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Chapter 1  Introduction 

The exponential data growth and increasing number of web users in recent years has 

pushed the community to create a new kind of data store called “NoSQL” database [2, 5, 6 & 7]. 

As a result, there are many NoSQL databases available today and choosing one among the set of 

database is a challenging task for the user. A user can conceptually compare the databases [5, 6] 

and see if it addresses the user needs, however finding out if a database fulfills the performance 

requirement needs benchmarking different databases, which is a time consuming task [2]. There 

are lots of benchmarking reports available in internet and in research papers [9, 29, 30]. Most of 

the benchmarking reports measure the overall database performance only by throughput and 

latency. This is an adequate performance analysis but need not to be the end. In this thesis we 

define some of the new perspectives which also need to be considered during NoSQL 

performance analysis. 

The architecture of NoSQL database is different from traditional database. NoSQL 

databases works using more than one machine. The performance of a NoSQL database is sum of 

the performance of individual nodes in the database cluster [5]. Understanding how a NoSQL 

database makes use of the individual nodes is important for performance tuning and 

resource planning. The performance analysis of the individual nodes can also be used to find 

the performance bottleneck in the cluster and rectify it.  Another perspective is how the NoSQL 

database balances the differences in performance of the individual nodes. All the nodes in a 

database cluster may not yield same amount of performance because of the capacity of its 

resources like disk, network bandwidth and main memory. The nodes in a cluster are not 

expected to be homogenous. Because in the course of time the potential of storage servers keeps 
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increasing, so the chance of heterogeneous nodes existing in a database cluster is high. So how 

does the NoSQL database manage heterogeneous nodes is another important question. 

Because bottleneck nodes may prevent leveraging other nodes in the database cluster and reduce 

the throughput of the system. The most and genuine utilization of the all nodes in the database 

cluster could reduce the number of nodes needed. 

Both perspectives explained above are practically experienced in our test labs. Noticing 

that tuning the configuration of the database does not yield the performance expected, led us to 

look into other reasons and motivated towards this research. In this thesis, three NoSQL 

databases – HBase, MongoDB, and sharded MySQL were chosen for performance analysis. 

These three databases differ with each other in its data model, HBase is column oriented storage, 

MongoDB is document based storage and sharded MySQL is a sharded RDBMS. Using 

databases which has different architectures for this research gives us an insight how these 

systems make use of the individual nodes and balance bottleneck nodes.  The performance of the 

database is presented with throughput and latency measured for a period of time and also with 

individual nodes performance measured using the metric cpu IO wait percentage captured using 

Ganglia. In addition to that, to extrapolate the degradation in performance with bottleneck nodes, 

one more individual node was intentionally loaded with lot of disk operations while the 

benchmarking was running in parallel and the results were captured.  The NoSQL benchmarking 

tool YCSB [2] was used for benchmarking. Different workloads like read-heavy, write-heavy, 

scan workloads were used for benchmarking. The nodes performance was measured using the 

open source tool Ganglia [19, 27].  
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1.1 Contribution 

 We provide some new perspectives to be considered while benchmarking NoSQL 

database and demonstrate a way to benchmark NoSQL database in a quantitative 

approach using the existing tools like YCSB, Ganglia. 

 Benchmark results of three different NoSQL databases are provided and discussed the 

observations and implications. 

 We show that how the performance of NoSQL database is affected in a heterogeneous 

cluster. 

This thesis will be useful to the people who are setting up a new NoSQL database cluster 

and the people who are troubleshooting their cluster to improve the performance. The approach 

demonstrated here helps to find out bottleneck nodes in the database cluster and also can 

interpret which resource of the node is limiting the performance. The results shared in this thesis 

can also provide some insights for the architects designing the future version of NoSQL 

databases. 

1.2 Terminologies 

For better understanding, the terminologies used in this thesis are explained here along 

with equivalent terms used in the different NoSQL databases used here. 

NoSQL Database: General term used in the community to refer scalable cloud data stores. There 

is no clear definition for the term “NoSQL” but can be roughly understood as “Not Only 

SQL”[6]. 

Data node: The nodes configured to store the data/records is referred here as data node. In the 

NoSQL database cluster, data requests are directed to this node either directly by client 
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application or through a router component provided by the database. This should not be confused 

with the term ‘data node’ used in HDFS. In HBase such nodes are called ‘regionservers’, 

‘mongod’ in MongoDB. In this thesis the term data nodes and individual nodes are used with the 

same meaning. In the result section we use the host name of data nodes to refer to them while 

discussing. 

Shard: A relatively small partition of a large record set. Shards are called regions in HBase. 

Chapter 2.2.2 discusses more details about sharding.  

Cpu IO wait: It's a system metric used to denote the percentage of cpu time spent on waiting for 

IO operation to complete. 

The following chapters were organized as this; Chapter2 discusses the background of 

NoSQL databases benchmarked in this report and the tools used. Chapter 3 discusses the 

environmental details, testing strategy and the performance tunings done for the environment and 

databases. Chapters 4 provide the performance results and discuss about it. Chapter 5 provides 

the previous work related to this thesis. Chapter 6 discusses about the observation and 

implications. Chapter 7 provides the conclusion and future work. 
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Chapter 2  Background 

2.1 What is the need for NoSQL Database? 

In the recent times data is growing exponentially [5, 6]. Social networking websites, 

email providers, video hosting websites and many different research organizations are the 

sources of data generation. Maintaining this extraordinary amount of data has been a big 

challenge to the companies. Many companies during their startup period used the then prevalent 

“Relational database” [5]. But as day goes by and the company grows the challenge mentioned 

above became hard to be handled by relational database [5]. The traditional databases are unable 

to provide two important features that the industry badly needed, 

2.1.1 Scalability 

Scalability in database is the ability to handle the data in terabytes and petabytes scale 

which may continue to increase in the future and at the same time servicing large number of 

requests. The current scalability needs has pushed the DBMS to use more than one machine 

which is called Horizontal scalability. For example, Facebook uses MySQL server which is 

sharded and running on top of more than four thousand servers [5]. 

