Case 1. [e`i /∈ SA(ζ1, ζ2), e`j /∈ SA(ζ1, ζ2)]

Assume there exist S ′ ⊆ EB`(ζ1 + C(δi), ζ2 + C(δj)), such that SA(ζ1, ζ2) equals S ′,

and Φ
(
GA
P(ζ1, ζ2), S ′

)
< Φ

(
GA
P(ζ1, ζ2), SB`(ζ1 + C(δi), ζ2 + C(δj))

)
. In words, SB`(ζ1 +

C(δi), ζ2 + C(δj)) is optimal set of EPPs for graphs GB`
P (ζ1 + C(δi), ζ2 + C(δj)), but

SB`(ζ1 + C(δi), ζ2 + C(δj)) is not an optimal set of EPPs for GA
P(ζ1, ζ2).

We will show that the following properties are satisfied:

P1: S ′ satisfies the constraints of Equation (2.2) for GB`
P (ζ1 + C(δi), ζ2 + C(δj)).

P2: Φ(GB`
P (ζ1, ζ2), S ′) < Φ(GB`

P (ζ1 + C(δi), ζ2 + C(δj)), S
B`(ζ1 + C(δi), ζ2 + C(δj))).

Property 1 implies that S ′ is a feasible solution to the EPP placement problem for

GB`
P (ζ1 + C(δi), ζ2 + C(δj)). Property 2 implies that SB`(ζ1 + C(δi), ζ2 + C(δj)) cannot

be an optimal solution for GB`
P (ζ1 + C(δi), ζ2 + C(δj)), reaching a contradiction.

Proof of P1. Regarding Property 1, let the set of basic blocks Vleft ⊆ V B`(ζ1 +C(δi), ζ2 +

C(δj)) that have the closest preceding EPP in S ′ equal to the sentinel edge (δ−∞, δ
B
s ), and

the set of basic blocks Vright ⊆ V B`(ζ1 +C(δi), ζ2 +C(δj)) that have the closest succeeding

EPP in S ′ equal to the sentinel edge (δBz , δ∞). Clearly, all basic blocks in V B`(ζ1 +

C(δi), ζ2+C(δj))\(Vleft∪Vright)) continue to satisfy the EPP constraint of Equation 2.2 for

S ′ in GA
P(ζ1, ζ2) since SA(ζ1, ζ2) satisfies the EPP constraint (Equation 2.2) for GA

P(ζ1, ζ2)

and this portion is identical in the two graphs. Thus, we just need to prove that the

δ` ∈ (Vleft∪Vright) basic blocks still satisfy the EPP constraint for S ′ in GB`
P (ζ1+C(δi), ζ2+

C(δj)). Let efirst = (δx, δy) be the first EPP of S ′ and elast = (δu, δv) be the last EPP
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of S ′. Thus, we may prove the EPP constraint if we can show that the following two

inequalities are true.

ξ((δ−∞, δ
B
s )) +

∑
δk∈`

δBs �`δk�`δx

C(δk) ≤ Q. (5.15)

ξ((δu, δv)) +
∑
δk∈`

δv�`δk�`δBz

C(δk) + C(δ∞) ≤ Q. (5.16)

Since S ′ satisfies the EPP constraint for GA
P(ζ1, ζ2), it must be that

ξ((δ−∞, δ
A
s )) +

∑
δk∈`

δAs �`δk�`δx

C(δk) ≤ Q. (5.17)

ξ((δu, δv)) +
∑
δk∈`

δv�`δk�`δAz

C(δk) + C(δ∞) ≤ Q. (5.18)

Observe that both ξ((δ−∞, δ
A
s )) and ξ((δ−∞, δ

B
s )) equal zero, C(δBs ) equals C(δi) +C(ζ1)

which is C(δAs ) + C(ζ1), and C(δBz ) equals C(δj) + C(ζ2) which is C(δAz ) + C(ζ2). Thus,

Equation 5.15 and Equation 5.16 are true. Hence, Property 1 holds for GB`
P (ζ1+C(δi), ζ2+

C(δj)) and S ′.