2.1.2 Elasticity 

Elasticity is the ability to extend the bandwidth of the running database system. This 

means the database should be able to adopt new nodes and distribute the data and requests over it 

without any downtime and with minimal impact in the performance. This feature is very useful 

for commercial websites where the number of page hits peaks during particular season. 
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More or less all the traditional database works based on a design of “One size fits all” [7]. 

Those databases were designed compatible for 20 or 30 years old commercial approach [7]. Such 

databases can only use the resources within single machine such as main memory, disks, and 

processors. Because of this limitation the traditional databases were not able to support 

scalability and elasticity. 

To overcome this, Google created a new type of database called “Bigtable” [1]. It is 

column oriented scalable database system. It is reportedly running over thousands of node. Such 

approach of using more than one node for storing data is called “distributed database”, in the 

community it is generally called as NoSQL database. Google’s Bigtable is first of its kind and it 

is proprietary software of Google. There are many type of NoSQL databases in use today. 
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2.2 Architecture of NoSQL Database 

The architecture of NoSQL database uses a cluster of servers. Most of the servers in the 

cluster play the role of data nodes, the node which maintains data sets. And there are few nodes 

in the cluster which plays role of monitoring and balancing the cluster, these nodes are called in 

different names in different databases. In HBase these nodes are called zookeepers, in MongoDB 

those are called config servers. And there will be metadata node which plays the role of master 

node assigning data partition/shards to data nodes or acts as a router to the requests. 

2.2.1 Types of NoSQL datbases 

The NoSQL databases are designed based on the needs of each company. For example, 

‘Dynamo’ was designed to be highly available storage system for Amazon’s online shopping 

website [15]. ‘Bigtable’ was designed to service various applications in Google ranging from real 

time application to batch processing [1]. Generally NoSQL databases can be classified by the 

way it stores the data. 

 Column oriented database 

 Key Value database 

 Document database 

 And many more 

In order to store the data in multiple machines the records have to be partitioned. NoSQL 

databases commonly use the concept called “Sharding” to split the table records and distribute 

over multiple machines. 
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2.2.2 Sharding 

Sharding is a concept of splitting a huge record set into multiple relatively small record 

sets. The record sets are generally split using a shard key which is one of the column in the table. 

A specific range of key is defined as a shard and any key falls within that range is assigned to 

that shard. For example, let’s say we have customer table and the field “Name” is the shard key, 

then the records can be split using the range of first character in the name starting from letter ‘A’ 

to ‘F’ and ‘G’ to ‘L’ and so forth. A shard can be assigned to one node or set of nodes in case of 

replication. Generally, a metadata node maintain a map of shard’s key range and the node(s) that 

shard exist. So based on the key of the record which is to be modified or inserted the request is 

routed to corresponding data node. Sharding can be leveraged by choosing a random and non-

repetitive shard key because it gives better distribution. Instead of distributing record by hashing 
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algorithm, where consecutive rows could be on different machines, having a set of consecutive 

records in the same machine can help increase sequential read, write and scanning. At the same 

time random read and write also could achieve high throughput by leveraging multiple machines. 

Most of the NoSQL databases supports auto sharding which takes splitting and distributing over 

data nodes. 

 

2.2.3 Trade offs 

Even though many companies have started using different type NoSQL databases, there 

are many complexities in adopting this approach. As already mentioned Facebook [5], tumblr. 

[10] and a few other companies still manage to scale relational databases by sharding. Though 

there are some captivating features available in NoSQL databases, it comes with some tradeoffs. 

 ACID Properties – NoSQL Databases trades off ACID properties to achieve faster 

service. For example, HBase writes the updates in the main memory and returns and 

ensures durability by replicating it into multiple region servers. Also it provides only row 

level atomicity which would improve the throughput of the database. 

 Eventual consistency – According to Eric Brewer’s CAP theorem a system can only have 

two of three qualities consistency, availability, and partition tolerance [6]. Some NoSQL 

databases give up consistency for other two and provide eventual consistency which 

means updating the replicated copies asynchronously.  In such cases there could 

inconsistent reads. For this reason, some database returns multiple conflicting versions [6] 

of entity which the client may need to resolve. 
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 Structured Query language – NoSQL databases does not offer easy to use query language. 

Usually they provide API to interact with the database. Though some databases some 

basic level language to query the data through shell or API like MongoDB and HBase.  

 Joins – NoSQL does not support joins, even if it does it only provides very basic level of 

joining. And implementing joins over the NoSQL database is complex and better not to 

be done [5].  

2.3 HBase 

HBase [23] is an open source NoSQL database implemented by Apache based on 

Google’s Bigtable design. It is part of Hadoop [24] suite and operates over the distributed file 

system HDFS [14]. HBase is a multi-dimensional column oriented database i.e. the total number 

of column in a table is split into one or multiple subsets based on its properties. This subset is 

called a column family. For example, a student table could have a column family called ‘Grades’ 

which groups all the grades the student earned and another column family called ‘Payments’ 

which groups all payments for different terms. By combining related column as column family 

and storing them all together makes it easy to store and retrieve columns. HBase also allows 

multiple versions of data to be stored in the same cell. 

HBase partitions the records using auto sharding. Region is a unit record set which 

comprise all the records which fall within its defined key range. HBase cluster could have 

multiple Region servers each one of them hosting a set of regions. A Master node is responsible 

for managing the cluster and maintaining the map of region and region server association. HBase 

is maintained by Zookeeper servers which is also responsible for proving the routing map to the 

HBase clients. 
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2.4 MongoDB 

MongoDB is an open source document based NoSQL database developed by 10 gen. 

MongoDB uses BSON a binary representation of JSON [13] to store the data as documents. Each 

row is considered as a document. It supports auto sharding, indexing, Map-Reduce, and many 

other features. Like Bigtable, MongoDB also partitions the record using the key range. Each key 

range is called a “shard” and each shard contains number of chunks. Each shard is maintained by 

a server called mongod or a replication set which is set of mongod servers. The mongos server 

routes for all the requests from client to right mongod server. It is suggested to have 3 

configuration server or mongos running in the production environment.[12]. MongoDB supports 

simple database operations like create, read, update and delete, it also supports some of the basic 

joining. MongoDB can be connected using any one of the rich set drivers provided by it.  

MongoDB provides copious tools to monitor the performance of the database system and to 

improve it. MongoDB does not support ACID transaction but promises atomicity for operation 

within a single document. MongoDB support journaling which is a mechanism to expedite write 

operation by copying the operation into journal file and applying write operations as batch. 

2.5 MySQL 

MySQL is a popular RDBMS owned by Oracle Corporation.  Its community version is an 

open source and can run on wide variety of operating systems. MySQL stores all the data in a 

single machine and uses B-Tree for indexing. InnoDB is an efficient storage engine and designed 

to provide higher performance with large amount of database. InnoDB’s approach of organizing 

data on the disk is efficient for serving the queries which filters using primary key. So choosing a 

primary key which is used in most queries will help achieving higher performance. MySQL 

provides most of the features that comes with a RDBMS database.  
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MySQL does not support auto sharding so in order to use it as a distributed database, it 

was installed in more than one machine and sharding logic was implemented in the 

benchmarking application. The key was hashed using Java Hashing API and modulo divided by 

the number of data nodes to find the specific data node.. In contrast to the tablet approach 

explained in “Sharding” section, this approach places every consecutive record in different 

machine which costs sequential reads or writes extremely high latency.  

2.6 YCSB 

Yahoo! Cloud serving benchmark [2] is an open source benchmarking tool implemented 

in java. The tool was open sourced by Yahoo! which they developed for benchmarking NoSQL 

database. YCSB benchmarks the database using simple operations like insert, read, write, scan 

and delete. It provides a set of predifined workloads which can be modified as per the user needs 

like the percentage of read/write operation and type of random distribution to use while querying 

data. And also it provides parameters to configure number of threads to use, duration of the test 

and record count. Apart from this, the source code is flexible to add new workloads as well. 

YCSB ouput can be captured in a log which would print out the commands used, number of 

operation and average latency for every 10 seconds and at the end of the test, it gives the overall 

run time, overall  average throughput and latency in different percentile. There are also 

parameters to capture the time series reports for every configured interval. YCSB can be used to 

load the database before running benchmark and running parallel workloads.  

YCSB supports lot of NoSQL databases like HBase, Cassandra, MongoDB and many 

more, for which the client module is already implemented and available. Also it is easy to add 

client implementation for new databases just by implementing few abstract classes. YCSB uses 

multiple threads while benchmarking the database most of them are worker threads, which is 
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number of the threads configured by the user and few threads to control and collect statistics. 

The latency calculated by the YCSB does not include the time spent on collecting the statistics. 

There is a core component which decides what operation and key to use based on the user 

configuration and worker threads calls database module with those parameters to perform the 

operation. 

2.7 Ganglia 

Ganglia[14] is an open source distributed monitoring tool developed by University of 

California, Berkeley. It captures the system resource metrics of main memory, processor, disk 

and network communication.  The gmond which is client side daemon of ganglia collects the 

performance metrics from the client system for every fixed interval and reports it to gmetad a 

meta server which stores the metrics in a round robin database. Ganglia provides a web interface 

to access this information in summary view as well individual nodes for different period of time 

like hour, day, month and year.  

Metric data maintained in the round robin database can be made as graphs using 

rrdTool[15] All the individual nodes’ graphs given in this report was generated using the rrdTool. 

There are open source modules available to enable the reports for resources like TCP, GPU or 

specific software like Apache web server, MySQL and as well as for NoSQL databases like 

Redis, CouchDB, MongoDB.  HDFS and HBase can be configured to directly report its statistic 

to Ganglia. 
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Chapter 3  Experiment Setup 

3.1 Machine Configuration 
 

The cluster had six servers. One of the server was dedicated to run YCSB and in some 

case to run some of the server component of the database. Each node in the cluster are not of the 

same capacity. All the nodes are kept in the same server rack and connected to a single network 

switch. 

Node\Metrics Processors RAM Disk RAID level 

hydra1 16 CPUs 2.34 GHZ 16 GB 900 GB Raid 5 

hydra2  16 CPUs 2.34 GHZ 16 GB 900 GB Raid 5 

hydra3 16 CPUs 2.34 GHZ 23 GB 900 GB Raid 5 

hydra4 16 CPUs 2.34 GHZ 22 GB 900 GB Raid 5 

hydra8 8 CPUs 3.81GHZ 8 GB 2 TB No Raid 

hydra9 8 CPUs 3.32 GHZ 8 GB 1 TB No Raid 

 

Table 3.1: Machine configuration 

 Network Bandwidth : 1 GBPS 

3.2 HBase Configuration 

HBase Version 0.94.5 and Hadoop – 1.0.4 was used for benchmarking. About 80% of 

RAM is allocated for HBase which includes 1 GB heap for Hadoop. Server hydra1 was 

configured as Hadoop name node and hmaster. All other nodes were configured as data nodes. In 
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addition, hydra3 and hydra4 were made zookeepers. These two machines have the largest RAM 

in the cluster. 

Most of the performance tuning listed below was followed based on the performance 

tuning tips [32] section in HBase website. 

i. The “hbase.regionserver.handler.count” parameter was set to 20. This parameter is the 

number of threads that the region server uses to serve the requests from clients. This 

parameter was tuned based on the performance tuning suggestion from HBase website.  

ii. The regions for the table used for benchmarking was pre created. If the regions are not 

created before loading the data HBase tends to create the regions one by one as data 

grows and it takes considerable time splitting the data between regions. Also the regions 

at the end of data loading are huge which may reduce the performance. So 100 regions 

were created with even distribution of key before loading the data in 5 data nodes each 

having 20 regions in it. 

iii. HBase was developed in Java and allocates and de-allocates heap memory more 

frequently so garbage collection which is triggered at times could bring down the 

performance of the database for some moment. To avoid this, concurrent garbage 

collection was configured as given by the HBase performance tuning tip. 

iv. The bloom filter feature in HBase was enabled to avoid looking for records in wrong 

store filter. The filter was enabled for the entire row as the benchmark reads the whole 

record from the database. 
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v. The client side buffering was not enabled. Though it may increase the update 

performance there is also risk of loss of data if the client application goes down before 

writing the data in the database. However, disabling client side buffering does not show a 

high impact in write performance of HBase. 