Regarding Property 2, we assumed that Φ(GA
P(ζ1, ζ2), S ′) < Φ(GA

P(ζ1, ζ2), SB`(ζ1 +

C(δi), ζ2 + C(δj))). Thus, observe that Φ(GA
P(ζ1, ζ2), SB`(ζ1 + C(δi), ζ2 + C(δj)) equals

Φ(GB`
P (ζ1 + C(δi), ζ2 + C(δj)), S

B`(ζ1 + C(δi), ζ2 + C(δj))). Therefore, Property 2 holds

and the Theorem is true for the first case of ei /∈ SA(ζ1, ζ2), ej /∈ SA(ζ1, ζ2).

Case 4. [e`i ∈ SA(ζ1, ζ2), e`j ∈ SA(ζ1, ζ2)]

Assume there exists an S ′ ⊆ EB`(ξ(ei`), ξ(ej`)) such that SA(ζ1, ζ2) equals S ′∪{e`i , e`j}
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and Φ
(
GA
P(ζ1, ζ2), S ′ ∪ {e`i , e`j}

)
< Φ

(
GA
P(ζ1, ζ2), SB`(ξ(ei`), ξ(ej`)) ∪ {e`i , e`j}

)
. In words,

SB`(ξ(ei`), ξ(ej`)) is optimal set of EPPs for graphGB`
P (ξ(ei`), ξ(ej`)), but SB`(ξ(ei`), ξ(ej`))∪

{e`i , e`j} is not an optimal set of EPPs for GA
P(ζ1, ζ2). We will show that S ′ satisfies the

following three properties:

P 1: S ′ satisfies the constraints of Equation 2.2 for GB`
P (ξ(ei`), ξ(ej`)) .

P 2: Φ(GB`
P (ξ(ei`), ξ(ej`)), S

′) is strictly less than Φ(GB`
P (ξ(ei`), ξ(ej`)), S

B`(ξ(ei`), ξ(ej`))).

Property 1 implies that S ′ is a feasible solution to the EPP placement problem for

GB`
P (ξ(ei`), ξ(ej`)). Property 2 implies that SB`(ξ(ei`), ξ(ej`)) is not the optimal solution

for GB`
P (ξ(ei`), ξ(ej`)); this is a contradiction to the definition of SB`(ξ(ei`), ξ(ej`)). In this

case, our assumption of the existence of S ′ is false and SA(ζ1, ζ2) equals SB`(ξ(ei`), ξ(ej`))∪

{e`i , e`j}, thus proving the theorem for the first case. In the following, we prove Proper-

ties 1-2.

Proof of P1. Regarding Property 1, observe thatGB`
P (ξ(ei`), ξ(ej`)) differs fromGA

P(ζ1, ζ2)

in the addition of δi and δj, and the differing cost of the δs and δz. Furthermore, S ′ and

SA(ζ1, ζ2) differ in the edge e`i and e`j by definition of S ′. Thus, since SA(ζ1, ζ2) is a solution

to the EPP problem, it must include sentinel edges (δ−∞, δs) and (δz, δ∞). S ′ must also

include these sentinel edges. Let the set of basic blocks Vleft ⊆ V B`(ξ(ei`), ξ(ej`)) that have

the closest preceding EPP in S ′ equal to the sentinel edge (δ−∞, δ
B
s ), and the set of basic

blocks Vright ⊆ V B`(ξ(ei`), ξ(ej`)) that have the closest succeeding EPP in S ′ equal to the

sentinel edge (δBz , δ∞). Note that the set of basic blocks Vright ⊆ V B`(ξ(ei`), ξ(ej`)) have

the closest succeeding EPP in SA(ζ1, ζ2) equal to the edge ej. Clearly, all basic blocks in

V B`(ξ(ei`), ξ(ej`))\(Vleft∪Vright) continue to satisfy the EPP constraint of Equation 2.2 for

S ′ in GA
P(ζ1, ζ2) since SA(ζ1, ζ2) satisfies the EPP constraint (Equation 2.2) for GA

P(ζ1, ζ2)

and this portion is identical in the two graphs. Thus, we just need to prove that the

δ` ∈ (Vleft∪Vright) basic blocks still satisfy the EPP constraint for S ′ in GB`
P (ξ(ei`), ξ(ej`)).