3.3 MySQL Configuration 

MySQL 5.6.10 was used for this benchmarking. Except hydra1 all other nodes were 

installed with MySQL server. Since there is no cluster server component in the Shared MySQL 

hydra1 was used only for running YCSB. The data was sharded using client side hashing which 

evenly distributes data among MySQL servers. Performance tuning was done for the MySQL 

server by following the tips given in the MySQL server website.  

i. 80% of the RAM of each node was allocated to the MySQL server’s memory buffer pool. 

Having larger buffer pool size caches the record in the physical memory which reduces 

the disk I/O operation.  

ii. The memory buffer pool was split into 3 buffer instance.  Splitting up the buffer pool is 

needed for larger memory buffer pools and this would increase the concurrency in query 

execution. 

iii. The read and write IO threads were configured to 32 each. These background threads are 

increased from its default value 4 to provide scalability. 

iv. The log file size was configured as 1.5 GB, larger file reduces the number of flushes to 

the disk which reduces the disk I/O operations. 
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v. The updates are written to log file and flushed to disk every second. According to 

MySQL documents the updates has to be written to log file and flushed to disk for every 

transaction to be ACID complaint but it was traded off to accomplish scalability. 

3.4 MongoDB Configuration 

The MongoDB version 2.2.3 was configured with five mongod servers, three config 

servers and one mongos server. The mongos server was configured on hydra1 which is also 

shared by ycsb. There wasn't much explicit performance tuning done for MongoDB by itself had 

different approach like using memory buffer instead assigning dedicated main memory. Other 

performance tuning tip like using a random valued field as shard key for the collection was 

inherently exist since YCSB use hashed key. After loading the data we observed that the chunk 

count in all the mongod servers is close to same. The chunk size and balancing threshold was not 

modified while configuring. 

3.5 YCSB Workload setup 

YCSB version 0.1.4 was run on hydra1 server which was also used to run Hadoop’s 

name node, HBase's hmaster, MongoDB's mongos server. However, we ensured that the server 

was not too loaded. Also the server application mentioned before was started whenever it is 

needed, for example while running HBase benchmark MongoDB application will be stopped. 

YCSB source code was downloaded and built locally. Some changes were made to the YCSB 

code to improve the performance and exception handling. In HBase client module code was 

added to pre create the table and regions before loading the data. MongoDB was causing type 

conversion exception in scan benchmarking, the code was fixed. MySQL client module was 

modified to ignore the record already exist exception just to make the data loading part easy and 
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to avoid keeping track where the last loading attempt ended/terminated abruptly. Some extra 

logging was added in MySQL module to capture the data shown in Figure 4.1 & 4.2.  

3.6 Schema design  

A table called ‘usertable’ with 10 columns and a key column was used for benchmarking. 

Based on the database the table schema details are provided below. Each column is about 100 

bytes of data and the key is about 40 bytes. The row key was used as the sharding key in all the 

databases. The key was sequentially generated and hashed using Java API and prefixed with a 

string ‘user’.  

 

 

For benchmarking, tables or collection was created in the database. YCSB was used to 

load the data. YCSB creates a record with random bytes of data and inserts to the table. In HBase 

a table was created with a key and a column family. Each row has ten column qualifiers in the 

column family. As already said the regions for the table were pre created. The region in the 

HBase is set of records maintained with a particular range of keys.  The regions were distributed 

all along the hosts equally by HBase itself. In sharded MySQL, a table with same name was 

created in all five MySQL server. The table had one primary key and ten columns of varchar 

type. The MySQL records were assigned to a MySQL server using application logic in YCSB. 

The key was hashed and modulo divided to find the MySQL server to assign the data, that way 

YCSB knows which MySQL server to communicate while querying or updating. In MongoDB, a 

collection with a shard key and ten fields were created. The data was spread across all mongod 

servers equally by the MongoDB.  

user1000003234229993965 

 

Figure 3.1 A sample key generated by YCSB 
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The databases were benchmarked for three different workloads. Each workload was run 

for 20 minutes. The workloads are read intensive, write intensive and scan. In the read intensive 

workload the key to be queried was randomly chosen and queries the whole record from the 

database. The write intensive workload chooses key randomly and updates a single field in that 

record. The scan workload chooses a key randomly and gets a set of records whose keys value is 

greater than the specified key. The scan workload has a parameter to set how many records have 

to be fetched. In all of the workloads, uniform distribution is used to choose the key. For all of 

the benchmarking maximum 10 threads were used. Increasing the number of threads only 

increases the latency and gives no improvement in throughput. About 72 GB of data was 

generated considering each row as 1 KB of data. 

Three different workloads were used in this experiment. For all the workloads the key to 

query was randomly decided under random distribution.  The latency was calculated only using 

database API’s duration to complete. Internal operational are not included in the latency period. 

3.7 Environmental performance tuning 

As suggested by the HBase performance tuning, the swap memory was disabled during 

all the benchmarks. Swapping memory will increase the disk IO operations which may degrade 

the performance. Earlier the cluster was running with 100 Mbps network switch, during which 

the performance of the cluster was very poor. Because of this the Gigabit network switch was 

installed which provided certain amount of improvement in the performance. There is no 

comparative performance results provided here to show the difference, but throughput 

measurement was given in Table 3.2.  
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Network switch Throughput in MBPS 

100 Mbps 94.11 

1 GBPS 842.95 

 

Table 3.2 Network bandwidth differences with old and new network switch 

Three of the machines used for benchmarking had RAID level 5 configured. Although 

RAID 0 is suggested by HBase performance tuning, RAID 5 was used since those nodes were 

shared with other experiments in the research group. Also it may show if there is any perform 

difference between HBase and other databases because of the RAID level. The disk 

benchmarking results were provided Figure 3.2. The benchmarking was done using “dd” linux 

command by reading and writing 2 GB of data from/to the disk. These tests were run for three 

times and the average is given here. Most of the machines were configured with Xen kernels, 

since it is suspected hypervisor kernel could degrade the performance, the kernels were switched 

to normal kernels. 
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Figure 3.2 Data nodes disk benchmark 
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Chapter 4  Results 

Here are the benchmark results and the individual node performances given for read, 

write and scan benchmarking with three databases HBase, MongoDB, sharded MySQL. Each 

workload was run for 20 minutes and for the same time average latency and average throughput 

was calculated and plotted here. The results provided here contain the maximum throughput 

achievable with the environment. Since there were bottleneck nodes in the cluster, the database’s 

throughput did not scale up regardless of how many client threads were used. Hence for all the 

benchmarks only 10 client threads were used. Having more than 10 client thread only increases 

the latency while there is no improvement in throughput. The average latency and throughput 

was calculated for every 10 seconds. The benchmarks were performed with 72 GB of data which 

is more than all the nodes can hold in the main memory. The replication was disabled in all of 

the databases as this benchmark only concentrates on the performance. 

The data nodes performance is measured using the metric cpu IO wait percentage 

‘cpu_wio’ which is percentage of time the cpu waits for IO operation to complete. This metric 

was captured from ganglia from each of the data node for the time window when the benchmark 

was run and it was captured right after the benchmark was completed, so the percentage was not 

averaged.  

In summary, the key observation of this test were, 

 HBase read latency is higher than MongoDB and sharded MySQL and HBase’s update 

latency is lower than other two. HBase is optimized for writes so this behavior is 

understandable. 



23 

 

  

 The scan performance of HBase is relatively well and MongoDB’s scanning ability was 

very poor. 

 When assigning the shards to data nodes, none of the database discussed here considered 

the capability of the node. It evenly spreads the data in all data nodes. The lesser capable 

nodes to struggles to compete with the other nodes mostly in disk operations and acts as 

a bottleneck node. The case discusses below explains this and the same behavior is 

observed in all of the workloads benchmarked. 

Figure 4.1 shows the percentage of request which had latencies greater than 5 

milliseconds for each data node captured for sharded MySQL read benchmarking. The count of 

read requests with considered latency is high from hydra9 & hydra8. Nodes hydra2 and hydra3 

have relatively lesser percentage and there is only one such request in hydra4.   

 

Figure 4.1 % of request had latency > 5 

milliseconds of each data node 

 

 

Figure 4.2 Average latency of each data node 

 

In Figure 4.2 , the average latency (from the sampling of latency > 5 ms) of each data 

node is given. In that, hydra9 has the highest average latency. Though hydra8 had higher 

percentage of requests with considered latency its average latency is 18 ms and rest of the 

hydra2 

hydra3 

hydra4 
hydra8 

hydra9 

hydra2 
hydra3 

hydra4 
hydra8 

hydra9 
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machines has even lesser average latency. hydra9’s average latency is about 4 times bigger than 

other nodes latency, which shows that the hydra9 is blocking the client threads from using the 

other data nodes. 

4.1 Read benchmark results 
 

Database Avg Throughput (ops/sec) Avg Latency (milliseconds) 

HBase 276.34 36.15 

MongoDB 688.67 14.51 

MySQL 570.13 17.51 

Table 4.1 Read benchmark Throughput & Latency 

The throughputs of all the database is not enough for a cluster which has 5 datanodes. 

Regardless of various performance parameters tuned in the database, the throughput did not 

improve beyond this point which led us to use our new perspective to investigate the problem. 

The cpu_wio charts of all the benchmarking clearly states there is one machine hydra9 is acting 

as a bottleneck in the cluster. The hydra9’s cpu_wio percentage is high when comparing with 

other nodes even though the network bytes in and out, which we use to interpret the database 

throughput, from each node does not differ a lot. This shows that the node is struggling to 

perform disk operation. The requests directed to this node has high latency which makes the 

client threads to wait long. So that other nodes are not leveraged very well which reduces the 

over all throughput. The hydra9 is acting as a bottleneck and the databases are not capable 

enough to understand this nature and keep the load on the bottleneck load less. Instead, the 

database treats all the node in the same way which is causing degrade in throughput. 
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Figure 4.3 Read throughput 

HBase’s read latency is significantly higher than the other two databases. Since MySQL 

and MongoDB uses same B Tree indexing method, performance of both are close. MongoDB is 

able to perform very well in random read benchmarking because of using the memory buffers 

instead of consuming main memory and copying data in it. The cpu_wio graph given here shows 

the percentage of time the cpu waited for I/O operation. As described in YCSB[6] , HBase has to 

read and assemble records from multiple disk pages. More than that, the record has to be 

searched in multiple store files. However having bloomfilter enabled HBase must avoid looking 

into wrong files. As shown in Figure 4.4,the cpu IO wait percentage of hydra9 node for HBase 

read benchmark is higher than other two databases.  This shows that HBase read latency is 

highly affected due to this bottleneck node. This also shows that HBase does more disk IO 

operation than the other two databases. The replication was not enabled, so this could also be a 

downside for HBase. If replicated, HBase would have got more than one node to fetch the data 

which increases the throughput. 
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Figure 4.4 HBase cpu IO wait for read 

MongoDB cpu IO wait perentage is lesser than other two databases. Memory buffering is 

helping it to reduce the cpu wait time. The lesser cpu IO wait is the reason for MongoDB to 

achieve relatively higher throughput. 

 

Figure 4.5 MongoDB cpu IO wait for read 

 

Figure 4.6 Sharded MySQL cpu IO wait for read 

 

 

 

 



27 

 

  

4.2 Write Benchmark(Update) 
 

HBase has higher update throughput than the MongoDB and sharded MySQL, this is 

because the HBase writes the data in the main memory and returns but other two writes in the log 

file and returns. HBase gurantees the durability of the update by replicating the update. However 

in this benchmarking the replication was disabled. HBase has slightly high throughput when the 

client side buffering is enabled which collects all the updates untill the buffer is full and commits 

all the updates to the database later. However, since the risk of losing the data is high in this 

approach the client side buffering was disabled in HBase benchmarking. 

 

 

Database Avg Throughput (ops/sec) Avg Latency (milliseconds) 

HBase 11735.67 0.84 

MongoDB 260.85 38.32 

MySQL 504.22 19.81 

 

Table 4.2 Write Benchmark Throughput & Latency 

 

MongoDB has lesser throughput than MySQL. The inferred reason for this behavior is 

MongoDB leverages the memory caching which gives it read throughput better than MySQL but 

not helping in write operation. This can be noticed in the cpu wait percentage of MongoDB. 