Let δej be the BB right before e`j, efirst = (δx, δy) be the first EPP of S ′ and elast = (δu, δv)
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be the last EPP of S ′. Thus, we may prove the EPP constraint if we can show that the

following two inequalities are true.

ξ((δ−∞, δ
B
s )) +

∑
δk∈`

δBs �`δk�`δx

C(δk) ≤ Q. (5.19)

ξ((δu, δv)) +
∑
δk∈`

δv�`δk�`OutBlock(G
B`
P )

C(δk) ≤ Q. (5.20)

Since S ′ ∪ {e`i , e`j} satisfies the EPP constraint for GA
P(ζ1, ζ2), it must be that

ξ(ei`) +
∑
δk∈`

InBlock(B)�`δk�`δx

C(δk) ≤ Q. (5.21)

ξ((δu, δv)) +
∑
δk∈`

δv�`δk�`δej

C(δk) ≤ Q. (5.22)

Observe that C(δBs ) equals ξ(ei`), and C(δBz ) equals ξ(ej`) by definition ofGB`
P (ξ(ei`), ξ(ej`)).

δej is the same as OutBlock(GB`
P ) in GB`

P (ξ(ei`), ξ(ej`)). Thus, Equation 5.19 and Equa-

tion 5.20 are true. Hence, Property 1 holds for GB`
P (ξ(ei`), ξ(ej`)) and S ′.

Regarding Property 2, in the first paragraph of the proof, we assumed that Φ(GA
P(ζ1, ζ2), S ′∪

{e`i , e`j}) < Φ(GA
P(ζ1, ζ2), SB`(ξ(ei`), ξ(ej`))∪{e`i , e`j}). Observe that for any S ⊆ EB`(ξ(ei`), ξ(ej`))

where ei 6∈ S,ej 6∈ S, it is easy to show that Φ(GA
P(ζ1, ζ2), S ′∪{e`i , e`j}) equals Φ(GB`

P (ξ(ei`), ξ(ej`)), S
′),

since the removal of e`i and e`j is offset by setting C(δBs ) equal to ξ(ei`) and C(δBz ) equal to

ξ(ej`), respectively. For identical reasons, Φ(GA
P(ζ1, ζ2), SB`(ξ(ei`), ξ(ej`))∪{e`i , e`j}) equals

Φ(GB`
P (ξ(ei`), ξ(ej`)), S

B`(ξ(ei`), ξ(ej`))). Therefore, Property 2 holds and the Theorem is

true for the third case of e`i ∈ SA(ζ1, ζ2), e`j ∈ SA(ζ1, ζ2).
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Thus, the Theorem stands proved.

Using the above Theorem, the following method is derived to compute the cost func-

tion for production (d).

Corollary 2. When applying production (d) over feasible GP and Q, the cost matrix for

the optimal SA(ζ1, ζ2) of EPPs for GA
P(ζ1, ζ2) (where ζ1, ζ2 ∈ {0, 1, . . . ,m − 1}) can be

constructed by the following recursive computation:

cost
([
GAP → δi, [ei1 , G

B1
P , ej1 ], . . . , [eik , G

Bk
P , ejk ], δj

]
, ζ1, ζ2

)

def
= max

`∈{1,...,k}



min
α∈{0,1}
β∈{0,1}



cost (〈SB〉 ≡ [δi], ζ1, 0)

+µ0(α = 0) · ξ(ei`)

+cost
(
GB`P ,

µ0(α = 1) · (ζ1 + C(δi)),

µ0(β = 1)(ζ2 + C(δj))
)

+µ0(β = 0) · ξ(ej`)





.

(5.23)

The following theorem and corollary pertain to the optimal substructure and compu-

tation for a 〈Blocks〉 production which combines either a conditional or sequential block

with another 〈Blocks〉 production.