MySQL consistency was traded off little bit to provide lower latency. MySQL updates were 

written to log files and flushed to disk every one second.  
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Figure 4.7 Write Benchmark Throughput 

 

Figure 4.8 HBase cpu IO wait for write 

 

Figure 4.9 MongoDB cpu IO wait for write 
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Figure 4.10 Sharded MySQL  cpu IO wait for write 

4.3 Scan Benchmarking 

Range scan was performed using the table key with maximum of 1000 records. HBase 

outperforms sharded MySQL and MongoDB in scan performance. Also throughput of HBase is 

more consistent than other two which has throughput going up and down. MongoDB and 

MySQL B-Tree indexing helps it to achieve low read latency, but due to the inherent 

fragmentation in this approach [2], it causes high latency while scanning. Scanning was not 

possible with sharded MySQL architecture used for this testing, however YCSB has an 

implementation to scan only in one data node where the keys are greater than the chosen key. So 

it is not equivalent to scanning the whole table like the other two databases does. 

Database Avg Throughput (ops/sec) 

HBase 42.89 

MongoDB 1.27 

MySQL 3.72 

 

Table 4.3 Scan benchmark Throughput & Latency 
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Figure 4.11 Scan Benchmark Throughput 

hydra9 cpu wait I/O percentage is close to 40 % but the other machines takes only 10% – 

15%. This means that HBase could actually execute more scan operation if hydra9 is not a 

bottleneck. For the other two database the hydra9 spends about 15% – 20 % in cpu wait I/O but 

still yields very less throughput. 

 

Figure 4.12 HBase cpu IO wait for scan 
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Figure 4.13 MongoDB cpu IO wait for scan 

 

Figure 4.14 Sharded MySQL cpu IO wait for scan 

4.4 Benchmarking with bottleneck nodes 

To show the performance degrade when more bottleneck nodes are in the cluster, one 

more data node was intentionally loaded with disk operation while running the benchmark. Here 

the figures gives the contrast between performance of the cluster with one bottleneck node and 

two bottleneck nodes.  The results of one bottleneck node shown here is same as the result 

discussed above except scan workload. 

To simulate the load we used the ‘dd’ the linux command and it can be used to read/write 

data to/from the disk. A script which uses the ‘dd’ command will run for the configured amount 

of time.  The script writes about 2 GB of data and deletes it and repeats until the configured 

duration is past. The script was started before the benchmarking and configured to beyond the 

end of benchmarking all the workloads. 
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Figure 4.15 Read throughput with bottlenecks 

As we have seen already HBase read performance was not good and it degrades even 

more when there is two bottleneck nodes. sharded MySQL degrades more than 50% of it 

throughput. MongoDB degrades in performance but not as bad as MySQL.  

 

 

Figure 4.16 Write throughput with bottlenecks 
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In write benchmark, The HBase performance was degraded about 30%. It should be 

noted that the HBase does not sync all its update to the disk, but still there was a impact in the 

performance. HBase has to dump its ‘Memtable’ for every time it reaches 12 MB which involves 

disk operation and may be that's the reason why there is change seen the performance. 

MongoDB performance does not degrade too much. Though MongoDB did not provide a very 

good write performance the performance did not degrade a lot in the two bottleneck nodes 

situation. Unlike HBase, MongoDB syncs every write into the disk. sharded MySQL lost almost 

85% of its performance. Both in read and write sharded MySQL was heavily affected by the 

bottleneck nodes. 

 

Figure 4.17 Scan throughput with bottlenecks 

In scan benchmark the HBase lost its throughput about 45%, MongoDB performance was 

poor enough in either case. Contradictorily sharded MySQL scan perfcormance is improved in 

the 2 bottleneck nodes scenario. The order in which the benchmarks were run was read, write 

and scan. So the reason for this behavior is in 1 bottleneck node scenario more updates were 

performed which causes lot of buffered record to evict. During the scan more records has to be 
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read from disk which reduces the throughput. In case of 2 bottleneck node scenario very less 

updates were performed so only few records were evicted from buffer. Because of this next scan 

benchmark were able to read more records from buffer itself hence the throughput was higher 

than the previous case. When we ran the benchmarks in the order read, scan without updates the 

scan performance was 6.95 operations /second. 
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Chapter 5  Implication 

In summary, we ran three different workloads to benchmark the performance of three 

different NoSQL databases and provided the results with individual data nodes performance. We 

have used heterogeneous data nodes and demonstrated how the current NoSQL database 

version’s performance is affected by such configuration. In this section we discuss the 

observation and the implications. 

 

 

Observation 

 

 

Implication 

Higher network bandwidth is needed to get 

high performance from NoSQL databases. 

To reduce this dependency little bit, data 

could be transmitted in compressed format. 

Disk IO affects the performance of NoSQL 

databases. 

Having large main memory or solid state 

drives (SSD) in the data nodes will help 

increase the performance.  

MongoDB read performance is better than 

other two databases. 

MongoDB leverages the main memory 

buffering and achieves better random reads. 

So MongoDB can be used where high read 

bandwidth is needed. 

HBase read performance is low. HBase spends some time looking into 

multiple store files. Even though bloom 

filter is enabled it did not yield significant 

improvement in performance. HBase record 

lookup in the store files could be improved. 

HBase write performance is better than 

other two databases.  However, there is risk 

of losing data if the system or HBase 

crashes. But HBase ensures durability by 

replicating the data to more than one node. 

HBase writes the updates in the main 

memory and returns. Hence it could achieve 

high write performance. So HBase can be 

used for the solution which required high 

write bandwidth. 
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Table 5.1 Observation and Implication 

 

 

 

 

 

 

 

 

 

 

 

HBase scan performance is relatively stable 

and high. 

HBase can be used where high bandwidth 

of sequential reads is needed. 

All three NoSQL database performances are 

affected by bottleneck nodes. 

i. NoSQL databases should consider the 

capability of data nodes and decide how 

much data to be assigned to that system. 

ii. The NoSQL databases should have the 

ability to detect bottleneck nodes and 

move the data shards dynamically from 

affected node to other nodes which 

performs well and have space for new 

data. 

iii. Else, if the bottleneck node is detected, 

then the NoSQL database can use that 

node only to store least accessed data. 

For this, the database must have the 

intelligence to classify data sets based on 

the frequency of access. 

With the existing benchmarking tool YCSB, 

there is no easy way to measure the latency 

and performance of individual nodes. 

Need to extend YCSB to provide individual 

nodes throughput and latency statistics. 
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Chapter 6  Related works 

Michael stonebraker and Rick Cattell in the article “10 Rules for Scalable Performance in 

‘Simple Operation’ Datastores” [5] provides 10 rules to consider while choosing a NoSQL 

database. This article discusses about NoSQL databases in many dimensions like performance, 

maintainability, ease of use, features to be sacrificed and few more. These rules are conceptual 

and can be used as a check list to filter databases at a high level. But there is not quantitative 

analysis provided for any specific database which this thesis concentrates. 

Rick Cattell provides comprehensive details about various cloud data stores in the paper 

“Scalable SQL and NoSQL Data Stores” [6]. The paper discusses about the data model, 

consistency guarantees, replication and partitioning details of NoSQL and SQL databases and 

contrasts the differences. Conceptual comparison is nice to initially choose a few databases but 

to know if the database can render the performance expected can be only verified by 

benchmarking and that was not the scope of this paper. 

In the paper “Benchmarking Cloud Serving Systems with YCSB” [2] discusses the need 

of benchmarking tool for NoSQL database and discuss their about the architecture and design of 

their new open source tool YCSB. In the same report they also provide the performance 

comparison for HBase, Cassandra, sharded MySQL and PNUTS. The scope of this paper is only 

within performance and elasticity and leaves scalability and availability research for future work. 

Our thesis is mainly based on this tool and we show that how this tool can be extended in the 

future.  
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“YCSB++ : Benchmarking and Performance Debugging Advanced Features in Scalable 

Table Stores” [3] paper is very close to this thesis. As the name suggested it’s an extended 

version of YCSB. They concentrate on advanced functionality like table week consistency, table 

pre splitting, bulk loading, access control and analyze their performance. In that paper they also 

discuss the new feature that the YCSB++ has like parallel testing which is running YCSB from 

multiple nodes and performance monitoring feature which is similar to the approach used in this 

thesis. In their performance monitoring they collect the cluster performance statistics through 

software like Ganglia, and even NoSQL database application metrics and store it in a centralized 

place so that these metrics can be used for performance debugging. But the functionality this 

thesis concentrates, analysis of collected metrics and observation and implication discussed here 

is different from YCSB++. 

There are many other benchmarks reports available in the internet [29, 30]. Also there are 

few case studies[33] given in the HBase web page which concentrates on identifying 

performance degraders and solutions. However, the utilization of the nodes and their impact in 

performance was not analyzed in any of them which this thesis considers as one of the important 

factor and incorporated it. 
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Chapter 7  Conclusion & Future works 

In this thesis we argue that measuring overall performance of NoSQL databases are not 

the end of performance analysis. The individual nodes performance is very important for the 

whole database performance. So the performance of individual nodes must be paid attention too. 

We have used three databases HBase, MongoDB and sharded MySQL for benchmarking and 

analyzed it with individual nodes performance metrics. Another argument of this thesis is the 

performance of NoSQL database not only depends on the configuration of database itself but 

also depends on the capability of nodes in the database cluster. In this thesis, we have shown 

how the performance of the database degrades by having bottleneck nodes in it. The current 

NoSQL balances the cluster by assigning even amount of data to the nodes in it. However, this is 

not always efficient if the cluster have nodes which highly vary by its capability. The thesis 

argues that the capability of the node should also be considered while assigning the data to it. 

This thesis also shows an approach to analyze the performance of individual nodes and find the 

bottleneck nodes in the cluster. 

7.1 Future works 

In future, a tool can be developed or YCSB can be extended to provide latency and 

throughput of individual data node of the database cluster. As like the chart provided in the 

MySQL latency analysis, statistics can be provided to understand which node is performing well 

and which node is behaving as a bottleneck.  However every database should have supporting 

API to find out the data node associated with the record. Such tool would help finding the 

bottleneck nodes so that those can be fine-tuned or removed before going to production. 
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A NoSQL database could be altered to be sensitive to the performance of the individual 

nodes and balance the data according to that. The NoSQL databases should have the ability to 

dynamically control the load that is placed on a particular node. An advanced configuration 

parameter can be added to the databases which provide the percentage of load a data node should 

take. If the threshold is exceeded the corresponding data node should give up data to other 

capable nodes until the configured load percentage is met.  

In this thesis, only the performance of the NoSQL databases was concentrated. Other 

qualities like availability, replication and elasticity were not tested. In future these qualities can 

also be tested and find out how individual nodes participates to provide such qualities. Especially 

the replication, which requires more than one writes and elasticity where the database cluster has 

to spread the data to new node and balance in short period of time. 

 

 

 

 

 

 

 

 



41 

 

  

Bibliography 

 

[1] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach 

Mike Burrows, Tushar Chandra, Andrew Fikes,  and Robert E. Gruber. Bigtable: A 

Distributed Storage System for Structured Data.  In OSDI’06: Seventh Symposium on 

Operating System Design and Implementation 

[2] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan and Russell Sears. : 

Benchmarking Cloud Serving Systems with YCSB. In SoCC 2010 

[3] Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin Xiao, Julio López, Garth 

Gibson, Adam Fuchs and Billie Rinaldi. YCSB++ : Benchmarking and Performance 

Debugging Advanced Features in Scalable Table Stores. In SOCC 2011 

[4] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip 

Bohannon, HansArno Jacobsen, Nick Puz, Daniel Weaver and Ramana Yerneni PNUTS: 

Yahoo!’s Hosted Data Serving Platform. In ACM VLDB ’08, August 2430, 2008  

[5] Michael Stonebraker and Rick Cattell. 10 Rules for Scalable Performance in ‘Simple 

Operation’ Datastores. In communications of the ACM june 2011 vol. 54 no. 6 p 72 to p 

80 doi :10.1145/1953122.1953144 

[6] Rick Cattell. Scalable SQL and NoSQL data stores. In SIGMOD Record 39(4): 12-

27(2010) 



42 

 

  

[7] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos, Nabil 

Hachem and Pat Helland. The End of an Architectural Era (It’s Time for a Complete 

Rewrite). In ACM VLDB ’07, September 23-28, 2007 

[8] Dhruba Borthakur, Joydeep Sen Sarma, Jonathan Gray, Kannan Muthukkaruppan, 

Nicolas Spiegelberg, Hairong Kuang, Karthik Ranganathan, Dmytro Molkov, Aravind 

Menon, Samuel Rash, Rodrigo Schmidt, Amitanand Aiyer. Apache Hadoop Goes 

Realtime at Facebook. In SIGMOD ’11, June 12?–16, 2011 

[9] Dorin Carstoiu, Elena Lepadatu, Mihai Gaspar. HBase - non SQL Database, 

Performances Evaluation. In International Journal of Advancements in Computing 

Technology Volume 2, Number 5, December 2010 

[10] Evan Elias. tumblr. Massively Sharded MySQL. In Velocity Europe 2011 

[11] Ioannis Konstantinou, Evangelos Angelou, Dimitrios Tsoumakos and Nectarios Koziris. 