5.2 Algorithm Overview

A standard dynamic-programming algorithm follows directly from the formal state-

ments of Corollaries 1 and 2. However, in this subchapter, we will give a high-level

intuitive overview of the algorithm. The algorithm has two major phases:

Parsing: In this phase, a lexical analyzer will break the input graph into a stream of

“tokens” (i.e., the basic components of the input graphs). The stream of tokens is used

as input into the semantic analyzer which applies the production rules of Figure 4.1 to
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produce a derivation. The derivation for an input graph can be represented by a parse

tree where each internal node of the tree represents a non-terminal symbol and each leaf

is a terminal symbol (e.g., a basic block or edge between a basic block). In the resulting

parse tree, a node y is the child of node x when y appears in the left-hand-side of some

derivation of x. For instance, Figure 4.2 can be viewed as a parse tree where the parent-

child relation in the parse tree is equivalent to a box being immediately contained inside

another box. As an example, the 〈SB〉 node in Figure 4.2 contains four children: basic

blocks C and F (which are also leaf nodes in the parse tree) and two 〈Blocks〉 nodes

(which have their own children).

Bottom-up cost Matrix Computation: Using the parse-tree as input, our algo-

rithm determines the Q×Q values of the cost matrix for every node in the parse tree by

applying the appropriate computational rules given in the previous subchapter. Pseu-

docode for determining the cost matrix for each of the nodes is provided in Chapter5.3.1.

Since the parse tree is traversed in a bottom-up fashion, each node (except the leaves)

can reuse the cost matrix of its children nodes when it is determining its own cost matrix.

After applying the approach above, we can obtain the minimum worst-case execution

time for the input graph over all possible sets of EPPs that satisfy Equation (2.2) by

looking at the cost[0][0] entry for the root node of the parse tree.

5.3 Implementation

For this project, we have utilized a grammar development environment called ANTL-

RWorks (Version 3) [1]. ANTLRWorks is a compiler generator (similar to Lex/Flex or

Yacc/Bison) and can automatically generate a compiler from a grammar file. For the im-

plementation of our algorithm (which can be viewed as a compiler for control flowgraphs),

we specified the production rules of Figure 4.1 in a context-free grammar. As mentioned

in Chapter 4, our grammar is slightly different than the one presented in the thesis to

make it unambiguous. Furthermore, we modified the grammar to ensure that it is an
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LL(k) grammar which means that it parses from left-to-right and constructs the leftmost

derivation first using only a finite number of “look-ahead” tokens to determine which

is the next production rule to apply. (See a textbook on languages such as Scott [22]

for more details on grammars and compilers). We develop an LL(k) as it is known to

be linear in the number of tokens in an input stream. Furthermore, in ANTLRWorks,

we can embed, into the grammar file, the dynamic programming algorithms which we

have written in Java. As the parser creates the parse-tree using recursive descent, it also

automatically applies the appropriate dynamic-programming functions along the way to

compute the cost matrices as it returns up the parse tree.

5.3.1 Graph Grammar

Figure 5.3 illustrates the pseudocode of the context-free grammar. The bold words

are production rules, and the words in the curly braces are corresponding embedded

actions. The production rules extended from Figure 4.1 are written in EBNF syntax

notations. The grammar starts with prog which is represented by q and blocks. The

NEWLINE works as a delimiter which does not have a special meaning in the graph

grammar. In Line 3, blocks could either be led by a sequential block or a conditional

block. sb lead blocks comprises a sequential block and is followed by blocks. The

non-terminal blocks here make the grammar have a recursive structure in conditional

blocks. Similarly, cb lead blocks comprises a conditional block and blocks. “?” and

“+” outside paired parentheses function like loops. The difference between them is that

“?” allows the rules in parentheses to execute 0 time, but “+” requires that the rules

in parentheses to execute at least one time. In the derivation of cb, the first two bbs

indicate the forking basic block and joining basic block. The two INT indicate the edge

value before and after the blocks. The contents in quotes are the formats which the

input must follow. The structure of the grammar follows the top down style. Starting

from the prog, the grammar checks whether the input has blocks, then goes to blocks
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Graph Grammar

1 prog : q blocks NEWLINE;
2 q : INT;
3 blocks : sb lead blocks | cb lead blocks;
4 sb lead blocks : sb (INT cb (INT blocks)?)? {EPP Blocks Select(lb, rb, e, Q); };
5 cb lead blocks : cb (INT blocks)? {EPP Blocks Select(lb, rb, e, Q); };
6 cb : ′[′ bb bb (′<′ INT blocks INT ′ >′) + ′]′ {EPP CB Select(Q, δi, δj, cb); };
7 sb : bb (INT sb)? {EPP SB Select(δi, Q); };
8 bb : ′(′ ID ′,′ INT ′)′;

Figure 5.3: Psuedocode for the graph grammar.

EPP SB Select(BasicBlock bb, int Q)

� Dynamic-Programming Code for Production in Figure 4.1(c)
1 for i← 1 to Q
2 do for j ← 1 to Q
3 do if (i+ j + C(bb) < Q)
4 then bb.cost[i][j] = C(bb)
5 else

� Infeasible: set cost entry to some large value
6 bb.cost[i][j] = MAX

Figure 5.4: Psuedocode for the Dynamic-Programming Algorithms for Sequential Block.

to see whether the input is sb lead blocks or not. Straight down to the bb, the parser

stores the information of bb and then returns the matrix upwards step by step. At last,

the code returns the cost of the WCET+CRPD of the whole graph.

5.3.2 Corresponding Embedded Action Function

Figures 5.4, 5.5, and 5.6 are the Java functions that are called by the embedded actions

in graph grammar. In EPP SB Select function, the matrix goes through all possible

Q×Q possibilities to store the costs for each basic block. If the value of (i+ j +C(bb))

violates the condition in Line 3, then the matrix will store some MAX constant used to

represent an infeasible solution in cost[i][j].
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EPP CB Select(Q, δi, δj, CBcb)

� Dynamic-Programming Code for Production in Figure 4.1(d)
1 Initialize : cb.cost[][] = 0
2 for x← 1 to Q
3 do for y ← 1 to Q
4 maxcost← 0
5 for k ← 1 to Number of Branches in cb

� For each branch in the conditional block
6 do Set BLK to be the block corresponding to the k’th branch
7 do temp1 = C(δi) +BLK.cost[x+ C(δi)][y + C(δj)]
8 temp2 = C(δi) + ξ(ei,1) +BLK.cost[ξ(ei,1)][y + C(δj)]
9 temp3 = C(δi) +BLK.cost[x+ C(δi)][0]

10 temp4 = C(δi) + ξ(ei,1) +BLK.cost[ξ(ei,1)][0]
11 tempcost = min(temp1, temp2, temp3, temp4)
12 if tempcost > maxcost
13 then maxcost← tempcost
14 cb.cost[x][y]← maxcost

Figure 5.5: Psuedocode for the Dynamic-Programming Algorithms for Conditional Block.

A high-level description of the conditional block follows for all possible Q×Q costs.

First, find all the minimum overhead of four possible situations in each sequential branch

using the EPP SB Select function, then choose the max of minimums as the final cost

of cb.cost[i][j]. In Step 1, from Lines 7 to 10, there are four possible ways depending on

whether we take preemptions at eli or elj for each path in Figure 5.2. The variable x (the

first INT) is the WCET of eli , and y (the second INT) is the WCET of elj. We select

the min value of this four in Line 11 as the temporary value of cb.cost[i][j], then choose

the max temporary value of all branches as the final value of cb.cost[i][j].

In Figure 5.6, the function combines sub-blocks into a bigger block. The sub-blocks

can be either a sequential block or a conditional block. In this code, the inputs are a left

block lb and a right block rb. The main idea is to combine the two blocks in to a bigger

one. In the comparison between CostWEdge and CostWOEdge, we choose the smaller

one as the cost of cost[i][j]. CostWEdge is the cost with edge, which means that we take
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EPP Blocks Select(Block lb,Block rb, edge e, int Q)

� Dynamic-Programming Code for Production in Figure 4.1(a)
� e is the edge connecting the two blocks lb and rb

1 for i← 1 to Q
2 do for j ← 1 to Q
3 do CostWEdge = lb.cost[i][0] + rb.cost[ξ(e)][j]
4 CostWOEdge = MAX
5 for k ← 1 to Q
6 do temp = lb.cost[i][k] + rb.cost[Q− k][j]
7 if (temp < CostWOEdge)
8 then CostWOEdge = temp
9 if (CostWEdge < CostWOEdge)

10 then this.cost[i][j] = CostWEdge
11 else this.cost[i][j] = CostWOEdge

Figure 5.6: Psuedocode for the Dynamic-Programming Algorithms for Block.

the preemption at the edge between the left block and right block. From Lines 5 to 8, in

order to get the value of CostWOEdge, we calculate the smallest sum of lb.cost[i][k] and

rb.cost[Q− k][j] by traversing k from 1 to Q. The correctness of CostWOEdge is already

proved in Theorem 1 and Theorem 2.