Distributed Indexing of Web Scale Datasets for the Cloud. In MDAC ’10, April 26, 2010 

[12] Michael Stonebraker, Chuck Bear, Ugur Çetintemel, Mitch Cherniack, Tingjian Ge, 

Nabil Hachem, Stavros Harizopoulos, John Lifter, Jennie Rogers, and Stan Zdonik. One 

Size Fits All? – Part 2: Benchmarking Results. In 3rd Biennial Conference on Innovative 

Data Systems Research (CIDR) January 7-10, 2007 

[13] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler. The Hadoop 

Distributed File System 



43 

 

  

[14] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler. The Hadoop 

Distributed File System. In Mass Storage Systems and Technologies (MSST), 2010 IEEE 

26th Symposium 

[15] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, 

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall and 

Werner Vogels. Dynamo: Amazon’s Highly Available Key-value Store. In SOSP '07 

Proceedings of twenty-first ACM SIGOPS symposium on Operating systems principles 

[16] Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung. The Google file system. In 

Proceeding SOSP '03 Proceedings of the nineteenth ACM symposium on Operating 

systems principles 

[17] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander Rasin, 

Stanley Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker, Yang Zhang, 

John Hugg. HStore: A HighPerformance, Distributed Main Memory Transaction 

Processing System. In ACM. VLDB ‘08, August 24-30, 2008 

[18] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large 

Clusters. In OSDI ’04: 6th Symposium on Operating Systems Design and Implementation 

[19] Matthew L. Massie , Brent N. Chun , David E. Culler. The Ganglia Distributed 

Monitoring System: Design, Implementation And Experience. In Parallel Computing 30 

(2004) 817–840  

 



44 

 

  

[20] Umar Farooq Minhas, Rui Liu, Ashraf Aboulnaga, Kenneth Salem, Jonathan Ng, Sean 

Robertson. Elastic Scale-out for Partition-Based Database Systems. In Proceeding ICDEW 

'12 Proceedings of the 2012 IEEE 28th International Conference on Data Engineering 

Workshops Pages 281-288. 

[21] Robin Hecht, Stefan Jablonski. NoSQL Evaluation: A Use Case Oriented Survey. In 

Cloud and Service Computing (CSC), 2011 International Conference on 12-14 Dec. 2011 

[22] Craig Franke, Samuel Morin, Artem Chebotko, John Abraham, and Pearl Brazier. 

Distributed SemanticWeb Data Management in HBase and MySQL Cluster.  In Cloud 

Computing (CLOUD), 2011 IEEE International Conference on 4-9 July 2011 105-112 

[23] HBase - http://hbase.apache.org 

[24] Hadoop - http://hadoop.apache.org 

[25] The InnoDB Storage Engine  

http://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html 

[26] MongoDB BSON format 

 http://docs.mongodb.org/manual/reference/glossary/#term-bson 

[27] Ganglia documentation - http://ganglia.sourceforge.net/ 

[28] RRDtool -  http://oss.oetiker.ch/rrdtool/ 

[29] Hypertable vs. HBase Performance Evaluation II 

http://hypertable.com/index.php/why_hypertable/hypertable_vs_hbase_2 

http://hbase.apache.org/
http://hadoop.apache.org/
http://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
http://docs.mongodb.org/manual/reference/glossary/#term-bson
http://ganglia.sourceforge.net/
http://oss.oetiker.ch/rrdtool/
http://hypertable.com/index.php/why_hypertable/hypertable_vs_hbase_2


45 

 

  

[30] HBase performance testing at hstack -  http://hstack.org/hbase-performance-testing 

[31] Derek. Understanding Disk I/O - when should you be worried? 

http://blog.scoutapp.com/articles/2011/02/10/understanding-disk-i-o-when-should-you-be-

worried February 2010 

[32] HBase performance tuning - http://hbase.apache.org/book/performance.html 

[33] Apache HBase Case Studies - http://hbase.apache.org/book/casestudies.html 

http://hstack.org/hbase-performance-testing
http://blog.scoutapp.com/articles/2011/02/10/understanding-disk-i-o-when-should-you-be-worried
http://blog.scoutapp.com/articles/2011/02/10/understanding-disk-i-o-when-should-you-be-worried
http://hbase.apache.org/book/performance.html
http://hbase.apache.org/book/casestudies.html


46 

 

  

Abstract 
 

PERFORMANCE ANALYSIS OF SCALABLE SQL AND NOSQL DATABASES: A 

QUANTITATIVE APPROACH 

by 

HARISH BALASUBRAMANIAN 

May 2014 

Advisor:     Dr.Weisong Shi 

Major:     Computer Science 

Degree:     Master of Science 

 

Benchmarking is a common method in evaluating and choosing a NoSQL database. 

There are already lots of benchmarking reports available in internet and research papers. Most of 

the benchmark reports measure the database performance only by overall throughput and latency. 

This is an adequate performance analysis but need not to be the end. We define some new 

perspectives which also need to be considered during NoSQL performance analysis. We have 

demonstrated this approach by benchmarking HBase, MongoDB and sharded MySQL using 

YCSB. Based on the results we observe that NoSQL databases do not consider the capability of 

the data nodes while assigning data to it. And these databases’ performance is seriously affected 

by the bottleneck nodes and the databases are not attempting to resolve this bottleneck situation 

automatically.  
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