5.4 Computational Complexity

The computational complexity of our algorithm is determined by the complexity of

generating the parse tree and the complexity of computing the cost matrix for each

node. Per the discussion above, the complexity of a parse tree is linear in the number

of tokens (which is proportional to |V | for the input graph GP). For the complexity

of generating the cost matrix for each node of the parse tree, we need to consider the

complexity of applying each rule. Given that constructing the rule in Figure 4.1(b) (i.e.,

〈Blocks〉 → (〈SB〉|〈CB〉), ei, 〈Blocks〉) is the most computationally expensive and there

are at most |V | nodes in the parse tree, the total time complexity of the implementation

described above is O(|V |Q3). Thus, the runtime of our algorithm is pseudo-polynomial
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time since it depends upon the value of Q.

§An Alternative Heuristic. The above time complexity is potentially still quite large

if Q is a large number. Specifically, in practice, the window of non-preemption (i.e., Q)

could be potentially much larger than the basic block size. Therefore, it is worthwhile to

find an algorithm that does not depend upon the value of Q. In the algorithm described

above, for each node A of the parse tree, we compute Q × Q different solutions for the

node. The reason for storing Q2 values is that at the time we are solving the subprob-

lem corresponding to node A (i.e., GA
P), it has not been determined when the nearest

preemption points before or after GA
P will occur. Thus, we compute all possible combi-

nations. However, it can be shown that using a larger value of preemption points before

or after GA
P will only increase the length of the longest path in GA

P since more EPPs will

need to be selected in the subgraph in order to satisfy the constraint of Equation 2.2.

Thus, as a way to reduce the complexity of the exact approach by potentially obtaining

a slight overestimate in the minimum EPP selection, we may fix the dimensions of the

cost matrix to be a constant α × α : α ∈ N+. With this approach, we are only storing

values of preemptions before and after each GA
P equal to i ·

⌈
Q
α

⌉
where i = 0, 1, . . . , α.

Thus, a small α will decrease the size of the matrix and is flexible to change. The running

time for this heuristic would be O(|V |α3). In the next chapter, we explore the trade-off

between the optimal conditional algorithm and this heuristic.
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CHAPTER 6

EVALUATION

In this thesis, we evaluate the performance of the proposed preemption point placement

methods over different kinds of randomly-generated control flowgraphs based on realistic

parameters.

§Methodology. We randomly generate control flowgraphs satisfying the production

rules in Figure 4.1. For our evaluation, we have fixed the number of basic blocks at 400

and the number of “high-level phases” of the flowgraph to be 30. Each high-level phase is

either comprised entirely of sequential blocks or is a (non-nested) conditional block with

a branching factor of two1. For each sequential block (i.e., either a sequential phase or

one branch of the conditional), the number of basic blocks is uniformly generated from

[3, 10]. In our experiments, we vary the number of paths from δs to δz by increasing the

number of conditional blocks; thus, the number of paths is of the form 2C where C is the

number of conditional blocks in the generated control flowgraph.

In Bertogna et al. [6], the authors obtained CRPD and WCET costs for evaluation

of their algorithm for sequential control flowgraphs by randomly generating parameters

similar to the parameters of realistic code examples (e.g., Simulink code for aircraft and

automotive control). In this chapter, we apply the same methodology to generate CRPD

and WCET costs (i.e., ξ(ej) and C(δi), respectively). WCETs were generated according

to a Gaussian distribution with a mean equal to 4000 nanoseconds and a variance of

3000 nanoseconds. The CRPD for each EPP is generated according to the method in

Bertogna et al. [6] that correlates adjacent EPPs; we modify their method to account for

conditional branching. Specifically, consider the preemption of ξ(ei) for EPP ei:

1We do not nest in order to control the number of paths from δs to δz. We have observed that the
results for nested conditional blocks are similar to the ones presented here.



40

ξ(ei = (δb, δc)) =
∑
δa∈Υi

ξ(δa, δb)/|Υi|+ ∆i (6.1)

where Υi
def
= {δa ∈ V : (δa, δb) ∈ E}, ∆i

def
= guas(mi, σ) and

mi
def
=


−M if

∑
δa∈Υi

ξ(δa, δb)/|Υi| > ξmax

+M if
∑

δa∈Υi
ξ(δa, δb)/|Υi| < ξmin

sgn(∆i−1)M otherwise

(6.2)

The variance σ quantifies the degree of variability between consecutive EPPs. We use

the same parameters as Bertogna et al. [6]: σ = 3000, M = 20, ξmin = 1000, and

ξmax = 55000.

In our experiments, we compare the optimal algorithm proposed in this paper de-

scribed in Chapter 5.4 (denoted as “COND(OPT)”) with an application of the sequential

algorithm of Bertogna et al. [6] (denoted as “SEQ”). SEQ consists of generating each path

in the conditional control flowgraph and applying the previously-proposed sequential al-

gorithm to determine the EPPs along each path. The EPPs of each path are unioned

together to obtain the overall EPP selection to conditional flowgraph. We also compare

these algorithms with the heuristic proposed in Chapter 5.4 (denoted as “COND(α×α)”

where a value of α equals 50, 100, 500). We execute the algorithms on a 2.4GHz 4-core

Intel i7 machine with 6GB of RAM.

We vary the non-preemption window (denoted by Q in nanoseconds) and the number

of conditional blocks in the graph (denoted by C, resulting in 2C total paths from δs

to δz). For each (Q,C) pair, we use the above methodology to generate 100 different

control flowgraphs. For each control flowgraph, we apply both algorithms and measure

the resulting WCET+CRPD and running time of the algorithm. The averages of the

WCETs+CRPDs are plotted in Figures 6.1 and 6.3, and the average running algorithm



41

 0
 50000

 100000
 150000

 200000
 250000

 300000
 1

 2

 3

 4

 5

 6

 1e+006

 2e+006

 3e+006

 4e+006

 5e+006

 6e+006

 7e+006

WCET(ns)

SEQ
COND(OPT)
COND(50x50)

Q(ns)

C

WCET(ns)

Figure 6.1: Comparison of WCET over Different Values of Q and Number of Conditional
Blocks (C) for SEQ, COND(OPT), and COND(50× 50).

running times in Figures 6.2 and 6.4.

§Results. Since COND(OPT) has been shown to be optimal for control flowgraphs

considered in this paper, it is not surprising that Figure 6.1 shows that WCET of

COND(OPT) never exceeds the WCET returned by SEQ or the heuristic COND(50×50).

In Figure 6.2, as Q decreases, the preemption cost becomes a larger factor in the WCET

since there are more preemptions due to the small non-preemptive window. As C in-

creases, SEQ will add an increasingly large number of unnecessary EPPs to the solution

set since it does not consider the conditional structure. These two observations explain

the sharp increase in WCET for the sequential approach for small Q and C approaching

a value of 6 (i.e., 26 total paths). After 26 paths, COND(OPT) memory requirements

grow quickly for large Q, and the runtime of SEQ sharply increases. These increases

make it difficult to scale SEQ or COND(OPT) to larger (Q,C) values.

In Figures 6.1 and 6.2, we observe that the heuristic COND(50× 50) returns WCET

close to the optimal with very small running time when compared with SEQ and COND(OPT).

Thus, we further compare the various heuristics in terms of the accuracy/running-time

tradeoff in Figures 6.3 and 6.4. These figures show that the accuracy does not change
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Figure 6.4: Comparison of Algorithm Running Times over Different Values of Q and
Number of Conditional Blocks ((C) for heuristics.

much for α equal to 50, 100, or 500 for values of C up to 15 (i.e, there are up to 215 paths

in the graphs). However, for α = 500, the memory costs of the cost matrices begin to

dominate and increase the running time as the parse tree grows more complicated with

increasing C. Thus, we can obtain a better accuracy-to-cost benefit with a relatively

small value of α equal to 50.
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CHAPTER 7

CONCLUSION & FUTURE WORK

In this thesis, we extended the applicability of existing techniques for the placement of

preemption points to general tasks modeled with control flowgraphs, removing a pes-

simistic assumption that conditional blocks are contained within basic blocks. The pro-

posed method allows for the optimal selection of the set of EPPs that minimize the

resulting worst-case execution time, without affecting the schedulability of the system.

The method uses a combination of graph grammars and dynamic programming, and

runs in pseudo-polynomial time. Our evaluation shows that the algorithm can achieve

a reduction in WCET+CRPD over approaches handling only sequential control flow-

graphs. The improvement is particularly important when the allowed non-preemptive

region length (Q) is small (i.e., for heavily loaded systems with limited slack). Such a

system configuration is favorable also for the running time of the algorithm, which is

O(Q3). We also have proposed heuristics which observe near-optimal behavior with very

low runtime cost.

The future work is discussed as follows:

• Determine whether this is an NP-complete problem such that no polynomial-time

algorithms exist. In this case, we will give an exact approximation scheme of the

alternative heuristic algorithm. We will likely see that the implementation will

return a better WCET+CRPD estimate given a fixed ε. Exact estimation of the

use of memory will also help since the implementation runs out of bounds in a large

Q.

• In planar separator theorem, an n-vertex planar graph can be split into smaller

pieces by removing 2
√
n vertices. Each disjoint subgraph has at most 2n

3
vertices.

Using this theorem, the algorithms like approximation algorithm, divide and con-
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quer, dynamic programming may yield a more efficient solution.

• Parameterized theory is a new paradigm which one can measure the time complexity

of an algorithm not just in terms of the input length but also a small side parameter.

Usually, the time complexity is linear in the input size and exponential in a function

of the fixed parameter. Under this situation, a problem will have a better pseudo-

polynomial time complexity when carefully choose the fixed parameter k. We would

like to explore whether this problem is amenable to a fixed parameter algorithm.

• We also intend to explore the property of a “forward goto” statement, which means

the code always runs a top-down mode and can not go backwards. An interesting

question is whether we can solve the code containing a ”forward goto” statement

in pseudo-polynomial time. Intuitively, we think it is an NP-hard problem and will

build a connection between the control flowgraph and the MAX-3-SAT problem. All

in all, we will build a relationship among the edge weights, the value of Q and the

WCET of a job. Then, we will transform to a MAX-3-SAT structure by assigning

the boolean variables.

• We will study non-inline functions and non-unrolled loops in future work. The

reasons for not unrolling loops and not inlining functions are sound: i) the program

size will be decreased; and ii) subsequent invocations of the same instruction may

be in the instruction cache, decreasing the CRPD. Therefore, it is important to be

able to address programs with these substructures.

• As our approach utilizes tools from compilers, it would be interesting to see how this

approach could be directly integrated into automatic programming tools to design

real-time and embedded systems. aiT WCET Analyzer is a software that statically

computes tight bounds for the worst-case execution time (WCET) of tasks in real-

time systems. aiT WCET Analyzer directly analyzes binary executables and take

the intrinsic cache and pipeline behavior into account. For certain target processors,



46

cache-related preemption costs can be taken into account. The input of the Analyzer

can be high-level language like ANSI C. Therefore, doing the WCET optimization

analysis on real code is interesting future work.
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Traditional worst-case execution time (WCET) analysis must make very pessimistic

assumptions regarding the cost of preemptions for a real-time job. For every potential

preemption point, the analysis must add to the WCET of a job the cache-related pre-

emption delay (CRPD) incurred due to the contention for memory resources with other

jobs in the system. However, recent work has shown that CRPD can vary at each pre-

emption point (due to the cache lines that must be reloaded for subsequent code after

the preemption). Using this observation and information obtained from schedulability

analysis on the maximum length of the non-preemptive region of a job, we seek to find

the optimal set of explicit preemption-points (EPPs) that minimize the WCET and en-

sure system schedulability. Utilizing graph grammars and dynamic programming, we

develop a pseudo-polynomial-time algorithm that is capable of analyzing jobs that can

be represented by control flowgraphs with arbitrarily-nested conditional structures. This

algorithm extends previous work that could only handle sequential flowgraphs. Exhaus-

tive experiments are included to show that the proposed approach is able to significantly

improve the bounds on the worst-case execution times of limited preemptive tasks.
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